1
|
Wang Y, Shen L, Yan Y, Gong B, Chen K, Zhu G, Li Z. Ultrasound assisted upper critical solution temperature type switchable deep eutectic solvent based liquid-liquid microextraction for the determination of triazole in water. Anal Chim Acta 2024; 1328:343172. [PMID: 39266195 DOI: 10.1016/j.aca.2024.343172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The use of pesticides to protect crops has long been an important measure to provide healthy and safe agricultural products, but excess pesticides flow into fields and rivers, causing environmental pollution. Earlier methods utilizing organic solvent liquid-liquid microextraction for pesticide residue detection were not environmentally friendly. Therefore, it is significant to find a greener and more convenient detection method to determine pesticide residues. RESULTS A new method was established to detect three triazole fungicides (TFs), including myclobutanil, epoxiconazole and tebuconazole, in environmental water samples. And the determination was conducted using a high-performance liquid chromatography with the ultraviolet detector (HPLC-UV). The switchable deep eutectic solvent (SDES) can be reversibly switched between hydrophilic and hydrophobic states through temperature modulation. Additionally, the method exhibited excellent linearity for all target analytes within the concentration range of 10-2000 μg L-1, with satisfactory R2 values (≥0.9975). The limits of detection (LODs) ranged from 2.3 to 2.6 μg L-1, and the limits of quantification (LOQs) ranged from 7.8 to 8.7 μg L-1. The accuracy of the method was assessed through intra-day and inter-day precision tests, yielding relative standard deviations (RSDs) in the ranges of 2.8%-6.7% and 2.2%-7.5%, respectively. Density functional theory (DFT) results indicated that hydrogen bonding is a significant factor affecting the binding of DES with triazoles. Three different green assessment tools were used to prove that the SDES-HLLME method had good greenness and broad applicability. SIGNIFICANCE This is a homogeneous liquid-liquid microextraction (HLLME) method based on the upper critical solution temperature (UCST) type switchable deep eutectic solvent program, which can complete the extraction within a few minutes without dispersant. In terms of pesticide detection, the analytical method is simple and more conducive to environmental protection.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lingqi Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuan Yan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bincheng Gong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kexian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guohua Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Hegelmann M, Zuber J, Luibl J, Jandl C, Korth W, Jess A, Cokoja M. Dynamic Phase Behavior of Surface-Active Fluorinated Ionic Liquid Epoxidation Catalysts. Chemistry 2024:e202402985. [PMID: 39225624 DOI: 10.1002/chem.202402985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
We report on the synthesis of amphiphobic fluorinated surface-active ionic liquid (FSAIL) epoxidation catalysts, which show reversible temperature-controlled solubility in water. The solubility of FSAILs containing the catalytically active perrhenate- and tungstate anions was studied in both the aqueous and the substrate phase, showing a significant solubility decrease in both media compared to their non-fluorinated congeners. It was shown that both the epoxide product and the catalyst additive phenylphosphonic acid (PPA) are efficient in transferring the FSAIL catalyst into the organic phase, rendering the reaction homogeneous. The FSAILs were used as catalysts for the epoxidation of olefins using aqueous H2O2 as oxidant, showing an exceptionally high catalytic activity at mild conditions. Catalyst recycling was demonstrated over ten consecutive runs by phase separation and subsequent product distillation.
Collapse
Affiliation(s)
- Markus Hegelmann
- Technical University of Munich, Catalysis Research Center and School of Natural Sciences, Department of Chemistry, Ernst-Otto-Fischer-Straße 1, D-85748, Garching bei München, Germany
| | - Julian Zuber
- Technical University of Munich, Catalysis Research Center and School of Natural Sciences, Department of Chemistry, Ernst-Otto-Fischer-Straße 1, D-85748, Garching bei München, Germany
| | - Johannes Luibl
- University of Bayreuth, Faculty of Engineering Science, Chair of Chemical Engineering, Universitätsstraße 30, D-95447, Bayreuth, Germany
| | - Christian Jandl
- ELDICO Scientific AG, Switzerland Innovation Park Basel Area, Hegenheimermattweg 167 A, 4123, Allschwil, Switzerland
| | - Wolfgang Korth
- University of Bayreuth, Faculty of Engineering Science, Chair of Chemical Engineering, Universitätsstraße 30, D-95447, Bayreuth, Germany
| | - Andreas Jess
- University of Bayreuth, Faculty of Engineering Science, Chair of Chemical Engineering, Universitätsstraße 30, D-95447, Bayreuth, Germany
| | - Mirza Cokoja
- Technical University of Munich, Catalysis Research Center and School of Natural Sciences, Department of Chemistry, Ernst-Otto-Fischer-Straße 1, D-85748, Garching bei München, Germany
| |
Collapse
|
3
|
Wang Y, Li Y, Chai J, Rui Y, Jiang L, Tang B. Constructing novel hydrated metal molten salt with high self-healing as the anode material for lithium-ion batteries. Dalton Trans 2024; 53:9081-9091. [PMID: 38738658 DOI: 10.1039/d4dt00696h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Lithium-ion batteries (LIBs) are greatly limited in their practical application because of their poor cycle performance, low conductivity and volume expansion. Herein, molten salts (MSs) FeCl3·6H2O-NMP with low temperature via simple preparation are used as the anode material of LIBs for the first time to break through the bottleneck of LIBs. The good fluidity and high self-healing of FeCl3·6H2O-NMP effectively avoid the collapse and breakage of the structure. Based on this feature, the initial discharge specific capacity reached 770.28 mA h g-1, which was more than twice that of the commercial graphite anode. After 200 cycles at a current density of 100 mA g-1, the specific capacity did not decrease rather it was found to be higher than the initial discharge specific capacity, reaching 867.24 mA h g-1. Besides, the good conductivity of MSs provides convenience for the removal and intercalation of Li+. The active H sites that can combine with lithium ions form LiH and provide capacity for LIBs. Density functional theory (DFT) calculation also provided theoretical proof for the mechanism of LIBs.
Collapse
Affiliation(s)
- Yiting Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yifei Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Jiali Chai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Lei Jiang
- Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium.
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| |
Collapse
|
4
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
5
|
Chen W, Qiu X, Chen Y, Ke J, Ji Y, Chen J. Supramolecular Interaction Modulation in Thermosensitive Composites: Enantiomeric Recognition and Chiral Site Regeneration. Anal Chem 2024; 96:5580-5588. [PMID: 38532617 DOI: 10.1021/acs.analchem.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Herein, a novel strategy was implemented to modulate the supramolecular interaction between enantiomers and chiral recognition sites (CRSs), effectively resolving the issue of CRS saturation. Randomly methylated-β-cyclodextrin (Rm-β-CD) was used as the CRS (host molecule), and polymerized ionic liquids [poly([vbim]TFSI)] were used as the supramolecular modulator (guest molecule), which self-assembled to generate thermosensitive supramolecular host/guest complexes. The enantiomeric binding capacity and enantioselectivity of chiral separation systems centered on supramolecular host-guest complexes are characterized by a high degree of temperature dependence. Poly([vbim]TFSI) bonded to Rm-β-CD at temperatures between 17 °C ± 3 and 50 °C ± 3 °C, and the binding free energy difference (|ΔΔG|) between the (S)- and (R)-enantiomer was 0.55. Conversely, poly([vbim]TFSI detached from Rm-β-CD at temperatures >50 °C ± 3 °C or <17 °C ± 3 °C, and |ΔΔG| between (S)- and (R)-enantiomer was 0.03. The |ΔΔG| value of the (R)-enantiomer can reach 0.86 in two temperature intervals. Therefore, the binding of poly([vbim]TFSI) to Rm-β-CD afforded the favorable separation of four racemic sample mixtures: mandelic acid (e.e.% = 61.3%), ibuprofen (e.e.% = 21.6%), warfarin (e.e.% = 14.9%), and naproxen (e.e% = 18.2%). The detachment of poly([vbim]TFSI) from Rm-β-CD released the enantiomer bound to CRSs. The decomplexation of mandelic acid reached 75.1%.
Collapse
Affiliation(s)
- Wenbei Chen
- China Pharmaceutical University, Nanjing 210009, China
| | - Xin Qiu
- China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Chen
- China Pharmaceutical University, Nanjing 210009, China
| | - Jian Ke
- China Pharmaceutical University, Nanjing 210009, China
| | - Yibing Ji
- China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jianqiu Chen
- China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
6
|
Wei B, Li H, Chu H, Dong H, Zhang Y, Sun CL, Li Y. Self-Assembly of Amphiphilic PDI and NDI Derivatives with Opposite Thermoresponsive Fluorescent Behaviors in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6493-6505. [PMID: 38484325 DOI: 10.1021/acs.langmuir.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This work presents a study of the thermally induced aggregation of perylene diimide (PDI) and naphthalene diimide (NDI) derivatives modified with oligo ethylene glycol (OEG) chains in aqueous solution. Water-soluble and flexible OEG side chains were introduced into the π-core of glutamate-modified NDI and PDI structures, and the aggregation process was modulated by heating or cooling in water. Interestingly, a rare opposite temperature response of fluorescent behavior from the two amphiphilic chromophores was revealed, in which the PDI exhibited fluorescent enhancement, while fluorescent quenching upon temperature increase was observed from the NDI assembly. The mechanism of thermally induced aggregation is clearly explained by studies with various spectroscopic techniques including UV-visible, fluorescence, 1H NMR, 2D NMR spectroscopy, and SEM observation as well as control experiments operated in DMSO solution. It is found that although similar J-aggregates were formed by both amphiphilic chromophores in aqueous solution, the temperature response of the aggregates to temperature was opposite. The degree of PDI aggregation decreased, while that of NDI increased upon temperature rising. This research paves a valuable way for understanding the complicated supramolecular behaviors of amphiphilic chromophores.
Collapse
Affiliation(s)
- Bizhuo Wei
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huajing Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huan Chu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huanhuan Dong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Yijun Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Cai-Li Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| |
Collapse
|
7
|
Hu J, Zhang J, Zhao Y, Yang Y. Green solvent systems for material syntheses and chemical reactions. Chem Commun (Camb) 2024; 60:2887-2897. [PMID: 38375827 DOI: 10.1039/d3cc05864f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
It is of great significance to develop environmentally benign, non-volatile and recyclable green solvents for different applications. This feature article overviews the properties of green solvent systems (e.g., ionic liquids, supercritical carbon dioxide, deep eutectic solvents and mixed green solvent systems) and their applications in (1) framework material syntheses, including metal-organic frameworks, covalent organic frameworks and hydrogen-bonded organic frameworks, and (2) CO2 conversion reactions, including photocatalytic and electrocatalytic reduction reactions. Finally, the future perspective for research on green solvent systems is proposed from different aspects.
Collapse
Affiliation(s)
- Jingyang Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingzhe Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Arriaza-Echanes C, Velázquez-Tundidor MV, Angel-López A, Norambuena Á, Palay FE, Terraza CA, Tundidor-Camba A, Ortiz PA, Coll D. Ionenes as Potential Phase Change Materials with Self-Healing Behavior. Polymers (Basel) 2023; 15:4460. [PMID: 38006184 PMCID: PMC10674965 DOI: 10.3390/polym15224460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Ionenes are poly(ionic liquids) (PILs) comprising a polymer backbone with ionic groups along the structure. Ionenes as solid-solid phase change materials are a recent research field, and some studies have demonstrated their potential in thermal dissipation into electronic devices. Eight ionenes obtained through Menshutkin reactions were synthesized and characterized. The analysis of the thermal tests allowed understanding of how the thermal properties of the polymers depend on the aliphatic nature of the dihalogenated monomer and the carbon chain length. The TGA studies concluded that the ionenes were thermally stable with T10% above 420 °C. The DSC tests showed that the prepared ionenes presented solid-solid transitions, and no melting temperature was appreciated, which rules out the possibility of solid-liquid transitions. All ionenes were soluble in common polar aprotic solvents. The hydrophilicity of the synthesized ionenes was studied by the contact angle method, and their total surface energy was calculated. Self-healing behavior was preliminarily explored using a selected sample. Our studies show that the prepared ionenes exhibit properties that make them potential candidates for applications as solid-solid phase change materials.
Collapse
Affiliation(s)
- Carolina Arriaza-Echanes
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
| | - María V. Velázquez-Tundidor
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alejandro Angel-López
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
| | - Ángel Norambuena
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
- Instituto de Investigaciones y Control del Ejército de Chile (IDIC), Santiago 8370899, Chile
| | - Francisco E. Palay
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
| | - Claudio A. Terraza
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alain Tundidor-Camba
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pablo A. Ortiz
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
- Escuela de Ingeniería en Medio Ambiente y Sustentabilidad, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
| | - Deysma Coll
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
- Núcleo de Química y Bioquímica, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
| |
Collapse
|
9
|
Li HY, Chu YH. Expeditious Discovery of Small-Molecule Thermoresponsive Ionic Liquid Materials: A Review. Molecules 2023; 28:6817. [PMID: 37836660 PMCID: PMC10574798 DOI: 10.3390/molecules28196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Ionic liquids (ILs) are a class of low-melting molten salts (<100 °C) constituted entirely of ions, and their research has gained tremendous attention in line with their remarkably growing applications (>124,000 publications dated 30 August 2023 from the Web of ScienceTM). In this review, we first briefly discussed the recent developments and unique characteristics of ILs and zwitterionic liquids (ZILs). Compared to molecular solvents and other conventional organic compounds, (zwitter) ionic liquids carry negligible volatility and are potentially recyclable and reusable. For structures, both ILs and ZILs can be systematically tailor-designed and engineered and are synthetically fine-tunable. As such, ionic liquids, including chiral, supported, task-specific ILs, have been widely used as powerful ionic solvents as well as valuable additives and catalysts for many chemical reactions. Moreover, ILs have demonstrated their value for use as polymerase chain reaction (PCR) enhancers for DNA amplification, chemoselective artificial olfaction for targeted VOC analysis, and recognition-based affinity extraction. As the major focus of this review, we extensively discussed that small-molecule thermoresponsive ILs (TILs) and ZILs (zwitterionic TILs) are new types of smart materials and can be expeditiously discovered through the structure and phase separation (SPS) relationship study by the combinatorial approach. Using this SPS platform developed in our laboratory, we first depicted the rapid discovery of N,N-dialkylcycloammonium and 1,3,4-trialkyl-1,2,3-triazolium TILs that concomitantly exhibited LCST (lower critical solution temperature) phase transition in water and displayed biochemically attractive Tc values. Both smart IL materials were suited for applications to proteins and other biomolecules. Zwitterionic TILs are ZILs whose cations and anions are tethered together covalently and are thermoresponsive to temperature changes. These zwitterionic TIL materials can serve as excellent extraction solvents, through temperature change, for biomolecules such as proteins since they differ from the common TIL problems often associated with unwanted ion exchanges during extractions. These unique structural characteristics of zwitterionic TIL materials greatly reduce and may avoid the denaturation of proteins under physiological conditions. Lastly, we argued that both rational structural design and combinatorial library synthesis of small-molecule TIL materials should take into consideration the important issues of their cytotoxicity and biosafety to the ecosystem, potentially causing harm to the environment and directly endangering human health. Finally, we would concur that before precise prediction and quantitative simulation of TIL structures can be realized, combinatorial chemistry may be the most convenient and effective technology platform to discover TIL expeditiously. Through our rational TIL design and combinatorial library synthesis and screening, we have demonstrated its power to discover novel chemical structures of both TILs and zwitterionic TILs. Undoubtedly, we will continue developing new small-molecule TIL structures and studying their applications related to other thermoresponsive materials.
Collapse
Affiliation(s)
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan;
| |
Collapse
|
10
|
Yao W, Chen Y, Fang T, Liu X, Zhao X, Gao S, Li Z, Wang H, Wang J. Liquid-Liquid Phase Separation of Aqueous Ionic Liquids in Covalent Organic Frameworks for Thermal Switchable Proton Conductivity. J Phys Chem Lett 2023; 14:8165-8174. [PMID: 37671781 DOI: 10.1021/acs.jpclett.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Covalent organic frameworks (COFs) have regular channels that can accommodate guest molecules to provide highly conductive solid electrolytes. However, designing smart, conductive COFs remains a great challenge. Herein, we report the first example of PEG-functionalized ionic liquids (ILs) anchored on the COF walls by strong hydrogen bonding to fabricate thermally responsive COFs (ILm@COF). We found that similar to the traditional IL/water mixture, the ILs undergo lower critical solution temperature (LCST)-type phase behavior within COF nanopores under high moisture levels. However, the phase separation temperature of aqueous IL decreases in COF channels due to the strong interaction between the IL and COF. Thus, the proton conductivity of ILm@COF can be reversibly switched by phase miscibility and separation in COF nanopores, and there is no obvious decrease even after 20 switching cycles. Our work provides important clues for understanding liquid-liquid phase separation in a confined nanospace and opens a new pathway to switchable proton conductivity.
Collapse
Affiliation(s)
- Wenhui Yao
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, P. R. China
| | - Yongkui Chen
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, P. R. China
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Timing Fang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xiao Zhao
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shuaiqi Gao
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Li
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Huiyong Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
11
|
Slesarenko NA, Chernyak AV, Khatmullina KG, Baymuratova GR, Yudina AV, Tulibaeva GZ, Shestakov AF, Volkov VI, Yarmolenko OV. Nanocomposite Polymer Gel Electrolyte Based on TiO 2 Nanoparticles for Lithium Batteries. MEMBRANES 2023; 13:776. [PMID: 37755198 PMCID: PMC10536963 DOI: 10.3390/membranes13090776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
In this article, the specific features of competitive ionic and molecular transport in nanocomposite systems based on network membranes synthesized by radical polymerization of polyethylene glycol diacrylate in the presence of LiBF4, 1-ethyl-3-methylimidazolium tetrafluoroborate, ethylene carbonate (EC), and TiO2 nanopowder (d~21 nm) were studied for 1H, 7Li, 11B, 13C, and 19F nuclei using NMR. The membranes obtained were studied through electrochemical impedance, IR-Fourier spectroscopy, DSC, and TGA. The ionic conductivity of the membranes was up to 4.8 m Scm-1 at room temperature. The operating temperature range was from -40 to 100 °C. Two types of molecular and ionic transport (fast and slow) have been detected by pulsed field gradient NMR. From quantum chemical modeling, it follows that the difficulty of lithium transport is due to the strong chemisorption of BF4- anions with counterions on the surface of TiO2 nanoparticles. The theoretical conclusion about the need to increase the proportion of EC in order to reduce the influence of this effect was confirmed by an experimental study of a system with 4 moles of EC. It has been shown that this approach leads to an increase in lithium conductivity in an ionic liquid medium, which is important for the development of thermostable nanocomposite electrolytes for Li//LiFePO4 batteries with a base of lithium salts and aprotonic imidasolium ionic liquid.
Collapse
Affiliation(s)
- Nikita A. Slesarenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.V.C.); (K.G.K.); (G.R.B.); (A.V.Y.); (G.Z.T.); (A.F.S.); (V.I.V.); (O.V.Y.)
| | - Alexander V. Chernyak
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.V.C.); (K.G.K.); (G.R.B.); (A.V.Y.); (G.Z.T.); (A.F.S.); (V.I.V.); (O.V.Y.)
- Scientific Center in Chernogolovka of the Osipyan Institute of Solid State Physics RAS, 142432 Chernogolovka, Russia
| | - Kyunsylu G. Khatmullina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.V.C.); (K.G.K.); (G.R.B.); (A.V.Y.); (G.Z.T.); (A.F.S.); (V.I.V.); (O.V.Y.)
- Department of Chemistry and Electrochemical Energy, Institute of Energy Efficiency and Hydrogen Technologies (IEEHT), National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia
| | - Guzaliya R. Baymuratova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.V.C.); (K.G.K.); (G.R.B.); (A.V.Y.); (G.Z.T.); (A.F.S.); (V.I.V.); (O.V.Y.)
| | - Alena V. Yudina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.V.C.); (K.G.K.); (G.R.B.); (A.V.Y.); (G.Z.T.); (A.F.S.); (V.I.V.); (O.V.Y.)
| | - Galiya Z. Tulibaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.V.C.); (K.G.K.); (G.R.B.); (A.V.Y.); (G.Z.T.); (A.F.S.); (V.I.V.); (O.V.Y.)
| | - Alexander F. Shestakov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.V.C.); (K.G.K.); (G.R.B.); (A.V.Y.); (G.Z.T.); (A.F.S.); (V.I.V.); (O.V.Y.)
- Faculty of Fundamental Physical and Chemical Engineering, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vitaly I. Volkov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.V.C.); (K.G.K.); (G.R.B.); (A.V.Y.); (G.Z.T.); (A.F.S.); (V.I.V.); (O.V.Y.)
- Scientific Center in Chernogolovka of the Osipyan Institute of Solid State Physics RAS, 142432 Chernogolovka, Russia
| | - Olga V. Yarmolenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.V.C.); (K.G.K.); (G.R.B.); (A.V.Y.); (G.Z.T.); (A.F.S.); (V.I.V.); (O.V.Y.)
| |
Collapse
|
12
|
Mulk WU, Ali SA, Shah SN, Shah MUH, Zhang QJ, Younas M, Fatehizadeh A, Sheikh M, Rezakazemi M. Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications. J CO2 UTIL 2023; 75:102555. [DOI: 10.1016/j.jcou.2023.102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
13
|
Zhang Y, Xie X, Liu J, Tang B, Fang C, Liu X, Dai Z, Xiong Y. Ionic liquids with reversible photo-induced conductivity regulation in aqueous solution. Sci Rep 2023; 13:13766. [PMID: 37612348 PMCID: PMC10447455 DOI: 10.1038/s41598-023-40905-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Stimulus-responsive ionic liquids have gained significant attention for their applications in various areas. Herein, three kinds of azobenzimidazole ionic liquids with reversible photo-induced conductivity regulation were designed and synthesized. The change of electrical conductivity under UV/visible light irradiation in aqueous solution was studied, and the effect of chemical structure and concentration of ionic liquids containing azobenzene to the regulation of photoresponse conductivity were discussed. The results showed that exposing the ionic liquid aqueous solution to ultraviolet light significantly increased its conductivity. Ionic liquids with longer alkyl chains exhibited an even greater increase in conductivity, up to 75.5%. Then under the irradiation of visible light, the electrical conductivity of the solution returned to its initial value. Further exploration of the mechanism of the reversible photo-induced conductivity regulation of azobenzene ionic liquids aqueous solution indicated that this may attributed to the formation/dissociation of ionic liquids aggregates in aqueous solution induced by the isomerization of azobenzene under UV/visible light irradiation and resulted the reversible conductivity regulation. This work provides a way for the molecular designing and performance regulation of photo-responsive ionic liquid and were expected to be applied in devices with photoconductive switching and micro photocontrol properties.
Collapse
Affiliation(s)
- Yige Zhang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiaowen Xie
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jianliang Liu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Boyuan Tang
- Boya International Academy, Shaoxing, 312000, People's Republic of China
| | - Can Fang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiaoming Liu
- Zhejiang Institute of Standardization, Hangzhou, 310018, People's Republic of China
| | - Zhifeng Dai
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, People's Republic of China.
| | - Yubing Xiong
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, People's Republic of China.
| |
Collapse
|
14
|
The behavior and mechanism of a temperature-responsive ionic liquid and its applications in extracting geniposidic acid from Eucommia ulmoides male flowers. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Moon J, Kang H. Anion Effect on Forward Osmosis Performance of Tetrabutylphosphonium-Based Draw Solute Having a Lower Critical Solution Temperature. MEMBRANES 2023; 13:211. [PMID: 36837713 PMCID: PMC9959785 DOI: 10.3390/membranes13020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The applicability of ionic liquids (ILs) as the draw solute in a forward osmosis (FO) system was investigated through a study on the effect of the structural change of the anion on the FO performance. This study evaluated ILs composed of tetrabutylphosphonium cation ([P4444]+) and benzenesulfonate anion ([BS]-), para-position alkyl-substituted benzenesulfonate anions (p-methylbenzenesulfonate ([MBS]-) and p-ethylbenzenesulfonate ([EBS-]), and methanesulfonate anion ([MS]-). The analysis of the thermo-responsive properties suggested that the [P4444][MBS] and [P4444][EBS] ILs have lower critical solution temperatures (LCSTs), which play a beneficial role in terms of the reusability of the draw solute from the diluted draw solutions after the water permeation process. At 20 wt% of an aqueous solution, the LCSTs of [P4444][MBS] and [P4444][EBS] were approximately 36 °C and 25 °C, respectively. The water flux and reverse solute flux of the [P4444][MBS] aqueous solution with higher osmolality than [P4444][EBS] were 7.36 LMH and 5.89 gMH in the active-layer facing the draw solution (AL-DS) mode at osmotic pressure of 25 atm (20 wt% solution), respectively. These results indicate that the [P4444]+-based ionic structured materials with LCST are practically advantageous for application as draw solutes.
Collapse
Affiliation(s)
| | - Hyo Kang
- Correspondence: ; Tel.: +82-51-200-7720; Fax: +82-51-200-7728
| |
Collapse
|
16
|
Castaneda Corzo J, Ballerat-Busserolles K, Coxam JY, Gautier A, Andanson JM. Thermo-switchable hydrophobic solvents formulated with weak acid and base for greener separation processes. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Tang Y, Zhang Y, Chen X, Xie X, Zhou N, Dai Z, Xiong Y. Up/Down Tuning of Poly(ionic liquid)s in Aqueous Two-Phase Systems. Angew Chem Int Ed Engl 2023; 62:e202215722. [PMID: 36456527 DOI: 10.1002/anie.202215722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Thermally induced reversible up/down migration of poly(ionic liquid)s (PILs) in aqueous two-phase systems (ATPSs) was achieved for the first time in this study. Novel ATPSs were fabricated using azobenzene (Azo)- and benzyl (Bn)-modified PILs, and their upper and lower phases could be easily tuned using the grafting degree (GD) of the Azo and Bn groups. Bn-PIL with higher GDBn could go up into the upper phase and Azo-PIL come down to the lower phase when the temperature increased (>65 °C); this behavior was reversed at lower temperatures. Moreover, a reversible two-phase/single-phase transition was realized under UV irradiation. Experimental and simulation results revealed that the difference in the hydration capacity between Bn-PIL and Azo-PIL accounted for their unique phase-separation behavior. A versatile platform for fabricating ATPSs with tunable stimuli-responsive behavior can be realized based on our findings, which can broaden their applications in the fields of smart separation systems and functional material development.
Collapse
Affiliation(s)
- Yuntao Tang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yige Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xi Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xiaowen Xie
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Ning Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
18
|
Hemmeter D, Paap U, Taccardi N, Mehler J, Schulz PS, Wasserscheid P, Maier F, Steinrück H. Formation and Surface Behavior of Pt and Pd Complexes with Ligand Systems Derived from Nitrile-functionalized Ionic Liquids Studied by XPS. Chemphyschem 2023; 24:e202200391. [PMID: 36164745 PMCID: PMC10091715 DOI: 10.1002/cphc.202200391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Indexed: 01/20/2023]
Abstract
We studied the formation and surface behavior of Pt(II) and Pd(II) complexes with ligand systems derived from two nitrile-functionalized ionic liquids (ILs) in solution using angle-resolved X-ray photoelectron spectroscopy (ARXPS). These ligand systems enabled a high solubility of the metal complexes in IL solution. The complexes were prepared by simple ligand substitution under vacuum conditions in defined excess of the coordinating ILs, [C3 CNC1 Im][Tf2 N] and [C1 CNC1 Pip][Tf2 N], to immediately yield solutions of the final products. The ILs differ in the cationic head group and the chain length of the functionalized substituent. Our XPS measurements on the neat ILs gave insights in the electronic properties of the coordinating substituents revealing differences in donation capability and stability of the complexes. Investigations on the composition of the outermost surface layers using ARXPS revealed no surface affinity of the nitrile-functionalized chains in the neat ILs. Solutions of the formed complexes in the nitrile ILs showed homogeneous distribution of the solute at the surface with the heterocyclic moieties preferentially orientated towards the vacuum, while the metal centers are rather located further away from the IL/vacuum interface.
Collapse
Affiliation(s)
- Daniel Hemmeter
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Ulrike Paap
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Nicola Taccardi
- Lehrstuhl für Chemische ReaktionstechnikFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Julian Mehler
- Lehrstuhl für Chemische ReaktionstechnikFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Peter S. Schulz
- Lehrstuhl für Chemische ReaktionstechnikFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Peter Wasserscheid
- Lehrstuhl für Chemische ReaktionstechnikFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Florian Maier
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Hans‐Peter Steinrück
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| |
Collapse
|
19
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Chen S, Huang X, Schild D, Wang D, Kübel C, Behrens S. Pd-In intermetallic nanoparticles with high catalytic selectivity for liquid-phase semi-hydrogenation of diphenylacetylene. NANOSCALE 2022; 14:17661-17669. [PMID: 36415933 DOI: 10.1039/d2nr03674f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intermetallic nanoparticles (NPs) are highly interesting materials in catalysis due to their geometrically ordered structures and altered electronic properties, but the synthesis of defined intermetallic NPs remains a challenge. Here, we report a novel and facile approach for the synthesis of intermetallic Pd-In NPs in ionic liquids (ILs) at moderate temperatures. Depending on the molar ratio of the metal precursors and the reaction temperature, single-phase Pd3In, PdIn and Pd3In7 NPs were obtained, which was confirmed, e.g. by powder X-ray diffraction, electron microscopy, and optical emission spectroscopy with inductively coupled plasma. The Pd-In NPs stabilized in ILs were used as catalysts in the liquid-phase semi-hydrogenation of diphenylacetylene (DPA). Highly ordered PdIn NPs with a CsCl type structure revealed both high activity and selectivity to cis-stilbene even at full DPA conversion. Intermetallic compounds such as PdIn can be used to isolate contiguous Pd atoms with another base metal into single Pd sites, thereby increasing the catalytic selectivity of Pd while stabilizing the individual sites in the intermetallic structures. This work may provide new pathways for the synthesis of single-phase intermetallic NPs and future insights into a more rational design of bimetallic catalysts with specific catalytic properties.
Collapse
Affiliation(s)
- Si Chen
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Xiaohui Huang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287, Darmstadt, Germany
| | - Dieter Schild
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Di Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christian Kübel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287, Darmstadt, Germany
- Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
21
|
Banerjee S. Synthesis of Bicyclo[3.2.1]octanones by Regioselective Cyclopropyl Ring Cleavage of Tricyclo[3.3.0.0
2,8
]octanones in an Ionic Liquid. ChemistrySelect 2022. [DOI: 10.1002/slct.202202788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Srirupa Banerjee
- Department of Chemistry Bethune College 101, Bidhan Sarani Kolkata 700006 West Bengal India
| |
Collapse
|
22
|
Selective recovery of rare earth elements from e-waste via ionic liquid extraction: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Rojas LMG, Huerta-Aguilar CA, Orta-Ledesma MT, Sosa-Echeverria R, Thangarasu P. Zinc oxide nanoparticles coated with benzimidazole based ionic liquid performing as an efficient CO2 capture: Experimental and Theoretical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Wei X, Jiang Y, Ma Y, Fang J, Peng Q, Xu W, Liao H, Zhang F, Dai S, Hou Z. Ultralow‐Loading and High‐Performing Ionic Liquid‐Immobilizing Rhodium Single‐Atom Catalysts for Hydroformylation. Chemistry 2022; 28:e202200374. [DOI: 10.1002/chem.202200374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xinjia Wei
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
- Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Yuan Ma
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Jian Fang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Wen Xu
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Huiying Liao
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Fengxue Zhang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
- Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| |
Collapse
|
25
|
Xu C, Cheng Z. Dicationic Imizadolium‐Based Tetrafluoroborate Ionic Liquids: Synthesis and Hydrothermal Stability Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202201799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenqian Xu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 PR China
| | - Zhenmin Cheng
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 PR China
| |
Collapse
|
26
|
Sanadhya S, Tucker ZD, Gulotty EM, Boggess W, Ashfeld BL, Moghaddam S. Thermodynamic descriptors of sensible heat driven liquid-liquid phase separation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Pei Y, Zhang W, Zhang Y, Ma J, Zhao Y, Li Z, Wang J, Du R. Physicochemical properties and thermal-responsive phase separation of poly(ethylene glycol)-based ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Tecuapa-Flores D, Guadalupe Hernández J, Alejandro Reyes Domínguez I, Turcio-Ortega D, Cruz-Borbolla J, Thangarasu P. Understanding of benzimidazole based ionic liquid as an efficient corrosion inhibitor for carbon steel: Experimental and theoretical studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Zunita M, Hastuti R, Alamsyah A, Kadja GT, Khoiruddin K, Kurnia KA, Yuliarto B, Wenten I. Polyionic liquid membrane: Recent development and perspective. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Mangaiyarkarasi R, Santhiya N, Umadevi S. Ionic liquid crystal – mediated preparation of reduced graphene oxide under microwave irradiation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Solgi S, Ghorbani-Vaghei R, Alavinia S, Izadkhah V. Preparation and Application of Highly Efficient and Reusable Nanomagnetic Catalyst Supported with Sulfonated-Hexamethylenetetramine for Synthesis of 2,3-Dihydroquinazolin-4(1 H)-Ones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1833054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sepideh Solgi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, Iran
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, Iran
| | - Vida Izadkhah
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, Iran
| |
Collapse
|
32
|
Liu C, Raza F, Qian H, Tian X. Recent advances in poly(ionic liquid)s for biomedical application. Biomater Sci 2022; 10:2524-2539. [PMID: 35411889 DOI: 10.1039/d2bm00046f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ionic liquid)s (PILs) are polymers containing ions in their side-chain or backbone, and the designability and outstanding physicochemical properties of PILs have attracted widespread attention from researchers. PILs have specific characteristics, including negligible vapor pressure, high thermal and chemical stability, non-flammability, and self-assembly capabilities. PILs can be well combined with advanced analytical instruments and technology and have made outstanding contributions to the development of biomedicine aiding in the continuous advancement of science and technology. Here we reviewed the advances of PILs in the biomedical field in the past five years with a focus on applications in proteomics, drug delivery, and development. This paper aims to engage pharmaceutical and biomedical scientists to full understand PILs and accelerate the progress from laboratory research to industrialization.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
33
|
Yi S, Li H, Liu X. Enhanced fluorescence quenching for p-nitrophenol in imidazolium ionic liquids using a europium-based fluorescent probe. RSC Adv 2022; 12:10915-10923. [PMID: 35425066 PMCID: PMC8988167 DOI: 10.1039/d2ra00251e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 12/05/2022] Open
Abstract
p-Nitrophenol (PNP) is a toxic contaminant in water, the detection of which has attracted considerable attention. Since ionic liquids (ILs) have been widely used as popular solvents in both extraction and catalysts for PNP, the remediation of PNP is not limited to water and traditional organic solvents. Thus, it is significant to develop approaches for the detection of PNP in ILs. Accordingly, the present work is focused on the detection of PNP in a series of imidazolium-based ILs, 1-hexyl-3-methyl-imidazolium bromide ([Hmim]Br), 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim]BF4), 1-butyl-3-methyl-imidazolium trifluoromesulfonate ([Bmim]TfO), 1-butyl-3-methyl-imidazolium trifluoroacetate ([Bmim]TA), and 1-butyl-3-methyl-imidazolium nitrate ([Bmim]NO3), using a europium-based fluorescent probe, Na3[Eu(DPA)3] (DPA = 2, 6-pyridinedicarboxylic acid). This fluorescent probe showed excellent selectivity and sensitivity toward [Bmim]NO3 in aqueous solution. Further studies showed that not only the fluorescence performance of the europium complex was enhanced in the other four ILs compared with that in water, but also the detecting capability for PNP was improved. The order of the quenching efficiency in different solvents was: [Bmim]BF4 > [Bmim]TfO > [Hmim]Br > [Bmim]TA > water. The higher sensitivity for PNP in ILs was proven to be related to the efficient energy transfer of the europium complex and lower solvent polarity of the ILs. The quenching mechanism for the detection of PNP was established as being due to the ground state electrostatic interactions between the fluorescent probe and analyte, photoinduced electron transfer (PET) and inner filter effect (IFE).
Collapse
Affiliation(s)
- Sijing Yi
- Department of Basic Science, Shanxi Agricultural University Taigu 030801 China +86 354 6288341
| | - Huanhuan Li
- Department of Basic Science, Shanxi Agricultural University Taigu 030801 China +86 354 6288341
| | - Xiaoxia Liu
- Department of Basic Science, Shanxi Agricultural University Taigu 030801 China +86 354 6288341
| |
Collapse
|
34
|
Khajeh A, Rahman MH, Liu T, Panwar P, Menezes PL, Martini A. Thermal decomposition of phosphonium salicylate and phosphonium benzoate ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Takahashi T, Akiya K, Niizeki T, Matsumoto M, Hoshina TA. Tunable thermoresponsive UCST-type alkylimidazolium ionic liquids as a draw solution in the forward osmosis process. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Wu X, Xuan J, Yu Q, Wu W, Lu Y, Zhu Q, Chen Z, Qi J. Converting Tretinoin into Ionic Liquids for Improving Aqueous Solubility and Permeability across Skin. Pharm Res 2022; 39:2421-2430. [DOI: 10.1007/s11095-022-03238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
|
37
|
Dual Nature Cupper-Based Ionic Liquid-Assisted n-Butane Selective Oxidation with a Vanadium Phosphorus Oxide Catalyst. Catal Letters 2022. [DOI: 10.1007/s10562-022-03962-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Forero-Martinez NC, Cortes-Huerto R, Benedetto A, Ballone P. Thermoresponsive Ionic Liquid/Water Mixtures: From Nanostructuring to Phase Separation. Molecules 2022; 27:1647. [PMID: 35268747 PMCID: PMC8912101 DOI: 10.3390/molecules27051647] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/10/2022] Open
Abstract
The thermodynamics, structures, and applications of thermoresponsive systems, consisting primarily of water solutions of organic salts, are reviewed. The focus is on organic salts of low melting temperatures, belonging to the ionic liquid (IL) family. The thermo-responsiveness is represented by a temperature driven transition between a homogeneous liquid state and a biphasic state, comprising an IL-rich phase and a solvent-rich phase, divided by a relatively sharp interface. Demixing occurs either with decreasing temperatures, developing from an upper critical solution temperature (UCST), or, less often, with increasing temperatures, arising from a lower critical solution temperature (LCST). In the former case, the enthalpy and entropy of mixing are both positive, and enthalpy prevails at low T. In the latter case, the enthalpy and entropy of mixing are both negative, and entropy drives the demixing with increasing T. Experiments and computer simulations highlight the contiguity of these phase separations with the nanoscale inhomogeneity (nanostructuring), displayed by several ILs and IL solutions. Current applications in extraction, separation, and catalysis are briefly reviewed. Moreover, future applications in forward osmosis desalination, low-enthalpy thermal storage, and water harvesting from the atmosphere are discussed in more detail.
Collapse
Affiliation(s)
- Nancy C. Forero-Martinez
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany;
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Antonio Benedetto
- School of Physics, University College Dublin, 94568 Dublin, Ireland; (A.B.); (P.B.)
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, 94568 Dublin, Ireland
- Department of Sciences, University of Roma Tre, 00146 Rome, Italy
| | - Pietro Ballone
- School of Physics, University College Dublin, 94568 Dublin, Ireland; (A.B.); (P.B.)
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, 94568 Dublin, Ireland
| |
Collapse
|
39
|
Faizan M, Zhang R, Liu R. Vanadium Phosphorus Oxide Catalyst: Progress, Development and Applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Hong YL, Sun J, Yang HW, Wang C, Liu Y, Tan ZW, Liu CM. A reactive nitrile-rich phosphonium polyelectrolyte derived from toxic PH3 tail gas: Synthesis, post-polymerization modifications, and unexpected LCST behaviour in DMF solution. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Chu YH, Chen CY, Chen JS. Structural Engineering and Optimization of Zwitterionic Salts for Expeditious Discovery of Thermoresponsive Materials. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010257. [PMID: 35011489 PMCID: PMC8746428 DOI: 10.3390/molecules27010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022]
Abstract
This work reported the discovery of N-triflimide (NTf)-based zwitter-ionic liquids (ZILs) that exhibit UCST-type phase transitions in water, and their further structural optimization in fine-tuning polarity to ultimately afford newfangled thermosensitive materials carrying attractive and biocompatible Tc values that clearly demonstrated the true value of the tunability of ZIL structure. This research established that with non-aromatic, acyclic ZILs as small-molecule thermoresponsive materials, their mixing and de-mixing with water triggered by temperatures are entirely reversible.
Collapse
|
42
|
Winter L, Bhuin RG, Maier F, Steinrück H. n-Butane, iso-Butane and 1-Butene Adsorption on Imidazolium-Based Ionic Liquids Studied with Molecular Beam Techniques. Chemistry 2021; 27:17059-17065. [PMID: 34499375 PMCID: PMC9293359 DOI: 10.1002/chem.202102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/11/2022]
Abstract
The interaction of molecules, especially hydrocarbons, at the gas/ionic liquid (IL) surface plays a crucial role in supported IL catalysis. The dynamics of this process is investigated by measuring the trapping probabilities of n-butane, iso-butane and 1-butene on a set of frozen 1-alkyl-3-methylimidazolium-based ILs [Cn C1 Im]X, where n=4, 8 and X- =Cl- , Br- , [PF6 ]- and [Tf2 N]- . The decrease of the initial trapping probability with increasing surface temperature is used to determine the desorption energy of the hydrocarbons at the IL surfaces. It increases with increasing alkyl chain length n and decreasing anion size for the ILs studied. We attribute these effects to different degrees of alkyl chain surface enrichment, while interactions between the adsorbate and the anion do not play a significant role. The adsorption energy also depends on the adsorbing molecule: It decreases in the order n-butane>1-butene>iso-butane, which can be explained by different dispersion interactions.
Collapse
Affiliation(s)
- Leonhard Winter
- Lehrstuhl für Physikalische Chemie IIFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Radha G. Bhuin
- Lehrstuhl für Physikalische Chemie IIFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Florian Maier
- Lehrstuhl für Physikalische Chemie IIFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Hans‐Peter Steinrück
- Lehrstuhl für Physikalische Chemie IIFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| |
Collapse
|
43
|
|
44
|
Imam SS, Hussain A, Altamimi MA, Alshehri S. Four-Dimensional Printing for Hydrogel: Theoretical Concept, 4D Materials, Shape-Morphing Way, and Future Perspectives. Polymers (Basel) 2021; 13:3858. [PMID: 34771414 PMCID: PMC8588409 DOI: 10.3390/polym13213858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
The limitations and challenges possessed in static 3D materials necessitated a new era of 4D shape-morphing constructs for wide applications in diverse fields of science. Shape-morphing behavior of 3D constructs over time is 4D design. Four-dimensional printing technology overcomes the static nature of 3D, improves substantial mechanical strength, and instills versatility and clinical and nonclinical functionality under set environmental conditions (physiological and artificial). Four-dimensional printing of hydrogel-forming materials possesses remarkable properties compared to other printing techniques and has emerged as the most established technique for drug delivery, disease diagnosis, tissue engineering, and biomedical application using shape-morphing materials (natural, synthetic, semisynthetic, and functionalized) in response to single or multiple stimuli. In this article, we addressed a fundamental concept of 4D-printing evolution, 4D printing of hydrogel, shape-morphing way, classification, and future challenges. Moreover, the study compiled a comparative analysis of 4D techniques, 4D products, and mechanical perspectives for their functionality and shape-morphing dynamics. Eventually, despite several advantages of 4D technology over 3D technique in hydrogel fabrication, there are still various challenges to address with using current advanced and sophisticated technology for rapid, safe, biocompatible, and clinical transformation from small-scale laboratory (lab-to-bed translation) to commercial scale.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.A.); (S.A.)
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.A.); (S.A.)
| | | | | |
Collapse
|
45
|
Rajabi F, Karimi N, Luque R, Voskressensky L. Highly ordered mesoporous functionalized pyridinium protic ionic liquid framework as a highly efficient catalytic system in chemoselective thioacetalization of carbonyl compounds under solvent-free conditions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Prikhod'ko S, Shabalin AY, Adonin NY. New catalytic systems with chemically fixed nickel complexes in the reactions of reductive activation of C-F bonds in ionic liquid media. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Wang L, Chen X, Liu J, Tan Z. A LCST-type ionic liquid used as the recyclable extractant for the extraction and separation of liquiritin and glycyrrhizic acid from licorice (Glycyrrhiza uralensis Fisch). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Zhang H, Kong M, Jiang Q, Hu K, Ouyang M, Zhong F, Qin M, Zhuang L, Wang G. Chitosan membranes from acetic acid and imidazolium ionic liquids: Effect of imidazolium structure on membrane properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Ishizaka S, Yamamoto C, Yamagishi H. Liquid-Liquid Phase Separation of Single Optically Levitated Water-Ionic Liquid Droplets in Air. J Phys Chem A 2021; 125:7716-7722. [PMID: 34431297 DOI: 10.1021/acs.jpca.1c06130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, to investigate the equilibrium morphology of liquid-liquid phase-separated droplets in air, a temperature-responsive ionic liquid (IL) showing lower critical solution temperature behavior was employed. ILs have negligible vapor pressure and do not evaporate from aerosol droplets during dehumidifying processes. We demonstrated that the liquid-liquid phase separation of single optically levitated aqueous droplets containing the temperature-responsive IL can be induced by controlling the air relative humidity. The formation of liquid-liquid phase-separated droplets of partially engulfed morphology was successfully observed under an optical microscope, and their configurations were compared with those calculated by a thermodynamic model based on interfacial tensions and relative volume ratios of two immiscible phases.
Collapse
Affiliation(s)
- Shoji Ishizaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Chihiro Yamamoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Himeka Yamagishi
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
50
|
Protsenko AN, Shakirova OG, Protsenko AE, Kuratieva NV, Fowles SM, Turnbull MM. Effect of isomeric cations of 3(2)-(chloromethyl)pyridine on the structure and properties of copper(II) and cobalt(II) complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|