1
|
Alotaibi BM, Chen X, Alharbi TMD, Heydari A, Raston CL. Free-Standing Nanocomposite Au@Graphene Oxide Continuous Flow Synthesis in Water for Degradation of Organic Dyes. Chemistry 2025; 31:e202403207. [PMID: 39593269 DOI: 10.1002/chem.202403207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Indexed: 11/28/2024]
Abstract
We have developed a rapid and facile method for preparing free-standing nanocomposite of gold nanoparticles with graphene oxide (Au@GO) in water under continuous flow in the absence of harsh reducing agents and any other auxiliary substances, as a method with favourable green chemistry metrics. This uses a vortex fluidic device (VFD) where induced mechanical energy and photo-contact electrification associated with the dynamic thin film in the rapidly rotating tube tilted at 45° while simultaneously UV irradiated (λ=254 nm, 20 W) results in decomposition of water to hydrogen and hydrogen peroxide with growth of the gold nanoparticles on the surface of the GO. We have established that the resulting Au@GO composite sheets rapidly catalyse the degradation of commercial dyes like methyl orange (MO) and methylene blue (MB) using the hydrogen peroxide generated in situ in the VFD. This process relies on active radicals generated through liquid-solid photo-contact electrification of water in the VFD which dramatically minimises the generation of waste in industrial applications, with the reaction having implications for wastewater treatment.
Collapse
Affiliation(s)
- Badriah M Alotaibi
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Xianjue Chen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Thaar M D Alharbi
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
- Physics Department, Faculty of Science, Taibah University, Almadinah Almunawarrah, Saudi Arabia
| | - Amir Heydari
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
- Chemical Engineering Department, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
2
|
Wang W, Li Y, Xiao X, Li G. Advances of functional graphdiyne in separation and detection. Talanta 2025; 287:127673. [PMID: 39904251 DOI: 10.1016/j.talanta.2025.127673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Separation and detection technologies are essential tools for ensuring quality, safety and efficiency across various industries. Graphdiyne (GDY), a carbon material made up of alkyne bonds conjugated with benzene rings to form a planar all-carbon network, is increasingly utilized in the fields of separation and detection. GDY is becoming an ideal separation medium due to its adjustable pore sizes, unique alkyne-rich framework, and easy to be functionalized. On the other hand, GDY shows great potential in detection with the advantages of efficient photoelectric effect, high carrier mobility, and large surface areas to provide active sites. This review summarizes the progress of functional GDY in separation and detection from 2011 to 2024. Various synthesis methods were introduced on improving the properties of GDY in separation and detection. Efforts have increasingly focused on the development of functional GDY in separation functionalities such as magnetic and membranous separations. Moreover, the application of functional GDY in detection technologies are discussed such as electrochemical, spectroanalysis, and dual-mode approaches. Finally, the promising research directions and prospects of functional GDY are discussed to explore further applications in both separation and detection.
Collapse
Affiliation(s)
- Weibin Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - You Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Ye Z, Fang T, Cong C, Chen K, Zhang D, Kong X, Wang Q, Liu S, Li M, Zhao B, Xia Z, Shang Y, Liu L, Shi E, Wei X, Cao A. Strong and Fatigue-Resistant Carbon Nanotube Composites Enabled by Amorphous/Crystalline Heterophase Shell. ACS NANO 2024; 18:24984-24996. [PMID: 39189387 DOI: 10.1021/acsnano.4c05966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Lightweight materials with high strength and long cyclic lifespan are greatly demanded in practical applications, yet these properties are usually mutually exclusive. Here, we present a strong, lightweight, highly deformation-tolerant, and fatigue-resistant carbon nanotube (CNT) composite enabled by an amorphous/crystalline heterophase carbon shell. In particular, we obtain nanocrystallites with CNT-induced crystalline orientation uniformly embedded within an amorphous matrix by controlled thermal annealing. The heterophase carbon shell effectively alleviates the stress concentration and inhibits crack propagation, which renders our composite superior mechanical properties and high fatigue resistance (106 compression cycles at 20% strain with high stress of 144 kPa, or 5 × 105 cycles at 50% strain with stress up to 260 kPa). This study provides a deep understanding of amorphous-crystalline phase transition and insight into utilizing phase engineering to design and develop other high-performance functional materials such as structural materials and catalysis.
Collapse
Affiliation(s)
- Ziming Ye
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Tao Fang
- College of Engineering, Peking University, Beijing 100871, China
| | - Chaonan Cong
- College of Science, China Agricultural University, Beijing 100083, China
| | - Kun Chen
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ding Zhang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaobing Kong
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Qi Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shizhuo Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Meng Li
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhiyuan Xia
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuanyuan Shang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Enzheng Shi
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Xiaoding Wei
- College of Engineering, Peking University, Beijing 100871, China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Oshchepkov AS. Buckybowl Molecular Tweezers for Recognition of Fullerenes. Chemphyschem 2024; 25:e202400435. [PMID: 38775747 DOI: 10.1002/cphc.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Buckybowl tweezers are a relatively young research area closely associated with the development of non-planar polycyclic aromatic systems and supramolecular chemistry. Since the appearance of the first prototypes in the early 2000s, the tweezers have undergone evolutionary changes. Nowadays they are able to effectively interact with fullerenes and the results opened up prospects for development in the field of sensing, nonlinear optics, and molecular switchers. In the present study, examples of corannulene-based and other buckybowl tweezers for the recognition of C60 and C70 fullerenes were summarized and analyzed. The main structural components of the tweezers were also reviewed in detail and their role in the formation of complexes with fullerenes was evaluated. The revealed structural patterns should trigger the development of novel recognition systems and materials with a wide range of applications.
Collapse
Affiliation(s)
- Alexander S Oshchepkov
- Organic Chemistry Department, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany
- Department of Physics, Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058, Erlangen, Germany
| |
Collapse
|
5
|
Malavekar D, Pujari S, Jang S, Bachankar S, Kim JH. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312179. [PMID: 38593336 DOI: 10.1002/smll.202312179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Indexed: 04/11/2024]
Abstract
In recent years, nanomaterials exploration and synthesis have played a crucial role in advancing energy storage research, particularly in supercapacitor development. Researchers have diversified materials, including metal oxides, chalcogenides, and composites, as well as carbon materials, to enhance energy and power density. Balancing energy density with electrochemical stability remains challenging, driving intensified efforts in advancing electrode materials. This review focuses on recent progress in designing and synthesizing core-shell materials tailored for supercapacitors. The core-shell architecture offers advantages such as increased surface area, redox active sites, electrical conductivity, ion diffusion kinetics, specific capacitance, and cyclability. The review explores the impact of core and shell materials, specifically transition metal oxides (TMOs), on supercapacitor electrochemical behavior. Metal oxide choices, such as cobalt oxide as a preferred core and manganese oxide as a shell, are discussed. The review also highlights characterization techniques for assessing structural, morphological, and electrochemical properties of core-shell materials. Overall, it provides a comprehensive overview of ongoing TMOs-based core-shell material research for supercapacitors, showcasing their potential to enhance energy storage for applications ranging from gadgets to electric vehicles. The review outlines existing challenges and future opportunities in evolving TMOs-based core-shell materials for supercapacitor advancements, holding promise for high-efficiency energy storage devices.
Collapse
Affiliation(s)
- Dhanaji Malavekar
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Sachin Pujari
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Suyoung Jang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Shital Bachankar
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| |
Collapse
|
6
|
Lu J, Ming X, Cao M, Liu Y, Wang B, Shi H, Hao Y, Zhang P, Li K, Wang L, Li P, Gao W, Cai S, Sun B, Yu ZZ, Xu Z, Gao C. Scalable Compliant Graphene Fiber-Based Thermal Interface Material with Metal-Level Thermal Conductivity via Dual-Field Synergistic Alignment Engineering. ACS NANO 2024; 18:18560-18571. [PMID: 38941591 DOI: 10.1021/acsnano.4c04349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
High-performance thermal interface materials (TIMs) are highly desired for high-power electronic devices to accelerate heat dissipation. However, the inherent trade-off conflict between achieving high thermal conductivity and excellent compliance of filler-enhanced TIMs results in the unsatisfactory interfacial heat transfer efficiency of existing TIM solutions. Here, we report the graphene fiber (GF)-based elastic TIM with metal-level thermal conductivity via mechanical-electric dual-field synergistic alignment engineering. Compared with state-of-the-art carbon fiber (CF), GF features both superb high thermal conductivity of ∼1200 W m-1 K-1 and outstanding flexibility. Under dual-field synergistic alignment regulation, GFs are vertically aligned with excellent orientation (0.88) and high array density (33.5 mg cm-2), forming continuous thermally conductive pathways. Even at a low filler content of ∼17 wt %, GF-based TIM demonstrates extraordinarily high through-plane thermal conductivity of up to 82.4 W m-1 K-1, exceeding most CF-based TIMs and even comparable to commonly used soft indium foil. Benefiting from the low stiffness of GF, GF-based TIM shows a lower compressive modulus down to 0.57 MPa, an excellent resilience rate of 95% after compressive cycles, and diminished contact thermal resistance as low as 7.4 K mm2 W-1. Our results provide a superb paradigm for the directed assembly of thermally conductive and flexible GFs to achieve scalable and high-performance TIMs, overcoming the long-standing bottleneck of mechanical-thermal mismatch in TIM design.
Collapse
Affiliation(s)
- Jiahao Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Min Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Bo Wang
- Hangzhou Gaoxi Technol Co., Ltd., Hangzhou 311113, China
| | - Hang Shi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Yuanyuan Hao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Peijuan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Kaiwen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Lidan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Peng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Shengying Cai
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Bin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| |
Collapse
|
7
|
Wang F, Hu J, Wu X, Yuan G, Su Y, Fan Z, Xue H, Pang H. Streamlined synthesis of superstructure Ni-benzimidazole MOFs: Glucose electrochemical analysis. J Colloid Interface Sci 2024; 665:764-771. [PMID: 38554466 DOI: 10.1016/j.jcis.2024.03.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
The design and synthesis of efficient electrochemical sensors are crucial transformation technologies in electrochemistry. We successfully synthesize a three-dimensional Ni-metal-organic framework (MOF) nanostructured material with a superior architecture using benzimidazole and nickel nitrate as precursors at room temperature which is being applied in glucose electrochemical sensors. The reaction mechanism of M-6 during glucose detection is thoroughly studied using various characterization techniques, such as in situ Raman spectroscopy, in situ ultraviolet-visible spectrophotometry, synchrotron radiography, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The research findings demonstrate that the M-6 material exhibits high sensitivity for glucose detection, with a sensitivity of 2199.88 mA M-1 cm-2. This study provides an important reference for designing more efficient electrochemical reaction systems and optimizing material performance. Furthermore, the superstructural design offers new ideas and possibilities for the development and application of similar materials.
Collapse
Affiliation(s)
- Fang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; School of Chemical Engineering, Yangzhou Polytechnology Institute, Yangzhou 225127, PR China
| | - Jinliang Hu
- Science and Technology Innovation Center, Institution Jiangsu Yangnong Chemical Group Co. Ltd., Yangzhou 225009, PR China
| | - Xiaohui Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Guoqiang Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yichun Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Ziheng Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
8
|
Samantaray S, Mohanty D, Satpathy SK, Hung IM. Exploring Recent Developments in Graphene-Based Cathode Materials for Fuel Cell Applications: A Comprehensive Overview. Molecules 2024; 29:2937. [PMID: 38931001 PMCID: PMC11206633 DOI: 10.3390/molecules29122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Fuel cells are at the forefront of modern energy research, with graphene-based materials emerging as key enhancers of performance. This overview explores recent advancements in graphene-based cathode materials for fuel cell applications. Graphene's large surface area and excellent electrical conductivity and mechanical strength make it ideal for use in different solid oxide fuel cells (SOFCs) as well as proton exchange membrane fuel cells (PEMFCs). This review covers various forms of graphene, including graphene oxide (GO), reduced graphene oxide (rGO), and doped graphene, highlighting their unique attributes and catalytic contributions. It also examines the effects of structural modifications, doping, and functional group integrations on the electrochemical properties and durability of graphene-based cathodes. Additionally, we address the thermal stability challenges of graphene derivatives at high SOFC operating temperatures, suggesting potential solutions and future research directions. This analysis underscores the transformative potential of graphene-based materials in advancing fuel cell technology, aiming for more efficient, cost-effective, and durable energy systems.
Collapse
Affiliation(s)
- Somya Samantaray
- Department of Physics, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| | - Debabrata Mohanty
- Department of Chemical Engineering and Materials Science, Chang Gung University, Taoyuan 333323, Taiwan;
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 333323, Taiwan
| | - Santosh Kumar Satpathy
- Department of Physics, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| | - I-Ming Hung
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
9
|
Hao LT, Kim S, Lee M, Park SB, Koo JM, Jeon H, Park J, Oh DX. Next-generation all-organic composites: A sustainable successor to organic-inorganic hybrid materials. Int J Biol Macromol 2024; 269:132129. [PMID: 38718994 DOI: 10.1016/j.ijbiomac.2024.132129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
This Review presents an overview of all-organic nanocomposites, a sustainable alternative to organic-inorganic hybrids. All-organic nanocomposites contain nanocellulose, nanochitin, and aramid nanofibers as highly rigid reinforcing fillers. They offer superior mechanical properties and lightweight characteristics suitable for diverse applications. The Review discusses various methods for preparing the organic nanofillers, including top-down and bottom-up approaches. It highlights in situ polymerization as the preferred method for incorporating these nanomaterials into polymer matrices to achieve homogeneous filler dispersion, a crucial factor for realizing desired performance. Furthermore, the Review explores several applications of all-organic nanocomposites in diverse fields including food packaging, performance-advantaged plastics, and electronic materials. Future research directions-developing sustainable production methods, expanding biomedical applications, and enhancing resistance against heat, chemicals, and radiation of all-organic nanocomposites to permit their use in extreme environments-are explored. This Review offers insights into the potential of all-organic nanocomposites to drive sustainable growth while meeting the demand for high-performance materials across various industries.
Collapse
Affiliation(s)
- Lam Tan Hao
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Semin Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials & Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.
| | - Dongyeop X Oh
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
10
|
Ma H, Liu H, Lv T, Xu Y, Zhou X, Zhang L. High-Energy Laser Protection Performance of Fibrous Felt-Reinforced Aerogels with Hierarchical Porous Architectures. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38701180 DOI: 10.1021/acsami.4c02725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Continuous-wave lasers can cause irreversible damage to structured materials in a very short time. Modern high-energy laser protection materials are mainly constructed from ceramic, polymer, and metal constitutions. However, these materials are protected by sacrificing their structural integrity under the irradiation of high-energy lasers. In this contribution, we reported multilayer fibrous felt-reinforced aerogels that can sustain the continuous irradiation of a laser at a power density of 120 MW·m-2 without structural damage. It is found that the exceptional high-energy laser protection performance and the comparable mechanical properties of aerogel nanocomposites are attributed to the unique characteristics of hierarchical porous architectures. In comparison with various preparation methods and other aerogel materials, multilayer fibrous felt-reinforced aerogels exhibit the best performance in high-energy laser protection, arising from the gradual interception and the Raman-Rayleigh scattering cycles of a high-energy laser in the porous aerogels. Furthermore, a near-zero thermal expansion coefficient and extremely low thermal conductivity at high temperature allow the lightweight felt-reinforced aerogels to be applied in extreme conditions. The felt-reinforced aerogels reported herein offer an attractive material that can withstand complex thermomechanical stress and retain excellent insulation properties at extremely high temperature.
Collapse
Affiliation(s)
- Huihuang Ma
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haiyan Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianxiang Lv
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiqing Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaodong Zhou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Ghasemlou M, Pn N, Alexander K, Zavabeti A, Sherrell PC, Ivanova EP, Adhikari B, Naebe M, Bhargava SK. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312474. [PMID: 38252677 DOI: 10.1002/adma.202312474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Center for Sustainable Products, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Navya Pn
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Katia Alexander
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter C Sherrell
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Minoo Naebe
- Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Suresh K Bhargava
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
12
|
Chen Y, Wu H, Jin F, Ge HL, Gao F, Wu Q, Wang S, Wang Y, Yang H. Sulfonate-modified fullerenes mimicking tentacle structures for humidity sensors. J Colloid Interface Sci 2024; 661:977-986. [PMID: 38330669 DOI: 10.1016/j.jcis.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
In this work, a straightforward method for synthesizing fullerene derivatives with tentacle structures has been explored for monitoring environmental humidity, which involves introducing sulfonate onto the fullerenes. The structure and number of polar groups in three fullerene derivatives determined by a series of structural tests greatly affect their hydrophilicity and morphology, resulting in changes in humidity sensitive properties. In particular, the hysteresis and response time of the sensors display a great correlation with hydrophilicity. C60-Ho, the best performing derivative of this work, has exhibited high response values (∼3500 times), good linearity (R2 = 97.3 %), and rapid response/recovery times (0.3/4.4 s), making it suitable for various applications such as non-contact detection of respiration, finger distance, and soil humidity.
Collapse
Affiliation(s)
- Yuying Chen
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Huimin Wu
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Fei Jin
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China.
| | - Hong-Liang Ge
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China.
| | - Feng Gao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, PR China.
| | - Qiong Wu
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Song Wang
- Department of Materials Science and Engineering, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Ying Wang
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Hua Yang
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| |
Collapse
|
13
|
Abdolazizi A, Wijesinghe I, Marriam I, Chathuranga H, Golberg D, Yan C. Development of Light, Strong, and Water-Resistant PVA Composite Aerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:745. [PMID: 38727339 PMCID: PMC11085475 DOI: 10.3390/nano14090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
A significant weakness of many organic and inorganic aerogels is their poor mechanical behaviour, representing a great impediment to their application. For example, polymer aerogels generally have higher ductility than silica aerogels, but their elastic modulus is considered too low. Herein, we developed extremely low loading (<1 wt%) 2D graphene oxide (GO) nanosheets modified poly (vinyl alcohol) (PVA) aerogels via a facile and environmentally friendly method. The aerogel shows a 9-fold increase in compressional modulus compared to a pure polymer aerogel. With a low density of 0.04 mg/mm3 and a thermal conductivity of only 0.035 W/m·K, it outperforms many commercial insulators and foams. As compared to a pure PVA polymer aerogel, a 170% increase in storage modulus is obtained by adding only 0.6 wt% GO nanosheets. The nanocomposite aerogel demonstrates strong fire resistance, with a 50% increase in burning time and little smoke discharge. After surface modification with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane, the aerogel demonstrates water resistance, which is suitable for outdoor applications in which it would be exposed to precipitation. Our research demonstrates a new pathway for considerable improvement in the performance and application of polymer aerogels.
Collapse
Affiliation(s)
- Amir Abdolazizi
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ishara Wijesinghe
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ifra Marriam
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Hiran Chathuranga
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Dmitri Golberg
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Cheng Yan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
14
|
Wang P, Misra RP, Zhang C, Blankschtein D, Wang Y. Surfactant-Aided Stabilization of Individual Carbon Nanotubes in Water around the Critical Micelle Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:159-169. [PMID: 38095654 DOI: 10.1021/acs.langmuir.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Surfactants are widely used to disperse single-walled carbon nanotubes (SWCNTs) and other nanomaterials for liquid-phase processing and characterization. Traditional techniques, however, demand high surfactant concentrations, often in the range of 1-2 wt/v% of the solution. Here, we show that optimal dispersion efficiency can be attained at substantially lower surfactant concentrations of approximately 0.08 wt/v%, near the critical micelle concentration. This unexpected observation is achieved by introducing "bare" nanotubes into water containing the anionic surfactant sodium deoxycholate (DOC) through a superacid-surfactant exchange process that eliminates the need for ultrasonication. Among the diverse ionic surfactants and charged biopolymers explored, DOC exhibits the highest dispersion efficiency, outperforming sodium cholate, a structurally similar bile salt surfactant containing just one additional oxygen atom compared to DOC. Employing all-atomistic molecular dynamics simulations, we unravel that the greater stabilization by DOC arises from its higher binding affinity to nanotubes and a substantially larger free energy barrier that resists nanotube rebundling. Further, we find that this barrier is nonelectrostatic in nature and does not obey the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability, underscoring the important role of nonelectrostatic dispersion and hydration interactions at the nanoscale, even in the case of ionic surfactants like DOC. These molecular insights advance our understanding of surfactant chemistry at the bare nanotube limit and suggest low-energy, surfactant-efficient solution processing of SWCNTs and potentially other nanomaterials.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chiyu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
15
|
Alharbi TMD. Recent progress on vortex fluidic synthesis of carbon nanomaterials. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2172954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Thaar M. D. Alharbi
- School of Science, Taibah University, Medina, Saudi Arabia
- Nanotechnology Centre, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
16
|
Dai Y, Zhang G, Peng Y, Li Y, Chi H, Pang H. Recent progress in 1D MOFs and their applications in energy and environmental fields. Adv Colloid Interface Sci 2023; 321:103022. [PMID: 39491441 DOI: 10.1016/j.cis.2023.103022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
Metal organic frameworks (MOFs) are porous coordination polymers with adjustable nanostructure, high porosity and large surface areas. These features make MOFs, their derivates and composites all delivered remarkable potential in energy and environmental fields, such as rechargeable batteries, supercapacitors, catalysts, water purification and desalination, gas treatment, toxic matter degradation, etc. In particular, one-dimensional (1D) MOFs have generated extensive attention due to their unique 1D nanostructures. To prepare 1D MOF nanostructures, it is necessary to explore and enhance synthesis routes. In this review, the preparation of 1D MOF materials and their recent process applied in energy and environmental fields will be discussed. The relationship between MOFs' 1D morphologies and the properties in their applications will also be analyzed. Finally, we will also summary and make perspectives about the future development of 1D MOFs in fabrication and applications in energy and environmental fields.
Collapse
Affiliation(s)
- Yunyi Dai
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Guangxun Zhang
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yi Peng
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuan Li
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Heng Chi
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
17
|
Li L, Zhou Y, Gao Y, Feng X, Zhang F, Li W, Zhu B, Tian Z, Fan P, Zhong M, Niu H, Zhao S, Wei X, Zhu J, Wu H. Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition. Nat Commun 2023; 14:5410. [PMID: 37670012 PMCID: PMC10480443 DOI: 10.1038/s41467-023-41087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
Ice-templating technology holds great potential to construct industrial porous materials from nanometers to the macroscopic scale for tailoring thermal, electronic, or acoustic transport. Herein, we describe a general ice-templating technology through freezing the material on a rotating cryogenic drum surface, crushing it, and then re-casting the nanofiber slurry. Through decoupling the ice nucleation and growth processes, we achieved the columnar-equiaxed crystal transition in the freezing procedure. The highly random stacking and integrating of equiaxed ice crystals can organize nanofibers into thousands of repeating microscale units with a tortuous channel topology. Owing to the spatially well-defined isotropic structure, the obtained Al2O3·SiO2 nanofiber aerogels exhibit ultralow thermal conductivity, superelasticity, good damage tolerance, and fatigue resistance. These features, together with their natural stability up to 1200 °C, make them highly robust for thermal insulation under extreme thermomechanical environments. Cascading thermal runaway propagation in a high-capacity lithium-ion battery module consisting of LiNi0.8Co0.1Mn0.1O2 cathode, with ultrahigh thermal shock power of 215 kW, can be completely prevented by a thin nanofiber aerogel layer. These findings not only establish a general production route for nanomaterial assemblies that is conventionally challenging, but also demonstrate a high-energy-density battery module configuration with a high safety standard that is critical for practical applications.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
- National Engineering Research Center of Electric Vehicles, Beijing Institute of Technology, 100081, Beijing, China
| | - Yiqian Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yang Gao
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, 100871, Beijing, China
| | - Xuning Feng
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, 100084, Beijing, China
| | - Fangshu Zhang
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, 100084, Beijing, China
| | - Weiwei Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China.
| | - Bin Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210008, China
| | - Ze Tian
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Peixun Fan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Minlin Zhong
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Huichang Niu
- Guangdong Huitian Aerospace Technology Co., Ltd, Guangzhou, 510006, China
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, 8600, Dübendorf, Switzerland
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, 100871, Beijing, China.
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210008, China.
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
18
|
Kothandam G, Singh G, Guan X, Lee JM, Ramadass K, Joseph S, Benzigar M, Karakoti A, Yi J, Kumar P, Vinu A. Recent Advances in Carbon-Based Electrodes for Energy Storage and Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301045. [PMID: 37096838 PMCID: PMC10288283 DOI: 10.1002/advs.202301045] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Carbon-based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are attracting significant attention as promising materials for next-generation energy storage and conversion applications. They possess unique physicochemical properties, such as structural stability and flexibility, high porosity, and tunable physicochemical features, which render them well suited in these hot research fields. Technological advances at atomic and electronic levels are crucial for developing more efficient and durable devices. This comprehensive review provides a state-of-the-art overview of these advanced carbon-based nanomaterials for various energy storage and conversion applications, focusing on supercapacitors, lithium as well as sodium-ion batteries, and hydrogen evolution reactions. Particular emphasis is placed on the strategies employed to enhance performance through nonmetallic elemental doping of N, B, S, and P in either individual doping or codoping, as well as structural modifications such as the creation of defect sites, edge functionalization, and inter-layer distance manipulation, aiming to provide the general guidelines for designing these devices by the above approaches to achieve optimal performance. Furthermore, this review delves into the challenges and future prospects for the advancement of carbon-based electrodes in energy storage and conversion.
Collapse
Affiliation(s)
- Gopalakrishnan Kothandam
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Jang Mee Lee
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Stalin Joseph
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Mercy Benzigar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| |
Collapse
|
19
|
Yap YW, Mahmed N, Norizan MN, Abd Rahim SZ, Ahmad Salimi MN, Abdul Razak K, Mohamad IS, Abdullah MMAB, Mohamad Yunus MY. Recent Advances in Synthesis of Graphite from Agricultural Bio-Waste Material: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093601. [PMID: 37176484 PMCID: PMC10180389 DOI: 10.3390/ma16093601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale.
Collapse
Affiliation(s)
- Yee Wen Yap
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Norsuria Mahmed
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Mohd Natashah Norizan
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Shayfull Zamree Abd Rahim
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Midhat Nabil Ahmad Salimi
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Kamrosni Abdul Razak
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Ili Salwani Mohamad
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Mohd Mustafa Al-Bakri Abdullah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | | |
Collapse
|
20
|
Solikhin A, Syamani FA, Hastati DY, Budiman I, Purnawati R, Mubarok M, Yanti H, Fachruddin A, Saad S, Jaenab S, Badrudin U, Kurniawan T. Review on lignocellulose valorization for nanocarbon and its composites: Starting from laboratory studies to business application. Int J Biol Macromol 2023; 239:124082. [PMID: 36965566 DOI: 10.1016/j.ijbiomac.2023.124082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
This study concerns a scoping and literature review of nanocarbon and its composites with details on specific propositions, including nanocarbon history, nanocarbon types, and lignocellulose nanocarbon types, properties, applications, toxicity, regulation, and business model for commercialization. The review brings novelties, comprehensively expounding on laboratory studies and industrial applications of biomass or lignocellulose materials-derived nanocarbon and its composites. Since its first discovery in the form of Buckyball in 1985, nanocarbon has brought interest to scientists and industries for applications. From the previous studies, it is discovered that many types of nanocarbon are sourced from lignocellulose materials. With their excellent properties of nanomaterials, nanocarbon has been harnessed for such as reinforcing and filler agents for nanocomposites or direct use of individual nanocarbon for specific purposes. However, the toxicological properties of nanocarbon have delivered a level of concern in its use and application. In addition, with the radically growing increase in the use of nanocarbon, policies have been enacted in several countries that rule on the use of nanocarbon. The business model for the commercialization of lignocellulose-based nanocarbon was also proposed in this study. This study can showcase the importance of both individual nanocarbon and nanocarbon-based composites for industrial implementations by considering their synthesis, properties, application, country legislations/regulations, and business model. The studies also can be the major references for researchers to partner with industries and governments in investing in lignocellulose-sourced nanocarbon potential research, development, and policies.
Collapse
Affiliation(s)
- Achmad Solikhin
- Indonesian Green Action Forum, Bogor, West Java 16680, Indonesia; Economic Research Institute for ASEAN and East Asia, DKI Jakarta 12110, Indonesia.
| | - Firda Aulya Syamani
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor, West Java 16911, Indonesia
| | - Dwi Yuni Hastati
- College of Vocational Studies, Bogor Agricultural University, Bogor, West Java 16128, Indonesia
| | - Ismail Budiman
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor, West Java 16911, Indonesia
| | - Renny Purnawati
- Faculty of Forestry, University of Papua, Manokwari, Papua Barat 98314, Indonesia
| | - Mahdi Mubarok
- Faculty of Forestry and Environment, Bogor Agricultural University, Bogor, West Java 16680, Indonesia
| | - Hikma Yanti
- Faculty of Forestry, Tanjungpura University, Pontianak, Kalimantan Barat 78124, Indonesia
| | - Achmad Fachruddin
- Creavill Consultant, Bantul, Daerah Istimewa Yogyakarta 55184, Indonesia
| | - Sahriyanti Saad
- Faculty of Forestry, Hasannudin University, South Sulawesi 90245, Indonesia
| | - Siti Jaenab
- Faculty of Forestry and Environment, Bogor Agricultural University, Bogor, West Java 16680, Indonesia
| | - Ubad Badrudin
- Faculty of Agriculture, University of Pekalongan, Pekalongan, Central Java 51115, Indonesia
| | - Tegar Kurniawan
- Sultan Agung Islamic University, Semarang, Central Java 50112, Indonesia
| |
Collapse
|
21
|
Xia M, Li S, Xie Z. Self-assembly of guanosine into carbon-based multilayer materials. Chem Commun (Camb) 2023; 59:2783-2786. [PMID: 36786684 DOI: 10.1039/d2cc05793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We report the utilization of guanosine as a supramolecular precursor that unprecedentedly renders the formation of carbon-based multilayer materials with naturally high-level nitrogen doping. As a proof-of-concept, the porous carbon multilayers after anchoring 0.5 wt% Rh electrocatalysts displayed an excellent hydrogen evolution reaction activity.
Collapse
Affiliation(s)
- Miao Xia
- State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 2 Xueyuan Road, Fuzhou 350016, China. .,Changzhou Centers for Disease Control and Prevention, Changzhou, China
| | - Shuchun Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 2 Xueyuan Road, Fuzhou 350016, China.
| | - Zailai Xie
- State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 2 Xueyuan Road, Fuzhou 350016, China.
| |
Collapse
|
22
|
Teimoori S, Shirkhanloo H, Hassani AH, Panahi M, Mansouri N. An immobilization of aminopropyl trimethoxysilane-phenanthrene carbaldehyde on graphene oxide for toluene extraction and separation in water samples. CHEMOSPHERE 2023; 316:137800. [PMID: 36634719 DOI: 10.1016/j.chemosphere.2023.137800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
A new functionalized Nano graphene with aminopropyl trimethoxysilane-phenanthrene-4-carbaldehyde (NGO@APTMS-PNTCA) as a novel adsorbent was used to extract toluene from water samples by the ultrasound-assisted dispersive solid-phase microextraction procedure (USA-D-SPME). So, 50 mg of NGO@APTMS-PNTCA adsorbent was added to water samples and sonicated for 20 min. After toluene extraction, the NGO@APTMS-PNTCA adsorbent separated from the liquid phase with a Whatman membrane filter (200 nm). Then, the toluene was back-extracted from the adsorbent by 2.0 mL of the acetone/ethanol (1:1, eluent) at 25 °C. Due to the physical properties and structure of toluene, fluorobenzene was used as an internal standard. Finally, the toluene values were measured by a gas chromatography-flame ionization detector (GC-FID). In optimized conditions, the limit of detection (LOD), the working range (WR), and the enrichment factor (EF) were obtained at 2.5 μg L-1, 0.01-1.2 mg L-1, and 9.63, respectively (MRSD% = 3.38). Also, the limit of quantification (LOQ) 10 μg L-1 and extraction recovery of more than 95% was efficiently achieved for toluene. Standard additions of toluene to blank solutions had high recoveries between 95.2% and 104.5% with a relative standard deviation (RSD%) of 0.27-5.2. The absorption capacities of NGO and NGO@APTMS-PNTCA adsorbents for toluene extraction were obtained at 32.8 mg g-1 and 154.9 mg g-1, respectively. The USA-D-SPME method was validated by spiking the standard concentrations of toluene. The proposed method demonstrated relevant and suitable statistical results with high accuracy and precision for toluene extraction by a novel adsorbent synthesis.
Collapse
Affiliation(s)
- Shahnaz Teimoori
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Shirkhanloo
- Research Institute of Petroleum Industry(RIPI), West Entrance Blvd., Olympic Village, Tehran, 14857-33111, Iran.
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Panahi
- Department of Energy and Industry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nabiollah Mansouri
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Liu YT, Ding B. Ultralight and superelastic ceramic nanofibrous aerogels: a new vision of an ancient material. Sci Bull (Beijing) 2023; 68:753-755. [PMID: 37005187 DOI: 10.1016/j.scib.2023.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
24
|
Kianezhad M, Youzi M, Vaezi M, Nejat Pishkenari H. Unidirectional motion of C 60-based nanovehicles using hybrid substrates with temperature gradient. Sci Rep 2023; 13:1100. [PMID: 36670148 PMCID: PMC9860030 DOI: 10.1038/s41598-023-28245-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
With the synthesis of nanocar structures the idea of transporting energy and payloads on the surface became closer to reality. To eliminate the concern of diffusive surface motion of nanocars, in this study, we evaluate the motion of C60 and C60-based nanovehicles on graphene and hexagonal boron-nitride (BN) surfaces using molecular dynamics simulations and potential energy analysis. Utilizing the graphene-hBN hybrid substrate, it has been indicated that C60 is more stable on boron-nitride impurity regions in the hybrid substrate and an energy barrier restricts the motion to the boron-nitride impurity. Increasing the temperature causes the molecule to overcome the energy barrier frequently. A nanoroad of boron-nitride with graphene sideways is designed to confine the surface motion of C60 and nanovehicles at 300 K. As expected, the motion of all surface molecules is limited to the boron-nitride nanoroads. Although the motion is restricted to the boron-nitride nanoroad, the diffusive motion is still noticeable in lateral directions. To obtain the unidirectional motion for C60 and nanocars on the surface, a temperature gradient is applied to the surface. The unidirectional transport to the nanoroad regions with a lower temperature occurs in a short period of time due to the lower energies of molecules on the colder parts.
Collapse
Affiliation(s)
- Mohammad Kianezhad
- grid.412553.40000 0001 0740 9747Civil Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Mehrdad Youzi
- grid.266093.80000 0001 0668 7243Department of Civil and Environmental Engineering, University of California Irvine, Irvine, USA
| | - Mehran Vaezi
- grid.412553.40000 0001 0740 9747Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Nejat Pishkenari
- grid.412553.40000 0001 0740 9747Nanorobotics Laboratory, Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
25
|
Wu S, Li H, Futaba DN, Chen G, Chen C, Zhou K, Zhang Q, Li M, Ye Z, Xu M. Structural Design and Fabrication of Multifunctional Nanocarbon Materials for Extreme Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201046. [PMID: 35560664 DOI: 10.1002/adma.202201046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Extreme environments represent numerous harsh environmental conditions, such as temperature, pressure, corrosion, and radiation. The tolerance of applications in extreme environments exemplifies significant challenges to both materials and their structures. Given the superior mechanical strength, electrical conductivity, thermal stability, and chemical stability of nanocarbon materials, such as carbon nanotubes (CNTs) and graphene, they are widely investigated as base materials for extreme environmental applications and have shown numerous breakthroughs in the fields of wide-temperature structural-material construction, low-temperature energy storage, underwater sensing, and electronics operated at high temperatures. Here, the critical aspects of structural design and fabrication of nanocarbon materials for extreme environments are reviewed, including a description of the underlying mechanism supporting the performance of nanocarbon materials against extreme environments, the principles of structural design of nanocarbon materials for the optimization of extreme environmental performances, and the fabrication processes developed for the realization of specific extreme environmental applications. Finally, perspectives on how CNTs and graphene can further contribute to the development of extreme environmental applications are presented.
Collapse
Affiliation(s)
- Sijia Wu
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huajian Li
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Don N Futaba
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Guohai Chen
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Chen Chen
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kechen Zhou
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qifan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Miao Li
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zonglin Ye
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Xu
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
26
|
Zhang X, Wang X, Jiao W, Liu Y, Yu J, Ding B. Evolution from microfibers to nanofibers toward next-generation ceramic matrix composites: A review. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Wasfi A, Awwad F, Qamhieh N, Al Murshidi B, Palakkott AR, Gelovani JG. Real-time COVID-19 detection via graphite oxide-based field-effect transistor biosensors decorated with Pt/Pd nanoparticles. Sci Rep 2022; 12:18155. [PMID: 36307495 PMCID: PMC9614753 DOI: 10.1038/s41598-022-22249-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 12/31/2022] Open
Abstract
Coronavirus 2019 (COVID-19) spreads an extremely infectious disease where there is no specific treatment. COVID-19 virus had a rapid and unexpected spread rate which resulted in critical difficulties for public health and unprecedented daily life disruption. Thus, accurate, rapid, and early diagnosis of COVID-19 virus is critical to maintain public health safety. A graphite oxide-based field-effect transistor (GO-FET) was fabricated and functionalized with COVID-19 antibody for the purpose of real-time detection of COVID-19 spike protein antigen. Thermal evaporation process was used to deposit the gold electrodes on the surface of the sensor substrate. Graphite oxide channel was placed between the gold electrodes. Bimetallic nanoparticles of platinum and palladium were generated via an ultra-high vacuum (UHV) compatible system by sputtering and inert-gas condensation technique. The biosensor graphite oxide channel was immobilized with specific antibodies against the COVID-19 spike protein to achieve selectivity and specificity. This technique uses the attractive semiconductor characteristics of the graphite oxide-based materials resulting in highly specific and sensitive detection of COVID-19 spike protein. The GO-FET biosensor was decorated with bimetallic nanoparticles of platinum and palladium to investigate the improvement in the sensor sensitivity. The in-house developed biosensor limit of detection (LOD) is 1 fg/mL of COVID-19 spike antigen in phosphate-buffered saline (PBS). Moreover, magnetic labelled SARS-CoV-2 spike antibody were studied to investigate any enhancement in the sensor performance. The results indicate the successful fabrication of a promising field effect transistor biosensor for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Asma Wasfi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Naser Qamhieh
- Department of Physics, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badria Al Murshidi
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdul Rasheed Palakkott
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juri George Gelovani
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
28
|
Wang M, Jiao L, Zhu R, Tan Z, Dai S, Liu L. Bending modulus of the rippled graphene: the role of thickness. J Mol Model 2022; 28:364. [PMID: 36271993 DOI: 10.1007/s00894-022-05339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022]
Abstract
Bending modulus is a key parameter to characterize the stiffness of materials. Commonly, it is believed that the bending modulus is closely related to the thickness as described by the thin plate theory. However, the thin plate theory fails in multilayer van der Waals materials like multilayer graphene, suggesting a more complex relationship between the bending modulus and thickness. Here, rippled graphene structures containing non-hexagonal carbon rings with different thicknesses are constructed to study the thickness-dependent bending modulus by the first-principles calculations. It is found that the bending modulus of rippled graphene depends on several factors, such as geometry, bending curvature, and thickness. Particularly, for the egg-tray graphene structures with similar structural pattern and bending curvature, i.e., eliminating the effects of structural pattern and bending curvature, the bending modulus could show a linear relationship to the thickness. Moreover, this linear relationship is very robust even in the case of changing the thickness through heteroatom doping.
Collapse
Affiliation(s)
- Mingjian Wang
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, People's Republic of China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No. 2, Dagong Road, Panjin, 124221, People's Republic of China
| | - Lei Jiao
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Ranran Zhu
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No. 2, Dagong Road, Panjin, 124221, People's Republic of China.
| | - Shuyu Dai
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Lizhao Liu
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| |
Collapse
|
29
|
Kim KH, Seo SE, Park CS, Kim S, Lee S, Ryu C, Yong D, Park YM, Kwon OS. Open-Bandgap Graphene-Based Field-Effect Transistor Using Oligo(phenylene-ethynylene) Interfacial Chemistry. Angew Chem Int Ed Engl 2022; 61:e202209726. [PMID: 35969510 PMCID: PMC9826410 DOI: 10.1002/anie.202209726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/11/2023]
Abstract
Organic interfacial compounds (OICs) are required as linkers for the highly stable and efficient immobilization of bioprobes in nanobiosensors using 2D nanomaterials such as graphene. Herein, we first demonstrated the fabrication of a field-effect transistor (FET) via a microelectromechanical system process after covalent functionalization on large-scale graphene by introducing oligo(phenylene-ethynylene)amine (OPE). OPE was compared to various OICs by density functional theory simulations and was confirmed to have a higher binding energy with graphene and a lower band gap than other OICs. OPE can improve the immobilization efficiency of a bioprobe by forming a self-assembly monolayer via anion-based reaction. Using this technology, Magainin I-conjugated OGMFET (MOGMFET) showed a high sensitivity, high selectivity, with a limit of detection of 100 cfu mL-1 . These results indicate that the OPE OIC can be applied for stable and comfortable interfacing technology for biosensor fabrication.
Collapse
Affiliation(s)
- Kyung Ho Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Chul Soon Park
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Soomin Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Soohyun Lee
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Choong‐Min Ryu
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial ResistanceYonsei University College of MedicineSeoulRepublic of Korea
| | - Yoo Min Park
- Division of Nano-Bio Sensors/Chips DevelopmentNational NanoFab Center (NNFC)DaejeonRepublic of Korea
| | - Oh Seok Kwon
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
30
|
Kim KH, Seo SE, Park CS, Kim S, Lee S, Ryu CM, Yong D, Park YM, Kwon OS. Open‐Bandgap Graphene‐based Field‐Effect Transistor Using Oligo(phenylene‐ethynylene) Interfacial Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyung Ho Kim
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Sung Eun Seo
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Chul Soon Park
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Soomin Kim
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Soohyun Lee
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Choong-Min Ryu
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Dongeun Yong
- Yonsei University College of Medicine Department of Laboratory Medicine and Research Institute of Bacterial Resistanc KOREA, REPUBLIC OF
| | - Yoo Min Park
- National NanoFab Center Division of Nano-Bio Sensors/Chips Development KOREA, REPUBLIC OF
| | - Oh Seok Kwon
- Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center 125 Gwahak-ro, Yuseong-gu 34141 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
31
|
Wu B, Liu Y, Yu H. High‐
performance electric heating yarns based on graphene‐coated cotton fibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Wu
- CNRS‐International‐NTU‐THALES Research Alliance, Collage of Electrical and Electronic Engineering Nanyang Technological University Singapore
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Collage of Materials Science and Engineering Donghua University Shanghai People's Republic of China
| | - Yu Liu
- Shanghai Institute of Quality Inspection Technical Research Institute of Fiber Inspection Shanghai People's Republic of China
| | - Hong Yu
- Shanghai Institute of Quality Inspection Technical Research Institute of Fiber Inspection Shanghai People's Republic of China
| |
Collapse
|
32
|
Strong and Tough TPU Fibers with Orientedly Aligned CNTs Reinforced by Amorphous ZrO2. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Lai WF, Obireddy SR, Zhang H, Zhang D, Wong WT. Advances in analysis of pharmaceuticals by using graphene-based sensors. ChemMedChem 2022; 17:e202200111. [PMID: 35618680 DOI: 10.1002/cmdc.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Indexed: 11/10/2022]
Abstract
Safe and effective use of drugs relies on proper pharmaceutical analysis. Graphene has been extensively used to construct sensors for this purpose. Over the years, a large variety of pharmaceutical sensors have been developed from graphene or its derivatives. This articles reviews the current status of sensor development from graphene and its derivatives, and discusses the use of graphene-based sensors in pharmaceutical analysis. It is hoped that this article cannot only offer a snapshot of recent advances in the fabrication and use of graphene-based sensors, but can also provide insights into future engineering and optimization of the sensors for effective pharmaceutical analysis.
Collapse
Affiliation(s)
- Wing-Fu Lai
- The Chinese University of Hong Kong, School of Life and Health Sciences, 518172, Shenzhen, CHINA
| | - Sreekanth Reddy Obireddy
- Sri Krishnadevaraya University, Chemistry, TIRUPATI NATIONAL HIGHWAY, ITUKALAPALLI, 515004, India, 515003, ANANTHAPURAMU, INDIA
| | - Haotian Zhang
- The Chinese University of Hong Kong, School of Life and Health Sciences, CHINA
| | | | - Wing-Tak Wong
- The Hong Kong Polytechnic University, Applied Biology and Chemical Technology, CHINA
| |
Collapse
|
34
|
Grebowski J, Litwinienko G. Metallofullerenols in biomedical applications. Eur J Med Chem 2022; 238:114481. [PMID: 35665690 DOI: 10.1016/j.ejmech.2022.114481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Metallofullerenols (MFs) are functionalized endohedral fullerenes connecting at least three levels of organization of matter: atomic, molecular, and supramolecular, resulting in their unique activity at the nanoscale. Biomedical applications of MFs started from gadolinium-containing contrasting agents, but today their potential medical applications go far beyond diagnostics and magnetic resonance imaging. In many cases, preclinical studies have shown a great therapeutic value of MFs, and here we provide an overview of interactions of MFs with high-energy radiation and with reactive oxygen species generated during radiation as a ground for potential applications in modern therapy of cancer patients. We also present the current knowledge on interactions of MFs with proteins and with other components of cells and tissues. Due to their antioxidant properties, as well as their ability to regulate the expression of genes involved in apoptosis, angiogenesis, and stimulation of the immune response, MFs can contribute to inhibition of tumor growth and protection of normal cells. MFs with enclosed gadolinium act as inhibitors of tumor growth in targeted therapy along with imaging techniques, but we hope that the data gathered in this review will help to accelerate further progress in the implementation of MFs, also the ones containing rare earth metals other than gadolinium, in a broad range of bioapplications covering not only diagnostics and bioimaging but also radiation therapy and cancer treatment by not-cytotoxic agents.
Collapse
Affiliation(s)
- Jacek Grebowski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland; The Military Medical Training Center, 6-Sierpnia 92, 90-646, Lodz, Poland.
| | | |
Collapse
|
35
|
Wei X, Ge G, Yu W, Guo H, Guo X, Song C, Zhao Z. Plastering Sponge with Nanocarbon-Containing Slurry to Construct Mechanically Robust Macroporous Monolithic Catalysts for Direct Dehydrogenation of Ethylbenzene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19315-19323. [PMID: 35437981 DOI: 10.1021/acsami.1c24731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanocarbons have shown great potential as a sustainable alternative to metal catalysts, but their powder form limits their industrial applications. The preparation of nanocarbon-based monolithic catalysts is a practical approach for overcoming the resulting pressure drop associated with their powder form. In our previous work, a ploycation-mediated approach was used to successfully prepare nanocarbon-containing monoliths. Unfortunately, because there are no macropores in the monolith, it needs to be crashed into millimeter-sized particles before application. Therefore, developing a facile method for preparing mechanically robust nanocarbon-based macroporous monolithic catalysts is vital but still challenging. Herein, evoked by swallows building their nests, we report an approach for successfully preparing a mechanically robust nanodiamond-based macroporous monolith catalyst by plastering melamine sponge (MS) with a slurry composed of nanodiamonds (NDs) and poly(imidazolium-methylene) chloride (PImM) followed by an annealing process. The macroporous monolith catalyst (ND/NCMS-NCPImM) containing NDs well dispersed in N-doped carbon is mechanically robust with enriched macroscopic pores. It exhibits outstanding catalysis toward ethylbenzene to styrene through a direct dehydrogenation reaction with a high styrene rate in a steady state (5.50 mmol g-1 h-1) and high styrene selectivity (99.5%). ND/NCMS-NCPImM shows much higher activity than powder ND by 1.9 fold. In addition, this work solves the significant problem of large pressure drop encountered with conventional powdered nanocarbon catalysts in the flow reactor. This work not only creates an excellent nanodiamond-based macroporous monolithic ethylbenzene direct dehydrogenation catalyst but also presents a promising avenue for preparing other macroporous monolithic catalysts for diverse transformations.
Collapse
Affiliation(s)
- Xiaojing Wei
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Guifang Ge
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Weiwei Yu
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Hongchen Guo
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
- EMS Energy Institute, Department of Energy & Mineral Engineering and of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
36
|
Arellano LM, Gobeze HB, Jang Y, Barrejón M, Parejo C, Álvarez JC, Gómez‐Escalonilla MJ, Sastre‐Santos Á, D'Souza F, Langa F. Formation and Photoinduced Electron Transfer in Porphyrin- and Phthalocyanine-Bearing N-Doped Graphene Hybrids Synthesized by Click Chemistry. Chemistry 2022; 28:e202200254. [PMID: 35254708 PMCID: PMC9314890 DOI: 10.1002/chem.202200254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/05/2022]
Abstract
Graphene doped with heteroatoms such as nitrogen, boron, and phosphorous by replacing some of the skeletal carbon atoms is emerging as an important class of two-dimensional materials as it offers the much-needed bandgap for optoelectronic applications and provides better access for chemical functionalization at the heteroatom sites. Covalent grafting of photosensitizers onto such doped graphenes makes them extremely useful for light-induced applications. Herein, we report the covalent functionalization of N-doped graphene (NG) with two well-known electron donor photosensitizers, namely, zinc porphyrin (ZnP) and zinc phthalocyanine (ZnPc), using the simple click chemistry approach. Covalent attachment of ZnP and ZnPc at the N-sites of NG in NG-ZnP and NG-ZnPc hybrids was confirmed by using a range of spectroscopic, thermogravimetric and imaging techniques. Ground- and excited-state interactions in NG-ZnP and NG-ZnPc were monitored by using spectral and electrochemical techniques. Efficient quenching of photosensitizer fluorescence in these hybrids was observed, and the relatively easier oxidations of ZnP and ZnPc supported excited-state charge-separation events. Photoinduced charge separation in NG-ZnP and NG-ZnPc hybrids was confirmed by using the ultrafast pump-probe technique. The measured rate constants were of the order of 1010 s,-1 thus indicating ultrafast electron transfer phenomena.
Collapse
Affiliation(s)
- Luis M. Arellano
- Universidad de Castilla-La ManchaInstituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL)Avda. Carlos III, s/n45071-ToledoSpain
| | - Habtom B. Gobeze
- Department of Chemistry and Materials Science and EngineeringUniversity of North TexasDentonTX 76203-5017USA
| | - Youngwoo Jang
- Department of Chemistry and Materials Science and EngineeringUniversity of North TexasDentonTX 76203-5017USA
| | - Myriam Barrejón
- Neural Repair and Biomaterials LaboratoryHospital Nacional de Parapléjicos (SESCAM)Finca la Peraleda s/n45071ToledoSpain
| | - Concepción Parejo
- Área de Química Orgánica, Instituto de BioingenieríaUniversidad Miguel HernándezAvda. de la Universidad, s/nElche03202Spain
| | - Julio C. Álvarez
- Área de Química Orgánica, Instituto de BioingenieríaUniversidad Miguel HernándezAvda. de la Universidad, s/nElche03202Spain
| | - María J. Gómez‐Escalonilla
- Universidad de Castilla-La ManchaInstituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL)Avda. Carlos III, s/n45071-ToledoSpain
| | - Ángela Sastre‐Santos
- Área de Química Orgánica, Instituto de BioingenieríaUniversidad Miguel HernándezAvda. de la Universidad, s/nElche03202Spain
| | - Francis D'Souza
- Department of Chemistry and Materials Science and EngineeringUniversity of North TexasDentonTX 76203-5017USA
| | - Fernando Langa
- Universidad de Castilla-La ManchaInstituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL)Avda. Carlos III, s/n45071-ToledoSpain
| |
Collapse
|
37
|
Cheng C, Zhang X, Li M, Pei D, Chen Y, Zhao X, Li C. Iridescent coating of graphene oxide on various substrates. J Colloid Interface Sci 2022; 617:604-610. [PMID: 35305472 DOI: 10.1016/j.jcis.2022.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Two-dimensional nanomaterials have been incorporated into coating layers for exceptional properties in mechanic toughness, electronics, thermology and optics. Graphene oxide (GO), however, was greatly hindered by its strong adsorption within visible wavelength and hereby the intrinsic dark color at the solid state. Herein, we found a unique aqueous mixture of GO containing sodium dodecyl sulfate and l-ascorbic acid. It enabled to produce iridescent coating layers with tunable thickness of 0.3-50 μm on both hydrophilic and hydrophobic substrates (e.g., glass, aluminum foil, polytetrafluoroethylene), through brushing, liquid-casting, dipping and writing. Their iridescence could be further tuned by incorporating MXene nanosheets. And their mechanical properties could be enhanced by certain synthetic polymers (e.g., polyvinyl alcohol and polyethylene glycol). Their sensitivity to heat, laser and water also benefited to pattern the coating layers. Furthermore, by controlling laser intensity, the domain color could be changed (e.g., green to blue). Thus, this study may pave a new pathway of producing iridescent coatings of graphene oxide in a large scale for practical applications.
Collapse
Affiliation(s)
- Chaoyi Cheng
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, PR China; Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xiaofang Zhang
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
| | - Mingjie Li
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Danfeng Pei
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Yijun Chen
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xihui Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, PR China.
| | - Chaoxu Li
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
38
|
Self-assembly and photoinduced fabrication of conductive nanographene wires on boron nitride. Nat Commun 2022; 13:442. [PMID: 35064113 PMCID: PMC8782843 DOI: 10.1038/s41467-021-27600-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
Manufacturing molecule-based functional elements directly at device interfaces is a frontier in bottom-up materials engineering. A longstanding challenge in the field is the covalent stabilization of pre-assembled molecular architectures to afford nanodevice components. Here, we employ the controlled supramolecular self-assembly of anthracene derivatives on a hexagonal boron nitride sheet, to generate nanographene wires through photo-crosslinking and thermal annealing. Specifically, we demonstrate µm-long nanowires with an average width of 200 nm, electrical conductivities of 106 S m−1 and breakdown current densities of 1011 A m−2. Joint experiments and simulations reveal that hierarchical self-assembly promotes their formation and functional properties. Our approach demonstrates the feasibility of combined bottom-up supramolecular templating and top-down manufacturing protocols for graphene nanomaterials and interconnects, towards integrated carbon nanodevices. The bottom-up fabrication of structures with robust performance in the nm-to-μm scale usable for integrated carbon nanodevices is challenging. Here the authors report micrometer-long, highly conducting nanographene wires following self-assembly, photo-crosslinking and thermal annealing of anthracene derivatives on hexagonal boron nitride sheets.
Collapse
|
39
|
Flexible Strain-Sensitive Silicone-CNT Sensor for Human Motion Detection. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9010036. [PMID: 35049745 PMCID: PMC8772866 DOI: 10.3390/bioengineering9010036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
This article describes the manufacturing technology of biocompatible flexible strain-sensitive sensor based on Ecoflex silicone and multi-walled carbon nanotubes (MWCNT). The sensor demonstrates resistive behavior. Structural, electrical, and mechanical characteristics are compared. It is shown that laser radiation significantly reduces the resistance of the material. Through laser radiation, electrically conductive networks of MWCNT are formed in a silicone matrix. The developed sensor demonstrates highly sensitive characteristics: gauge factor at 100% elongation −4.9, gauge factor at 90° bending −0.9%/deg, stretchability up to 725%, tensile strength 0.7 MPa, modulus of elasticity at 100% 46 kPa, and the temperature coefficient of resistance in the range of 30–40 °C is −2 × 10−3. There is a linear sensor response (with 1 ms response time) with a low hysteresis of ≤3%. An electronic unit for reading and processing sensor signals based on the ATXMEGA8E5-AU microcontroller has been developed. The unit was set to operate the sensor in the range of electrical resistance 5–150 kOhm. The Bluetooth module made it possible to transfer the received data to a personal computer. Currently, in the field of wearable technologies and health monitoring, a vital need is the development of flexible sensors attached to the human body to track various indicators. By integrating the sensor with the joints of the human hand, effective movement sensing has been demonstrated.
Collapse
|
40
|
Qiao Y, He N, Zhang X, Zhao X, Zhao X, Li W, Li C. In Situ Growth of MOFs Crystals to Synthesis Graphene Oxide /ZIF-7 Gel with Enhanced Adsorption Capacity for Methylene Blue. NEW J CHEM 2022. [DOI: 10.1039/d2nj02293a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene oxide gel containing ZIF-7 (Zx@GoG) was synthesized by immersing graphene oxide gel (GoG) in DMF solution of Zn2+ and DMF solution of organic ligands, respectively, and characterized by powder...
Collapse
|
41
|
Qin Q, Chen J, Wu C, Wang Y, Li Y, Song M. In situ growth of novel carbon nanobuds and nanoballs on graphene nanosheets by the electrochemical method. RSC Adv 2022; 12:17937-17943. [PMID: 35800314 PMCID: PMC9204834 DOI: 10.1039/d2ra01695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Novel carbon nanostructures, carbon nanobuds and nanoballs in situ grown on graphene, have been synthesized by the electrochemical method in this study. Pristine graphene (GR) sheets were potentiostatic treated with sulfuric acid and were oxidized at 1.4–2.0 V constant potentials to obtain numerous nanobuds and peeled nanoballs. Scanning electron microscopy was used to determine the morphology of electrochemically treated GR nanosheets. Fourier transform infrared, X-ray diffraction analysis, and Raman spectroscopy were used to characterize the structure of samples. The above results indicate that amounts of nanobuds were in situ grown on the surface of GR sheets at a constant potential of 1.4 V was added to the GR electrode. With the constant potential increasing, the nanobuds grew into the nanoballs, exfoliating from the surface of graphene sheets, whereas the peroxidation of graphene sheets occurred at a higher potential of 2.0 V, leading to the formation of a large amount of graphene oxide fragments. Therefore, the optimal processing parameter of the formation of carbon nanoballs was under the constant potential of 1.8 V for 500 s. Novel carbon nanostructures, carbon nanobuds and nanoballs in situ grown on graphene, have been synthesized by the electrochemical method in this study.![]()
Collapse
Affiliation(s)
- Qi Qin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, 41 Zhongyuan Road, Zhengzhou 450007, P. R. China
| | - Jing Chen
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, 41 Zhongyuan Road, Zhengzhou 450007, P. R. China
| | - Changze Wu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, 41 Zhongyuan Road, Zhengzhou 450007, P. R. China
| | - Yixue Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, 41 Zhongyuan Road, Zhengzhou 450007, P. R. China
| | - Yunan Li
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, 41 Zhongyuan Road, Zhengzhou 450007, P. R. China
| | - Meng Song
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, 41 Zhongyuan Road, Zhengzhou 450007, P. R. China
| |
Collapse
|
42
|
Zhu M, Li G, Gong W, Yan L, Zhang X. Calcium-Doped Boron Nitride Aerogel Enables Infrared Stealth at High Temperature Up to 1300 °C. NANO-MICRO LETTERS 2021; 14:18. [PMID: 34870761 PMCID: PMC8649065 DOI: 10.1007/s40820-021-00754-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 05/09/2023]
Abstract
Boron nitride (BN) aerogels, composed of nanoscale BN building units together with plenty of air in between these nanoscale building units, are ultralight ceramic materials with excellent thermal/electrical insulation, great chemical stability and high-temperature oxidation resistance, which offer considerable advantages for various applications under extreme conditions. However, previous BN aerogels cannot resist high temperature above 900 °C in air atmosphere, and high-temperature oxidation resistance enhancement for BN aerogels is still a great challenge. Herein, a calcium-doped BN (Ca-BN) aerogel with enhanced high-temperature stability (up to ~ 1300 °C in air) was synthesized by introducing Ca atoms into crystal structure of BN building blocks via high-temperature reaction between calcium phosphate and melamine diborate architecture. Such Ca-BN aerogels could resist the burning of butane flame (~ 1300 °C) and keep their megashape and microstructure very well. Furthermore, Ca-BN aerogel serves as thermal insulation layer, together with Al foil serving as both low-infrared-emission layer and high-infrared-reflection layer, forming a combination structure that can effectively hide high-temperature target (heated by butane flame). Such successful chemical doping of metal element into crystal structure of BN may be helpful in the future design and fabrication of advanced BN aerogel materials, and further extending their possible applications to extremely high-temperature environments.
Collapse
Affiliation(s)
- Mengya Zhu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Guangyong Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China
| | - Lifeng Yan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.
- Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK.
| |
Collapse
|
43
|
Sideri IK, Tagmatarchis N. Chemically modified carbon nanostructures and 2D nanomaterials for fabrics performing under operational tension and extreme environmental conditions. MATERIALS HORIZONS 2021; 8:3187-3200. [PMID: 34731229 DOI: 10.1039/d1mh01077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The extensive research on carbon nanostructures and 2D nanomaterials will come to fruition once these materials steadily join everyday-life applications. Their chemical functionalization unlocks their potential as carriers of customized properties and counterparts to fabric fibers. The scope of the current review covers the chemical modification of carbon nanostructures and 2D nanomaterials for hybrid fabrics with enhanced qualities against critical operational and weather conditions, such as antibacterial, flame retardant, UV resistant, water repellent and high air and water vapor permeability activities.
Collapse
Affiliation(s)
- Ioanna K Sideri
- Theoretical and Physical Chemistry, Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry, Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
44
|
Valyaev DA, Canac Y. Carbenes and phosphonium ylides: a fruitful association in coordination chemistry. Dalton Trans 2021; 50:16434-16442. [PMID: 34664574 DOI: 10.1039/d1dt03155d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Among a plethora of σ-donor ligands available, carbon-centered ones have become essential, in particular with the emergence of N-heterocyclic carbenes (NHCs), positioning themselves as credible alternatives to traditional nitrogen- and phosphorus-based systems. Phosphonium ylides representing another class of neutral η1-bonded carbon ligands have also been shown to act as effective Lewis bases. Considering the intrinsic features of the carbene and phosphonium ylide ligands, similar in terms of electronic properties, but different in terms of bonding mode, the design of hybrid systems combining these two types of carbon functionalities appeared to be a natural and exciting challenge. This Perspective comprehensively covers the chemistry of such ligand architectures from synthesis and fundamental aspects to catalytic applications.
Collapse
Affiliation(s)
- Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse Cedex 4 31077, France.
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse Cedex 4 31077, France.
| |
Collapse
|
45
|
Liu Z, Wang Q, Hou L, Liu Y, Li Z. Ultralight, Ultraflexible, Anisotropic, Highly Thermally Conductive Graphene Aerogel Films. Molecules 2021; 26:molecules26226867. [PMID: 34833959 PMCID: PMC8623857 DOI: 10.3390/molecules26226867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Graphene aerogels have attracted much attention as a promising material for various applications. The unusually high intrinsic thermal conductivity of individual graphene sheets makes an obvious contrast with the thermal insulating performance of assembled 3D graphene materials. We report the preparation of anisotropy 3D graphene aerogel films (GAFs) made from tightly packed graphene films using a thermal expansion method. GAFs with different thicknesses and an ultimate low density of 4.19 mg cm-3 were obtained. GAFs show high anisotropy on average cross-plane thermal conductivity (K⊥) and average in-plane thermal conductivity (K||). Additionally, uniaxially compressed GAFs performed a large elongation of 11.76% due to the Z-shape folding of graphene layers. Our results reveal the ultralight, ultraflexible, highly thermally conductive, anisotropy GAFs, as well as the fundamental evolution of macroscopic assembled graphene materials at elevated temperature.
Collapse
Affiliation(s)
- Zheng Liu
- Special Equipment Safety Supervision and Inspection Institute of Jiangsu Province, National Graphene Products Quality Inspection and Testing Center (Jiangsu), 330 Yanxin Road, Huishan, Wuxi 214174, China;
- Correspondence: ; Tel.:+86-(0)51083256600
| | - Qinsheng Wang
- Special Equipment Safety Supervision and Inspection Institute of Jiangsu Province, National Graphene Products Quality Inspection and Testing Center (Jiangsu), 330 Yanxin Road, Huishan, Wuxi 214174, China;
| | - Linlin Hou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China; (L.H.); (Y.L.); (Z.L.)
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China; (L.H.); (Y.L.); (Z.L.)
| | - Zheng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China; (L.H.); (Y.L.); (Z.L.)
| |
Collapse
|
46
|
Mudassir MA, Aslam HZ, Ansari TM, Zhang H, Hussain I. Fundamentals and Design-Led Synthesis of Emulsion-Templated Porous Materials for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102540. [PMID: 34553500 PMCID: PMC8596121 DOI: 10.1002/advs.202102540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Indexed: 05/06/2023]
Abstract
Emulsion templating is at the forefront of producing a wide array of porous materials that offers interconnected porous structure, easy permeability, homogeneous flow-through, high diffusion rates, convective mass transfer, and direct accessibility to interact with atoms/ions/molecules throughout the exterior and interior of the bulk. These interesting features together with easily available ingredients, facile preparation methods, flexible pore-size tuning protocols, controlled surface modification strategies, good physicochemical and dimensional stability, lightweight, convenient processing and subsequent recovery, superior pollutants remediation/monitoring performance, and decent recyclability underscore the benchmark potential of the emulsion-templated porous materials in large-scale practical environmental applications. To this end, many research breakthroughs in emulsion templating technique witnessed by the recent achievements have been widely unfolded and currently being extensively explored to address many of the environmental challenges. Taking into account the burgeoning progress of the emulsion-templated porous materials in the environmental field, this review article provides a conceptual overview of emulsions and emulsion templating technique, sums up the general procedures to design and fabricate many state-of-the-art emulsion-templated porous materials, and presents a critical overview of their marked momentum in adsorption, separation, disinfection, catalysis/degradation, capture, and sensing of the inorganic, organic and biological contaminants in water and air.
Collapse
Affiliation(s)
- Muhammad Ahmad Mudassir
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology (KFUEIT)Rahim Yar Khan64200Pakistan
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Hafiz Zohaib Aslam
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| | - Tariq Mahmood Ansari
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
| | - Haifei Zhang
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Irshad Hussain
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| |
Collapse
|
47
|
Wang Y, Wang Z, Zhu J, Li H, Zhang Z, Yu X. A comparative study on the reinforcement effect of polyethylene terephthalate composites by inclusion of two types of functionalized graphene. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04909-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Yang T, Wang C, Wu Z. Strain Hardening in Graphene Foams under Shear. ACS OMEGA 2021; 6:22780-22790. [PMID: 34514249 PMCID: PMC8427771 DOI: 10.1021/acsomega.1c03127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Strain hardening is an important issue for the design and application of materials. The strain hardening of graphene foams has been widely observed but poorly understood. Here, by adopting the coarse-grained molecular dynamics method, we systematically investigated the microscopic mechanism and influencing factors of strain hardening and related mechanical properties of graphene foams under shear loading. We found that the strain hardening is induced by cumulative nonlocalized bond-breakings and rearrangements of microstructures. Furthermore, it can be effectively tuned by the number of graphene layers and cross-link densities, i.e., the strain hardening would emerge at a smaller shear strain for the graphene foams with thicker sheets and/or more cross-links. In addition, the shear stiffness G of graphene foams increases linearly with the cross-link density and exponentially with the number of graphene layers n by G ∼ n 1.95. These findings not only improve our understanding of the promising bulk materials but also pave the way for optimizing structural design in wide applications based on their mechanical properties.
Collapse
Affiliation(s)
- Tian Yang
- LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Engineering Science, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Engineering Science, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Zuobing Wu
- LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Engineering Science, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Kang W, Cui Y, Yang Y, Guo M, Zhao Z, Wang X, Liu X. Preparation of nitrogen-doped hollow carbon nanosphere/graphene composite aerogel for efficient removal of quinoline from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126160. [PMID: 34229403 DOI: 10.1016/j.jhazmat.2021.126160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
The deep removal of quinoline from coking wastewater is a prerequisite for reducing its potential threat to environmental safety. Therefore, it is urgent to develop advanced materials for efficient removal of quinoline in wastewater. In this work, a nitrogen-doped hollow carbon nanosphere/graphene composite aerogel (HCNS/NGA) was prepared by in-situ reduction self-assembly strategy, in which HCNS prevents the agglomeration of graphene oxide (GO) nanosheets, and a special sphere-sheet mutual support structure is formed to ensure the structural stability. As-prepared HCNS/NGA exhibits large specific surface area, hierarchical pore structure, and excellent conductivity. Large cavity inside and hierarchically porous structure that primarily consists of micropores, resulting in high quinoline adsorption performance (138.37 ± 2.58 mg g-1 at 298 K). Furthermore, in a fixed-bed column adsorption system, the partition coefficient at 10% breakthrough reaches up to 35.19 mg g-1 μM-1. More importantly, HCNS/NGA, as a conductive monolithic sorbent, can realize easy solid-liquid separation, as well as efficient regeneration in situ by electrochemically assisted regeneration. After ten regeneration cycles, the adsorption capacity retention is 91.54%. In short, as an efficient adsorbent, HCNS/NGA has an enormous application potential in wastewater treatment.
Collapse
Affiliation(s)
- Weiwei Kang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Cui
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Mingcong Guo
- Sinosteel Anshan Research Institute of Thermo-energy Co., Ltd., 114044, China
| | - Zongbin Zhao
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuzhen Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuguang Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Jinzhong 030600, China.
| |
Collapse
|
50
|
Baskakov SA, Baskakova YV, Kabachkov EN, Dremova NN, Gutsev GL, Shulga YM. Features and Consequences of Isopropanol Burning off PTFE-rGO Aerogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10233-10240. [PMID: 34387499 DOI: 10.1021/acs.langmuir.1c01735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An improved procedure for the preparation of aerogel granules of polytetrafluoroethylene-graphene oxide (PTFE-GO) with a composition of 50:50 (in wt %) and a specific density of 35 ± 2 mg/cm3 is described. The technique practically excludes the granule cracking. The specific density of the pellets after reduction using hydrazine vapor and annealing at 370 °C decreased to 29 ± 2 mg/cm3. The PTFE-reduced GO (rGO) pellets obtained were tested as a recyclable sorbent for isopropyl alcohol (IPA) in sorption/combustion cycles. It has been shown that the aerogel sorption capacity for IPA increases from 35.6 to 39.3 g/g as a result of alcohol burning off. During the combustion of IPA, the temperature of an individual pellet can exceed 300 °C. When several contingent pellets are burned, the temperature of their heating increases. The fine-pored structure of the near-surface layer of the granule is destroyed during the alcohol burning, the internal structure with larger pores is exposed, and the relative proportion of PTFE on the surface of the granules decreases. It was also shown that the specific surface area of PTFE-rGO increases from 26 to 49 m2/g during cycling.
Collapse
Affiliation(s)
- Sergey A Baskakov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| | - Yuliya V Baskakova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| | - Eugene N Kabachkov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
- Chernogolovka Scientific Center, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| | - Nadezhda N Dremova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| | - Gennady L Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Yury M Shulga
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
- National University of Science and Technology MISIS, Leninsky pr. 4, Moscow 119049, Russia
| |
Collapse
|