1
|
González SA, Affranchino JL. The life cycle of feline immunodeficiency virus. Virology 2025; 601:110304. [PMID: 39561619 DOI: 10.1016/j.virol.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus of worldwide distribution that can cause an acquired immunodeficiency disease in domestic cats. FIV and the primate lentiviruses, human and simian immunodeficiency viruses (HIV and SIV, respectively) share structural and biological features but also exhibit important differences, which reflect both their evolutionary relationship and divergence. Given that FIV is not only an important cat pathogen but also a useful model for certain aspects of HIV-1 infections in humans, the study of FIV biology is highly relevant. In this review we provide an updated description of the molecular mechanisms involved in each stage of the FIV life cycle.
Collapse
Affiliation(s)
- Silvia A González
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - José L Affranchino
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| |
Collapse
|
2
|
Park K, Lee D, Jeong J, Lee S, Kim S, Ahn K. Human immunodeficiency virus-1 induces host genomic R-loops and preferentially integrates its genome near the R-loop regions. eLife 2024; 13:RP97348. [PMID: 39630854 PMCID: PMC11616997 DOI: 10.7554/elife.97348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Although HIV-1 integration sites favor active transcription units in the human genome, high-resolution analysis of individual HIV-1 integration sites has shown that the virus can integrate into a variety of host genomic locations, including non-genic regions. The invisible infection by HIV-1 integrating into non-genic regions, challenging the traditional understanding of HIV-1 integration site selection, is more problematic because they are selected for preservation in the host genome during prolonged antiretroviral therapies. Here, we showed that HIV-1 integrates its viral genome into the vicinity of R-loops, a genomic structure composed of DNA-RNA hybrids. VSV-G-pseudotyped HIV-1 infection initiates the formation of R-loops in both genic and non-genic regions of the host genome and preferentially integrates into R-loop-rich regions. Using a HeLa cell model that can independently control transcriptional activity and R-loop formation, we demonstrated that the exogenous formation of R-loops directs HIV-1 integration-targeting sites. We also found that HIV-1 integrase proteins physically bind to the host genomic R-loops. These findings provide novel insights into the mechanisms underlying retroviral integration and the new strategies for antiretroviral therapy against HIV-1 latent infection.
Collapse
Affiliation(s)
- Kiwon Park
- Center for RNA Research, Institute for Basic ScienceSeoulRepublic of Korea
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Dohoon Lee
- Bioinformatics Institute, Seoul National UniversitySeoulRepublic of Korea
- BK21 FOUR Intelligence Computing, Seoul National UniversitySeoulRepublic of Korea
| | - Jiseok Jeong
- Center for RNA Research, Institute for Basic ScienceSeoulRepublic of Korea
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Sungwon Lee
- Center for RNA Research, Institute for Basic ScienceSeoulRepublic of Korea
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic ScienceSeoulRepublic of Korea
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
- SNU Institute for Virus Research, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
3
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Herrmann D, Meng S, Yang H, Mansky LM, Saad JS. The Assembly of HTLV-1-How Does It Differ from HIV-1? Viruses 2024; 16:1528. [PMID: 39459862 PMCID: PMC11512237 DOI: 10.3390/v16101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviral assembly is a highly coordinated step in the replication cycle. The process is initiated when the newly synthesized Gag and Gag-Pol polyproteins are directed to the inner leaflet of the plasma membrane (PM), where they facilitate the budding and release of immature viral particles. Extensive research over the years has provided crucial insights into the molecular determinants of this assembly step. It is established that Gag targeting and binding to the PM is mediated by interactions of the matrix (MA) domain and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This binding event, along with binding to viral RNA, initiates oligomerization of Gag on the PM, a process mediated by the capsid (CA) domain. Much of the previous studies have focused on human immunodeficiency virus type 1 (HIV-1). Although the general steps of retroviral replication are consistent across different retroviruses, comparative studies revealed notable differences in the structure and function of viral components. In this review, we present recent findings on the assembly mechanisms of Human T-cell leukemia virus type 1 and highlight key differences from HIV-1, focusing particularly on the molecular determinants of Gag-PM interactions and CA assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
5
|
Liu F, Li R, Zhu Z, Yang Y, Lu F. Current developments of gene therapy in human diseases. MedComm (Beijing) 2024; 5:e645. [PMID: 39156766 PMCID: PMC11329757 DOI: 10.1002/mco2.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024] Open
Abstract
Gene therapy has witnessed substantial advancements in recent years, becoming a constructive tactic for treating various human diseases. This review presents a comprehensive overview of these developments, with a focus on their diverse applications in different disease contexts. It explores the evolution of gene delivery systems, encompassing viral (like adeno-associated virus; AAV) and nonviral approaches, and evaluates their inherent strengths and limitations. Moreover, the review delves into the progress made in targeting specific tissues and cell types, spanning the eye, liver, muscles, and central nervous system, among others, using these gene technologies. This targeted approach is crucial in addressing a broad spectrum of genetic disorders, such as inherited lysosomal storage diseases, neurodegenerative disorders, and cardiovascular diseases. Recent clinical trials and successful outcomes in gene therapy, particularly those involving AAV and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins, are highlighted, illuminating the transformative potentials of this approach in disease treatment. The review summarizes the current status of gene therapy, its prospects, and its capacity to significantly ameliorate patient outcomes and quality of life. By offering comprehensive analysis, this review provides invaluable insights for researchers, clinicians, and stakeholders, enriching the ongoing discourse on the trajectory of disease treatment.
Collapse
Affiliation(s)
- Fanfei Liu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| | - Ruiting Li
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Zilin Zhu
- College of Life SciencesSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of OphthalmologyWest China HospitalChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Fang Lu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| |
Collapse
|
6
|
Li M, Li Z, Chen X, Cui Y, Engelman AN, Craigie R. HIV-1 Intasomes Assembled with Excess Integrase C-Terminal Domain Protein Facilitate Structural Studies by Cryo-EM and Reveal the Role of the Integrase C-Terminal Tail in HIV-1 Integration. Viruses 2024; 16:1166. [PMID: 39066328 PMCID: PMC11281638 DOI: 10.3390/v16071166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Retroviral integration is mediated by intasome nucleoprotein complexes wherein a pair of viral DNA ends are bridged together by a multimer of integrase (IN). Atomic-resolution structures of HIV-1 intasomes provide detailed insights into the mechanism of integration and inhibition by clinical IN inhibitors. However, previously described HIV-1 intasomes are highly heterogeneous and have the tendency to form stacks, which is a limiting factor in determining high-resolution cryo-EM maps. We have assembled HIV-1 intasomes in the presence of excess IN C-terminal domain protein, which was readily incorporated into the intasomes. The purified intasomes were largely homogeneous and exhibited minimal stacking tendencies. The cryo-EM map resolution was further improved to 2.01 Å, which will greatly facilitate structural studies of IN inhibitor action and drug resistance mechanisms. The C-terminal 18 residues of HIV-1 IN, which are critical for virus replication and integration in vitro, have not been well resolved in previous intasome structures, and its function remains unclear. We show that the C-terminal tail participates in intasome assembly, resides within the intasome core, and forms a small alpha helix (residues 271-276). Mutations that disrupt alpha helix integrity impede IN activity in vitro and disrupt HIV-1 infection at the step of viral DNA integration.
Collapse
Affiliation(s)
- Min Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (Z.L.); (A.N.E.)
| | - Xuemin Chen
- School of Life Sciences, Anhui University, Hefei 230601, China;
| | - Yanxiang Cui
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (Z.L.); (A.N.E.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Prakash P, Khodke P, Balasubramaniam M, Davids BO, Hollis T, Davis J, Kumbhar B, Dash C. Three prime repair exonuclease 1 preferentially degrades the integration-incompetent HIV-1 DNA through favorable kinetics, thermodynamic, structural, and conformational properties. J Biol Chem 2024; 300:107438. [PMID: 38838778 PMCID: PMC11259700 DOI: 10.1016/j.jbc.2024.107438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
HIV-1 integration into the human genome is dependent on 3'-processing of the viral DNA. Recently, we reported that the cellular Three Prime Repair Exonuclease 1 (TREX1) enhances HIV-1 integration by degrading the unprocessed viral DNA, while the integration-competent 3'-processed DNA remained resistant. Here, we describe the mechanism by which the 3'-processed HIV-1 DNA resists TREX1-mediated degradation. Our kinetic studies revealed that the rate of cleavage (kcat) of the 3'-processed DNA was significantly lower (approximately 2-2.5-fold) than the unprocessed HIV-1 DNA by TREX1. The kcat values of human TREX1 for the processed U5 and U3 DNA substrates were 3.8 s-1 and 4.5 s-1, respectively. In contrast, the unprocessed U5 and U3 substrates were cleaved at 10.2 s-1 and 9.8 s-1, respectively. The efficiency of degradation (kcat/Km) of the 3'-processed DNA (U5-70.2 and U3-28.05 pM-1s-1) was also significantly lower than the unprocessed DNA (U5-103.1 and U3-65.3 pM-1s-1). Furthermore, the binding affinity (Kd) of TREX1 was markedly lower (∼2-fold) for the 3'-processed DNA than the unprocessed DNA. Molecular docking and dynamics studies revealed distinct conformational binding modes of TREX1 with the 3'-processed and unprocessed HIV-1 DNA. Particularly, the unprocessed DNA was favorably positioned in the active site with polar interactions with the catalytic residues of TREX1. Additionally, a stable complex was formed between TREX1 and the unprocessed DNA compared the 3'-processed DNA. These results pinpoint the mechanism by which TREX1 preferentially degrades the integration-incompetent HIV-1 DNA and reveal the unique structural and conformational properties of the integration-competent 3'-processed HIV-1 DNA.
Collapse
Affiliation(s)
- Prem Prakash
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Purva Khodke
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be-) University, Mumbai, Maharashtra, India
| | - Muthukumar Balasubramaniam
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Benem-Orom Davids
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, New York, USA
| | - Thomas Hollis
- Department of Biochemistry and Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Bajarang Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be-) University, Mumbai, Maharashtra, India
| | - Chandravanu Dash
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA; Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA; Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.
| |
Collapse
|
8
|
Anisenko AN, Nefedova AA, Kireev II, Gottikh MB. Post-Integrational DNA Repair of HIV-1 Is Associated with Activation of the DNA-PK and ATM Cellular Protein Kinases and Phosphorylation of Their Targets. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1122-1132. [PMID: 38981705 DOI: 10.1134/s0006297924060117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 07/11/2024]
Abstract
Integration of the DNA copy of HIV-1 genome into the cellular genome results in series of damages, repair of which is critical for successful replication of the virus. We have previously demonstrated that the ATM and DNA-PK kinases, normally responsible for repairing double-strand breaks in the cellular DNA, are required to initiate the HIV-1 DNA postintegrational repair, even though integration does not result in DNA double-strand breaks. In this study, we analyzed changes in phosphorylation status of ATM (pSer1981), DNA-PK (pSer2056), and their related kinase ATR (pSer428), as well as their targets: Chk1 (pSer345), Chk2 (pThr68), H2AX (pSer139), and p53 (pSer15) during the HIV-1 DNA postintegrational repair. We have shown that ATM and DNA-PK, but not ATR, undergo autophosphorylation during postintegrational DNA repair and phosphorylate their target proteins Chk2 and H2AX. These data indicate common signaling mechanisms between the double-strand DNA break repair and postintegrational repair of HIV-1 DNA.
Collapse
Affiliation(s)
- Andrey N Anisenko
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasiia A Nefedova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Marina B Gottikh
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
9
|
Li M, Yang R, Chen X, Wang H, Ghirlando R, Dimitriadis EK, Craigie R. HIV-1 Integrase Assembles Multiple Species of Stable Synaptic Complex Intasomes That Are Active for Concerted DNA Integration In vitro. J Mol Biol 2024; 436:168557. [PMID: 38582148 PMCID: PMC11134455 DOI: 10.1016/j.jmb.2024.168557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Retroviral DNA integration is mediated by nucleoprotein complexes (intasomes) in which a pair of viral DNA ends are bridged by a multimer of integrase (IN). Most of the high-resolution structures of HIV-1 intasomes are based on an HIV-1 IN with an Sso7d protein domain fused to the N-terminus. Sso7d-IN aggregates much less than wild-type IN and has been critical for structural studies of HIV-1 intasomes. Unexpectedly, these structures revealed that the common core architecture that mediates catalysis could be assembled in various ways, giving rise to both tetrameric and dodecameric intasomes, together with other less well-characterized species. This differs from related retroviruses that assemble unique multimeric intasomes, although the number of protomers in the intasome varies between viruses. The question of whether the additional Sso7d domain contributes to the heterogeneity of HIV-1 intasomes is therefore raised. We have addressed this by biochemical and structural studies of intasomes assembled with wild-type HIV-1 IN. Negative stain and cryo-EM reveal a similar range of multimeric intasome species as with Sso7d-IN with the same common core architecture. Stacks of intasomes resulting from domain swapping are also seen with both wild-type and Sso7d-IN intasomes. The propensity to assemble multimeric intasome species is, therefore, an intrinsic property of HIV-1 IN and is not conferred by the presence of the Sso7d domain. The recently solved intasome structures of different retroviral species, which have been reported to be tetrameric, octameric, dodecameric, and hexadecameric, highlight how a common intasome core architecture can be assembled in different ways for catalysis.
Collapse
Affiliation(s)
- Min Li
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Renbin Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuemin Chen
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Wang
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emilios K Dimitriadis
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Craigie
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Guo X, Yu D, Liu M, Li H, Chen M, Wang X, Zhai X, Zhang B, Wang Y, Yang C, Wang C, Liu Y, Han J, Wang X, Li J, Jia L, Li L. A unified classification system for HIV-1 5' long terminal repeats. PLoS One 2024; 19:e0301809. [PMID: 38696412 PMCID: PMC11065288 DOI: 10.1371/journal.pone.0301809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
The HIV-1 provirus mainly consists of internal coding region flanked by 1 long terminal repeats (LTRs) at each terminus. The LTRs play important roles in HIV-1 reverse transcription, integration, and transcription. However, despite of the significant study advances of the internal coding regions of HIV-1 by using definite reference classification, there are no systematic and phylogenetic classifications for HIV-1 5' LTRs, which hinders our elaboration on 5' LTR and a better understanding of the viral origin, spread and therapy. Here, by analyzing all available resources of 5' LTR sequences in public databases following 4 recognized principles for the reference classification, 83 representatives and 14 consensus sequences were identified as representatives of 2 groups, 6 subtypes, 6 sub-subtypes, and 9 CRFs. To test the reliability of the supplemented classification system, the constructed references were applied to identify the 5' LTR assignment of the 22 clinical isolates in China. The results revealed that 16 out of 22 tested strains showed a consistent subtype classification with the previous LTR-independent classification system. However, 6 strains, for which recombination events within 5' LTR were demonstrated, unexpectedly showed a different subtype classification, leading a significant change of binding sites for important transcription factors including SP1, p53, and NF-κB. The binding change of these transcriptional factors would probably affect the transcriptional activity of 5' LTR. This study supplemented a unified classification system for HIV-1 5' LTRs, which will facilitate HIV-1 characterization and be helpful for both basic and clinical research fields.
Collapse
Affiliation(s)
- Xing Guo
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Dan Yu
- Laboratory of Dermatology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Mengying Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Hanping Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Xinyu Wang
- Laboratory of Dermatology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Xiuli Zhai
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Bohan Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yanglan Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Caiqing Yang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Chunlei Wang
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yongjian Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Jingwan Han
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Xiaolin Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Jingyun Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
11
|
Prakash P, Khodke P, Balasubramaniam M, Davids BO, Hollis T, Davis J, Pandhare J, Kumbhar B, Dash C. Three Prime Repair Exonuclease 1 preferentially degrades the integration-incompetent HIV-1 DNA through favorable kinetics, thermodynamic, structural and conformational properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585766. [PMID: 38562877 PMCID: PMC10983988 DOI: 10.1101/2024.03.19.585766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
HIV-1 integration into the human genome is dependent on 3'-processing of the reverse transcribed viral DNA. Recently, we reported that the cellular Three Prime Repair Exonuclease 1 (TREX1) enhances HIV-1 integration by degrading the unprocessed viral DNA, while the integration-competent 3'-processed DNA remained resistant. Here, we describe the mechanism by which the 3'-processed HIV-1 DNA resists TREX1-mediated degradation. Our kinetic studies revealed that the rate of cleavage (kcat) of the 3'-processed DNA was significantly lower than the unprocessed HIV-1 DNA by TREX1. The efficiency of degradation (kcat/KM) of the 3'-processed DNA was also significantly lower than the unprocessed DNA. Furthermore, the binding affinity (Kd) of TREX1 was markedly lower to the 3'-processed DNA compared to the unprocessed DNA. Molecular docking and dynamics studies revealed distinct conformational binding modes of TREX1 with the 3'-processed and unprocessed HIV-1 DNA. Particularly, the unprocessed DNA was favorably positioned in the active site with polar interactions with the catalytic residues of TREX1. Additionally, a stable complex was formed between TREX1 and the unprocessed DNA compared the 3'-processed DNA. These results pinpoint the biochemical mechanism by which TREX1 preferentially degrades the integration-incompetent HIV-1 DNA and reveal the unique structural and conformational properties of the integration-competent 3'-processed HIV-1 DNA.
Collapse
Affiliation(s)
- Prem Prakash
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, 37208, USA
| | - Purva Khodke
- Sunandan Divatia School of Science, NMIMS University, Mumbai, 400056, India
| | - Muthukumar Balasubramaniam
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, 37208, USA
| | - Benem-Orom Davids
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, New York, 10032, USA
| | - Thomas Hollis
- Department of Biochemistry and Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, 37208, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, 37208, USA
| | - Bajarang Kumbhar
- Sunandan Divatia School of Science, NMIMS University, Mumbai, 400056, India
| | - Chandravanu Dash
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, 37208, USA
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, 37208, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, 37208, USA
| |
Collapse
|
12
|
Zhang RH, Chen GQ, Wang W, Wang YC, Zhang WL, Chen T, Xiong QQ, Zhao YL, Liao SG, Li YJ, Yan GY, Zhou M. Design, synthesis and biological evaluation of indole-2-carboxylic acid derivatives as novel HIV-1 integrase strand transfer inhibitors. RSC Adv 2024; 14:9020-9031. [PMID: 38500630 PMCID: PMC10945512 DOI: 10.1039/d3ra08320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Integrase plays an important role in the life cycle of HIV-1, and integrase strand transfer inhibitors (INSTIs) can effectively impair the viral replication. However, drug resistance mutations have been confirmed to decrease the efficacy of INSTI during the antiviral therapy. Herein, indole-2-carboxylic acid (1) was found to inhibit the strand transfer of integrase, and the indole nucleus of compound 1 was observed to chelate with two Mg2+ ions within the active site of integrase. Through optimization of compound 1, a series of indole-2-carboxylic acid derivatives were designed and synthesized, and compound 17a was proved to markedly inhibit the effect of integrase, with IC50 value of 3.11 μM. Binding mode analysis of 17a demonstrated that the introduced C6 halogenated benzene ring could effectively bind with the viral DNA (dC20) through π-π stacking interaction. These results indicated that indole-2-carboxylic acid is a promising scaffold for the development of integrase inhibitors.
Collapse
Affiliation(s)
- Rong-Hong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 P. R. China
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University Guiyang 550004 P. R. China
| | - Guo-Qi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy, Guizhou Medical University Guian New District Guizhou 550025 P. R. China
| | - Weilin Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation of Biotherapy and Cancer Center, West China Hospital of Sichuan University Chengdu 610041 Sichuan China
| | - Yu-Chan Wang
- School of Pharmacy, Guizhou Medical University Guian New District Guizhou 550025 P. R. China
| | - Wen-Li Zhang
- School of Pharmacy, Guizhou Medical University Guian New District Guizhou 550025 P. R. China
| | - Ting Chen
- School of Pharmacy, Guizhou Medical University Guian New District Guizhou 550025 P. R. China
| | - Qian-Qian Xiong
- School of Pharmacy, Guizhou Medical University Guian New District Guizhou 550025 P. R. China
| | - Yong-Long Zhao
- School of Pharmacy, Guizhou Medical University Guian New District Guizhou 550025 P. R. China
| | - Shang-Gao Liao
- School of Pharmacy, Guizhou Medical University Guian New District Guizhou 550025 P. R. China
| | - Yong-Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 P. R. China
| | - Guo-Yi Yan
- School of Pharmacy, Xinxiang University Xinxiang 453000 P. R. China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy, Guizhou Medical University Guian New District Guizhou 550025 P. R. China
| |
Collapse
|
13
|
Mahajan PS, Smith SJ, Li M, Craigie R, Hughes SH, Zhao XZ, Burke TR. N-Substituted Bicyclic Carbamoyl Pyridones: Integrase Strand Transfer Inhibitors that Potently Inhibit Drug-Resistant HIV-1 Integrase Mutants. ACS Infect Dis 2024; 10:917-927. [PMID: 38346249 PMCID: PMC10928719 DOI: 10.1021/acsinfecdis.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
HIV-1 integrase (IN) is an important molecular target for the development of anti-AIDS drugs. A recently FDA-approved second-generation integrase strand transfer inhibitor (INSTI) cabotegravir (CAB, 2021) is being marketed for use in long-duration antiviral formulations. However, missed doses during extended therapy can potentially result in persistent low levels of CAB that could select for resistant mutant forms of IN, leading to virological failure. We report a series of N-substituted bicyclic carbamoyl pyridones (BiCAPs) that are simplified analogs of CAB. Several of these potently inhibit wild-type HIV-1 in single-round infection assays in cultured cells and retain high inhibitory potencies against a panel of viral constructs carrying resistant mutant forms of IN. Our lead compound, 7c, proved to be more potent than CAB against the therapeutically important resistant double mutants E138K/Q148K (>12-fold relative to CAB) and G140S/Q148R (>36-fold relative to CAB). A significant number of the BiCAPs also potently inhibit the drug-resistant IN mutant R263K, which has proven to be problematic for the FDA-approved second-generation INSTIs.
Collapse
Affiliation(s)
- Pankaj S Mahajan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Steven J Smith
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Min Li
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert Craigie
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
14
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
15
|
Dwivedi R, Prakash P, Kumbhar BV, Balasubramaniam M, Dash C. HIV-1 capsid and viral DNA integration. mBio 2024; 15:e0021222. [PMID: 38085100 PMCID: PMC10790781 DOI: 10.1128/mbio.00212-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 capsid protein (CA)-independently or by recruiting host factors-mediates several key steps of virus replication in the cytoplasm and nucleus of the target cell. Research in the recent years have established that CA is multifunctional and genetically fragile of all the HIV-1 proteins. Accordingly, CA has emerged as a validated and high priority therapeutic target, and the first CA-targeting antiviral drug was recently approved for treating multi-drug resistant HIV-1 infection. However, development of next generation CA inhibitors depends on a better understanding of CA's known roles, as well as probing of CA's novel roles, in HIV-1 replication. In this timely review, we present an updated overview of the current state of our understanding of CA's multifunctional role in HIV-1 replication-with a special emphasis on CA's newfound post-nuclear roles, highlight the pressing knowledge gaps, and discuss directions for future research.
Collapse
Affiliation(s)
- Richa Dwivedi
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed to be) University, Mumbai, Maharashtra, India
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Ma Y, Li S, Lin X, Chen Y. Bioinspired Spatiotemporal Management toward RNA Therapies. ACS NANO 2023; 17:24539-24563. [PMID: 38091941 DOI: 10.1021/acsnano.3c08219] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Ribonucleic acid (RNA)-based therapies have become an attractive topic in disease intervention, especially with some that have been approved by the FDA such as the mRNA COVID-19 vaccine (Comirnaty, Pfizer-BioNTech, and Spikevax, Moderna) and Patisiran (siRNA-based drug for liver delivery). However, extensive applications are still facing challenges in delivering highly negatively charged RNA to the targeted site. Therapeutic delivery strategies including RNA modifications, RNA conjugates, and RNA polyplexes and delivery platforms such as viral vectors, nanoparticle-based delivery platforms, and hydrogel-based delivery platforms as potential nucleic acid-releasing depots have been developed to enhance their cellular uptake and protect nucleic acid from being degraded by immune systems. Here, we review the growing number of viral vectors, nanoparticles, and hydrogel-based RNA delivery systems; describe RNA loading/release mechanism induced by environmental stimulations including light, heat, pH, or enzyme; discuss their physical or chemical interactions; and summarize the RNA therapeutics release period (temporal) and their target cells/organs (spatial). Finally, we describe current concerns, highlight current challenges and future perspectives of RNA-based delivery systems, and provide some possible research areas that provide opportunities for clinical translation of RNA delivery carriers.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Wang YC, Zhang WL, Zhang RH, Liu CH, Zhao YL, Yan GY, Liao SG, Li YJ, Zhou M. The Discovery of Indole-2-carboxylic Acid Derivatives as Novel HIV-1 Integrase Strand Transfer Inhibitors. Molecules 2023; 28:8020. [PMID: 38138510 PMCID: PMC10745497 DOI: 10.3390/molecules28248020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
As an important antiviral target, HIV-1 integrase plays a key role in the viral life cycle, and five integrase strand transfer inhibitors (INSTIs) have been approved for the treatment of HIV-1 infections so far. However, similar to other clinically used antiviral drugs, resistance-causing mutations have appeared, which have impaired the efficacy of INSTIs. In the current study, to identify novel integrase inhibitors, a set of molecular docking-based virtual screenings were performed, and indole-2-carboxylic acid was developed as a potent INSTI scaffold. Indole-2-carboxylic acid derivative 3 was proved to effectively inhibit the strand transfer of HIV-1 integrase, and binding conformation analysis showed that the indole core and C2 carboxyl group obviously chelated the two Mg2+ ions within the active site of integrase. Further structural optimizations on compound 3 provided the derivative 20a, which markedly increased the integrase inhibitory effect, with an IC50 value of 0.13 μM. Binding mode analysis revealed that the introduction of a long branch on C3 of the indole core improved the interaction with the hydrophobic cavity near the active site of integrase, indicating that indole-2-carboxylic acid is a promising scaffold for the development of integrase inhibitors.
Collapse
Affiliation(s)
- Yu-Chan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China; (Y.-C.W.); (W.-L.Z.); (R.-H.Z.); (Y.-J.L.)
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550025, China; (Y.-L.Z.); (S.-G.L.)
| | - Wen-Li Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China; (Y.-C.W.); (W.-L.Z.); (R.-H.Z.); (Y.-J.L.)
- School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550025, China; (Y.-L.Z.); (S.-G.L.)
| | - Rong-Hong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China; (Y.-C.W.); (W.-L.Z.); (R.-H.Z.); (Y.-J.L.)
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Chun-Hua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China; (Y.-C.W.); (W.-L.Z.); (R.-H.Z.); (Y.-J.L.)
| | - Yong-Long Zhao
- School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550025, China; (Y.-L.Z.); (S.-G.L.)
| | - Guo-Yi Yan
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China;
| | - Shang-Gao Liao
- School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550025, China; (Y.-L.Z.); (S.-G.L.)
| | - Yong-Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China; (Y.-C.W.); (W.-L.Z.); (R.-H.Z.); (Y.-J.L.)
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China; (Y.-C.W.); (W.-L.Z.); (R.-H.Z.); (Y.-J.L.)
- School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550025, China; (Y.-L.Z.); (S.-G.L.)
| |
Collapse
|
18
|
Loaiza JD, Chvatal-Medina M, Hernandez JC, Rugeles MT. Integrase inhibitors: current protagonists in antiretroviral therapy. Immunotherapy 2023; 15:1477-1495. [PMID: 37822251 DOI: 10.2217/imt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Since HIV was identified as the etiological agent of AIDS, there have been significant advances in antiretroviral therapy (ART) that has reduced morbidity/mortality. Still, the viral genome's high mutation rate, suboptimal ART regimens, incomplete adherence to therapy and poor control of the viral load generate variants resistant to multiple drugs. Licensing over 30 anti-HIV drugs worldwide, including integrase inhibitors, has marked a milestone since they are potent and well-tolerated drugs. In addition, they favor a faster recovery of CD4+ T cells. They also increase the diversity profile of the gut microbiota and reduce inflammatory markers. All of these highlight the importance of including them in different ART regimens.
Collapse
Affiliation(s)
- John D Loaiza
- Grupo Inmunovirología, Facultad de medicina, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de medicina, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de medicina, Universidad Cooperativa de Colombia, Medellín, 050012, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de medicina, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
19
|
Li N, Wang P, Xie Y, Wang B, Zhu C, Xue L, Han X, Gu N, Sun J. Expression of clMagR/clCry4 protein in mBMSCs provides T 2-contrast enhancement of MRI. Acta Biomater 2023; 172:309-320. [PMID: 37778484 DOI: 10.1016/j.actbio.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Here, we propose for the first time the evaluation of magnetosensitive clMagR/clCry4 as a magnetic resonance imaging (MRI) reporter gene that imparts sensitivity to endogenous contrast in eukaryotic organisms. Using a lentiviral vector, we introduced clMagR/clCry4 into C57BL/6 mice-derived bone marrow mesenchymal stem cells (mBMSCs), which could specifically bind with iron, significantly affected MRI transverse relaxation, and generated readily detectable contrast without adverse effects in vivo. Specifically, clMagR/clCry4 makes mBMSCs beneficial for enhancing the sensitivity of MRI-R2 for iron-bearing granules, in which cells recruit exogenous iron and convert these stores into an MRI-detectable contrast; this is not achievable with control cells. Additionally, Prussian blue staining was performed together with ultrathin cell slices to provide direct evidence of natural iron-bearing granules being detectable on MRI. Hence, it was inferred that the sensitivity of MRI detection should be correlated with clMagR/clCry4 and exogenous iron. Taken together, the clMagR/clCry4 has great potential as an MRI reporter gene. STATEMENT OF SIGNIFICANCE: In this study, we propose the evaluation of magnetosensitive clMagR/clCry4 as an MRI reporter gene, imparting detection sensitivity to eukaryotic mBMSCs for endogenous contrast. At this point, the clMagR and clCry4 were located within the cytoplasm and possibly influence each other. The clMagR/clCry4 makes mBMSCs beneficial for enhancing the sensitivity of MRI-R2 for iron-bearing granules, in which protein could specifically bind with iron and convert these stores into MRI-detectable contrast; this is not achieved by control cells. The viewpoint was speculated that the clMagR/clCry4 and exogenous iron were complementary to each other. Additionally, Prussian blue staining was performed together with TEM observations to provide direct evidence that the iron-bearing granules were sensitive to MRI.
Collapse
Affiliation(s)
- Nuan Li
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Peng Wang
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; Department of Sports Medicine and Adult Reconstructive Surgery, the Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210008, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210008, China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210008, China
| | - Chenzhuo Zhu
- Southeast University-Monash University Joint Graduate School, Southeast University, Suzhou 215123, China
| | - Le Xue
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing 210093, China
| | - Jianfei Sun
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
20
|
Senavirathne G, London J, Gardner A, Fishel R, Yoder KE. DNA strand breaks and gaps target retroviral intasome binding and integration. Nat Commun 2023; 14:7072. [PMID: 37923737 PMCID: PMC10624929 DOI: 10.1038/s41467-023-42641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Retrovirus integration into a host genome is essential for productive infections. The integration strand transfer reaction is catalyzed by a nucleoprotein complex (Intasome) containing the viral integrase (IN) and the reverse transcribed (RT) copy DNA (cDNA). Previous studies suggested that DNA target-site recognition limits intasome integration. Using single molecule Förster resonance energy transfer (smFRET), we show prototype foamy virus (PFV) intasomes specifically bind to DNA strand breaks and gaps. These break and gap DNA discontinuities mimic oxidative base excision repair (BER) lesion-processing intermediates that have been shown to affect retrovirus integration in vivo. The increased DNA binding events targeted strand transfer to the break/gap site without inducing substantial intasome conformational changes. The major oxidative BER substrate 8-oxo-guanine as well as a G/T mismatch or +T nucleotide insertion that typically introduce a bend or localized flexibility into the DNA, did not increase intasome binding or targeted integration. These results identify DNA breaks or gaps as modulators of dynamic intasome-target DNA interactions that encourage site-directed integration.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - James London
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Anne Gardner
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Molecular Carcinogenesis and Chemoprevention Program, The James Comprehensive Cancer Center and Ohio State University, Columbus, OH, 43210, USA.
| | - Kristine E Yoder
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Molecular Carcinogenesis and Chemoprevention Program, The James Comprehensive Cancer Center and Ohio State University, Columbus, OH, 43210, USA.
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
Renzi G, Carta F, Supuran CT. The Integrase: An Overview of a Key Player Enzyme in the Antiviral Scenario. Int J Mol Sci 2023; 24:12187. [PMID: 37569561 PMCID: PMC10419282 DOI: 10.3390/ijms241512187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Integration of a desossiribonucleic acid (DNA) copy of the viral ribonucleic acid (RNA) into host genomes is a fundamental step in the replication cycle of all retroviruses. The highly conserved virus-encoded Integrase enzyme (IN; EC 2.7.7.49) catalyzes such a process by means of two consecutive reactions named 3'-processing (3-P) and strand transfer (ST). The Authors report and discuss the major discoveries and advances which mainly contributed to the development of Human Immunodeficiency Virus (HIV) -IN targeted inhibitors for therapeutic applications. All the knowledge accumulated over the years continues to serve as a valuable resource for the design and development of effective antiretroviral drugs.
Collapse
Affiliation(s)
| | - Fabrizio Carta
- Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA) Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (G.R.); (C.T.S.)
| | | |
Collapse
|
22
|
Lundstrom K. Viral vectors engineered for gene therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:1-41. [PMID: 37541721 DOI: 10.1016/bs.ircmb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Gene therapy has seen major progress in recent years. Viral vectors have made a significant contribution through efficient engineering for improved delivery and safety. A large variety of indications such as cancer, cardiovascular, metabolic, hematological, neurological, muscular, ophthalmological, infectious diseases, and immunodeficiency have been targeted. Viral vectors based on adenoviruses, adeno-associated viruses, herpes simplex viruses, retroviruses including lentiviruses, alphaviruses, flaviviruses, measles viruses, rhabdoviruses, Newcastle disease virus, poxviruses, picornaviruses, reoviruses, and polyomaviruses have been used. Proof-of-concept has been demonstrated for different indications in animal models. Therapeutic efficacy has also been achieved in clinical trials. Several viral vector-based drugs have been approved for the treatment of cancer, and hematological, metabolic, and neurological diseases. Moreover, viral vector-based vaccines have been approved against COVID-19 and Ebola virus disease.
Collapse
|
23
|
Bera S, Shi K, Aihara H, Grandgenett DP, Pandey KK. Molecular determinants for Rous sarcoma virus intasome assemblies involved in retroviral integration. J Biol Chem 2023; 299:104730. [PMID: 37084813 PMCID: PMC10209032 DOI: 10.1016/j.jbc.2023.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023] Open
Abstract
Integration of retroviral DNA into the host genome involves the formation of integrase (IN)-DNA complexes termed intasomes. Further characterization of these complexes is needed to understand their assembly process. Here, we report the single-particle cryo-EM structure of the Rous sarcoma virus (RSV) strand transfer complex (STC) intasome produced with IN and a preassembled viral/target DNA substrate at 3.36 Å resolution. The conserved intasome core region consisting of IN subunits contributing active sites interacting with viral/target DNA has a resolution of 3 Å. Our structure demonstrated the flexibility of the distal IN subunits relative to the IN subunits in the conserved intasome core, similar to results previously shown with the RSV octameric cleaved synaptic complex intasome produced with IN and viral DNA only. An extensive analysis of higher resolution STC structure helped in the identification of nucleoprotein interactions important for intasome assembly. Using structure-function studies, we determined the mechanisms of several IN-DNA interactions critical for assembly of both RSV intasomes. We determined the role of IN residues R244, Y246, and S124 in cleaved synaptic complex and STC intasome assemblies and their catalytic activities, demonstrating differential effects. Taken together, these studies advance our understanding of different RSV intasome structures and molecular determinants involved in their assembly.
Collapse
Affiliation(s)
- Sibes Bera
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Duane P Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Krishan K Pandey
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St Louis, Missouri, USA.
| |
Collapse
|
24
|
Mahajan PS, Burke TR. Synthetic Approaches to a Key Pyridone-carboxylic Acid Precursor Common to the HIV-1 Integrase Strand Transfer Inhibitors Dolutegravir, Bictegravir, and Cabotegravir. Org Process Res Dev 2023; 27:847-853. [PMID: 37229216 PMCID: PMC10204085 DOI: 10.1021/acs.oprd.3c00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 05/27/2023]
Abstract
Dolutegravir (DTG), Bictegravir (BIC), and Cabotegravir (CAB) are the second-generation integrase strand transfer inhibitors (INSTIs) that have been FDA-approved for the treatment of HIV-1 infection. Preparation of these INSTIs utilizes the common intermediate 1-(2,2-dimethoxyethyl)-5-methoxy-6-(methoxycarbonyl)-4-oxo-1,4-dihydropyridine-3-carboxylic acid (6). Presented herein is a literature and patent review of synthetic routes used to access the pharmaceutically important intermediate 6. The review highlights the ways in which small fine-tuned synthetic modifications have been used to achieve good yields and regioselectivity of ester hydrolysis.
Collapse
|
25
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
26
|
Eilers G, Gupta K, Allen A, Montermoso S, Murali H, Sharp R, Hwang Y, Bushman FD, Van Duyne G. Structure of a HIV-1 IN-Allosteric inhibitor complex at 2.93 Å resolution: Routes to inhibitor optimization. PLoS Pathog 2023; 19:e1011097. [PMID: 36867659 PMCID: PMC10016701 DOI: 10.1371/journal.ppat.1011097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/15/2023] [Accepted: 01/03/2023] [Indexed: 03/04/2023] Open
Abstract
HIV integrase (IN) inserts viral DNA into the host genome and is the target of the strand transfer inhibitors (STIs), a class of small molecules currently in clinical use. Another potent class of antivirals is the allosteric inhibitors of integrase, or ALLINIs. ALLINIs promote IN aggregation by stabilizing an interaction between the catalytic core domain (CCD) and carboxy-terminal domain (CTD) that undermines viral particle formation in late replication. Ongoing challenges with inhibitor potency, toxicity, and viral resistance motivate research to understand their mechanism. Here, we report a 2.93 Å X-ray crystal structure of the minimal ternary complex between CCD, CTD, and the ALLINI BI-224436. This structure reveals an asymmetric ternary complex with a prominent network of π-mediated interactions that suggest specific avenues for future ALLINI development and optimization.
Collapse
Affiliation(s)
- Grant Eilers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Audrey Allen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Saira Montermoso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hemma Murali
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Sharp
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
27
|
IS481EU Shows a New Connection between Eukaryotic and Prokaryotic DNA Transposons. BIOLOGY 2023; 12:biology12030365. [PMID: 36979057 PMCID: PMC10045372 DOI: 10.3390/biology12030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
DDD/E transposase gene is the most abundant gene in nature and many DNA transposons in all three domains of life use it for their transposition. A substantial number of eukaryotic DNA transposons show similarity to prokaryotic insertion sequences (ISs). The presence of IS481-like DNA transposons was indicated in the genome of Trichomonas vaginalis. Here, we surveyed IS481-like eukaryotic sequences using a bioinformatics approach and report a group of eukaryotic IS481-like DNA transposons, designated IS481EU, from parabasalids including T. vaginalis. The lengths of target site duplications (TSDs) of IS481EU are around 4 bps, around 15 bps, or around 25 bps, and strikingly, these discrete lengths of TSDs can be observed even in a single IS481EU family. Phylogenetic analysis indicated the close relationships of IS481EU with some of the prokaryotic IS481 family members. IS481EU was not well separated from IS3EU/GingerRoot in the phylogenetic analysis, but was distinct from other eukaryotic DNA transposons including Ginger1 and Ginger2. The unique characteristics of IS481EU in protein sequences and the distribution of TSD lengths support its placement as a new superfamily of eukaryotic DNA transposons.
Collapse
|
28
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
29
|
Anisenko A, Nefedova A, Agapkina Y, Gottikh M. Both ATM and DNA-PK Are the Main Regulators of HIV-1 Post-Integrational DNA Repair. Int J Mol Sci 2023; 24:ijms24032797. [PMID: 36769109 PMCID: PMC9917498 DOI: 10.3390/ijms24032797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The integration of a DNA copy of an HIV-1 RNA genome into the host genome, carried out by the viral enzyme integrase, results in the formation of single-stranded gaps in cellular DNA that must be repaired. Here, we have analyzed the involvement of the PI3K kinases, ATM, ATR, and DNA-PKcs, which are important players in the DNA damage response (DDR) in HIV-1 post-integrational DNA repair (PIR). The participation of the DNA-PK complex in HIV-1 PIR has been previously shown, and the formation of a complex between the viral integrase and the DNA-PK subunit, Ku70, has been found to be crucial for efficient PIR. Now, we have shown that the inhibition of both DNA-PKcs and ATM, but not ATR, significantly reduces PIR efficiency. The activation of both kinases is a sequential process, where one kinase, being activated, activates the other, and it occurs simultaneously with the integration of viral DNA. This fact suggests that the activation of both kinases triggers PIR. Most interestingly, the activation of not only DNA-PKcs, but also ATM depends on the complex formation between integrase and Ku70. The elucidation of the interactions between viruses and DDR is important both for understanding the modulation of host cell functions by these pathogens and for developing new approaches to combat viral infections.
Collapse
Affiliation(s)
- Andrey Anisenko
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anastasiia Nefedova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Yulia Agapkina
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina Gottikh
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
30
|
Teng M, Zhu ZJ, Yao Y, Nair V, Zhang GP, Luo J. Critical roles of non-coding RNAs in lifecycle and biology of Marek's disease herpesvirus. SCIENCE CHINA. LIFE SCIENCES 2023; 66:251-268. [PMID: 36617590 PMCID: PMC9838510 DOI: 10.1007/s11427-022-2258-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
Over the past two decades, numerous non-coding RNAs (ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek's disease virus (MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek's disease (MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology. Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics, expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs (oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhi-Jian Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology & College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
31
|
Yin ZH, Yan HL, Pan Y, Zhang DW, Yan X. Evaluation of a flavonoid library for inhibition of interaction of HIV-1 integrase with human LEDGF/p75 towards a structure-activity relationship. Ann Med 2022; 54:1590-1600. [PMID: 35658757 PMCID: PMC9176681 DOI: 10.1080/07853890.2022.2081869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Proteinśprotein interaction (PPI) between lens epithelium-derived growth factor (LEDGF/p75) and human immunodeficiency virus (HIV) integrase (IN) becomes an attractive target for anti-HIV drug development.Methods: The blockade of this interaction by small molecules could potentially inhibit HIV-1 replication. In this study, a panel of 99 structurally related flavonoids were was tested, concerning their ability to inhibit IN-LEDGF/p75 interaction, using a homogeneous time time-resolved fluorescence (HTRF) assay. Results: From the obtained results, it was possible to observe that the flavonoid with hydroxyl group in C3-, C4-, C5- and C7-position on the A-ring, C4'- and C5'-position of the B-ring, a carbonyl group of the C-ring, was more active against IN-LEDGF/p75 interaction, through competitive inhibition. Moreover, the binding modes of representative compounds, including myricetin, luteolin, dihydrorobinetin, naringenin, epicatechin, genistein and helichrysetin, were analyzedanalysed by molecular docking. Biolayer interferometry assay confirmed that these representative compounds disrupted the PPI by binding to IN with KD values ranging from 1.0 to 3.6 µM.Conclusion: This study presents the first to quantitative comparation of the effect of flavonoids with different structural subclasses on IN-LEDGF/p75 interaction. Our findings provide new insights into the development of inhibitors targeting IN-LEDGF/p75 interaction using flavonoids. Key MessagesHIV-1 integrase (IN)-LEDGF/p75 interaction is an attractive target for antiviral drug development.For the first time, the structure-activity relationship of flavonoids belonging to seven flavonoidic subclasses on IN-LEDGF/p75 interaction was determined.This study comprehends an HTRF-based screening system, biolayer interferometry and an in silico molecular docking analysis.
Collapse
Affiliation(s)
- Zhi-Hui Yin
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hao-Li Yan
- Center for Food and Drug Evaluation & Inspection of Henan, Zhengzhou, China
| | - Yu Pan
- School of Computer Engineering, Jiangsu University of Technology, Changzhou, China
| | - Da-Wei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xin Yan
- First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
32
|
Barkova A, Adhya I, Conesa C, Asif-Laidin A, Bonnet A, Rabut E, Chagneau C, Lesage P, Acker J. A proteomic screen of Ty1 integrase partners identifies the protein kinase CK2 as a regulator of Ty1 retrotransposition. Mob DNA 2022; 13:26. [PMCID: PMC9673352 DOI: 10.1186/s13100-022-00284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Transposable elements are ubiquitous and play a fundamental role in shaping genomes during evolution. Since excessive transposition can be mutagenic, mechanisms exist in the cells to keep these mobile elements under control. Although many cellular factors regulating the mobility of the retrovirus-like transposon Ty1 in Saccharomyces cerevisiae have been identified in genetic screens, only very few of them interact physically with Ty1 integrase (IN).
Results
Here, we perform a proteomic screen to establish Ty1 IN interactome. Among the 265 potential interacting partners, we focus our study on the conserved CK2 kinase. We confirm the interaction between IN and CK2, demonstrate that IN is a substrate of CK2 in vitro and identify the modified residues. We find that Ty1 IN is phosphorylated in vivo and that these modifications are dependent in part on CK2. No significant change in Ty1 retromobility could be observed when we introduce phospho-ablative mutations that prevent IN phosphorylation by CK2 in vitro. However, the absence of CK2 holoenzyme results in a strong stimulation of Ty1 retrotransposition, characterized by an increase in Ty1 mRNA and protein levels and a high accumulation of cDNA.
Conclusion
Our study shows that Ty1 IN is phosphorylated, as observed for retroviral INs and highlights an important role of CK2 in the regulation of Ty1 retrotransposition. In addition, the proteomic approach enabled the identification of many new Ty1 IN interacting partners, whose potential role in the control of Ty1 mobility will be interesting to study.
Collapse
|
33
|
Depotter JRL, Ökmen B, Ebert MK, Beckers J, Kruse J, Thines M, Doehlemann G. High Nucleotide Substitution Rates Associated with Retrotransposon Proliferation Drive Dynamic Secretome Evolution in Smut Pathogens. Microbiol Spectr 2022; 10:e0034922. [PMID: 35972267 PMCID: PMC9603552 DOI: 10.1128/spectrum.00349-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
Transposable elements (TEs) play a pivotal role in shaping diversity in eukaryotic genomes. The covered smut pathogen on barley, Ustilago hordei, encountered a recent genome expansion. Using long reads, we assembled genomes of 6 U. hordei strains and 3 sister species, to study this genome expansion. We found that larger genome sizes can mainly be attributed to a higher genome fraction of long terminal repeat retrotransposons (LTR-RTs). In the studied smut genomes, LTR-RTs fractions are the largest in U. hordei and are positively correlated with the mating-type locus sizes, which is up to ~560 kb in U. hordei. Furthermore, LTR-RTs were found to be associated with higher nucleotide substitution levels, as these occur in specific genome regions of smut species with a recent LTR-RT proliferation. Moreover, genes in genome regions with higher nucleotide substitution levels generally reside closer to LTR-RTs than other genome regions. Genome regions with many nucleotide substitutions encountered an especially high fraction of CG substitutions, which is not observed for LTR-RT sequences. The high nucleotide substitution levels particularly accelerate the evolution of secretome genes, as their more accessory nature results in substitutions that often lead to amino acid alterations. IMPORTANCE Genomic alteration can be generated through various means, in which transposable elements (TEs) can play a pivotal role. Their mobility causes mutagenesis in itself and can disrupt the function of the sequences they insert into. They also impact genome evolution as their repetitive nature facilitates nonhomologous recombination. Furthermore, TEs have been linked to specific epigenetic genome organizations. We report a recent TE proliferation in the genome of the barley covered smut fungus, Ustilago hordei. This proliferation is associated with a distinct nucleotide substitution regime that has a higher rate and a higher fraction of CG substitutions. This different regime shapes the evolution of genes in subjected genome regions. We hypothesize that TEs may influence the error-rate of DNA polymerase in a hitherto unknown fashion.
Collapse
Affiliation(s)
- J. R. L. Depotter
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - B. Ökmen
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - M. K. Ebert
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - J. Beckers
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - J. Kruse
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - G. Doehlemann
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Complex Relationships between HIV-1 Integrase and Its Cellular Partners. Int J Mol Sci 2022; 23:ijms232012341. [PMID: 36293197 PMCID: PMC9603942 DOI: 10.3390/ijms232012341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
RNA viruses, in pursuit of genome miniaturization, tend to employ cellular proteins to facilitate their replication. HIV-1, one of the most well-studied retroviruses, is not an exception. There is numerous evidence that the exploitation of cellular machinery relies on nucleic acid-protein and protein-protein interactions. Apart from Vpr, Vif, and Nef proteins that are known to regulate cellular functioning via interaction with cell components, another viral protein, integrase, appears to be crucial for proper virus-cell dialog at different stages of the viral life cycle. The goal of this review is to summarize and systematize existing data on known cellular partners of HIV-1 integrase and their role in the HIV-1 life cycle.
Collapse
|
35
|
HIV-1 Preintegration Complex Preferentially Integrates the Viral DNA into Nucleosomes Containing Trimethylated Histone 3-Lysine 36 Modification and Flanking Linker DNA. J Virol 2022; 96:e0101122. [PMID: 36094316 PMCID: PMC9517705 DOI: 10.1128/jvi.01011-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
HIV-1 DNA is preferentially integrated into chromosomal hot spots by the preintegration complex (PIC). To understand the mechanism, we measured the DNA integration activity of PICs-extracted from infected cells-and intasomes, biochemically assembled PIC substructures using a number of relevant target substrates. We observed that PIC-mediated integration into human chromatin is preferred compared to genomic DNA. Surprisingly, nucleosomes lacking histone modifications were not preferred integration compared to the analogous naked DNA. Nucleosomes containing the trimethylated histone 3 lysine 36 (H3K36me3), an epigenetic mark linked to active transcription, significantly stimulated integration, but the levels remained lower than the naked DNA. Notably, H3K36me3-modified nucleosomes with linker DNA optimally supported integration mediated by the PIC but not by the intasome. Interestingly, optimal intasome-mediated integration required the cellular cofactor LEDGF. Unexpectedly, LEDGF minimally affected PIC-mediated integration into naked DNA but blocked integration into nucleosomes. The block for the PIC-mediated integration was significantly relieved by H3K36me3 modification. Mapping the integration sites in the preferred substrates revealed that specific features of the nucleosome-bound DNA are preferred for integration, whereas integration into naked DNA was random. Finally, biochemical and genetic studies demonstrate that DNA condensation by the H1 protein dramatically reduces integration, providing further evidence that features inherent to the open chromatin are preferred for HIV-1 integration. Collectively, these results identify the optimal target substrate for HIV-1 integration, report a mechanistic link between H3K36me3 and integration preference, and importantly, reveal distinct mechanisms utilized by the PIC for integration compared to the intasomes. IMPORTANCE HIV-1 infection is dependent on integration of the viral DNA into the host chromosomes. The preintegration complex (PIC) containing the viral DNA, the virally encoded integrase (IN) enzyme, and other viral/host factors carries out HIV-1 integration. HIV-1 integration is not dependent on the target DNA sequence, and yet the viral DNA is selectively inserted into specific "hot spots" of human chromosomes. A growing body of literature indicates that structural features of the human chromatin are important for integration targeting. However, the mechanisms that guide the PIC and enable insertion of the PIC-associated viral DNA into specific hot spots of the human chromosomes are not fully understood. In this study, we describe a biochemical mechanism for the preference of the HIV-1 DNA integration into open chromatin. Furthermore, our study defines a direct role for the histone epigenetic mark H3K36me3 in HIV-1 integration preference and identify an optimal substrate for HIV-1 PIC-mediated viral DNA integration.
Collapse
|
36
|
Gao S, Cheng Y, Song S, Song L, Zhao F, Xu S, Kang D, Sun L, Gao P, De Clercq E, Pannecouque C, Liu X, Zhan P. Chemical space exploration around indolylarylsulfone scaffold led to a novel class of highly active HIV-1 NNRTIs with spiro structural features. Eur J Med Chem 2022; 238:114471. [DOI: 10.1016/j.ejmech.2022.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022]
|
37
|
Zhang M, Zheng S, Liang JQ. Transcriptional and reverse transcriptional regulation of host genes by human endogenous retroviruses in cancers. Front Microbiol 2022; 13:946296. [PMID: 35928153 PMCID: PMC9343867 DOI: 10.3389/fmicb.2022.946296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) originated from ancient retroviral infections of germline cells millions of years ago and have evolved as part of the host genome. HERVs not only retain the capacity as retroelements but also regulate host genes. The expansion of HERVs involves transcription by RNA polymerase II, reverse transcription, and re-integration into the host genome. Fast progress in deep sequencing and functional analysis has revealed the importance of domesticated copies of HERVs, including their regulatory sequences, transcripts, and proteins in normal cells. However, evidence also suggests the involvement of HERVs in the development and progression of many types of cancer. Here we summarize the current state of knowledge about the expression of HERVs, transcriptional regulation of host genes by HERVs, and the functions of HERVs in reverse transcription and gene editing with their reverse transcriptase.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shu Zheng,
| | - Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Faculty of Medicine, Center for Gut Microbiota Research, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Jessie Qiaoyi Liang,
| |
Collapse
|
38
|
Wang J, Chen S, Pan C, Li G, Tang Z. Application of Small Molecules in the Central Nervous System Direct Neuronal Reprogramming. Front Bioeng Biotechnol 2022; 10:799152. [PMID: 35875485 PMCID: PMC9301571 DOI: 10.3389/fbioe.2022.799152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of regenerative capacity of neurons leads to poor prognoses for some neurological disorders. The use of small molecules to directly reprogram somatic cells into neurons provides a new therapeutic strategy for neurological diseases. In this review, the mechanisms of action of different small molecules, the approaches to screening small molecule cocktails, and the methods employed to detect their reprogramming efficiency are discussed, and the studies, focusing on neuronal reprogramming using small molecules in neurological disease models, are collected. Future research efforts are needed to investigate the in vivo mechanisms of small molecule-mediated neuronal reprogramming under pathophysiological states, optimize screening cocktails and dosing regimens, and identify safe and effective delivery routes to promote neural regeneration in different neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Gaigai Li
- *Correspondence: Gaigai Li, ; Zhouping Tang,
| | | |
Collapse
|
39
|
Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022; 14:v14071397. [PMID: 35891378 PMCID: PMC9316232 DOI: 10.3390/v14071397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Vincent Parissi
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Fundamental Microbiology and Pathogenicity (MFP), CNRS, University of Bordeaux, UMR5234, 33405 Bordeaux, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Correspondence: ; Tel.: +33-4-72722624; Fax: +33-4-72722616
| |
Collapse
|
40
|
Fu S, Phan AT, Mao D, Wang X, Gao G, Goff SP, Zhu Y. HIV-1 exploits the Fanconi anemia pathway for viral DNA integration. Cell Rep 2022; 39:110840. [PMID: 35613597 PMCID: PMC9250337 DOI: 10.1016/j.celrep.2022.110840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/08/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
The integration of HIV-1 DNA into the host genome results in single-strand gaps and 2-nt overhangs at the ends of viral DNA, which must be repaired by cellular enzymes. The cellular factors responsible for the DNA damage repair in HIV-1 DNA integration have not yet been well defined. We report here that HIV-1 infection potently activates the Fanconi anemia (FA) DNA repair pathway, and the FA effector proteins FANCI-D2 bind to the C-terminal domain of HIV-1 integrase. Knockout of FANCI blocks productive viral DNA integration and inhibits the replication of HIV-1. Finally, we show that the knockout of DNA polymerases or flap nuclease downstream of FANCI-D2 reduces the levels of integrated HIV-1 DNA, suggesting these enzymes may be responsible for the repair of DNA damages induced by viral DNA integration. These experiments reveal that HIV-1 exploits the FA pathway for the stable integration of viral DNA into host genome.
Collapse
Affiliation(s)
- Shaozu Fu
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Thanh Phan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dexin Mao
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xinlu Wang
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics and of Microbiology and Immunology, Columbia University, New York, NY 10032, USA.
| | - Yiping Zhu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
41
|
Tonello F, Massimino ML, Peggion C. Nucleolin: a cell portal for viruses, bacteria, and toxins. Cell Mol Life Sci 2022; 79:271. [PMID: 35503380 PMCID: PMC9064852 DOI: 10.1007/s00018-022-04300-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The main localization of nucleolin is the nucleolus, but this protein is present in multiple subcellular sites, and it is unconventionally secreted. On the cell surface, nucleolin acts as a receptor for various viruses, some bacteria, and some toxins. Aim of this review is to discuss the characteristics that make nucleolin able to act as receptor or co-receptor of so many and different pathogens. The important features that emerge are its multivalence, and its role as a bridge between the cell surface and the nucleus. Multiple domains, short linear motifs and post-translational modifications confer and modulate nucleolin ability to interact with nucleic acids, with proteins, but also with carbohydrates and lipids. This modular multivalence allows nucleolin to participate in different types of biomolecular condensates and to move to various subcellular locations, where it can act as a kind of molecular glue. It moves from the nucleus to the cell surface and can accompany particles in the reverse direction, from the cell surface into the nucleus, which is the destination of several pathogens to manipulate the cell in their favour.
Collapse
Affiliation(s)
- Fiorella Tonello
- CNR of Italy, Neuroscience Institute, viale G. Colombo 3, 35131, Padua, Italy.
| | | | - Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi, 58/B, 35131, Padua, Italy
| |
Collapse
|
42
|
Targeting the Nucleosome Acidic Patch by Viral Proteins: Two Birds with One Stone? mBio 2022; 13:e0173321. [PMID: 35343785 PMCID: PMC9040877 DOI: 10.1128/mbio.01733-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.
Collapse
|
43
|
Ilgova E, Galkin S, Khrenova M, Serebryakova M, Gottikh M, Anisenko A. Complex of HIV-1 Integrase with Cellular Ku Protein: Interaction Interface and Search for Inhibitors. Int J Mol Sci 2022; 23:ijms23062908. [PMID: 35328329 PMCID: PMC8951179 DOI: 10.3390/ijms23062908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/27/2022] Open
Abstract
The interaction of HIV-1 integrase and the cellular Ku70 protein is necessary for HIV replication due to its positive effect on post-integration DNA repair. We have previously described in detail the Ku70 binding site within integrase. However, the integrase binding site in Ku70 remained poorly characterized. Here, using a peptide fishing assay and site-directed mutagenesis, we have identified residues I72, S73, and I76 of Ku70 as key for integrase binding. The molecular dynamics studies have revealed a possible way for IN to bind to Ku70, which is consistent with experimental data. According to this model, residues I72 and I76 of Ku70 form a "leucine zipper" with integrase residues, and, therefore, their concealment by low-molecular-weight compounds should impede the Ku70 interaction with integrase. We have identified such compounds by molecular docking and have confirmed their capacity to inhibit the formation of the integrase complex with Ku70. Our data demonstrate that the site of IN binding within Ku70 identified in the present work may be used for further search for inhibitors of the integrase binding to Ku70.
Collapse
Affiliation(s)
- Ekaterina Ilgova
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (E.I.); (S.G.); (M.K.); (M.G.)
| | - Simon Galkin
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (E.I.); (S.G.); (M.K.); (M.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Maria Khrenova
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (E.I.); (S.G.); (M.K.); (M.G.)
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marina Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Marina Gottikh
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (E.I.); (S.G.); (M.K.); (M.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey Anisenko
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (E.I.); (S.G.); (M.K.); (M.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence:
| |
Collapse
|
44
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
45
|
Posso-Osorio I, Tobón GJ, Cañas CA. Human endogenous retroviruses (HERV) and non-HERV viruses incorporated into the human genome and their role in the development of autoimmune diseases. J Transl Autoimmun 2021; 4:100137. [PMID: 34917914 PMCID: PMC8669383 DOI: 10.1016/j.jtauto.2021.100137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Genomic incorporation of viruses as human endogenous retroviruses (HERVs) are components of our genome that possibly originated by incorporating ancestral of exogenous viruses. Their roles in the evolution of the human genome, gene expression, and the pathogenesis of autoimmune diseases (ADs) and neoplastic phenomena are the subject of intense research. This review analyzes the evolutionary and virological aspects of HERVs and other viruses that incorporate their genome into the human genome and have known role in the genesis of ADs. These insights are helpful to understand further the possible role in autoimmunity genesis of HERVs, other ancestral viruses no HERVs and modern viruses with the ability to incorporate into the human genome or interact with HERVs.
Collapse
Affiliation(s)
- Iván Posso-Osorio
- CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.,Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia
| | - Gabriel J Tobón
- Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia.,Department of Medical Microbiology, Immunology and Cell Biology. Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carlos A Cañas
- CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.,Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia
| |
Collapse
|
46
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
47
|
Coffin J, Blomberg J, Fan H, Gifford R, Hatziioannou T, Lindemann D, Mayer J, Stoye J, Tristem M, Johnson W. ICTV Virus Taxonomy Profile: Retroviridae 2021. J Gen Virol 2021; 102:001712. [PMID: 34939563 PMCID: PMC8744268 DOI: 10.1099/jgv.0.001712] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Viruses in the family Retroviridae are found in a wide variety of vertebrate hosts. Enveloped virions are 80-100 nm in diameter with an inner core containing the viral genome and replicative enzymes. Core morphology is often characteristic for viruses within the same genus. Replication involves reverse transcription and integration into host cell DNA, resulting in a provirus. Integration into germline cells can result in a heritable provirus known as an endogenous retrovirus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Retroviridae, which is available at ictv.global/report/retroviridae.
Collapse
Affiliation(s)
| | | | - Hung Fan
- University of California, Irvine, CA 92697-3905, USA
| | | | | | | | - Jens Mayer
- University of Saarland, 66421 Homburg/Saar, Germany
| | - Jonathan Stoye
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | | | - ICTV Report Consortium
- Tufts University, Boston, MA 2111, USA
- Uppsala University, Sweden
- University of California, Irvine, CA 92697-3905, USA
- Center for Virus Research, Glasgow G61 1QH, UK
- The Rockefeller University, New York, NY10065, USA
- Technische Universität Dresden, Dresden, 01307, Germany
- University of Saarland, 66421 Homburg/Saar, Germany
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Imperial College London, Berkshire, SL5 7PY, UK
- Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
48
|
Abascal-Palacios G, Jochem L, Pla-Prats C, Beuron F, Vannini A. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes. Nat Commun 2021; 12:6992. [PMID: 34848735 PMCID: PMC8632968 DOI: 10.1038/s41467-021-27338-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Retrotransposons are endogenous elements that have the ability to mobilise their DNA between different locations in the host genome. The Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase (Pol) III-transcribed genes, representing a paradigm for harmless targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å of an active Ty3 strand transfer complex bound to TFIIIB transcription factor and a tRNA gene. The structure unravels the molecular mechanisms underlying Ty3 targeting specificity at Pol III-transcribed genes and sheds light into the architecture of retrotransposon machinery during integration. Ty3 intasome contacts a region of TBP, a subunit of TFIIIB, which is blocked by NC2 transcription regulator in RNA Pol II-transcribed genes. A newly-identified chromodomain on Ty3 integrase interacts with TFIIIB and the tRNA gene, defining with extreme precision the integration site position.
Collapse
Affiliation(s)
| | - Laura Jochem
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Carlos Pla-Prats
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Human Technopole, 20157, Milan, Italy.
| |
Collapse
|
49
|
Liu S, Koneru PC, Li W, Pathirage C, Engelman AN, Kvaratskhelia M, Musier-Forsyth K. HIV-1 integrase binding to genomic RNA 5'-UTR induces local structural changes in vitro and in virio. Retrovirology 2021; 18:37. [PMID: 34809662 PMCID: PMC8609798 DOI: 10.1186/s12977-021-00582-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND During HIV-1 maturation, Gag and Gag-Pol polyproteins are proteolytically cleaved and the capsid protein polymerizes to form the honeycomb capsid lattice. HIV-1 integrase (IN) binds the viral genomic RNA (gRNA) and impairment of IN-gRNA binding leads to mis-localization of the nucleocapsid protein (NC)-condensed viral ribonucleoprotein complex outside the capsid core. IN and NC were previously demonstrated to bind to the gRNA in an orthogonal manner in virio; however, the effect of IN binding alone or simultaneous binding of both proteins on gRNA structure is not yet well understood. RESULTS Using crosslinking-coupled selective 2'-hydroxyl acylation analyzed by primer extension (XL-SHAPE), we characterized the interaction of IN and NC with the HIV-1 gRNA 5'-untranslated region (5'-UTR). NC preferentially bound to the packaging signal (Psi) and a UG-rich region in U5, irrespective of the presence of IN. IN alone also bound to Psi but pre-incubation with NC largely abolished this interaction. In contrast, IN specifically bound to and affected the nucleotide (nt) dynamics of the apical loop of the transactivation response element (TAR) and the polyA hairpin even in the presence of NC. SHAPE probing of the 5'-UTR RNA in virions produced from allosteric IN inhibitor (ALLINI)-treated cells revealed that while the global secondary structure of the 5'-UTR remained unaltered, the inhibitor treatment induced local reactivity differences, including changes in the apical loop of TAR that are consistent with the in vitro results. CONCLUSIONS Overall, the binding interactions of NC and IN with the 5'-UTR are largely orthogonal in vitro. This study, together with previous probing experiments, suggests that IN and NC binding in vitro and in virio lead to only local structural changes in the regions of the 5'-UTR probed here. Accordingly, disruption of IN-gRNA binding by ALLINI treatment results in local rather than global secondary structure changes of the 5'-UTR in eccentric virus particles.
Collapse
Affiliation(s)
- Shuohui Liu
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| | - Pratibha C. Koneru
- grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO USA
| | - Wen Li
- grid.65499.370000 0001 2106 9910Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Chathuri Pathirage
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| | - Alan N. Engelman
- grid.65499.370000 0001 2106 9910Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Mamuka Kvaratskhelia
- grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO USA
| | - Karin Musier-Forsyth
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| |
Collapse
|
50
|
Lapaillerie D, Lelandais B, Mauro E, Lagadec F, Tumiotto C, Miskey C, Ferran G, Kuschner N, Calmels C, Métifiot M, Rooryck C, Ivics Z, Ruff M, Zimmer C, Lesbats P, Toutain J, Parissi V. Modulation of the intrinsic chromatin binding property of HIV-1 integrase by LEDGF/p75. Nucleic Acids Res 2021; 49:11241-11256. [PMID: 34634812 PMCID: PMC8565322 DOI: 10.1093/nar/gkab886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
The stable insertion of the retroviral genome into the host chromosomes requires the association between integration complexes and cellular chromatin via the interaction between retroviral integrase and the nucleosomal target DNA. This final association may involve the chromatin-binding properties of both the retroviral integrase and its cellular cofactor LEDGF/p75. To investigate this and better understand the LEDGF/p75-mediated chromatin tethering of HIV-1 integrase, we used a combination of biochemical and chromosome-binding assays. Our study revealed that retroviral integrase has an intrinsic ability to bind and recognize specific chromatin regions in metaphase even in the absence of its cofactor. Furthermore, this integrase chromatin-binding property was modulated by the interaction with its cofactor LEDGF/p75, which redirected the enzyme to alternative chromosome regions. We also better determined the chromatin features recognized by each partner alone or within the functional intasome, as well as the chronology of efficient LEDGF/p75-mediated targeting of HIV-1 integrase to chromatin. Our data support a new chromatin-binding function of integrase acting in concert with LEDGF/p75 for the optimal association with the nucleosomal substrate. This work also provides additional information about the behavior of retroviral integration complexes in metaphase chromatin and the mechanism of action of LEDGF/p75 in this specific context.
Collapse
Affiliation(s)
- Delphine Lapaillerie
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Benoît Lelandais
- Imaging and modeling unit, Computational Biology Department, Institut Pasteur, Paris, France
| | - Eric Mauro
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Floriane Lagadec
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Camille Tumiotto
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Csaba Miskey
- Paul-Ehrlich-Institute, division of medical biotechnology, Langen, Germany
| | | | | | - Christina Calmels
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Mathieu Métifiot
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | | | - Zoltan Ivics
- Paul-Ehrlich-Institute, division of medical biotechnology, Langen, Germany
| | - Marc Ruff
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie Structurale intégrative, UDS, U596 INSERM, UMR7104, CNRS, Strasbourg, France
| | - Christophe Zimmer
- Imaging and modeling unit, Computational Biology Department, Institut Pasteur, Paris, France
| | - Paul Lesbats
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Jérôme Toutain
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux France
| | - Vincent Parissi
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| |
Collapse
|