1
|
Xu D, Wang XN, Wang L, Dai L, Yang C. Investigations on the Synthesis of Chiral Ionic-Liquid-Supported Ligands and Corresponding Transition-Metal Catalysts: Strategy and Experimental Schemes. Molecules 2024; 29:5661. [PMID: 39683819 DOI: 10.3390/molecules29235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Ionic liquids have been utilized in numerous significant applications within the field of chemistry, particularly in organic chemistry, due to their unique physical and chemical properties. In the realm of asymmetric transition-metal-catalyzed transformations, chiral ionic-liquid-supported ligands and their corresponding transition-metal complexes have facilitated these processes in unconventional solvents, especially ionic liquids and water. These innovative reaction systems enable the recycling of transition-metal catalysts while producing optically active organic molecules with comparable or even higher levels of chemo-, regio-, and stereoselectivity compared to their parent catalysts. In this short review, we aim to provide an overview of the structures of chiral ionic-liquid-supported ligands and the synthetic pathways for these ligands and catalysts. Various synthetic methodologies are demonstrated based on the conceptual frameworks of diverse chiral ionic-liquid-supported ligands. We systematically present the structures and comprehensive synthetic pathways of the chiral ionic-liquid-supported ligands and the typical corresponding transition-metal complexes that have been readily applied to asymmetric processes, categorized by their parent ligand framework. Notably, the crucial experimental procedures are delineated in exhaustive detail, with the objective of enhancing comprehension of the pivotal aspects involved in constructing chiral ionic-liquid-tagged ligands and compounds for both scholars and readers. Considering the current limitations of such ligands and catalysts, we conclude with remarks on several potential research directions for future breakthroughs in the synthesis and application of these intriguing ligands.
Collapse
Affiliation(s)
- Di Xu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Xin-Ning Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Dai
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Chen Yang
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
2
|
Murase M, Sakamoto N, Uyama T, Nonaka T, Ohashi M, Sato S, Arai T, Itoh T. Electrochemical CO 2 Fixation and Release Cycle Featuring a Trinuclear Zinc Complex for Direct Air Capture. Angew Chem Int Ed Engl 2024:e202420703. [PMID: 39610057 DOI: 10.1002/anie.202420703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 11/30/2024]
Abstract
CO2 capture technology can mitigate greenhouse gas emissions and global warming. CO2 capture driven by electrochemical reactions is attractive because the operation is carried out at normal temperature and pressure and involves a simple input system using electrical energy. Although promising metal complexes with high CO2 fixation performance have been reported, there are few studies on systems that combine electrochemical reactions and metal complexes. Here, we demonstrated stable CO2 fixation-release cycles using an electrochemical system with trinuclear Zn(II) complex (Zn3L) as the CO2 fixative and an ionic liquid as a supporting electrolyte for the stable operation. This system showed a faster CO2 fixation rate than that of an aqueous alkaline solution at the same concentration. Continuous release and refixation of CO2 were achieved by decomposition and reconstruction of the complex structure induced by H+ and OH- supplied from a bipolar membrane equipped in the electrolytic cell. The CO2 fixation-release cycle was demonstrated even for dilute CO2 (450 ppm) in air, where the CO2 capture rate reached approximately 46 % of CO2 contained in the air under an air flow condition of 200 mL ⋅ min-1. This case, combining electrochemical drive and metal complexes, will provide a new option for CO2 capture technology.
Collapse
Affiliation(s)
- Masakazu Murase
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Naonari Sakamoto
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Takeshi Uyama
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Takamasa Nonaka
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Masataka Ohashi
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Shunsuke Sato
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Takeo Arai
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Toshiyuki Itoh
- Toyota Physical and Chemical Research Institute, 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
3
|
Zhang N, Lahmann V, Bittner JP, Domínguez de María P, Jakobtorweihen S, Smirnova I, Kara S. Redox Biocatalysis in Lidocaine-Based Hydrophobic Deep Eutectic Solvents: Non-Conventional Media Outperform Aqueous Conditions. CHEMSUSCHEM 2024:e202402075. [PMID: 39468952 DOI: 10.1002/cssc.202402075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 10/30/2024]
Abstract
Redox biocatalysis is an essential pillar of the chemical industry. Yet, the enzymes' nature restricts most reactions to aqueous conditions, where the limited substrate solubility leads to unsustainable diluted biotranformations. Non-aqueous media represent a strategic solution to conduct intensified biocatalytic routes. Deep eutectic solvents (DESs) are designable solvents that can be customized to meet specific application needs. Within the large design space of combining DES components (and ratios), hydrophobic DESs hold the potential to be both enzyme-compatible - keeping the enzymes' hydration -, and solubilizers for hydrophobic reactants. We explored two hydrophobic DESs, lidocaine/oleic acid, and lidocaine/decanoic acid, as reaction media for carbonyl reduction catalyzed by horse liver alcohol dehydrogenase, focusing on the effect of water contents and on maximizing substrate loadings. Enzymes remained highly active and stable in the DESs with 20 wt % buffer, whereas the reaction performance in DESs outperformed the pure buffer system with hydrophobic substrates (e. g., cinnamaldehyde to form the industrially relevant cinnamyl alcohol), with a 3-fold specific activity. Notably, the cinnamaldehyde reduction was for the first time performed at 800 mM (~100 g L-1) with full conversion, which opens up new avenues to industrial applications of hydrophobic DESs for enzyme catalysis.
Collapse
Affiliation(s)
- Ningning Zhang
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167, Hannover, Germany
| | - Viktoria Lahmann
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167, Hannover, Germany
| | - Jan Philipp Bittner
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073, Hamburg, Germany
| | - Pablo Domínguez de María
- Sustainable Momentum, SL., Av. Ansite 3, 4-6, 35011, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073, Hamburg, Germany
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, Eißendorfer Straße 38, 21073, Hamburg, Germany
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073, Hamburg, Germany
| | - Selin Kara
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167, Hannover, Germany
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus, 8000, Denmark
| |
Collapse
|
4
|
Yu CC, Chiang KY, Dhinojwala A, Bonn M, Hunger J, Nagata Y. Flipping Water Orientation at the Surface of Water-in-Salt and Salt-in-Water Solutions. J Phys Chem Lett 2024; 15:10265-10271. [PMID: 39360956 PMCID: PMC11472344 DOI: 10.1021/acs.jpclett.4c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Salt-in-water and water-in-salt mixtures are promising for battery applications and fine-tuning of room-temperature ionic liquid (RTIL) properties. Although critical processes take place at interfaces of these systems, including charge transfer and heterogeneous catalytic reactions, the microscopic interfacial structures remain unclear. Here, we apply heterodyne-detected sum-frequency generation spectroscopy to aqueous solutions of imidazolium-based RTILs to unveil the microscopic structure of the interfaces of these solutions with air. Our results show that, under salt-in-water conditions, the orientation of the OH group hydrogen-bonded to the other water molecules flips from the OH group pointing down into the liquid for pure water to up due to the accumulation of anions in the cation-rich interfacial region. However, under the water-in-salt condition, the interfacial water molecules are confined by RTIL, and their orientation is down. Details of the water organization depend critically on the alkyl chain length of the imidazolium cation. Our results demonstrate that the surface structure can be tuned by altering the molecular structure and concentration of the RTIL.
Collapse
Affiliation(s)
- Chun-Chieh Yu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kuo-Yang Chiang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ali Dhinojwala
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
5
|
Chałupka J, Marszałł MP, Sikora A. Enzymatic Kinetic Resolution of Racemic 1-(Isopropylamine)-3-phenoxy-2-propanol: A Building Block for β-Blockers. Int J Mol Sci 2024; 25:10730. [PMID: 39409060 PMCID: PMC11476467 DOI: 10.3390/ijms251910730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to optimize the kinetic resolution of building blocks for the synthesis of β-blockers using Candida rugosa lipases, which could be potentially used to synthesize enantiomerically pure β-blockers further. Reaction mixtures were incubated in a thermostated shaker. Qualitative and quantitative analyses of the reaction mixtures were performed using chiral stationary phases and the UPLC-IT-TOF system. Of the 24 catalytic systems prepared, a system containing lipase from Candida rugosa MY, [EMIM][BF4] and toluene as a two-phase reaction medium and isopropenyl acetate as an acetylating agent was optimal. This resulted in a product with high enantiomeric purity produced via biotransformation, whose enantioselectivity was E = 67.5. Using lipases from Candida rugosa enables the enantioselective biotransformation of the β-blockers building block. The biocatalyst used, the reaction environment, and the acetylating agent significantly influence the efficiency of performer kinetic resolutions. The studies made it possible to select an optimum system, a prerequisite for obtaining a product of high enantiomeric purity. As a result of the performed biotransformation, the (S)-enantiomer of the β-blocker derivative was obtained, which can be used to further synthesize enantiomerically pure β-blockers.
Collapse
Affiliation(s)
- Joanna Chałupka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Adam Sikora
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
6
|
Zhang W, Zhang M, Song J, Zhang Y, Nian B, Hu Y. Spacer arm of ionic liquids facilitated laccase immobilization on magnetic graphene enhancing its stability and catalytic performance. CHEMOSPHERE 2024; 362:142735. [PMID: 38950743 DOI: 10.1016/j.chemosphere.2024.142735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
To fulfill the requirements of environmental protection, a magnetically recoverable immobilized laccase has been developed for water pollutant treatment. In order to accomplish this objective, we propose a polydopamine-coated magnetic graphene material that addresses the challenges associated with accumulation caused by electrostatic interactions between graphene and enzyme molecules, which can lead to protein denaturation and inactivation. To achieve this, we present a polydopamine-coated magnetic graphene material that binds to the enzyme molecule through flexible spacer arms formed by ionic liquids. The immobilized laccase exhibited a good protective effect on laccase and showed a high stability and recycling ability. Laccase-ILs-PDA-MGO has a wider pH and temperature range and retains about 80% of its initial activity even after incubation at 50 °C for 2 h, which is 2.2 times more active than free laccase. Furthermore, the laccase-ILs-PDA-MGO exhibited a remarkable removal efficiency of 97.0% and 83.9% toward 2,4-DCP and BPA within 12 h at room temperature. More importantly, laccase-ILs-PDA-MGO can be recovered from the effluent and used multiple times for organic pollutant removal, while maintaining a relative removal efficiency of 80.6% for 2,4-DCP and 81.4% for BPA after undergoing seven cycles. In this study, a strategy for laccase immobilization by utilizing ILs spacer arms to modify GO aims to provide valuable insights into the advancement of efficient enzyme immobilization techniques and the practical application of immobilized enzymes in wastewater treatment.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Jifei Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Olave B. DNA nanotechnology in ionic liquids and deep eutectic solvents. Crit Rev Biotechnol 2024; 44:941-961. [PMID: 37518062 DOI: 10.1080/07388551.2023.2229950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Abstract
Nucleic acids have the ability to generate advanced nanostructures in a controlled manner and can interact with target sequences or molecules with high affinity and selectivity. For this reason, they have applications in a variety of nanotechnology applications, from highly specific sensors to smart nanomachines and even in other applications such as enantioselective catalysis or drug delivery systems. However, a common disadvantage is the use of water as the ubiquitous solvent. The use of nucleic acids in non-aqueous solvents offers the opportunity to create a completely new toolbox with unprecedented degrees of freedom. Ionic liquids (ILs) and deep eutectic solvents (DESs) are the most promising alternative solvents due to their unique electrolyte and solvent roles, as well as their ability to maintain the stability and functionality of nucleic acids. This review aims to be a comprehensive, critical, and accessible evaluation of how much this goal has been achieved and what are the most critical parameters for accomplishing a breakthrough.
Collapse
Affiliation(s)
- Beñat Olave
- University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
8
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
9
|
Itoh T, Kamada K, Nokami T, Ikawa T, Yagi K, Ikegami S, Inoue R, DeYoung AD, Kim HJ. On the Moisture Absorption Capability of Ionic Liquids. J Phys Chem B 2024; 128:6134-6150. [PMID: 38874477 PMCID: PMC11215776 DOI: 10.1021/acs.jpcb.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Due to their many attractive physicochemical properties, ionic liquids (ILs) have received extensive attention with numerous applications proposed in various fields of science and technology. Despite this, the molecular origins of many of their properties, such as the moisture absorption capability, are still not well understood. For insight into this, we systematically synthesized 24 types of ILs by the combination of the dimethyl phosphate anion with various types of alkyl group-substituted cyclic cations─imidazolium, pyrazolium, 1,2,3-triazolium, and 1,2,4-triazolium cations─and performed a detailed analysis of the dehumidification properties of these ILs and their aqueous solutions. It was found that these IL systems have a high dehumidification capability (DC). Among the monocationic ILs, the best performance was obtained with 1-cyclohexylmethyl-4-methyl-1,2,4-triazolium dimethyl phosphate, whose DC (per mol) value is 14 times higher than that of popular solid desiccants like CaCl2 and silica gel. Dicationic ILs, such as 1,1'-(propane-1,3-diyl)bis(4-methyl-1,2,4-triazolium) bis(dimethyl phosphate), showed an even better moisture absorption, with a DC (per mol) value about 20 times higher than that of CaCl2. Small- and wide-angle X-ray scattering measurements of eight types of 1,2,4-triazolium dimethyl phosphate ILs were performed and revealed that the majority of these ILs form nanostructures. Such nanostructures, which vary with the identity of the IL and the water content, fall into three main categories: bicontinuous microemulsions, hexagonal cylinders, and micelle-like structures. Water in the solutions exists primarily in polar regions in the nanostructures; these spaces function as water pockets at relatively low water concentrations. Since the structure and stability of the aggregated forms of the ILs are mainly governed by the interactions of nonpolar groups, the alkyl side chains of the cations play an important role in the DC and temperature-dependent equilibrium water vapor pressure of the IL solutions. Our experimental findings and molecular dynamics simulation results shed light on the moisture absorption mechanism of the IL aqueous solutions from a molecular perspective.
Collapse
Affiliation(s)
- Toshiyuki Itoh
- Toyota
Physical and Chemical Research Institute, 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kentaro Kamada
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Toshiki Nokami
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Taiji Ikawa
- Toyota
Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kenichi Yagi
- Toyota
Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Shuji Ikegami
- Technology
and Innovation Center, Daikin Industries,
Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Ryo Inoue
- Technology
and Innovation Center, Daikin Industries,
Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Andrew D. DeYoung
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hyung J. Kim
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
O’Brien MH, Ranganathan R, Merunka D, Stafford AK, Bleecker SD, Peric M. Effect of Charge on the Rotation of Prolate Nitroxide Spin Probes in Room-Temperature Ionic Liquids. J Mol Liq 2024; 404:124994. [PMID: 38855052 PMCID: PMC11155483 DOI: 10.1016/j.molliq.2024.124994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
We have studied the rotational diffusion of two prolate nitroxide probes, the doubly negatively charged peroxylamine disulfonate (Frémy's salt - FS) and neutral di-tert-butyl nitroxide (DTBN), in a series of 1-alkyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids (RTILs) having alkyl chain lengths from two to eight carbons using electron paramagnetic resonance (EPR) spectroscopy. Though the size and shape of the probes are reasonably similar, they behave differently due to the charge difference. The rotation of FS is anisotropic, and the rotational anisotropy increases with the alkyl chain length of the cation, while the rotation of DTBN is isotropic. The hyperfine coupling constant of DTBN decreases as a function of the alkyl chain length and is proportional to the relative permittivity of ionic liquids. On the other hand, the hyperfine coupling constant of FS increases with increasing chain length. These behaviors indicate the location of each probe in RTILs. FS is likely located in the polar region near the network of charged imidazolium ions. DTBN molecules are predominately distributed in the nonpolar domains.
Collapse
Affiliation(s)
- Meghan H. O’Brien
- Department of Physics and Astronomy, California State University, Northridge, Northridge, California 91330, United States
| | - Radha Ranganathan
- Department of Physics and Astronomy, California State University, Northridge, Northridge, California 91330, United States
| | - Dalibor Merunka
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Alexander K. Stafford
- Department of Physics and Astronomy, California State University, Northridge, Northridge, California 91330, United States
| | - Steven D. Bleecker
- Department of Physics and Astronomy, California State University, Northridge, Northridge, California 91330, United States
| | - Miroslav Peric
- Department of Physics and Astronomy, California State University, Northridge, Northridge, California 91330, United States
| |
Collapse
|
11
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
12
|
Paporakis S, Liu KTC, Brown SJ, Harper JB, Martin AV, Greaves TL. Thermal Stability of Protic Ionic Liquids. J Phys Chem B 2024; 128:4208-4219. [PMID: 38650054 DOI: 10.1021/acs.jpcb.3c08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
While protic ionic liquids (ILs) have found great success as solvents for a broad range of applications, little is known about their degradation when exposed to temperatures above ambient for extended periods of time. Here, we report the thermal stability of six protic ILs, namely, ethylammonium nitrate, ethylammonium formate, ethylammonium acetate, ethanolammonium nitrate, ethanolammonium formate, and ethanolammonium acetate. The effect of heating each ionic liquid to 60 °C for 1 h or 1 week (sealed or open to the atmosphere) was evaluated by considering the changes to water content, pH, mass, thermal phase transitions, and molecular structure after each treatment. Heating each of the six ILs when sealed led to measurable shifts in their water content and 10 wt % pH, but there was no significant change in their mass, thermal phase transitions according to differential scanning calorimetry (DSC), or molecular structure using proton nuclear magnetic resonance (1H NMR) spectra, indicating that the samples were largely unchanged. The samples that were heated open to the atmosphere also displayed no significant changes after 1 h but displayed significant changes after 1 week.
Collapse
Affiliation(s)
- Stefan Paporakis
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne ,VIC 3000, Australia
| | - Kenny T-C Liu
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne ,VIC 3000, Australia
| | - Stuart J Brown
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne ,VIC 3000, Australia
| | - Jason B Harper
- School of Chemistry, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Andrew V Martin
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne ,VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne ,VIC 3000, Australia
| |
Collapse
|
13
|
Egorova KS, Kibardin AV, Posvyatenko AV, Ananikov VP. Mechanisms of Biological Effects of Ionic Liquids: From Single Cells to Multicellular Organisms. Chem Rev 2024; 124:4679-4733. [PMID: 38621413 DOI: 10.1021/acs.chemrev.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V Kibardin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Alexandra V Posvyatenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
14
|
Goyal P, Sengupta A, Srivastava A, Mukherjee S, Rout VV, Mohapatra PK. In-Situ-Generated Fluoride-Assisted Rapid Dissolution of Uranium Oxides by Ionic Liquids. Inorg Chem 2024; 63:7161-7176. [PMID: 38591969 DOI: 10.1021/acs.inorgchem.3c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A quantitative, rapid, endothermic dissolution of U3O8 in C4mim·PF6 (1-alkyl-3-methyl imidazolium hexafluorophosphate) has been achieved within 2 h at 65 °C by in situ generated fluoride ions by pre-equilibrating the ionic liquid with suitable concentrations of nitric acid. The efficiency of the dissolution followed the trend: UO3 > UO2 > U3O8. The fluoride generation was found to increase with the concentration of nitric acid being equilibrated, the water content of the ionic liquid, and also the time of equilibration. The rate of dissolution of U3O8 followed the trend: C4mim·PF6> C6mim·PF6 > C8mim·PF6. The maximum loading observed for the present case was 200 mg mL-1 which is considered to be quite high with an ionic liquid. The effects of different acid pre-equilibration (HClO4, HCl) on F- generation and subsequent dissolution characteristics have also been investigated. The in situ F- generation, as well as U3O8 dissolution, were found to predominantly follow a pseudo-second-order rate kinetics, while the rate constants for U3O8 dissolution were found to be higher than that of F- generation. The dissolved uranium was successfully electrodeposited on a Cu plate, as confirmed by EDXRF, while the formation of UO2 was revealed from the XRD pattern of the deposit.
Collapse
Affiliation(s)
- Priya Goyal
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Ashutosh Srivastava
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sumanta Mukherjee
- Product Development Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vaibhavi V Rout
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prasanta K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
15
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Yang G, Chen X, Shi W, Chen N, Liu Y, Zhang B, Shao Z. Facile Preparation of a Photo-Cross-Linked Silk Fibroin-Poly Ionic Liquid Hydrogel with Antifreezing and Ion Conductive Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1543-1552. [PMID: 38163251 DOI: 10.1021/acsami.3c15712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The silk fibroin (SF)/ionic liquid (IL) based hydrogel is a kind of remarkable substrate for flexible devices because of its subzero-temperature elasticity, electrical conductivity, and water retention, although the procedure of the gelation is considered complex and time-consuming. In this work, we introduced an approximate method for the development of novel photo-cross-linked SF/IL hydrogel, that is, SF-IMA/PIL hydrogel via the modification of silk fibroin chain with 2-isocyanatoethyl methacrylate (SF-IMA) in a certain ionic liquid with an unsaturated double bond. The chemical cross-linking between methacrylated SF and IL was triggered by UV light, while the physical cross-linking of the hydrogel was attributed to the β-sheet formation of SF in SF-IMA/IL mixed solution. In addition to being a UV-induced three-dimensional (3D) printable one, the SF-IMA/PIL hydrogel performed significant ionic conductivity between room temperature and -50 °C and water retention within a wide range of relative humidity, which were the featured advantages as the ionic liquid involved. Moreover, the static and dynamic mechanical tests demonstrated that the hydrogel reserved its great elasticity at -50 °C and displayed its stiffness transition temperatures between -100 and -70 °C.
Collapse
Affiliation(s)
- Gongwen Yang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xuyang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Wenjuan Shi
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
17
|
Singh S, Kumar A, Nebhani L, Hazra CK. Sustainable Sulfonic Acid Functionalized Tubular Shape Mesoporous Silica as a Heterogeneous Catalyst for Selective Unsymmetrical Friedel-Crafts Alkylation in One Pot. JACS AU 2023; 3:3400-3411. [PMID: 38155639 PMCID: PMC10751772 DOI: 10.1021/jacsau.3c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/30/2023]
Abstract
The development of general and more sustainable heterogeneous catalytic processes for Friedel-Crafts (FC) alkylation reactions is a key objective of interest for the synthesis of pharmaceuticals and commodity chemicals. Sustainable heterogeneous catalysis for the typical FC alkylation of an easily accessible carbonyl electrophile and arenes or with two different arene nucleophiles in one-pot is a prime challenge. Herein, we present a resolution to these issues through the design and utilization of a mesoporous silica catalyst that has been functionalized with sulfonic acid. For the synthesis of sulfonic acid-functionalized mesoporous silica (MSN-SO3H), thiol-functionalized mesoporous silica was first synthesized by the co-condensation method, followed by oxidation of the thiol functionality to the sulfonic acid group. Sulfonation of mesoporous silica was confirmed by 13C CP MAS NMR spectroscopy. Further, the devised heterogeneous catalysis using MSN-SO3H has been successfully employed in the construction of diverse polyalkanes including various bioactive molecules, viz arundine, tatarinoid-C, and late-stage functionalization of natural products like menthol and Eugenol. Further, we have utilized this sustainable technique to facilitate the formation of unsymmetrical C-S bonds in a one-pot fashion. In addition, the catalyst was successfully recovered and recycled for eight cycles, demonstrating the high sustainability and cost-effectiveness of this protocol for both academic and industrial applications.
Collapse
Affiliation(s)
- Sanjay Singh
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Amit Kumar
- Department
of Materials Science and Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Leena Nebhani
- Department
of Materials Science and Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Kumar Hazra
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
18
|
Jian X, Li C, Feng X. Strategies for modulating transglycosylation activity, substrate specificity, and product polymerization degree of engineered transglycosylases. Crit Rev Biotechnol 2023; 43:1284-1298. [PMID: 36154438 DOI: 10.1080/07388551.2022.2105687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
Glycosides are widely used in many fields due to their favorable biological activity. The traditional plant extractions and chemical methods for glycosides production are limited by environmentally unfriendly, laborious protecting group strategies and low yields. Alternatively, enzymatic glycosylation has drawn special attention due to its mild reaction conditions, high catalytic efficiency, and specific stereo-/regioselectivity. Glycosyltransferases (GTs) and retaining glycoside hydrolases (rGHs) are two major enzymes for the formation of glycosidic linkages. Therein GTs generally use nucleotide phosphate activated donors. In contrast, GHs can use broader simple and affordable glycosyl donors, showing great potential in industrial applications. However, most rGHs mainly show hydrolysis activity and only a few rGHs, namely non-Leloir transglycosylases (TGs), innately present strong transglycosylation activities. To address this problem, various strategies have recently been developed to successfully tailor rGHs to alleviate their hydrolysis activity and obtain the engineered TGs. This review summarizes the current modification strategies in TGs engineering, with a special focus on transglycosylation activity enhancement, substrate specificity modulation, and product polymerization degree distribution, which provides a reference for exploiting the transglycosylation potentials of rGHs.
Collapse
Affiliation(s)
- Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
19
|
Li Y, Jin J, Fan W, Huang D. π-Extension of Indoles Using Acrolein Linker: Synthesis of Indolo[3,2- a]carbazole-6-carbaldehydes and Racemosin B. Org Lett 2023; 25:8284-8289. [PMID: 37947410 DOI: 10.1021/acs.orglett.3c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A simple method for the synthesis of indolo[3,2-a]carbazole-6-carbaldehydes by the π-extension of indoles with acrolein is reported. The scope of the method is demonstrated with 33 examples. The products exhibit high activities toward advanced synthesis and are proved to be able to produce valuable chemicals, such as natural products, dyes, and organic fluorescent materials. In addition, the alkaloid racemosin B can be prepared by this method in two steps in ∼50% overall yield.
Collapse
Affiliation(s)
- Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jiang Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
20
|
Zhang W, Zhang Y, Lu Z, Nian B, Yang S, Hu Y. Enhanced stability and catalytic performance of laccase immobilized on magnetic graphene oxide modified with ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118975. [PMID: 37716172 DOI: 10.1016/j.jenvman.2023.118975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Graphite oxide (GO) is an excellent laccase immobilization material. However, the electrostatic interaction between graphene leads to the accumulation of GO, as well as the interaction with the surface of enzyme molecules causing protein denaturation and deactivation, which limits its further industrial application. In this study, the ionic liquids (ILs) modification strategy was proposed to improve the stability and catalytic performance of immobilized laccase. The laccase-ILs-MGO exhibited remarkable enzymatic properties, with significant enhancements in organic solvent tolerance, thermal and operational stability. The laccase-ILs-MGO system exhibited a remarkable removal efficiency of 95.5% towards 2,4-dichlorophenol (2,4-DCP) within 12 h and maintained over 70.0% removal efficiency after seven reaction cycles. In addition, the efficient elimination of other phenolic compounds and recalcitrant polycyclic aromatic hydrocarbons could also be accomplished. Molecular dynamics simulation and molecular docking studies demonstrated that immobilized laccase exhibited superior structural rigidity and stronger hydrogen bond interactions with substrates compared to free laccase, which was beneficial for the stability of both the laccase and substrate degradation efficiency. Therefore, this study proposed a simple and practical strategy for modifying GO with ILs, providing novel insights into developing efficient enzyme immobilization techniques.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Shipin Yang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
21
|
Hao R, Zhang M, Tian D, Lei F, Qin Z, Wu T, Yang H. Bottom-Up Synthesis of Multicompartmentalized Microreactors for Continuous Flow Catalysis. J Am Chem Soc 2023; 145:20319-20327. [PMID: 37676729 DOI: 10.1021/jacs.3c04886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The bottom-up assembly of biomimetic multicompartmentalized microreactors for use in continuous flow catalysis remains a grand challenge because of the structural instability or the absence of liquid microenvironments to host biocatalysts in the existing systems. Here, we address this challenge using a strategy that combines stepwise Pickering emulsification with interface-confined cross-linking. Our strategy allows for the fabrication of robust multicompartmentalized liquid-containing microreactors (MLMs), whose interior architectures can be exquisitely tuned in a bottom-up fashion. With this strategy, enzymes and metal catalysts can be separately confined in distinct subcompartments of MLMs for processing biocatalysis or chemo-enzymatic cascade reactions. As exemplified by the enzyme-catalyzed kinetic resolution of racemic alcohols, our systems exhibit a durability of 2000 h with 99% enantioselectivity. Another Pd-enzyme-cocatalyzed dynamic kinetic resolution of amines further demonstrates the versatility and long-term operational stability of our MLMs in continuous flow cascade catalysis. This study opens up a new way to design efficient biomimetic multicompartmental microreactors for practical applications.
Collapse
Affiliation(s)
- Ruipeng Hao
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ming Zhang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Danping Tian
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Fu Lei
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhiqin Qin
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hengquan Yang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
22
|
Cheng W, Nian B. Computer-Aided Lipase Engineering for Improving Their Stability and Activity in the Food Industry: State of the Art. Molecules 2023; 28:5848. [PMID: 37570817 PMCID: PMC10421223 DOI: 10.3390/molecules28155848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
As some of the most widely used biocatalysts, lipases have exhibited extreme advantages in many processes, such as esterification, amidation, and transesterification reactions, which causes them to be widely used in food industrial production. However, natural lipases have drawbacks in terms of organic solvent resistance, thermostability, selectivity, etc., which limits some of their applications in the field of foods. In this systematic review, the application of lipases in various food processes was summarized. Moreover, the general structure of lipases is discussed in-depth, and the engineering strategies that can be used in lipase engineering are also summarized. The protocols of some classical methods are compared and discussed, which can provide some information about how to choose methods of lipase engineering. Thermostability engineering and solvent tolerance engineering are highlighted in this review, and the basic principles for improving thermostability and solvent tolerance are summarized. In the future, comput er-aided technology should be more emphasized in the investigation of the mechanisms of reactions catalyzed by lipases and guide the engineering of lipases. The engineering of lipase tunnels to improve the diffusion of substrates is also a promising prospect for further enhanced lipase activity and selectivity.
Collapse
Affiliation(s)
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China;
| |
Collapse
|
23
|
Fujita K, Ohno H. Hydrated Ionic Liquids: Perspective for Bioscience. CHEM REC 2023; 23:e202200282. [PMID: 36744600 DOI: 10.1002/tcr.202200282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Indexed: 02/07/2023]
Abstract
Hydrated ionic liquid (IL) is a simple mixture of IL and water. Unique aqueous electrolyte solution can be designed by mixing IL with limited amount of water. In most hydrated ILs, there are no free water and all are strongly interacted with ions. The properties of hydrated ILs, such as polarity, viscosity, ion mobility, and hydrogen bonding ability, can therefore be controlled simply by water content. This mixture is expected to provide similar environment to that of living cell, and is desired to be effective solvents for biomolecules. In this account, we would like to survey the basic properties, recent results, and future aspects of the hydrated ILs.
Collapse
Affiliation(s)
- Kyoko Fujita
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroyuki Ohno
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
24
|
Abbasi N, De Silva S, Biswas A, Anderson JL. Ultra-Low Viscosity and High Magnetic Susceptibility Magnetic Ionic Liquids Featuring Functionalized Diglycolic Acid Ester Rare-Earth and Transition Metal Chelates. ACS OMEGA 2023; 8:27751-27760. [PMID: 37546640 PMCID: PMC10399152 DOI: 10.1021/acsomega.3c03938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Magnetic ionic liquids (MILs) comprise a subcategory of ionic liquids (ILs) and contain a paramagnetic metal center allowing them to be readily manipulated by an external magnetic field. While MILs are popularly employed as solvents in catalysis, separations, and organic synthesis, most low viscosity combinations possess a hydrophilic character that limits their use in aqueous matrices. To date, no study has reported the synthesis and characterization of hydrophobic MILs with viscosities similar to those of hydrophilic MILs and organic solvents while simultaneously exhibiting enhanced magnetic and thermal properties. In this study, diglycolic acid esters are employed as ligands to chelate with paramagnetic metals to produce cations that are paired with metal chelates composed of hexafluoroacetylacetonate ligands to form MILs incorporating multiple metal centers in the cation and anion. Viscosity values below 31.6 cP were obtained for these solvents, the lowest ever reported for hydrophobic MILs. Solubilities in nonpolar solvents such as benzene were observed to be as high as 50% (w/v) MIL-to-solvent ratio while being insoluble in water at concentrations as low as 0.01% (w/v). Effective paramagnetic moment values for these solvents ranged from 5.33 to 15.56 Bohr magnetons (μB), with mixed metal MILs containing multiple lanthanides in the anion generally offering higher magnetic susceptibilities. MILs composed of ligands containing octyl substituents were found to possess thermal stabilities up to 190 °C. The synthetic strategies explored in this study exploit the highly tunable nature of the employed cation and anion pairs to design versatile ultra-low viscosity magnetoactive solvents that possess tremendous potential and applicability in liquid-liquid separation systems, catalysis, and microfluidics where the mechanical movement of the solvent can be easily facilitated using electromagnets.
Collapse
Affiliation(s)
| | - Shashini De Silva
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Anis Biswas
- Ames
National Laboratory—USDOE, Ames, Iowa 50011, United States
| | - Jared L. Anderson
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
25
|
Kamimura A, Kawamoto T, Fujii K. Ionic Liquids for the Chemical Recycling of Polymeric Materials and Control of Their Solubility. CHEM REC 2023; 23:e202200269. [PMID: 36638263 DOI: 10.1002/tcr.202200269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Plastics are wonderful materials that have modernized our daily life; however, importance of effective recycling of plastics is gradually recognized widely. In this account, we describe our discovery of new and efficient methods for the chemical recycling of plastics using ionic liquids (ILs). Since the chemical recycling usually requires high temperature conditions to breakdown chemical bonds in polymeric materials, we thought that less-flammability and non-volatility of ionic liquids are the most suitable physical properties for this purpose. Ionic liquids successfully depolymerized polyamides and unsaturated polyesters smoothly and corresponding monomeric materials were obtained in good yields. To the best of our knowledge, this was the first use of Ionic liquids for such reactions. However, we encountered another difficult problem-separation. To solve the problem, we developed solubility-switchable ionic liquids, a new type of ionic liquids in which solubility is readily changed using the chemistry of protective groups. Conversion between hydrophilic and lipophilic forms was readily achieved using a simple chemical treatment under mild conditions, and the complete separation of products was achieved by liquid-liquid-extraction. The robustness of either form unlocks their wide use as reaction solvents.
Collapse
Affiliation(s)
- Akio Kamimura
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| | - Takuji Kawamoto
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| | - Kenta Fujii
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| |
Collapse
|
26
|
Itoh T. Enzymatic Reactions using Ionic Liquids for Green Sustainable Chemical Process; Stabilization and Activation of Lipases. CHEM REC 2023; 23:e202200275. [PMID: 36631274 DOI: 10.1002/tcr.202200275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Indexed: 01/13/2023]
Abstract
The enzymatic reaction is highly respected from an environmentally-friendly point-of-view. Optimization of the reaction media and supporting materials of enzymes must be investigated in parallel with the effort to develop new enzymes. Lipases are frequently used for organic syntheses as synthetic tools even industry because of their acceptance of having a broad range of substrates, stability, and availability. We have investigated the possibility of ILs as both a solvent and activating or stabilization agent of enzymes, in particular, lipase as a model enzyme. ILs allowed recyclable use of a lipase and significant acceleration of transesterification, and also enhanced the stability and reaction activity of a lipase by immobilization through a lyophilization process. We discuss how we enhanced the enzyme capability using the IL engineering focusing on lipase-catalyzed reactions, i. e., realization of the recyclable use of an enzyme, how ILs mediated the enhanced reaction rate, and improved the stability of the enzyme.
Collapse
Affiliation(s)
- Toshiyuki Itoh
- Toyota Physical and Chemical Research Institute, 41-1 Yokomichi, Nagakute city, Aichi 480-1192, Japan
| |
Collapse
|
27
|
Duan Z, Wang Y, Ouyang B, Wang P. Efficient asymmetric synthesis of ethyl (R)-3-hydroxybutyrate by recombinant Escherichia coli cells under high substrate loading using eco-friendly ionic liquids as cosolvent. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02897-y. [PMID: 37393574 DOI: 10.1007/s00449-023-02897-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Ionic liquids (ILs) which synthesized from bio-renewable materials have recently attracted much attention for their applications in biocatalysis. Ethyl (R)-3-hydroxybutyrate ((R)-EHB) as a versatile chiral intermediate is of great interest in pharmaceutical synthesis. This study focuses on evaluating the performances of choline chloride (ChCl)-based and tetramethylammonium (TMA)-based neoteric ILs in the efficient synthesis of (R)-EHB via the bioreduction of ethyl acetoacetate (EAA) at high substrate loading by recombinant Escherichia coli cells. It was found that choline chloride/glutathione (ChCl/GSH, molar ratio 1:1) and tetramethylammonium/cysteine ([TMA][Cys], molar ratio 1:1) as eco-friendly ILs not only enhanced the solubility of water-insoluble EAA in the aqueous buffer system, but also appropriately improved the membrane permeability of recombinant E. coli cells, thus boosting catalytic reduction efficiency of EAA to (R)-EHB. In the developed ChCl/GSH- or [TMA][Cys]-buffer systems, the space-time yields of (R)-EHB achieved 754.9 g/L/d and 726.3 g/L/d, respectively, which are much higher than neat aqueous buffer system (537.2 g/L/d space-time yield). Meanwhile, positive results have also been demonstrated in the bioreduction of other prochiral ketones in the established IL-buffer systems. This work exhibits an efficient bioprocess for (R)-EHB synthesis under 325 g/L (2.5 M) substrate loading, and provides promising ChCl/GSH- and [TMA][Cys]-buffer systems employed in the biocatalysis for hydrophobic substrate.
Collapse
Affiliation(s)
- Zhiwen Duan
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaowu Wang
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bin Ouyang
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Pu Wang
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
28
|
Che S, Yin L, Chen M, Fan Y, Xu A, Zhou C, Fu H, She Y. Real-time monitoring of mercury(II) in water and food samples using a quinoline-based ionic probe. Food Chem 2023; 407:135052. [PMID: 36493472 DOI: 10.1016/j.foodchem.2022.135052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Herein, a novel ionic fluorescent probe for mercury(II) detection is presented consisting of a functional quinoline-based IL. Interestingly, the probe displayed high sensitivity (0.8 nM) and selectivity through the regulation function of electrostatic attraction, where its performance was significantly superior to that of quinoline probes without negative charge. Furthermore, the probe was found to exhibit two different fluorescent signals and colorimetric signals in the presence of different concentrations of mercury(II), which was consistent with the reaction mechanisms of the generation of large conjugated systems and the formation of anion-mercury(II) complexes. Moreover, this probe could be further loaded on a simple filter paper to serve as a visual paper sensor due to its adequate response time of less than 5 s. This regulation function strategy of electrostatic attraction has excellent potential for use in the precise detection of targeted analytes in real complex samples with improved accuracy and selectivity.
Collapse
Affiliation(s)
- Siying Che
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linlin Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Jiaxing Ctr Dis Control & Prevent, Jiaxing 314050, PR China
| | - Ming Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yao Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Anni Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chunsong Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
29
|
Yang W, Gu Q, Zhou J, Liu X, Yu X. High-Value Bioconversion of Ginseng Extracts in Betaine-Based Deep Eutectic Solvents for the Preparation of Deglycosylated Ginsenosides. Foods 2023; 12:496. [PMID: 36766025 PMCID: PMC9914094 DOI: 10.3390/foods12030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Deep eutectic solvents (DES), as a green alternative to traditional organic solvents in biocatalysis, not only activate proteins but even increase the efficiency of enzymatic reactions. Here, DES were used in a combinatorial enzyme-catalyzed system containing β-glucosidase BGLAt and β-galactosidase BGALAo to produce deglycosylated ginsenosides (De-g) from ginseng extracts (GE). The results showed that DES prepared with betaine and ethylene glycol (molar ratio, 1:2) could significantly stimulate the activity of the combinatorial enzymes as well as improve the acid resistance and temperature stability. The DES-based combinatorial enzyme-catalyzed system could convert 5 g of GE into 1.24 g of De-g (F1, F2, 20 (S)-PPT, and CK) at 24 h, which was 1.1 times that of the buffer sample. As confirmed by the spectral data, the changes in the conformations of the combinatorial enzymes were more favorable for the binding reaction with the substrates. Moreover, the constructed DES-based aqueous two-phase system enabled the recovery of substantial amounts of DES and De-g from the top phase. These results demonstrated that DES shows great application as a reaction solvent for the scale-up production of De-g and provide insights for the green extraction of natural products.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550003, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
30
|
Kamimura A, Yanagisawa K, Kaneko N, Kawamoto T, Fujii K. Preparation and Hydrophilicity/Lipophilicity of Solubility-Switchable Ionic Liquids. ACS OMEGA 2022; 7:48540-48554. [PMID: 36591188 PMCID: PMC9798742 DOI: 10.1021/acsomega.2c06998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Various solubility-switchable ionic liquids were prepared. Their syntheses were readily achieved in a few steps from glyceraldehyde dimethylacetal or its derivatives. Pyridinium, imidazolium, and phosphonium derivatives also exhibited solubility-switchable properties; acetal-type ionic liquids were soluble in organic solvents, while diol-type ones exhibited a preference for being dissolved in the aqueous phase. The solubility of the ionic liquids prepared in this study also depended on the number of carbon atoms in the cationic parts of the ionic liquids. Interconversion between the diol-type and the acetal-type ionic liquids was readily achieved under the standard conditions for diol acetalization and acetal hydrolysis. One of the prepared ionic liquids was also examined as a solvent for an organic reaction.
Collapse
|
31
|
Suo H, Geng X, Sun Y, Zhang L, Yang J, Yang F, Yan H, Hu Y, Xu L. Surface Modification of Magnetic ZIF-90 Nanoparticles Improves the Microenvironment of Immobilized Lipase and Its Application in Esterification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15384-15393. [PMID: 36448653 DOI: 10.1021/acs.langmuir.2c02672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Interactions of enzymes with supports significantly affect the activity and stability of immobilized enzymes. Herein, amino-functionalized ionic liquid (IL)-grafted magnetic zeolitic imidazolate framework-90 (MZIF-90) was prepared and used to immobilize porcine pancreatic lipase (PPL). The nanocomposites were fully characterized; meanwhile, the interactions between ILs and ZIF-90 were calculated based on density functional theory. The prepared biocatalyst (PPL-ILs/MZIF-90) had a lipase loading of 178.3 mg/g and hydrolysis activity up to 287.5 U/g. When the biocatalyst was used to synthesize isoamyl acetate, the reaction media, molar ratio of alcohol/acid, temperature, and reaction time were optimized. Under the optimized reaction conditions (in hexane, alcohol/acid = 3:1, under 45 °C, reacted for 9 h), the ester yield reached 85.5%. The results of the stability test showed that PPL-ILs/MZIF-90 retained 88.7% of the initial activity after storing for 35 days and 92.5% of the initial activity after reusing for seven cycles for synthesizing isoamyl acetate. Moreover, the secondary structure analysis showed that the synthesized supports protected the active conformation of immobilized lipase, which lead to the enhanced catalytic performance. Additionally, the biocatalyst can be easily separated with a magnet, which facilitated the reusability. This study provides insights regarding the application of metal organic framework composites in the field of enzyme catalysis.
Collapse
Affiliation(s)
- Hongbo Suo
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xinyue Geng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yinghui Sun
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Lu Zhang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Fan Yang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hui Yan
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Lili Xu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
32
|
Li F, Xu Y, Wang C, Wang C, Xie H, Xu Y, Chen P, Wang L. Efficient Synthesis of Substituted Pyrazoles Via [3+2] Cycloaddition Catalyzed By Lipase in Ionic Liquid. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
33
|
Pan Y, Tong K, Lin M, Zhuang W, Zhu W, Chen X, Li Q. Aggregation behaviours of sulfobetaine zwitterionic surfactants in EAN. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Wang Z, Song H. Phase behaviors, properties and potential application of temperature-responsive microemulsions based on tropine ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Molecule(s) of Interest: I. Ionic Liquids-Gateway to Newer Nanotechnology Applications: Advanced Nanobiotechnical Uses', Current Status, Emerging Trends, Challenges, and Prospects. Int J Mol Sci 2022; 23:ijms232214346. [PMID: 36430823 PMCID: PMC9696100 DOI: 10.3390/ijms232214346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Ionic liquids are a potent class of organic compounds exhibiting unique physico-chemical properties and structural compositions that are different from the classical dipolar organic liquids. These molecules have found diverse applications in different chemical, biochemical, biophysical fields, and a number of industrial usages. The ionic liquids-based products and procedural applications are being developed for a number of newer industrial purposes, and academic uses in nanotechnology related procedures, processes, and products, especially in nanobiotechnology and nanomedicine. The current article overviews their uses in different fields, including applications, functions, and as parts of products and processes at primary and advanced levels. The application and product examples, and prospects in various fields of nanotechnology, domains of nanosystem syntheses, nano-scale product development, the process of membrane filtering, biofilm formation, and bio-separations are prominently discussed. The applications in carbon nanotubes; quantum dots; and drug, gene, and other payload delivery vehicle developments in the nanobiotechnology field are also covered. The broader scopes of applications of ionic liquids, future developmental possibilities in chemistry and different bio-aspects, promises in the newer genres of nanobiotechnology products, certain bioprocesses controls, and toxicity, together with emerging trends, challenges, and prospects are also elaborated.
Collapse
|
36
|
Green Dynamic Kinetic Resolution—Stereoselective Acylation of Secondary Alcohols by Enzyme-Assisted Ruthenium Complexes. Catalysts 2022. [DOI: 10.3390/catal12111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dynamic kinetic resolution allows for the synthesis of enantiomerically pure asymmetric alcohols. Cyclopentadienyl-derived ruthenium catalysts were immobilized with an ionic liquid, [BMIM][NTf2], on multiwall carbon nanotubes and used for the racemization of chiral secondary alcohols. This successful approach was combined with the enantioselective enzymatic acylation of secondary alcohols (1-phenylethanol and 1-(1-naphthyl)ethanol) using Novozyme® 435. The resulting catalytic system of the ruthenium racemization catalysts and enzymatic acylation led to chiral esters being obtained by dynamic kinetic resolution. The immobilized catalytic system in the ionic liquid gave the same activity of >96% yield within 6 h and a selectivity of 99% enantiomeric excess as the homogeneous system, while allowing for the convenient separation of the desired products from the catalyst. Additionally, the process can be regarded as green, since the efficient reuse of the catalytic system was demonstrated.
Collapse
|
37
|
Wei B, Wu Y, Liu F, Su M, Liang H. One-pot simultaneous extraction and enzymatic hydrolysis to prepare glycyrrhetinic acid via ionic liquid-based two-phase systems. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Miele M, Pillari V, Pace V, Alcántara AR, de Gonzalo G. Application of Biobased Solvents in Asymmetric Catalysis. Molecules 2022; 27:molecules27196701. [PMID: 36235236 PMCID: PMC9570574 DOI: 10.3390/molecules27196701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The necessity of more sustainable conditions that follow the twelve principles of Green Chemistry have pushed researchers to the development of novel reagents, catalysts and solvents for greener asymmetric methodologies. Solvents are in general a fundamental part for developing organic processes, as well as for the separation and purification of the reaction products. By this reason, in the last years, the application of the so-called green solvents has emerged as a useful alternative to the classical organic solvents. These solvents must present some properties, such as a low vapor pressure and toxicity, high boiling point and biodegradability, and must be obtained from renewable sources. In the present revision, the recent application of these biobased solvents in the synthesis of optically active compounds employing different catalytic methodologies, including biocatalysis, organocatalysis and metal catalysis, will be analyzed to provide a novel tool for carrying out more ecofriendly organic processes.
Collapse
Affiliation(s)
- Margherita Miele
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
| | - Veronica Pillari
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
| | - Vittorio Pace
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| | - Gonzalo de Gonzalo
- Department of Organic Chemistry, University of Seville, c/ Profesor García González 1, 41014 Seville, Spain
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| |
Collapse
|
39
|
Behera S, Balasubramanian S. Molecular simulations explain the exceptional thermal stability, solvent tolerance and solubility of protein-polymer surfactant bioconjugates in ionic liquids. Phys Chem Chem Phys 2022; 24:21904-21915. [PMID: 36065955 DOI: 10.1039/d2cp02636h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Proteins complexed electrostatically with polymer surfactants constitute a viscous liquid by themselves, called the solvent-free protein liquid (SFPL). A solution of SFPL in a room temperature ionic liquid (PS-IL) offers the protein hyperthermal stability, higher solubility and greater IL tolerance. A generic understanding of these protein-polymer systems is obtained herein through extensive atomistic molecular dynamics simulations of three different enzymes (lipase A, lysozyme and myoglobin) under various conditions. Along with increased intra-protein hydrogen bonding, the surfactant coating around the proteins imparts greater thermal stability, and also aids in screening protein-IL interactions, endowing them IL tolerance. The reduced surface polarity of the protein-polymer bioconjugate and hydrogen bonding between the ethylene glycol groups of the surfactant and the IL cation contribute to the facile solvation of the protein in its PS-IL form. The results presented here rationalize several experimental observations and will aid in the improved design of such hybrid materials for sustainable catalysis.
Collapse
Affiliation(s)
- Sudarshan Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.
| |
Collapse
|
40
|
Ünlü AE, Prasad B, Anavekar K, Bubenheim P, Liese A. The effect of natural deep eutectic solvents on laccase activity and oligomerization of rutin. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ayşe Ezgi Ünlü
- Institute of Technical Biocatalysis, Ankara University, Hamburg, Germany
- Department of Chemical Engineering, Faculty of Engineering, TUHH, Ankara, Turkey
| | - Brinda Prasad
- Institute of Technical Biocatalysis, Ankara University, Hamburg, Germany
| | - Kishan Anavekar
- Institute of Technical Biocatalysis, Ankara University, Hamburg, Germany
| | - Paul Bubenheim
- Institute of Technical Biocatalysis, Ankara University, Hamburg, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Ankara University, Hamburg, Germany
| |
Collapse
|
41
|
Cai Y, Xu T, Meng X, von Solms N, Zhang H, Thomsen K. Formation of robust CEI film on high voltage LiNi0.6Co0.2Mn0.2O2 cathode enabled by functional [PIVM][TFSA] ionic liquid additive. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Hoppe J, Byzia E, Szymańska M, Drozd R, Smiglak M. Acceleration of lactose hydrolysis using beta-galactosidase and deep eutectic solvents. Food Chem 2022; 384:132498. [DOI: 10.1016/j.foodchem.2022.132498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
|
43
|
An effect of choline lactate based low transition temperature mixtures on the lipase catalytic properties. Colloids Surf B Biointerfaces 2022; 216:112518. [PMID: 35594750 DOI: 10.1016/j.colsurfb.2022.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
A new series of low transition temperature mixures (LTTM) based on choline lactate quaternary ammonium salt and various hydrogen bond donors was prepared and characterized towards their physicochemical properties and usability as an enzymatic reaction mixture for lipase-catalyzed transesterification reactions. Studies of low transition temperature mixtures have shown a long-term stabilizing effect for lipase as well as a positive influence on lipase thermal stability. In the case of Ch[Lac]:Gly: EthGly increasing the stability of lipase by 8 °C (up to 55.2 °C) compared to the control sample. Conducted transesterification reactions were characterized by high yields - up to 98% - and high purity of the obtained products.
Collapse
|
44
|
Xiang X, Xiong Y, Zhang Q, Lei H, Liu K, Wang S. Ionic Liquids Modified Cu3(PO4)2 Hybrid Nanoflower for Dehydrogenase Immobilization by Biomimetic Mineralization. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Pan X, Xu L, Li Y, Wu S, Wu Y, Wei W. Strategies to Improve the Biosynthesis of β-Lactam Antibiotics by Penicillin G Acylase: Progress and Prospects. Front Bioeng Biotechnol 2022; 10:936487. [PMID: 35923572 PMCID: PMC9340067 DOI: 10.3389/fbioe.2022.936487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
β-Lactam antibiotics are widely used anti-infection drugs that are traditionally synthesized via a chemical process. In recent years, with the growing demand for green alternatives, scientists have turned to enzymatic synthesis. Penicillin G acylase (PGA) is the second most commercially used enzyme worldwide with both hydrolytic and synthetic activities toward antibiotics, which has been used to manufacture the key antibiotic nucleus on an industrial level. However, the large-scale application of PGA-catalyzed antibiotics biosynthesis is still in the experimental stage because of some key limitations, such as low substrate concentration, unsatisfactory yield, and lack of superior biocatalysts. This paper systematically reviews the strategies adopted to improve the biosynthesis of β-lactam antibiotics by adjusting the enzymatic property and manipulating the reaction system in recent 20 years, including mining of enzymes, protein engineering, solvent engineering, in situ product removal, and one-pot reaction cascade. These advances will provide important guidelines for the future use of enzymatic synthesis in the industrial production of β-lactam antibiotics.
Collapse
Affiliation(s)
- Xin Pan
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- *Correspondence: Xin Pan, ; Yong Wu, ; Wenping Wei,
| | - Lei Xu
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaru Li
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sihua Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Yong Wu
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- *Correspondence: Xin Pan, ; Yong Wu, ; Wenping Wei,
| | - Wenping Wei
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- *Correspondence: Xin Pan, ; Yong Wu, ; Wenping Wei,
| |
Collapse
|
46
|
Can deep eutectic solvents be the best alternatives to ionic liquids and organic solvents: A perspective in enzyme catalytic reactions. Int J Biol Macromol 2022; 217:255-269. [PMID: 35835302 DOI: 10.1016/j.ijbiomac.2022.07.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 01/17/2023]
Abstract
As a new generation of green solvents, deep eutectic solvents (DESs) have been considered as a promising alternative to classical organic solvents and ionic liquids (ILs). DESs are normally formed by two or more components via various h-bonds interactions. Up to date, four types of DESs are found, namely, type I DESs (formed by MClx, namely FeCl2, AlCl3, ZnCl2, CuCl2 and AgCl et al., and quaternary ammonium salts); type II DESs (formed by metal chloride hydrates and quaternary ammonium salts); type III DESs (formed by choline chlorides and different kinds of HBDs) and type IV DESs (formed by salts of transition metals and urea). DESs share many advantages, such as low vapor pressure, good substrate solubility and thermal stability, with ILs, and offering a high potential to be the medium of biocatalysis reactions. In this case, this paper reviews the applications of DESs in enzymatic reactions. Lipases are the most widely used enzyme in DESs systems as their versatile applications in various reactions and robustness. Interestingly, DESs can improve the efficiency of these reactions via enhancing the substrates solubility and the activity and stability of enzymes. Therefore, the directed engineering of DESs for special reactions such as degradation of polymers in high temperature or strong acid-base conditions will be one of the future perspectives of the investigation DESs.
Collapse
|
47
|
Krasovskii VG, Kapustin GI, Glukhov LM, Chernikova EA, Kustov LM. Dicationic Ionic Liquids As Heat Transfer Fluids in Vacuum. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422070172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Adsorption and Breaking of Hazardous Methyl Mercury on Hybrid Structures of Ionic Liquids and ZnO Nanoclusters. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Blach D, Girardi VR, Silber JJ, Correa NM, Falcone RD. How the type of interface can alter the behavior of an aprotic ionic liquid-water mixture entrapped in different reverse micelles. An exploratory study using an enzymatic reaction as a sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Fan W, Zhang Y, Li Y, Zhang W, Huang D. Solvent-Free Strategy for Direct Access to Versatile Quaternary Ammonium Salts with Complete Atom Economy. CHEMSUSCHEM 2022; 15:e202200529. [PMID: 35466550 DOI: 10.1002/cssc.202200529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Indexed: 06/14/2023]
Abstract
A solvent-free method for the synthesis of quaternary ammonium salts (QAS) by iodoquaternization of alkenes with N-heteroarenes was reported. Its advantages lie in energy-saving and clean production by using iodine as the oxidant and manual grinding the starting materials, together with the complete atom economy and low process mass intensity (PMI) value. Demonstrated by 50 examples, the generated QAS was proved to be able to produce valuable chemicals, such as biological protease inhibitors, anti-cancer agents, and organic fluorescent materials.
Collapse
Affiliation(s)
- Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Wei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|