1
|
Zhang W, Shao Q, Zhong H, Yang Y, Li R, Liu Y, Hu Y, Wang P, Chi B. Glycopeptide microneedles triggering the ECM process to promote fibroblast viability for anti-aging treatments. BIOMATERIALS ADVANCES 2025; 168:214124. [PMID: 39616682 DOI: 10.1016/j.bioadv.2024.214124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Skin anti-aging remains challenging due to the cumulative detrimental effects within the intricate microenvironment. Here, we present glycopeptide hydrogel (γ-PGA/HA) microneedle patches composed of poly (γ-glutamic acid) and hyaluronic acid as a potential solution. These microneedles aim to effectively penetrate the skin barrier while remodeling extracellular matrix to regulate the skin microenvironment. To align with clinical requirements, the functional properties of microenvironment regulation materials are characterized by testing the water absorption and retention, redox balance, and inflammatory microenvironment regulation ability. The γ-PGA/HA exhibited remarkable moisturizing, biocompatibility, fibroblast viability promotion, ROS consumption, and TNF-α inhibiting effects. Histological analysis provides empirical evidence supporting the functional efficacy of the microneedle, thus validating the anti-skin-aging potential of a model that mimics natural aging processes. Therefore, γ-PGA/HA holds promise for regulating the skin microenvironment, offering potential applications in skin aging treatments.
Collapse
Affiliation(s)
- Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Qing Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Hua Zhong
- Kuitun Hospital of Ili prefecture, Kuitun, Xinjiang, Uyger Autonomous Region 833200, PR China
| | - Yingying Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Ruixue Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yaxian Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
2
|
Wang C, Yao H, Shi J, Zhang Z, Cong B, Wu Z, Shang X, Hu X, Yang J, Sun H, Gu Z, Cheng G, Chong H, Wang DA, Zhao Y. Injectable tissue-engineered human cartilage matrix composite fibrin glue for regeneration of articular cartilage defects. BIOMATERIALS ADVANCES 2025; 167:214095. [PMID: 39504587 DOI: 10.1016/j.bioadv.2024.214095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Due to the lack of blood vessels and nerves, the ability of cartilage to repair itself is limited, and the injury of articular cartilage urgently needs effective treatment. Currently, the limitation of clinical repair for cartilage defects is that it is difficult to form pure hyaline cartilage repair, and the source of cartilage tissue and cells is limited. To obtain high-purity regenerated hyaline cartilage, we proposed to construct an injectable hydrogel precursor by using human living hyaline cartilage graft (hLhCG) secreted by human chondrocytes as the dispersed phase and fibrinogen solution as the continuous phase, by double injection with thrombin, three-dimensional network hydrogel structure was formed under the action of thrombin to repair joint defects. The component phenotypes of hLhCG and biomechanical properties of composite gel scaffolds were verified. After 12 weeks of injection of the mixed phase at the defect site, the regenerated tissues are similar in composition to adjacent natural tissues and exhibit similar biomechanical properties. The phenotype of regenerated cartilage was verified, confirming the successful regeneration of hyaline cartilage.
Collapse
Affiliation(s)
- Chirun Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| | - Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, 999077, Hong Kong Special Administrative Region
| | - Bo Cong
- Department of Osteoarthropathy, Yantaishan Hospital, Yantai 264001, Shandong, PR China
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Xianfeng Shang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Xu Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, 999077, Hong Kong Special Administrative Region
| | - Jian Yang
- Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, PR China
| | - Haidi Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Zehao Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Gong Cheng
- Department of Osteoarthropathy, Yantaishan Hospital, Yantai 264001, Shandong, PR China
| | - Hui Chong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, 999077, Hong Kong Special Administrative Region.
| | - Yuchi Zhao
- Department of Osteoarthropathy, Yantaishan Hospital, Yantai 264001, Shandong, PR China.
| |
Collapse
|
3
|
Rumon MM, Akib AA, Sarkar SD, Khan MAR, Uddin MM, Nasrin D, Roy CK. Polysaccharide-Based Hydrogels for Advanced Biomedical Engineering Applications. ACS POLYMERS AU 2024; 4:463-486. [PMID: 39679058 PMCID: PMC11638789 DOI: 10.1021/acspolymersau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 12/17/2024]
Abstract
In recent years, numerous applications of hydrogels using polysaccharides have evolved, benefiting from their widespread availability, excellent biodegradability, biocompatibility, and nonpoisonous nature. These natural polymers are typically sourced from renewable materials or from manufacturing processes, contributing collaboratively to waste management and demonstrating the potential for enhanced and enduring sustainability. In the field of novel bioactive molecule carriers for biotherapeutics, natural polymers are attracting attention due to their inherent properties and adaptable chemical structures. These polymers offer versatile matrices with a range of architectures and mechanical properties, while retaining the bioactivity of incorporated biomolecules. However, conventional polysaccharide-based hydrogels suffer from inadequate mechanical toughness with large swelling properties, which prohibit their efficacy in real-world applications. This review offers insights into the latest advancements in the development of diverse polysaccharide-based hydrogels for biotherapeutic administrations, either standalone or in conjunction with other polymers or drug delivery systems, in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Md. Mahamudul
Hasan Rumon
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Anwarul Azim Akib
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Stephen Don Sarkar
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United
States
| | | | - Md. Mosfeq Uddin
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
- Department
of Chemistry, University of Victoria, Victoria 3800, Canada
| | - Dina Nasrin
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Chanchal Kumar Roy
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
4
|
Sun X, Guo Y, Zheng X, Bai Y, Lu Y, Yang X, Cai Z, Xu E, He Y, Heng BC, Xu M, Deng X, Zhang X. Optimizing the Electrical Microenvironment Provided by 3D Micropillar Topography on a Piezoelectric BaTiO 3 Substrate to Enhance Osseointegration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414161. [PMID: 39564749 DOI: 10.1002/adma.202414161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Indexed: 11/21/2024]
Abstract
The electrical properties of bone implant scaffolds are a pivotal factor in regulating cellular behavior and promoting osteogenesis. The previous study shows that built-in electric fields established between electropositive nanofilms and electronegative bone defect walls are beneficial for promoting bone defect healing. Considering that the physiological electrical microenvironment is spatially distributed in 3D, it is imperative to establish a 3D spatial charged microenvironment on bone scaffolds to optimize the efficacy of osseointegration. Nevertheless, this still poses a formidable challenge. Here, a bone repair strategy that utilizes micro-scale 3D topography is developed on a piezoelectric BaTiO3 (BTO) substrate to provide 3D spatial electrical stimulation. The BTO micropillar arrays, especially with a height of 50 µm and positive-charge distribution (50 µm positive), promote the spreading, cytoskeletal reorganization, focal adhesion maturation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). They enhanced the clustering of mechanosensing integrin α5 in BMSCs. The biomimetic 3D spatial electrical microenvironment accelerated bone repair and osseointegration in a rat femoral diaphysis defect repair model. The study thus reveals that implants with a 3D spatial electrical microenvironment can significantly enhance osseointegration, thereby providing a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.
Collapse
Affiliation(s)
- Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xiaona Zheng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yixuan Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xue Yang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Ziming Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Erxiang Xu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Oral Translational Medicine Research Center, Joint Training base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair, Reconstruction and Regeneration, The First People's Hospital of Jinzhong, Jinzhong, Shanxi, 030600, P. R. China
| |
Collapse
|
5
|
Zhou Z, Li T, Cai W, Zhu X, Zhang Z, Huang G. Microstring-engineered tension tissues: a novel platform for replicating tissue mechanics and advancing mechanobiology. LAB ON A CHIP 2024. [PMID: 39530446 DOI: 10.1039/d4lc00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Replicating the mechanical tension of natural tissues is essential for maintaining organ function and stability, posing a central challenge in tissue engineering and regenerative medicine. Existing methods for constructing tension tissues often encounter limitations in flexibility, scalability, or cost-effectiveness. This study introduces a novel approach to fabricating soft microstring chips using a sacrificial template method, which is easy to operate, offers controlled preparation, and is cost-effective. Through experimental testing and finite element simulations, we validated and characterized the relationship between microstring deformation, tissue width, and the reaction force exerted by the microstrings, enabling precise measurement of tissue contraction force. We successfully constructed microstring-engineered tension tissues (METTs) and demonstrated that they exhibit a significant mechanical response to profibrotic factors. Additionally, we conceptually demonstrated the application of microstring chips in constructing METTs with asymmetric, biomimetic constraints. The results indicate effective construction and regulation of METTs, providing a robust platform for mechanobiology and biomedical research.
Collapse
Affiliation(s)
- Zixing Zhou
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Tingting Li
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Wei Cai
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430072, P.R. China
| | - Zuoqi Zhang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| |
Collapse
|
6
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
Kirkpatrick BE, Hach GK, Nelson BR, Skillin NP, Lee JS, Hibbard LP, Dhand AP, Grotheer HS, Miksch CE, Salazar V, Hebner TS, Keyser SP, Kamps JT, Sinha J, Macdougall LJ, Fairbanks BD, Burdick JA, White TJ, Bowman CN, Anseth KS. Photochemical Control of Network Topology in PEG Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409603. [PMID: 39340292 PMCID: PMC11567792 DOI: 10.1002/adma.202409603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Indexed: 09/30/2024]
Abstract
Hydrogels are often synthesized through photoinitiated step-, chain-, and mixed-mode polymerizations, generating diverse network topologies and resultant material properties that depend on the underlying network connectivity. While many photocrosslinking reactions are available, few afford controllable connectivity of the hydrogel network. Herein, a versatile photochemical strategy is introduced for tuning the structure of poly(ethylene glycol) (PEG) hydrogels using macromolecular monomers functionalized with maleimide and styrene moieties. Hydrogels are prepared along a gradient of topologies by varying the ratio of step-growth (maleimide dimerization) to chain-growth (maleimide-styrene alternating copolymerization) network-forming reactions. The initial PEG content and final network physical properties (e.g., modulus, swelling, diffusivity) are tailored in an independent manner, highlighting configurable gel mechanics and reactivity. These photochemical reactions allow high-fidelity photopatterning and 3D printing and are compatible with 2D and 3D cell culture. Ultimately, this photopolymer chemistry allows facile control over network connectivity to achieve adjustable material properties for broad applications.
Collapse
Affiliation(s)
- Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Grace K Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin R Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Joshua S Lee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Lea Pearl Hibbard
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Abhishek P Dhand
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Henry S Grotheer
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Connor E Miksch
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Violeta Salazar
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Tayler S Hebner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Sean P Keyser
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Joshua T Kamps
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Jason A Burdick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
8
|
Bai R, Wang W, Gao W, Yang M, Zhang X, Wang C, Fan Z, Yang L, Zhang Z, Yan X. Dynamically Cross-linked Oligo[2]rotaxane Networks Mediated by Metal-Coordination. Angew Chem Int Ed Engl 2024; 63:e202410127. [PMID: 39030819 DOI: 10.1002/anie.202410127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/07/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Polyrotaxanes (PRs) have attracted significant research attention due to their unique topological structures and high degrees of conformational freedom. Herein, we take advantage of an oligo[2]rotaxane to construct a novel class of dynamically cross-linked rotaxane network (DCRN) mediated by metal-coordination. The oligo[2]rotaxane skeleton offers several distinct advantages: In addition to retaining the merits of traditional polymer backbones, the ordered intramolecular motion of the [2]rotaxane motifs introduced dangling chains into the network, thereby enhancing the stretchability of the DCRN. Additionally, the dissociation of host-guest recognition and subsequent sliding motion, along with the breakage of metal-coordination interactions, represented an integrated energy dissipation pathway to enhance mechanical properties. Moreover, the resulting DCRN demonstrated responsiveness to multiple stimuli and displayed exceptional self-healing capabilities in a gel state. Upon exposure to PPh3, which induced network deconstruction by breaking the coordinated cross-linking points, the oligo[2]rotaxane could be recovered, showcasing good recyclability. These findings demonstrate the untapped potential of the oligo[2]rotaxane as a polymer skeleton to develop DCRN and open the door to extend their advanced applications in intelligent mechanically interlocked materials.
Collapse
Affiliation(s)
- Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wenbin Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wenzhe Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mengling Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunyu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhiwei Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
9
|
Luo Y, Hu S, Li Y, Ma L. Inflammation environment-adaptive matrix confinement for three-dimensional modulation of macrophages. Biomater Sci 2024; 12:5324-5336. [PMID: 39248106 DOI: 10.1039/d4bm00939h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The balance of macrophages in immune reactions is crucial for tissue repair. Despite some studies on responsive surfaces for immunomodulation regulation of macrophage phenotypes via external stimuli, 2D and manual interventions are limited. Herein, to address these limitations, we developed an inflammation environment-responsive macrophage-laden hydrogel-filled scaffold for investigating the impact of matrix confinement on macrophage phenotypes adaptively. We fabricated gelatin scaffolds with a controllable pore size and found that macrophages within smaller pores tended to have an anti-inflammation phenotype. We prepared poly(vinyl alcohol) (PVA)-based hydrogels crosslinked with phenylboronic acid (PBA)-based linkers. The hydrogels possessed shear-thinning, cell-loading, and ROS-sensitive-degradation abilities. Subsequently, a macrophage-laden hydrogel-filled scaffold was fabricated by filling the hydrogels into the porous scaffold under vacuum. With the degradation of the hydrogels under the overexpression of ROS in an inflammation environment, the macrophages were transferred from a state with strong matrix confinement to that with a weaker one. Meanwhile, with the change in matrix confinement, the macrophages upregulated the expressions of Arg-1 and IL-10 and downregulated the expressions of IL-1β, TNF-α, and IL-6, indicating polarization toward the anti-inflammatory phenotype. The inflammation environment-adaptive modulation of macrophage phenotypes in 3D provides a smart and biomimetic strategy for immunomodulation and regenerative medicine.
Collapse
Affiliation(s)
- Yilun Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- MOE Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Sentao Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
10
|
Zhu JC, Wang H, Wu CX, Zhang KQ, Ye H. Tailoring silk fibroin fibrous architecture by a high-yield electrospinning method for fast wound healing possibilities. Biotechnol Bioeng 2024; 121:3224-3238. [PMID: 38924076 DOI: 10.1002/bit.28783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
In this study, a novel array electrospinning collector was devised to generate two distinct regenerated silk fibroin (SF) fibrous membranes: ordered and disordered. Leveraging electrostatic forces during the electrospinning process allowed precise control over the orientation of SF fiber, resulting in the creation of membranes comprising both aligned and randomly arranged fiber layers. This innovative approach resulted in the development of large-area membranes featuring exceptional stability due to their alternating patterned structure, achievable through expansion using the collector, and improving the aligned fiber membrane mechanical properties. The study delved into exploring the potential of these membranes in augmenting wound healing efficiency. Conducting in vitro toxicity assays with adipose tissue-derived mesenchymal stem cells (AD-MSCs) and normal human dermal fibroblasts (NHDFs) confirmed the biocompatibility of the SF membranes. We use dual perspectives on exploring the effects of different conditioned mediums produced by cells and structural cues of materials on NHDFs migration. The nanofibers providing the microenvironment can directly guide NHDFs migration and also affect the AD-MSCs and NHDFs paracrine effects, which can improve the chemotaxis of NHDFs migration. The ordered membrane, in particular, exhibited pronounced effectiveness in guiding directional cell migration. This research underscores the revelation that customizable microenvironments facilitated by SF membranes optimize the paracrine products of mesenchymal stem cells and offer valuable physical cues, presenting novel prospects for enhancing wound healing efficiency.
Collapse
Affiliation(s)
- Jia-Chen Zhu
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, Jiangsu, China
| | - Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Chen-Xing Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Hua Ye
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, Jiangsu, China
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Soliman BG, Nguyen AK, Gooding JJ, Kilian KA. Advancing Synthetic Hydrogels through Nature-Inspired Materials Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404235. [PMID: 38896849 PMCID: PMC11486603 DOI: 10.1002/adma.202404235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Synthetic extracellular matrix (ECM) mimics that can recapitulate the complex biochemical and mechanical nature of native tissues are needed for advanced models of development and disease. Biomedical research has heavily relied on the use of animal-derived biomaterials, which is now impeding their translational potential and convoluting the biological insights gleaned from in vitro tissue models. Natural hydrogels have long served as a convenient and effective cell culture tool, but advances in materials chemistry and fabrication techniques now present promising new avenues for creating xenogenic-free ECM substitutes appropriate for organotypic models and microphysiological systems. However, significant challenges remain in creating synthetic matrices that can approximate the structural sophistication, biochemical complexity, and dynamic functionality of native tissues. This review summarizes key properties of the native ECM, and discusses recent approaches used to systematically decouple and tune these properties in synthetic matrices. The importance of dynamic ECM mechanics, such as viscoelasticity and matrix plasticity, is also discussed, particularly within the context of organoid and engineered tissue matrices. Emerging design strategies to mimic these dynamic mechanical properties are reviewed, such as multi-network hydrogels, supramolecular chemistry, and hydrogels assembled from biological monomers.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Ashley K Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev 2024. [PMID: 39287199 DOI: 10.1002/med.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/29/2023] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.
Collapse
Affiliation(s)
- Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Ramiro M V Delgadillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Alan O Sustaita
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| |
Collapse
|
13
|
Desai N, Pande S, Vora L, Kommineni N. Correction to "Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration". ACS APPLIED BIO MATERIALS 2024; 7:6325-6331. [PMID: 39162584 PMCID: PMC11409221 DOI: 10.1021/acsabm.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
14
|
Chen J, Jing Y, Liu Y, Luo Y, He Y, Qiu X, Zhang Q, Xu H. Molecularly Imprinted Macroporous Hydrogel Promotes Bone Regeneration via Osteogenic Induction and Osteoclastic Inhibition. Adv Healthc Mater 2024; 13:e2400897. [PMID: 38626922 DOI: 10.1002/adhm.202400897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Indexed: 04/30/2024]
Abstract
Macroporous hydrogels offer physical supportive spaces and bio-instructive environment for the seeded cells, where cell-scaffold interactions directly influence cell fates and subsequently affect tissue regeneration post-implantation. Effectively modifying bioactive motifs at the inner pore surface provides appropriate niches for cell-scaffold interactions. A molecular imprinting method and sacrificial templates are introduced to prepare inner pore surface modification in the macroporous hydrogels. In detail, acrylated bisphosphonates (Ac-BPs) chelating to templates (CaCO3 particles) are anchored on the inner pore surface of the methacrylated gelatin (GelMA)-methacrylated hyaluronic acid (HAMA)-poly (ethylene glycol) diacrylate (PEGDA) macroporous hydrogel (GHP) to form a functional hydrogel scaffold (GHP-int-BP). GHP-int-BP, but not GHP, effectively crafts artificial cell niches to substantially alter cell fates, including osteogenic induction and osteoclastic inhibition, and promote in situ bone regeneration. These findings highlight that molecular imprinting on the inner pore surface in the hydrogel efficiently creates orthogonally additive bio-instructive scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Jingxiao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yihan Jing
- Geriatric Medicine Department, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, P. R. China
| | - Yanhong Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yongxi Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yutong He
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Xiaozhong Qiu
- Geriatric Medicine Department, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, P. R. China
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Huiyong Xu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
15
|
Ma J, Majmudar A, Tian B. Bridging the Gap-Thermofluidic Designs for Precision Bioelectronics. Adv Healthc Mater 2024; 13:e2302431. [PMID: 37975642 DOI: 10.1002/adhm.202302431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Bioelectronics, the merging of biology and electronics, can monitor and modulate biological behaviors across length and time scales with unprecedented capability. Current bioelectronics research largely focuses on devices' mechanical properties and electronic designs. However, the thermofluidic control is often overlooked, which is noteworthy given the discipline's importance in almost all bioelectronics processes. It is believed that integrating thermofluidic designs into bioelectronics is essential to align device precision with the complexity of biofluids and biological structures. This perspective serves as a mini roadmap for researchers in both fields to introduce key principles, applications, and challenges in both bioelectronics and thermofluids domains. Important interdisciplinary opportunities for the development of future healthcare devices and precise bioelectronics will also be discussed.
Collapse
Affiliation(s)
- Jingcheng Ma
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Aman Majmudar
- The College, University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
16
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
17
|
Moheimani H, Stealey S, Neal S, Ferchichi E, Zhang J, Foston M, Setton LA, Genin GM, Huebsch N, Zustiak SP. Tunable Viscoelasticity of Alginate Hydrogels via Serial Autoclaving. Adv Healthc Mater 2024:e2401550. [PMID: 39075933 DOI: 10.1002/adhm.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Alginate hydrogels are widely used as biomaterials for cell culture and tissue engineering due to their biocompatibility and tunable mechanical properties. Reducing alginate molecular weight is an effective strategy for modulating hydrogel viscoelasticity and stress relaxation behavior, which can significantly impact cell spreading and fate. However, current methods like gamma irradiation to produce low molecular weight alginates suffer from high cost and limited accessibility. Here, a facile and cost-effective approach to reduce alginate molecular weight in a highly controlled manner using serial autoclaving is presented. Increasing the number of autoclave cycles results in proportional reductions in intrinsic viscosity, hydrodynamic radius, and molecular weight of the polymer while maintaining its chemical composition. Hydrogels fabricated from mixtures of the autoclaved alginates exhibit tunable mechanical properties, with inclusion of lower molecular weight alginate leading to softer gels with faster stress relaxation behaviors. The method is demonstrated by establishing how viscoelastic relaxation affects the spreading of encapsulated fibroblasts and glioblastoma cells. Results establish repetitive autoclaving as an easily accessible technique to generate alginates with a range of molecular weights and to control the viscoelastic properties of alginate hydrogels, and demonstrate utility across applications in mechanobiology, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Hamidreza Moheimani
- NSF Science and Technology Center for Engineering MechanoBiology (CEMB), Washington University in Saint Louis, Saint Louis, MO, 63130, USA
| | - Samuel Stealey
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Sydney Neal
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Eya Ferchichi
- NSF Science and Technology Center for Engineering MechanoBiology (CEMB), Washington University in Saint Louis, Saint Louis, MO, 63130, USA
| | - Jialiang Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in Saint Louis, Saint Louis, MO, 63130, USA
| | - Marcus Foston
- Department of Energy, Environmental & Chemical Engineering, Washington University in Saint Louis, Saint Louis, MO, 63130, USA
| | - Lori A Setton
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering MechanoBiology (CEMB), Washington University in Saint Louis, Saint Louis, MO, 63130, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Nathaniel Huebsch
- NSF Science and Technology Center for Engineering MechanoBiology (CEMB), Washington University in Saint Louis, Saint Louis, MO, 63130, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering MechanoBiology (CEMB), Washington University in Saint Louis, Saint Louis, MO, 63130, USA
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, Saint Louis, MO, 63103, USA
| |
Collapse
|
18
|
Luo Y, Song Y, Wang J, Xu T, Zhang X. Integrated Mini-Pillar Platform for Wireless Real-Time Cell Monitoring. RESEARCH (WASHINGTON, D.C.) 2024; 7:0422. [PMID: 39050822 PMCID: PMC11266812 DOI: 10.34133/research.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Cell culture as the cornerstone of biotechnology remains a labor-intensive process requiring continuous manual oversight and substantial time investment. In this work, we propose an integrated mini-pillar platform for in situ monitoring of multiple cellular metabolism processes, which achieves media anchoring and cell culture through an arrayed mini-pillar chip. The assembly of polyaniline (PANI)/dendritic gold-modified microelectrode biosensors exhibits high sensitivity (63.55 mV/pH) and excellent interference resistance, enabling real-time acquisition of biosensing signals. We successfully employed such integrated devices to real-time measuring pH variations in multiple cells and real-time monitoring of cell metabolism under drug interventions and to facilitate in situ assisted cultivation of 3-dimensional (3D) cell spheroids. This mini-pillar array-based cell culture platform exhibits excellent biosensing sensitivity and real-time monitoring capability, offering considerable potential for the advancement of biotechnology and medical drug development.
Collapse
Affiliation(s)
- Yong Luo
- Synthetic Biology Research Center, The Institute for Advanced Study (IAS),
Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology,
University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yongchao Song
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles,
Qingdao University, Qingdao 266071, P. R. China
| | - Jing Wang
- Synthetic Biology Research Center, The Institute for Advanced Study (IAS),
Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Tailin Xu
- Synthetic Biology Research Center, The Institute for Advanced Study (IAS),
Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
- School of Biomedical Engineering,
Shenzhen UniversityHealth Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Xueji Zhang
- Synthetic Biology Research Center, The Institute for Advanced Study (IAS),
Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
- School of Biomedical Engineering,
Shenzhen UniversityHealth Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
19
|
Zhang J, Wu P, Wen Q. Optimization strategies for mesenchymal stem cell-based analgesia therapy: a promising therapy for pain management. Stem Cell Res Ther 2024; 15:211. [PMID: 39020426 PMCID: PMC11256674 DOI: 10.1186/s13287-024-03828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Pain is a very common and complex medical problem that has a serious impact on individuals' physical and mental health as well as society. Non-steroidal anti-inflammatory drugs and opioids are currently the main drugs used for pain management, but they are not effective in controlling all types of pain, and their long-term use can cause adverse effects that significantly impair patients' quality of life. Mesenchymal stem cells (MSCs) have shown great potential in pain treatment. However, limitations such as the low proliferation rate of MSCs in vitro and low survival rate in vivo restrict their analgesic efficacy and clinical translation. In recent years, researchers have explored various innovative approaches to improve the therapeutic effectiveness of MSCs in pain treatment. This article reviews the latest research progress of MSCs in pain treatment, with a focus on methods to enhance the analgesic efficacy of MSCs, including engineering strategies to optimize the in vitro culture environment of MSCs and to improve the in vivo delivery efficiency of MSCs. We also discuss the unresolved issues to be explored in future MSCs and pain research and the challenges faced by the clinical translation of MSC therapy, aiming to promote the optimization and clinical translation of MSC-based analgesia therapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
20
|
Shi Z, Li Y, Du X, Liu D, Dong Y. Constructing Stiffness Tunable DNA Hydrogels Based on DNA Modules with Adjustable Rigidity. NANO LETTERS 2024; 24:8634-8641. [PMID: 38950146 DOI: 10.1021/acs.nanolett.4c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
DNA hydrogel represents a potent material for crafting biological scaffolds, but the toolbox to systematically regulate the mechanical property is still limited. Herein, we have provided a strategy to tune the stiffness of DNA hydrogel through manipulating the rigidity of DNA modules. By introducing building blocks with higher molecular rigidity and proper connecting fashion, DNA hydrogel stiffness could be systematically elevated. These hydrogels showed excellent dynamic properties and biocompatibility, thus exhibiting great potential in three-dimensional (3D) cell culture. This study has offered a systematic method to explore the structure-property relationship, which may contribute to the development of more intelligent and personalized biomedical platforms.
Collapse
Affiliation(s)
- Ziwei Shi
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiuji Du
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
21
|
İyisan N, Hausdörfer O, Wang C, Hiendlmeier L, Harder P, Wolfrum B, Özkale B. Mechanoactivation of Single Stem Cells in Microgels Using a 3D-Printed Stimulation Device. SMALL METHODS 2024:e2400272. [PMID: 39011729 DOI: 10.1002/smtd.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
In this study, the novel 3D-printed pressure chamber for encapsulated single-cell stimulation (3D-PRESS) platform is introduced for the mechanical stimulation of single stem cells in 3D microgels. The custom-designed 3D-PRESS, allows precise pressure application up to 400 kPa at the single-cell level. Microfluidics is employed to encapsulate single mesenchymal stem cells within ionically cross-linked alginate microgels with cell adhesion RGD peptides. Rigorous testing affirms the leak-proof performance of the 3D-PRESS device up to 400 kPa, which is fully biocompatible. 3D-PRESS is implemented on mesenchymal stem cells for mechanotransduction studies, by specifically targeting intracellular calcium signaling and the nuclear translocation of a mechanically sensitive transcription factor. Applying 200 kPa pressure on individually encapsulated stem cells reveals heightened calcium signaling in 3D microgels compared to conventional 2D culture. Similarly, Yes-associated protein (YAP) translocation into the nucleus occurs at 200 kPa in 3D microgels with cell-binding RGD peptides unveiling the involvement of integrin-mediated mechanotransduction in singly encapsulated stem cells in 3D microgels. Combining live-cell imaging with precise mechanical control, the 3D-PRESS platform emerges as a versatile tool for exploring cellular responses to pressure stimuli, applicable to various cell types, providing novel insights into single-cell mechanobiology.
Collapse
Affiliation(s)
- Nergishan İyisan
- Microrobotic Bioengineering Lab (MRBL), School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich (TUM), Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, München, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Oliver Hausdörfer
- Microrobotic Bioengineering Lab (MRBL), School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich (TUM), Hans-Piloty-Straße 1, 85748, Garching, Germany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL), School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich (TUM), Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, München, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Lukas Hiendlmeier
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Neuroelectronics, School of Computation, Information, and Technology, Department of Electrical Engineering, Department of Electrical Engineering, Technical University of Munich (TUM), 85748, Garching, Germany
| | - Philipp Harder
- Microrobotic Bioengineering Lab (MRBL), School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich (TUM), Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, München, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Bernhard Wolfrum
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Neuroelectronics, School of Computation, Information, and Technology, Department of Electrical Engineering, Department of Electrical Engineering, Technical University of Munich (TUM), 85748, Garching, Germany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL), School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich (TUM), Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, München, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| |
Collapse
|
22
|
Desai N, Pande S, Vora LK, Kommineni N. Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:4270-4292. [PMID: 38950103 PMCID: PMC11253102 DOI: 10.1021/acsabm.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.
Collapse
Affiliation(s)
- Nimeet Desai
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Shreya Pande
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Nagavendra Kommineni
- Center
for Biomedical Research, Population Council, New York, New York 10065, United States
| |
Collapse
|
23
|
Wang Y, Liu H, Wang H, Xie H, Zhou S. Micropatterned shape-memory polymer substrate containing hydrogen bonds creates a long-term dynamic microenvironment for regulating nerve-cell fate. J Mater Chem B 2024; 12:6690-6702. [PMID: 38895854 DOI: 10.1039/d4tb00593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Peripheral nerve injuries (PNIs) caused by mechanical contusion are frequently encountered in clinical practice, using nerve guidance conduits (NGCs) is now a promising therapy. An NGC creates a microenvironment for cell growth and differentiation, thus understanding physical and biochemical cues that can affect nerve-cell fate is a prerequisite for rationally designing NGCs. However, most of the previous works were focused on some static cues, the dynamic nature of the nerve microenvironment has not yet been well captured. Herein, we develop a micropatterned shape-memory polymer as a programmable substrate for providing a dynamic cue for nerve-cell growth. The shape-memory properties enable temporal programming of the substrate, and a dynamic microenvironment is created during standard cell culturing at 37 °C. Unlike most of the biomedical shape-memory polymers that recover rapidly at 37 °C, the proposed substrate shows a slow recovery process lasting 3-4 days and creates a long-term dynamic microenvironment. Results demonstrate that the vertically programmed substrates provide the most suitable dynamic microenvironment for PC12 cells as both the differentiation and maturity are promoted. Overall, this work provides a strategy for creating a long-term dynamic microenvironment for regulating nerve-cell fate and will inspire the rational design of NGCs for the treatment of PNIs.
Collapse
Affiliation(s)
- Yilei Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hao Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Huan Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
24
|
Sun J, Chen X, Lin Y, Cai X. MicroRNA-29c-tetrahedral framework nucleic acids: Towards osteogenic differentiation of mesenchymal stem cells and bone regeneration in critical-sized calvarial defects. Cell Prolif 2024; 57:e13624. [PMID: 38414296 PMCID: PMC11216942 DOI: 10.1111/cpr.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Certain miRNAs, notably miR29c, demonstrate a remarkable capacity to regulate cellular osteogenic differentiation. However, their application in tissue regeneration is hampered by their inherent instability and susceptibility to degradation. In this study, we developed a novel miR29c delivery system utilising tetrahedral framework nucleic acids (tFNAs), aiming to enhance its stability and endocytosis capability, augment the efficacy of miR29c, foster osteogenesis in bone marrow mesenchymal stem cells (BMSCs), and significantly improve the repair of critical-sized bone defects (CSBDs). We confirmed the successful synthesis and biocompatibility of sticky ends-modified tFNAs (stFNAs) and miR29c-modified stFNAs (stFNAs-miR29c) through polyacrylamide gel electrophoresis, microscopy scanning, a cell counting kit-8 assay and so on. The mechanism and osteogenesis effects of stFNAs-miR29c were explored using immunofluorescence staining, western blotting, and reserve transcription quantitative real-time polymerase chain reaction. Additionally, the impact of stFNAs-miR29c on CSBD repair was assessed via micro-CT and histological staining. The nano-carrier, stFNAs-miR29c was successfully synthesised and exhibited exemplary biocompatibility. This nano-nucleic acid material significantly upregulated osteogenic differentiation-related markers in BMSCs. After 2 months, stFNAs-miR29c demonstrated significant bone regeneration and reconstruction in CSBDs. Mechanistically, stFNAs-miR29c enhanced osteogenesis of BMSCs by upregulating the Wnt signalling pathway, contributing to improved bone tissue regeneration. The development of this novel nucleic acid nano-carrier, stFNAs-miR29c, presents a potential new avenue for guided bone regeneration and bone tissue engineering research.
Collapse
Affiliation(s)
- Jiafei Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| |
Collapse
|
25
|
Qiu X, Nie L, Liu P, Xiong X, Chen F, Liu X, Bu P, Zhou B, Tan M, Zhan F, Xiao X, Feng Q, Cai K. From hemostasis to proliferation: Accelerating the infected wound healing through a comprehensive repair strategy based on GA/OKGM hydrogel loaded with MXene@TiO 2 nanosheets. Biomaterials 2024; 308:122548. [PMID: 38554642 DOI: 10.1016/j.biomaterials.2024.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The treatment of infected wounds poses a formidable challenge in clinical practice due to the detrimental effects of uncontrolled bacterial infection and excessive oxidative stress, resulting in prolonged inflammation and impaired wound healing. In this study, we presented a MXene@TiO2 (MT) nanosheets loaded composite hydrogel named as GA/OKGM/MT hydrogel, which was formed based on the Schiff base reaction between adipic dihydrazide modified gelatin (GA)and Oxidized Konjac Glucomannan (OKGM), as the wound dressing. During the hemostasis phase, the GA/OKGM/MT hydrogel demonstrated effective adherence to the skin, facilitating rapid hemostasis. In the subsequent inflammation phase, the GA/OKGM/MT hydrogel effectively eradicated bacteria through MXene@TiO2-induced photothermal therapy (PTT) and eliminated excessive reactive oxygen species (ROS), thereby facilitating the transition from the inflammation phase to the proliferation phase. During the proliferation phase, the combined application of GA/OKGM/MT hydrogel with electrical stimulation (ES) promoted fibroblast proliferation and migration, leading to accelerated collagen deposition and angiogenesis at the wound site. Overall, the comprehensive repair strategy based on the GA/OKGM/MT hydrogel demonstrated both safety and reliability. It expedited the progression through the hemostasis, inflammation, and proliferation phases of wound healing, showcasing significant potential for the treatment of infected wounds.
Collapse
Affiliation(s)
- Xingan Qiu
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Linxia Nie
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Pei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xiaojiang Xiong
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Fangye Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Pengzhen Bu
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bikun Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, 404000, China; School of Medicine, Chongqing University, Chongqing, 400044, China; Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
26
|
Kou H, Han Q, Zhang H, Xu C, Liao L, Hou Y, Wang H, Zhang J. Impact of changes in collagen construction and molecular state on integrin - binding properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1523-1536. [PMID: 38574261 DOI: 10.1080/09205063.2024.2338004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The interaction between the integrin and collagen is important in cell adhesion and signaling. Collagen, as the main component of extracellular matrix, is a base material for tissue engineering constructs. In tissue engineering, the collagen structure and molecule state may be altered to varying degrees in the process of processing and utilizing, thereby affecting its biological properties. In this work, the impact of changes in collagen structure and molecular state on the binding properties of collagen to integrin α2β1 and integrin specific cell adhesion were explored. The results showed that the molecular structure of collagen is destroyed under the influence of heating, freeze-grinding and irradiation, the triple helix integrity is reduced and molecular breaking degree is increased. The binding ability of collagen to integrin α2β1 is increased with the increase of triple helix integrity and decays exponentially with the increase of molecular breaking degree. The collagen molecular state can also influences the binding ability of collagen to cellular receptor. The collagen fibrils binding to integrin α2β1 and HT1080 cells is stronger than to collagen monomolecule. Meanwhile, the hybrid fibril exhibits a different cellular receptor binding performance from corresponding single species collagen fibril. These findings provide ideas for the design and development of new collagen-based biomaterials and tissue engineering research.
Collapse
Affiliation(s)
- Huizhi Kou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qingqiu Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huihui Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lixia Liao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuanjing Hou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
27
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
28
|
Ashworth JC, Cox TR. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat Rev Cancer 2024; 24:461-479. [PMID: 38886573 DOI: 10.1038/s41568-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of 'precision biomaterials' is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell-matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Jennifer C Ashworth
- School of Veterinary Medicine & Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
29
|
Ti F, Yu C, Li M, Liu S, Lu TJ, Chen X. Cross-scale mechanobiological regulation of cylindrical compressible liquid inclusion via coating. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:395101. [PMID: 38906135 DOI: 10.1088/1361-648x/ad5ace] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/21/2024] [Indexed: 06/23/2024]
Abstract
The double-bag theory in modern anatomy suggests that structures with coatings are commonly found in human body at various length scales, such as osteocyte processes covered by pericellular matrix and bones covered by muscle tissue. To understand the mechanical behaviors and physiological responses of such biological structures, we develop an analytical model to quantify surface effects on the deformation of a coated cylindrical compressible liquid inclusion in an elastic matrix subjected to remote loading. Our analytical solution reveals that coating can either amplify or attenuate the volumetric strain of the inclusion, depending on the relative elastic moduli of inclusion, coating, and matrix. For illustration, we utilize this solution to explore amplification/attenuation of volumetric strain in musculoskeletal systems, nerve cells, and vascular tissues. We demonstrate that coating often plays a crucial role in mechanical regulation of the development and repair of human tissues and cells. Our model provides qualitative analysis of cross-scale mechanical response of coated liquid inclusions, helpful for constructing mechanical microenvironment of cells.
Collapse
Affiliation(s)
- Fei Ti
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Chenlei Yu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Moxiao Li
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Xin Chen
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
| |
Collapse
|
30
|
Almeida GHDR, da Silva RS, Gibin MS, Gonzaga VHDS, dos Santos H, Igleisa RP, Fernandes LA, Fernandes IC, Nesiyama TNG, Sato F, Baesso ML, Hernandes L, Rinaldi JDC, Meirelles FV, Astolfi-Ferreira CS, Ferreira AJP, Carreira ACO. Region-Specific Decellularization of Porcine Uterine Tube Extracellular Matrix: A New Approach for Reproductive Tissue-Engineering Applications. Biomimetics (Basel) 2024; 9:382. [PMID: 39056823 PMCID: PMC11274565 DOI: 10.3390/biomimetics9070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The uterine tube extracellular matrix is a key component that regulates tubal tissue physiology, and it has a region-specific structural distribution, which is directly associated to its functions. Considering this, the application of biological matrices in culture systems is an interesting strategy to develop biomimetic tubal microenvironments and enhance their complexity. However, there are no established protocols to produce tubal biological matrices that consider the organ morphophysiology for such applications. Therefore, this study aimed to establish region-specific protocols to obtain decellularized scaffolds derived from porcine infundibulum, ampulla, and isthmus to provide suitable sources of biomaterials for tissue-engineering approaches. Porcine uterine tubes were decellularized in solutions of 0.1% SDS and 0.5% Triton X-100. The decellularization efficiency was evaluated by DAPI staining and DNA quantification. We analyzed the ECM composition and structure by optical and scanning electronic microscopy, FTIR, and Raman spectroscopy. DNA and DAPI assays validated the decellularization, presenting a significative reduction in cellular content. Structural and spectroscopy analyses revealed that the produced scaffolds remained well structured and with the ECM composition preserved. YS and HEK293 cells were used to attest cytocompatibility, allowing high cell viability rates and successful interaction with the scaffolds. These results suggest that such matrices are applicable for future biotechnological approaches in the reproductive field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Raquel Souza da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Mariana Sversut Gibin
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Victória Hellen de Souza Gonzaga
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Henrique dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Rebeca Piatniczka Igleisa
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Leticia Alves Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Iorrane Couto Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Thais Naomi Gonçalves Nesiyama
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Mauro Luciano Baesso
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá 87020-900, Brazil; (L.H.); (J.d.C.R.)
| | | | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Antonio José Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André 09040-902, Brazil
| |
Collapse
|
31
|
Lee KK, Celt N, Ardoña HAM. Looking both ways: Electroactive biomaterials with bidirectional implications for dynamic cell-material crosstalk. BIOPHYSICS REVIEWS 2024; 5:021303. [PMID: 38736681 PMCID: PMC11087870 DOI: 10.1063/5.0181222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Cells exist in natural, dynamic microenvironmental niches that facilitate biological responses to external physicochemical cues such as mechanical and electrical stimuli. For excitable cells, exogenous electrical cues are of interest due to their ability to stimulate or regulate cellular behavior via cascade signaling involving ion channels, gap junctions, and integrin receptors across the membrane. In recent years, conductive biomaterials have been demonstrated to influence or record these electrosensitive biological processes whereby the primary design criterion is to achieve seamless cell-material integration. As such, currently available bioelectronic materials are predominantly engineered toward achieving high-performing devices while maintaining the ability to recapitulate the local excitable cell/tissue microenvironment. However, such reports rarely address the dynamic signal coupling or exchange that occurs at the biotic-abiotic interface, as well as the distinction between the ionic transport involved in natural biological process and the electronic (or mixed ionic/electronic) conduction commonly responsible for bioelectronic systems. In this review, we highlight current literature reports that offer platforms capable of bidirectional signal exchange at the biotic-abiotic interface with excitable cell types, along with the design criteria for such biomaterials. Furthermore, insights on current materials not yet explored for biointerfacing or bioelectronics that have potential for bidirectional applications are also provided. Finally, we offer perspectives aimed at bringing attention to the coupling of the signals delivered by synthetic material to natural biological conduction mechanisms, areas of improvement regarding characterizing biotic-abiotic crosstalk, as well as the dynamic nature of this exchange, to be taken into consideration for material/device design consideration for next-generation bioelectronic systems.
Collapse
Affiliation(s)
- Kathryn Kwangja Lee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
32
|
Zhu Z, Wu D, Feng L, He X, Hu T, Ye A, Fu X, Yang W, Wang Y. Architecting the Microenvironment Skeleton of Active Materials in High-Capacity Electrodes by Self-Assembled Nano-Building Blocks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307086. [PMID: 38155510 DOI: 10.1002/smll.202307086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Indexed: 12/30/2023]
Abstract
In analogy to the cell microenvironment in biology, understanding and controlling the active-material microenvironment (ME@AM) microstructures in battery electrodes is essential to the successes of energy storage devices. However, this is extremely difficult for especially high-capacity active materials (AMs) like sulfur, due to the poor controlling on the electrode microstructures. To conquer this challenge, here, a semi-dry strategy based on self-assembled nano-building blocks is reported to construct nest-like robust ME@AM skeleton in a solvent-and-stress-less way. To do that, poly(vinylidene difluoride) nanoparticle binder is coated onto carbon-nanofibers (NB@CNF) via the nanostorm technology developed in the lab, to form self-assembled nano-building blocks in the dry slurry. After compressed into an electrode prototype, the self-assembled dry-slurry is then bonded by in-situ nanobinder solvation. With this strategy, mechanically strong thick sulfur electrodes are successfully fabricated without cracking and exhibit high capacity and good C-rate performance even at a high AM loading (25.0 mg cm-2 by 90 wt% in the whole electrode). This study may not only bring a promising solution to dry manufacturing of batteries, but also uncover the ME@AM structuring mechanism with nano-binder for guiding the design and control on electrode microstructures.
Collapse
Affiliation(s)
- Zhiwei Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Dichen Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Lanxiang Feng
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610225, China
| | - Xuewei He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ting Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ang Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuewei Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
33
|
Yang C, Yin D, Zhang H, Badea I, Yang SM, Zhang W. Cell Migration Assays and Their Application to Wound Healing Assays-A Critical Review. MICROMACHINES 2024; 15:720. [PMID: 38930690 PMCID: PMC11205366 DOI: 10.3390/mi15060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
In recent years, cell migration assays (CMAs) have emerged as a tool to study the migration of cells along with their physiological responses under various stimuli, including both mechanical and bio-chemical properties. CMAs are a generic system in that they support various biological applications, such as wound healing assays. In this paper, we review the development of the CMA in the context of its application to wound healing assays. As such, the wound healing assay will be used to derive the requirements on CMAs. This paper will provide a comprehensive and critical review of the development of CMAs along with their application to wound healing assays. One salient feature of our methodology in this paper is the application of the so-called design thinking; namely we define the requirements of CMAs first and then take them as a benchmark for various developments of CMAs in the literature. The state-of-the-art CMAs are compared with this benchmark to derive the knowledge and technological gap with CMAs in the literature. We will also discuss future research directions for the CMA together with its application to wound healing assays.
Collapse
Affiliation(s)
- Chun Yang
- School of Mechanical Engineering, Donghua University, Shanghai 200051, China;
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Di Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; (D.Y.); (H.Z.)
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; (D.Y.); (H.Z.)
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
| | - Shih-Mo Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wenjun Zhang
- School of Mechanical Engineering, Donghua University, Shanghai 200051, China;
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
34
|
Park DJ, Kim SC, Jang JB, Lee B, Lee S, Ryu B, Je JY, Park WS, Jung WK. Multifunctional hydrogel dressing based on fish gelatin/oxidized hyaluronate for promoting diabetic wound healing. J Mater Chem B 2024; 12:4451-4466. [PMID: 38623740 DOI: 10.1039/d3tb02932h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Non-healing chronic diabetic wound treatment remains an unsolved healthcare challenge and still threatens patients' lives. Recently, hydrogel dressings based on natural biomaterials have been widely investigated to accelerate the healing of diabetic wounds. In this study, we introduce a bioactive hydrogel based on fish gelatin (FG) as a candidate for diabetic wound treatments, which is a recently emerged substitute for mammalian derived gelatin. The composite hydrogel simply fabricated with FG and oxidized hyaluronate (OHy) through Schiff base reaction could successfully accelerate wound healing due to their adequate mechanical stability and self-healing ability. In vitro studies showed that the fabricated hydrogels exhibited cytocompatibility and could reduce pro-inflammatory cytokine expression such as NO, IL-1β, TNF-α, and PGE2 in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. In addition, the production of reactive oxygen species (ROS), a key marker of free radicals producing oxidative stress, was also reduced by fabricated hydrogels. Furthermore, in vivo experiments demonstrated that the hydrogel could promote wound closure, re-epithelialization, collagen deposition, and protein expression of CD31, CD206, and Arg1 in diabetic mice models. Our study highlights the advanced potential of FG as a promising alternative material and indicates that FOHI can be successfully used for diabetic wound healing applications.
Collapse
Affiliation(s)
- Dong-Joo Park
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
- Marine integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Se-Chang Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
- Marine integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Jin-Bok Jang
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
- Marine integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Bonggi Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Seungjun Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Bomi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan 48513, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
- Marine integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
35
|
Ryoo H, Kimmel H, Rondo E, Underhill GH. Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications. Bioeng Transl Med 2024; 9:e10627. [PMID: 38818120 PMCID: PMC11135158 DOI: 10.1002/btm2.10627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 06/01/2024] Open
Abstract
Cellular phenotypes and functional responses are modulated by the signals present in their microenvironment, including extracellular matrix (ECM) proteins, tissue mechanical properties, soluble signals and nutrients, and cell-cell interactions. To better recapitulate and analyze these complex signals within the framework of more physiologically relevant culture models, high throughput culture platforms can be transformative. High throughput methodologies enable scientists to extract increasingly robust and broad datasets from individual experiments, screen large numbers of conditions for potential hits, better qualify and predict responses for preclinical applications, and reduce reliance on animal studies. High throughput cell culture systems require uniformity, assay miniaturization, specific target identification, and process simplification. In this review, we detail the various techniques that researchers have used to face these challenges and explore cellular responses in a high throughput manner. We highlight several common approaches including two-dimensional multiwell microplates, microarrays, and microfluidic cell culture systems as well as unencapsulated and encapsulated three-dimensional high throughput cell culture systems, featuring multiwell microplates, micromolds, microwells, microarrays, granular hydrogels, and cell-encapsulated microgels. We also discuss current applications of these high throughput technologies, namely stem cell sourcing, drug discovery and predictive toxicology, and personalized medicine, along with emerging opportunities and future impact areas.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Hannah Kimmel
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Evi Rondo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Gregory H. Underhill
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
36
|
Das IJ, Bal T. Exploring carrageenan: From seaweed to biomedicine-A comprehensive review. Int J Biol Macromol 2024; 268:131822. [PMID: 38677668 DOI: 10.1016/j.ijbiomac.2024.131822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Biomaterials are pivotal in the realms of tissue engineering, regenerative medicine, and drug delivery and serve as fundamental building blocks. Within this dynamic landscape, polymeric biomaterials emerge as the frontrunners, offering unparalleled versatility across physical, chemical, and biological domains. Natural polymers, in particular, captivate attention for their inherent bioactivity. Among these, carrageenan (CRG), extracted from red seaweeds, stands out as a naturally occurring polysaccharide with immense potential in various biomedical applications. CRG boasts a unique array of properties, encompassing antiviral, antibacterial, immunomodulatory, antihyperlipidemic, antioxidant, and antitumor attributes, positioning it as an attractive choice for cutting-edge research in drug delivery, wound healing, and tissue regeneration. This comprehensive review encapsulates the multifaceted properties of CRG, shedding light on the chemical modifications that it undergoes. Additionally, it spotlights pioneering research that harnesses the potential of CRG to craft scaffolds and drug delivery systems, offering high efficacy in the realms of tissue repair and disease intervention. In essence, this review celebrates the remarkable versatility of CRG and its transformative role in advancing biomedical solutions.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
37
|
Soliman BG, Longoni A, Major GS, Lindberg GCJ, Choi YS, Zhang YS, Woodfield TBF, Lim KS. Harnessing Macromolecular Chemistry to Design Hydrogel Micro- and Macro-Environments. Macromol Biosci 2024; 24:e2300457. [PMID: 38035637 DOI: 10.1002/mabi.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Cell encapsulation within three-dimensional hydrogels is a promising approach to mimic tissues. However, true biomimicry of the intricate microenvironment, biophysical and biochemical gradients, and the macroscale hierarchical spatial organizations of native tissues is an unmet challenge within tissue engineering. This review provides an overview of the macromolecular chemistries that have been applied toward the design of cell-friendly hydrogels, as well as their application toward controlling biophysical and biochemical bulk and gradient properties of the microenvironment. Furthermore, biofabrication technologies provide the opportunity to simultaneously replicate macroscale features of native tissues. Biofabrication strategies are reviewed in detail with a particular focus on the compatibility of these strategies with the current macromolecular toolkit described for hydrogel design and the challenges associated with their clinical translation. This review identifies that the convergence of the ever-expanding macromolecular toolkit and technological advancements within the field of biofabrication, along with an improved biological understanding, represents a promising strategy toward the successful tissue regeneration.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Alessia Longoni
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Gretel S Major
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gabriella C J Lindberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02115, USA
| | - Tim B F Woodfield
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
38
|
Hisey CL, Rima XY, Doon-Ralls J, Nagaraj CK, Mayone S, Nguyen KT, Wiggins S, Dorayappan KDP, Selvendiran K, Wood D, Hu C, Patel D, Palmer A, Hansford D, Reategui E. Light-induced Extracellular Vesicle Adsorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590318. [PMID: 38712200 PMCID: PMC11071350 DOI: 10.1101/2024.04.24.590318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The role of extracellular vesicles (EVs) in human health and disease has garnered considerable attention over the past two decades. However, while several types of EVs are known to interact dynamically with the extracellular matrix and there is great potential value in producing high-fidelity EV micropatterns, there are currently no label-free, high-resolution, and tunable platform technologies with this capability. We introduce Light-induced Extracellular Vesicle Adsorption (LEVA) as a powerful solution to rapidly advance the study of matrix- and surface-bound EVs and other particles. The versatility of LEVA is demonstrated using commercial GFP-EV standards, EVs from glioblastoma bioreactors, and E. coli outer membrane vesicles (OMVs), with the resulting patterns used for single EV characterization, single cell migration on migrasome-mimetic trails, and OMV-mediated neutrophil swarming. LEVA will enable rapid advancements in the study of matrix- and surface-bound EVs and other particles, and should encourage researchers from many disciplines to create novel diagnostic, biomimetic, immunoengineering, and therapeutic screening assays.
Collapse
|
39
|
Bagherpour R, Bagherpour G, Mohammadi P. Application of Artificial Intelligence in Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38581425 DOI: 10.1089/ten.teb.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Tissue engineering, a crucial approach in medical research and clinical applications, aims to regenerate damaged organs. By combining stem cells, biochemical factors, and biomaterials, it encounters challenges in designing complex 3D structures. Artificial intelligence (AI) enhances tissue engineering through computational modeling, biomaterial design, cell culture optimization, and personalized medicine. This review explores AI applications in organ tissue engineering (bone, heart, nerve, skin, cartilage), employing various machine learning (ML) algorithms for data analysis, prediction, and optimization. Each section discusses common ML algorithms and specific applications, emphasizing the potential and challenges in advancing regenerative therapies.
Collapse
Affiliation(s)
- Reza Bagherpour
- Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ghasem Bagherpour
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parvin Mohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
40
|
Zhou Z, Li T, Zhu X, Zhang Z, Huang G. Engineering Soft Spring Gauges for In Situ Biomaterial and Tissue Weighing. ACS Biomater Sci Eng 2024; 10:2133-2142. [PMID: 38451467 DOI: 10.1021/acsbiomaterials.3c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Hydrogels have gained great attention and broad applications in tissue engineering, regenerative medicine, and drug delivery due to their excellent biocompatibility and degradability. However, accurately and noninvasively characterizing the degradation process of hydrogels remains a challenge. To address this, we have developed a method using soft spring gauges (SSGs) for the in situ weighing of hydrogels. Our approach uses a simple hydrogel-based sacrificial template method to fabricate polydimethylsiloxane (PDMS) SSGs. The SSGs used in this study can characterize hydrogels with a minimum wet weight of approximately 30 mg. Through theoretical derivations, numerical simulations, and experimental characterization, we confirmed that the length change of the SSGs in a buffer solution correlates linearly with the applied hanging weights. This allows us to track and assess the solid mass change of hydrogels during degradation with high feasibility and accuracy. Additionally, we have demonstrated the potential application of SSGs for the in situ characterization of engineered tissue growth. This method represents an advanced approach for in situ hydrogel weighing, holding great promise for advancing the development of hydrogels and other biomaterials in biomedical applications.
Collapse
Affiliation(s)
- Zixing Zhou
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University,Wuhan 430072, P.R. China
| | - Tingting Li
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University,Wuhan 430072, P.R. China
| | - Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University,Wuhan 430072, P. R. China
| | - Zuoqi Zhang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University,Wuhan 430072, P.R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University,Wuhan 430072, P.R. China
| |
Collapse
|
41
|
Fereydani NM, Galehdari H, Hoveizi E, Alghasi A, Ajami M. Ex vivo expansion of hematopoietic stem cells in two/ three-dimensional co-cultures with various source of stromal cells. Tissue Cell 2024; 87:102331. [PMID: 38430847 DOI: 10.1016/j.tice.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
The ex vivo expansion of hematopoietic stem cells, with both high quantities and quality, is considered a paramount issue in cell and gene therapy for hematological diseases. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells reveal the importance of using 2D and 3D coculture as a physiological system simulator in the proliferation, differentiation, and homeostasis of HSCs. Herein, the capacity of mesenchymal stem cells derived from different sources to support the expansion and maintenance of HSPC was compared with each other. We evaluated the fold increase of HSPC, CD34 marker expression, cytokine secretion profile of different MSCs, and the frequency of hematopoietic colony-forming unit parameters. Our results show that there was no significant difference between adipose tissue-MSC, Wharton jelly-MSC, and Endometrial-MSCs in HSPC expansion (fold increase: 34.74±4.38 in Wj-MSC, 32.22±5.07 in AD-MSC, 25.9±1.27 in En-MSCs); However, there were significantly more than the expansion media alone (4.4±0.69). The results obtained from the cytokine secretion analysis also confirm these results. Also, there were significant differences in the clonogenicity of Wj-MSC, En-MSCs, and expansion media (CFU-GEMM: 7±1.73, 2.3±1.15, and 2.3±1.52), which indicated that Wj-MSC could significantly maintain the primitive state. As a result, using Wj-mesenchymal stem cells on a 3D coculture system effectively increases the HSPC expansion and maintains the colonization potential of hematopoietic stem cells.
Collapse
Affiliation(s)
- Nasim Mayeli Fereydani
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Elham Hoveizi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Arash Alghasi
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Monireh Ajami
- Department of Hematology, School of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
42
|
Cao Z, Wang X, Jiang C, Wang H, Mu Y, Sun X, Chen X, Feng C. Thermo-sensitive hydroxybutyl chitosan/diatom biosilica hydrogel with immune microenvironment regulatory for chronic wound healing. Int J Biol Macromol 2024; 262:130189. [PMID: 38360227 DOI: 10.1016/j.ijbiomac.2024.130189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
This study proposes a chronic wound therapeutic strategy based on extracellular matrix (ECM) biomimetics and immune regulation. The hydroxybutyl chitosan/diatom biosilica hydrogel (H/D) which can regulate the immune microenvironment, is prepared from hydroxybutyl chitosan (HBC) as matrix to construct the bionic ECM and diatom biosilica (DB) as structural active unit. The hierarchical porous structure of DB provides strong anchoring interface effect to enhance the mechanical strength of hydrogel, while maintaining its favorable temperature phase transition behavior, improving the material's fit to the wound and convenience of clinical use. Silicates released from DB in H/D accelerate the transition of wounds from inflammation to proliferation and remodeling. In cellular and diabetic rat models, H/D reduces inflammation (induces conversion of M1-type macrophages to M2-type), induces angiogenesis (1.96-fold of control), promotes fibroblast proliferation (180.36 % of control), collagen deposition, keratinocyte migration (47.34 % more than control), and re-epithelialization. This study validates a possible biological mechanism for H/D bioactive hydrogel-mediated regulation of the immune microenvironment and provides a simple synergistic dressing strategy.
Collapse
Affiliation(s)
- Zheng Cao
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaoye Wang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Changqing Jiang
- Qingdao Municipal Hospital, 5# Donghai Middle Road, Qingdao 266000, Shandong Province, China
| | - Haonan Wang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572024, Hainan Province, China; Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572024, Hainan Province, China.
| |
Collapse
|
43
|
Kim B, Kim J, Lee S. Unleashing the Power of Undifferentiated Induced Pluripotent Stem Cell Bioprinting: Current Progress and Future Prospects. Int J Stem Cells 2024; 17:38-50. [PMID: 38164608 PMCID: PMC10899881 DOI: 10.15283/ijsc23146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Induced pluripotent stem cell (iPSC) technology has revolutionized various fields, including stem cell research, disease modeling, and regenerative medicine. The evolution of iPSC-based models has transitioned from conventional two-dimensional systems to more physiologically relevant three-dimensional (3D) models such as spheroids and organoids. Nonetheless, there still remain challenges including limitations in creating complex 3D tissue geometry and structures, the emergence of necrotic core in existing 3D models, and limited scalability and reproducibility. 3D bioprinting has emerged as a revolutionary technology that can facilitate the development of complex 3D tissues and organs with high scalability and reproducibility. This innovative approach has the potential to effectively bridge the gap between conventional iPSC models and complex 3D tissues in vivo. This review focuses on current trends and advancements in the bioprinting of iPSCs. Specifically, it covers the fundamental concepts and techniques of bioprinting and bioink design, reviews recent progress in iPSC bioprinting research with a specific focus on bioprinting undifferentiated iPSCs, and concludes by discussing existing limitations and future prospects.
Collapse
Affiliation(s)
- Boyoung Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
| | - Jiyoon Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
| | - Soah Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
44
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
45
|
Han W, Tian H, Qiang T, Wang H, Wang P. Fluorescence color change of supramolecular polymer networks controlled by crown ether-cation recognition. Chemistry 2024; 30:e202303569. [PMID: 38066712 DOI: 10.1002/chem.202303569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 01/12/2024]
Abstract
We report a fluorescent supramolecular polymer networks (SPNs) system based on crown ether-cation recognition. The polymer side chains bear ammonium cations, which can be recognized by host molecules with a B15C5 unit and a quinoline group at each end. The quinoline group makes the host molecule exhibit blue fluorescence. After the formation of SPNs, the recognition of the crown ether-cation transforms the blue fluorescence into yellow fluorescence. The accompanying fluorescence color change during the formation of SPNs makes it with potential applications in the fields of display, printing, information storage, and bioimaging.
Collapse
Affiliation(s)
- Weiwei Han
- College of Chemistry and Chemical Engineering, Shaanxi Engineering Research Center of Green Low-carbon Energy Materials and Processes, Xi'an Shiyou University, No.18, East Dianzi 2nd Road, Xi'an, Shaanxi, 710065, China
| | - Hailan Tian
- College of Chemistry and Chemical Engineering, Shaanxi Engineering Research Center of Green Low-carbon Energy Materials and Processes, Xi'an Shiyou University, No.18, East Dianzi 2nd Road, Xi'an, Shaanxi, 710065, China
| | - Taotao Qiang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hu Wang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas, 78712, United States
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| |
Collapse
|
46
|
Hahn F, Ferrandez-Montero A, Queri M, Vancaeyzeele C, Plesse C, Agniel R, Leroy-Dudal J. Electroactive 4D Porous Scaffold Based on Conducting Polymer as a Responsive and Dynamic In Vitro Cell Culture Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5613-5626. [PMID: 38278772 PMCID: PMC10859895 DOI: 10.1021/acsami.3c16686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
In vivo, cells reside in a 3D porous and dynamic microenvironment. It provides biochemical and biophysical cues that regulate cell behavior in physiological and pathological processes. In the context of fundamental cell biology research, tissue engineering, and cell-based drug screening systems, a challenge is to develop relevant in vitro models that could integrate the dynamic properties of the cell microenvironment. Taking advantage of the promising high internal phase emulsion templating, we here designed a polyHIPE scaffold with a wide interconnected porosity and functionalized its internal 3D surface with a thin layer of electroactive conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) to turn it into a 4D electroresponsive scaffold. The resulting scaffold was cytocompatible with fibroblasts, supported cellular infiltration, and hosted cells, which display a 3D spreading morphology. It demonstrated robust actuation in ion- and protein-rich complex culture media, and its electroresponsiveness was not altered by fibroblast colonization. Thanks to customized electrochemical stimulation setups, the electromechanical response of the polyHIPE/PEDOT scaffolds was characterized in situ under a confocal microscope and showed 10% reversible volume variations. Finally, the setups were used to monitor in real time and in situ fibroblasts cultured into the polyHIPE/PEDOT scaffold during several cycles of electromechanical stimuli. Thus, we demonstrated the proof of concept of this tunable scaffold as a tool for future 4D cell culture and mechanobiology studies.
Collapse
Affiliation(s)
- Franziska Hahn
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Ana Ferrandez-Montero
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
- Instituto
de Ceramica y Vidrio (ICV), CSIC, Campus Cantoblanco, Kelsen 5., 28049 Madrid, Spain
| | - Mélodie Queri
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Cédric Vancaeyzeele
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Cédric Plesse
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Rémy Agniel
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
| | - Johanne Leroy-Dudal
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
| |
Collapse
|
47
|
Janssen ML, Liu T, Özel M, Bril M, Prasad Thelu HV, E Kieltyka R. Dynamic Exchange in 3D Cell Culture Hydrogels Based on Crosslinking of Cyclic Thiosulfinates. Angew Chem Int Ed Engl 2024; 63:e202314738. [PMID: 38055926 DOI: 10.1002/anie.202314738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Dynamic polymer materials are highly valued substrates for 3D cell culture due to their viscoelasticity, a time-dependent mechanical property that can be tuned to resemble the energy dissipation of native tissues. Herein, we report the coupling of a cyclic thiosulfinate, mono-S-oxo-4-methyl asparagusic acid, to a 4-arm PEG-OH to prepare a disulfide-based dynamic covalent hydrogel with the addition of 4-arm PEG-thiol. Ring opening of the cyclic thiosulfinate by nucleophilic substitution results in the rapid formation of a network showing a viscoelastic fluid-like behaviour and relaxation rates modulated by thiol content through thiol-disulfide exchange, whereas its viscoelastic behaviour upon application as a small molecule linear crosslinker is solid-like. Further introduction of 4-arm PEG-vinylsulfone in the network yields a hydrogel with weeks-long cell culture stability, permitting 3D culture of cell types that lack robust proliferation, such as human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). These cells display native behaviours such as cell elongation and spontaneous beating as a function of the hydrogel's mechanical properties. We demonstrate that the mode of dynamic cyclic thiosulfinate crosslinker presentation within the network can result in different stress relaxation profiles, opening the door to model tissues with disparate mechanics in 3D cell culture.
Collapse
Affiliation(s)
- Merel L Janssen
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Tingxian Liu
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Mertcan Özel
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Maaike Bril
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Hari Veera Prasad Thelu
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Roxanne E Kieltyka
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
48
|
Hendriks J, Zoetebier B, Larrea CS, Le NXT, Saris DBF, Karperien M. Gelatin-tyramine addition and low hydrogel density improves cell attachment, migration, and metabolic activity in vitro and tissue response in vivo in enzymatically crosslinkable dextran-hyaluronic acid hydrogels. Int J Biol Macromol 2024; 259:128843. [PMID: 38104684 DOI: 10.1016/j.ijbiomac.2023.128843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Hydrogels are receiving increasing attention for their use in 3D cell culture, tissue engineering, and bioprinting applications. Each application places specific mechanical and biological demands on these hydrogels. We developed a hydrogel toolbox based on enzymatically crosslinkable polysaccharides via tyramine (TA) moieties, allowing for rapid and tunable crosslinking with well-defined stiffness and high cell viability. Including gelatin modified with TA moieties (Gel-TA) improved the hydrogels' biological properties; 3 T3 fibroblasts and HUVECs attached to and proliferated on the enriched hydrogels at minute Gel-TA concentrations, in contrast to bare or unmodified gelatin-enriched hydrogels. Moreover, we were able to switch HUVECs from a quiescent to a migratory phenotype simply by altering the ligand concentration, demonstrating the potential to easily control cell fate. In encapsulation studies, Gel-TA significantly improved the metabolic activity of 3 T3 fibroblasts in soft hydrogels. Furthermore, we showed rapid migration and network formation in Gel-TA enriched hydrogels in contrast to a non-migratory behavior in non-enriched polysaccharide hydrogels. Finally, low hydrogel density significantly improves tissue response in vivo with large infiltration and low fibrotic reaction. Further development by adding ECM proteins, peptides, and growth factor adhesion sites will lead to a toolbox for hydrogels tailored toward their desired application.
Collapse
Affiliation(s)
- Jan Hendriks
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Bram Zoetebier
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Carolina Serrano Larrea
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Nguyen Xuan Thanh Le
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Daniël B F Saris
- Orthopedic Surgery, University Medical Center Utrecht, Utrecht, Netherlands; Orthopedics and Sports Medicine Mayo Clinic, Rochester, MN, United States of America
| | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
49
|
Capuani S, Campa-Carranza JN, Hernandez N, Chua CYX, Grattoni A. Modeling of a Bioengineered Immunomodulating Microenvironment for Cell Therapy. Adv Healthc Mater 2024:e2304003. [PMID: 38215451 PMCID: PMC11239796 DOI: 10.1002/adhm.202304003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Cell delivery and encapsulation platforms are under development for the treatment of Type 1 Diabetes among other diseases. For effective cell engraftment, these platforms require establishing an immune-protected microenvironment as well as adequate vascularization and oxygen supply to meet the metabolic demands of the therapeutic cells. Current platforms rely on 1) immune isolating barriers and indirect vascularization or 2) direct vascularization with local or systemic delivery of immune modulatory molecules. Supported by experimental data, here a broadly applicable predictive computational model capable of recapitulating both encapsulation strategies is developed. The model is employed to comparatively study the oxygen concentration at different levels of vascularization, transplanted cell density, and spatial distribution, as well as with codelivered adjuvant cells. The model is then validated to be predictive of experimental results of oxygen pressure and local and systemic drug biodistribution in a direct vascularization device with local immunosuppressant delivery. The model highlights that dense vascularization can minimize cell hypoxia while allowing for high cell loading density. In contrast, lower levels of vascularization allow for better drug localization reducing systemic dissemination. Overall, it is shown that this model can serve as a valuable tool for the development and optimization of platform technologies for cell encapsulation.
Collapse
Affiliation(s)
- Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- University of Chinese Academy of Science (UCAS), Beijing, China
| | - Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
50
|
Kantaros A, Ganetsos T, Petrescu FIT. Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way. Biomimetics (Basel) 2024; 9:48. [PMID: 38248622 PMCID: PMC10813684 DOI: 10.3390/biomimetics9010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
In the field of three-dimensional object design and fabrication, this paper explores the transformative potential at the intersection of biomaterials, biopolymers, and additive manufacturing. Drawing inspiration from the intricate designs found in the natural world, this study contributes to the evolving landscape of manufacturing and design paradigms. Biomimicry, rooted in emulating nature's sophisticated solutions, serves as the foundational framework for developing materials endowed with remarkable characteristics, including adaptability, responsiveness, and self-transformation. These advanced engineered biomimetic materials, featuring attributes such as shape memory and self-healing properties, undergo rigorous synthesis and characterization procedures, with the overarching goal of seamless integration into the field of additive manufacturing. The resulting synergy between advanced manufacturing techniques and nature-inspired materials promises to revolutionize the production of objects capable of dynamic responses to environmental stimuli. Extending beyond the confines of laboratory experimentation, these self-transforming objects hold significant potential across diverse industries, showcasing innovative applications with profound implications for object design and fabrication. Through the reduction of waste generation, minimization of energy consumption, and the reduction of environmental footprint, the integration of biomaterials, biopolymers, and additive manufacturing signifies a pivotal step towards fostering ecologically conscious design and manufacturing practices. Within this context, inanimate three-dimensional objects will possess the ability to transcend their static nature and emerge as dynamic entities capable of evolution, self-repair, and adaptive responses in harmony with their surroundings. The confluence of biomimicry and additive manufacturing techniques establishes a seminal precedent for a profound reconfiguration of contemporary approaches to design, manufacturing, and ecological stewardship, thereby decisively shaping a more resilient and innovative global milieu.
Collapse
Affiliation(s)
- Antreas Kantaros
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Theodore Ganetsos
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Florian Ion Tiberiu Petrescu
- “Theory of Mechanisms and Robots” Department, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Polytechnic Bucharest, 060042 Bucharest, Romania
| |
Collapse
|