1
|
Gerken JB, Goes SL, Piszel PE, Al Abdulghani AJ, Hermans I, Stahl SS. The Aqueous and Acetonitrile Bond Dissociation Free Energies of N-Hydroxyphthalimide. J Org Chem 2024; 89:16010-16014. [PMID: 39414562 DOI: 10.1021/acs.joc.4c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Widely cited values of 89 and 90.9 kcal/mol for the bond-dissociation free energy of N-hydroxyphthalimide (NHPI) in water and acetonitrile, respectively, are in error. The sources of the errors leading to these values have been explored and corrected. The corrected values are confirmed through new experiments in aqueous and acetonitrile media and are found to be 84.4 ± 0.1 and 80.04 ± 0.06 kcal/mol, respectively.
Collapse
Affiliation(s)
- James B Gerken
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shannon L Goes
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Wisconsin Energy Institute, 1552 University Avenue, Madison, Wisconsin 53726, United States
| | - Paige E Piszel
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Abdullah J Al Abdulghani
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Ive Hermans
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Wisconsin Energy Institute, 1552 University Avenue, Madison, Wisconsin 53726, United States
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Wisconsin Energy Institute, 1552 University Avenue, Madison, Wisconsin 53726, United States
| |
Collapse
|
2
|
Zhao J, Deng C, Zhang L, Zhang J, Rong Q, Wang F, Liu ZQ. NHPI-Catalyzed Electro-Oxidation of Alcohols to Aldehydes and Ketones. J Org Chem 2024; 89:15864-15876. [PMID: 39437145 DOI: 10.1021/acs.joc.4c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A practical and recyclable electro-oxidation of alcohols to aldehydes and ketones by using N-hydroxyphthalimide (NHPI) as the catalyst is presented. Through an undivided pool, under constant current conditions, various alcohols can be oxidized to the corresponding aldehydes or ketones in a high yield. Compared with previous methods, this system has the following characteristics: (1) the catalyst, electrode, electrolyte, and solvent (mainly water) are recyclable; (2) it has many advantages such as mild reaction conditions, easy operation, and good tolerance of functional groups; and (3) it can be smoothly scaled up to kilogram-scale production.
Collapse
Affiliation(s)
- Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chengling Deng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lanlan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiatai Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Quanjin Rong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
van der Ham MPJM, Creus J, Bitter JH, Koper MTM, Pescarmona PP. Electrochemical and Non-Electrochemical Pathways in the Electrocatalytic Oxidation of Monosaccharides and Related Sugar Alcohols into Valuable Products. Chem Rev 2024. [PMID: 39480753 DOI: 10.1021/acs.chemrev.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In this contribution, we review the electrochemical upgrading of saccharides (e.g., glucose) and sugar alcohols (e.g., glycerol) on metal and metal-oxide electrodes by drawing conclusions on common trends and differences between these two important classes of biobased compounds. For this purpose, we critically review the literature on the electrocatalytic oxidation of saccharides and sugar alcohols, seeking trends in the effect of reaction conditions and electrocatalyst design on the selectivity for the oxidation of specific functional groups toward value-added compounds. Importantly, we highlight and discuss the competition between electrochemical and non-electrochemical pathways. This is a crucial and yet often neglected aspect that should be taken into account and optimized for achieving the efficient electrocatalytic conversion of monosaccharides and related sugar alcohols into valuable products, which is a target of growing interest in the context of the electrification of the chemical industry combined with the utilization of renewable feedstock.
Collapse
Affiliation(s)
- Matthijs P J M van der Ham
- Biobased Chemistry and Technology, Wageningen Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jordi Creus
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- TNO, Westerduinweg 3, 1755 LE Petten, The Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Paolo P Pescarmona
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Altınçekiç NG, Lander CW, Roslend A, Yu J, Shao Y, Noh H. Electrochemically Determined and Structurally Justified Thermochemistry of H atom Transfer on Ti-Oxo Nodes of the Colloidal Metal-Organic Framework Ti-MIL-125. J Am Chem Soc 2024. [PMID: 39479987 DOI: 10.1021/jacs.4c10421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium dioxide (TiO2) has long been employed as a (photo)electrode for reactions relevant to energy storage and renewable energy synthesis. Proton-coupled electron transfer (PCET) reactions with equimolar amounts of protons and electrons at the TiO2 surface or within the bulk structure lie at the center of these reactions. Because a proton and an electron are thermochemically equivalent to an H atom, these reactions are essentially H atom transfer reactions. Thermodynamics of H atom transfer has a complex dependence on the synthetic protocol and chemical history of the electrode, the reaction medium, and many others; together, these complications preclude the understanding of the H atom transfer thermochemistry with atomic-level structural knowledge. Herein, we report our success in employing open-circuit potential (EOCP) measurements to quantitatively determine the H atom transfer thermochemistry at structurally well-defined Ti-oxo clusters within a colloidally stabilized metal-organic framework (MOF), Ti-MIL-125. The free energy to transfer H atom, Ti3+O-H bond dissociation free energy (BDFE), was measured to be 68(2) kcal mol-1. To the best of our understanding, this is the first report on using EOCP measurements to quantify thermochemistry on any MOFs. The proton topology, the structural change upon the redox reaction, and BDFE values were further quantitatively corroborated using computational simulations. Furthermore, comparisons of the EOCP-derived BDFEs of Ti-MIL-125 to similar parameters in the literature suggest that EOCP should be the preferred method for quantitatively accurate BDFE calculations. The reported success in employing EOCP for nanosized Ti-MIL-125 should lay the ground for thermochemical measurements of other colloidal systems, which are otherwise challenging. Implications of these measurements on Ti-MIL-125 as an H atom acceptor in chemical reactions and comparisons with other MOFs/metal oxides are discussed.
Collapse
Affiliation(s)
- Nazmiye Gökçe Altınçekiç
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chance W Lander
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ayman Roslend
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiaqi Yu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Hyunho Noh
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
5
|
Wu YM, Ma XL, Li FY, Huang CC, Gao L, Zhang Y, Pan YM, He MX, Mo ZY. Dearomative Cyclization/Spirocyclization via Electrochemical Reductive Hydroarylation of Nonactivated Arenes. Org Lett 2024; 26:8993-8998. [PMID: 39400289 DOI: 10.1021/acs.orglett.4c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
An electrochemical cyclization/spirocyclization hydroarylation via reductive dearomatization of a series of nonactivated arenes including N-substituted indoles, indole-3-carboxamide derivatives, and iodo-substituted benzamides is described. This protocol boasts high atom efficiency, broad substrate applicability, and excellent selectivity. Utilizing a simple undivided cell, various nonactivated arenes undergo cyclization/spirocyclization through the intramolecular addition of aryl radicals to an aromatic ring, yielding 50 indolines, spirocyclizative hydroarylation products, and phenanthridinones.
Collapse
Affiliation(s)
- Yi-Miao Wu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Fang-Yao Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Chun-Chan Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Lei Gao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Mu-Xue He
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Zu-Yu Mo
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
6
|
Marquez JD, Gitter SR, Gilchrist GC, Hughes RW, Sumerlin BS, Evans AM. Electrochemical Postpolymerization Modification and Deconstruction of Macromolecules. ACS Macro Lett 2024; 13:1345-1354. [PMID: 39319830 DOI: 10.1021/acsmacrolett.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Electrolysis is an emerging approach to polymer postpolymerization modification, deconstruction, and depolymerization. Electrochemical reactions are particularly appealing for macromolecular transformations because of their high selectivity, ability to be externally monitored, and intrinsic scalability. Despite these desirable features and the recent resurgent use of small-molecule electrochemical reactions, the development of macromolecular electrolysis has been limited. Herein, we highlight recent examples of polymer transformations driven by heterogeneous redox chemistry. Throughout our exploration of macromolecular electrolysis, we provide our perspective on opportunities for continued investigation in this nascent field. Specifically, we highlight how targeted reaction development through deeper mechanistic insight will expand the scope of materials that can be (de)constructed with electrochemical methods. As this insight is developed, we expect macromolecular electrolysis to emerge as a high-functioning and complementary tool for macromolecular functionalization and deconstruction.
Collapse
Affiliation(s)
- Joshua D Marquez
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Sean R Gitter
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Graham C Gilchrist
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Rhys W Hughes
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Austin M Evans
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Li H, Zhao G, Yang Y, Zhong D, Yang Z, Wang C. Bright luminol electrochemiluminescence mediated by a simple TEMPO radical for visualized multiplex detection. Talanta 2024; 278:126530. [PMID: 39002260 DOI: 10.1016/j.talanta.2024.126530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
In this work, a series of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radicals bearing different functional groups were exploited as a simple catalyst to promote electrochemiluminescence (ECL) generation in luminol/H2O2 system. These TEMPO radicals were found to facilitate the electrochemical oxidation of H2O2 and luminol through different catalytic mechanisms, as well as the subsequent ECL generation of luminol/H2O2 system. The electrochemical oxidation and luminol ECL generation could be tuned by the functional group on the para-position of TEMPO, for which the structure/activity relationship was revealed. Finally, with the combination of enzymatic system, luminol ECL enhancement up to 9.6-fold was obtained through the catalysis of 4-hydroxyl-TEMPO. The enhanced luminol ECL allows acquiring brighter ECL images in a single-electrochemical system (SEES) for multiplex detection of cholesterol, H2O2 and glucose.
Collapse
Affiliation(s)
- Haidong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, 225002, China.
| | - Guangyue Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, 225002, China
| | - Yuxin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, 225002, China
| | - Danli Zhong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, 225002, China
| | - Zhenxing Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, 225002, China
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, 225002, China.
| |
Collapse
|
8
|
Kim T, Kim Y, Wuttig A. Interfacial Science for Electrosynthesis. CURRENT OPINION IN ELECTROCHEMISTRY 2024; 47:101569. [PMID: 39092135 PMCID: PMC11290363 DOI: 10.1016/j.coelec.2024.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Interfacial science and electroorganic syntheses are inextricably linked because all electrochemical reactions occur at the interface between the electrode and the solution. Thus, the surface chemistry of the electrode material impacts the organic reaction selectivity. In this short review, we highlight emergent examples of electrode surface chemistries that enable selective electroorganic synthesis in three reaction classes: (1) hydrogenation, (2) oxidation, and (3) reductive C‒C bond formation between two electrophiles. We showcase the breadth of techniques, including materials and in-situ characterization, requisite to establish mechanistic schemes consistent with the observed reactivity patterns. Leveraging an electrode's unique surface chemistry will provide complementary approaches to tune the selectivity of electroorganic syntheses and unlock an electrode's catalytic properties.
Collapse
Affiliation(s)
- Taemin Kim
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - YeJi Kim
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| |
Collapse
|
9
|
Budny-Godlewski K, Piekarski DG, Justyniak I, Leszczyński MK, Nawrocki J, Kubas A, Lewiński J. Uncovering Factors Controlling Reactivity of Metal-TEMPO Reaction Systems in the Solid State and Solution. Chemistry 2024; 30:e202401968. [PMID: 38801170 DOI: 10.1002/chem.202401968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Nitroxides find application in various areas of chemistry, and a more in-depth understanding of factors controlling their reactivity with metal complexes is warranted to promote further developments. Here, we report on the effect of the metal centre Lewis acidity on both the distribution of the O- and N-centered spin density in 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and turning TEMPO from the O- to N-radical mode scavenger in metal-TEMPO systems. We use Et(Cl)Zn/TEMPO model reaction system with tuneable reactivity in the solid state and solution. Among various products, a unique Lewis acid-base adduct of Cl2Zn with the N-ethylated TEMPO was isolated and structurally characterised, and the so-called solid-state 'slow chemistry' reaction led to a higher yield of the N-alkylated product. The revealed structure-activity/selectivity correlations are exceptional yet are entirely rationalised by the mechanistic underpinning supported by theoretical calculations of studied model systems. This work lays a foundation and mechanistic blueprint for future metal/nitroxide systems exploration.
Collapse
Affiliation(s)
- Krzysztof Budny-Godlewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Dariusz G Piekarski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał K Leszczyński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Jan Nawrocki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
10
|
Tao Y, Ma W, Sun R, Huang C, Lu Q. Asymmetric Paired Electrolysis: Enantioselective Alkylation of Sulfonylimines via C(sp 3)-H Functionalization. Angew Chem Int Ed Engl 2024; 63:e202409222. [PMID: 38958225 DOI: 10.1002/anie.202409222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Enantioselective transformation of ubiquitous C(sp3)-H bonds into three-dimensional chiral scaffolds is of longstanding interest to synthetic chemists. Herein, an asymmetric paired electrolysis enables a highly efficient and sustainable approach to the enantioselective alkylation of sulfonylimines via C(sp3)-H functionalization. In this protocol, anodic oxidation for benzylic radical formation and Lewis acid-catalyzed sulfonylimine reduction on the cathode were seamlessly cross-coupled (up to 88 % yield). Enantioenriched chiral amines containing a tetrasubstituted carbon stereocenter are accessed with high enantioselectivity (up to 96 % ee). Mechanistic studies suggest that the amine generated in situ could serve as a base to deprotonate phenols and decrease the oxidation potential of the reaction, allowing phenols with lower potentials to be preferentially oxidized.
Collapse
Affiliation(s)
- Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wan Ma
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
11
|
Windels S, Vanhoof JR, Spittaels S, Coeck R, De Vos DE, Cuypers T. Tandem Electrooxidation - Reductive Amination of Biobased Isohexides Towards Bicyclic Diamines. CHEMSUSCHEM 2024; 17:e202301627. [PMID: 38551954 DOI: 10.1002/cssc.202301627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Isohexide-derived diamines are considered preferred precursors for the production of biobased polyurethanes and polyamides. However, current synthesis methods from isohexides suffer from serious issues concerning selectivity and the recyclability of the process auxiliaries (e. g. homogeneous catalysts), which renders a translation to the industry highly unlikely. Here, we report on the production of such diamine building blocks, via a tandem electrooxidation - reductive amination process in which the process auxiliaries can be easily recycled. The application of (immobilized) TEMPO in combination with simple halides (e. g. NaBr) in the electrochemical step even enables the oxidation of the sterically hindered exo-OHs of the isohexides to the corresponding diketones (yield up to 99 %). In the subsequent reductive amination, the produced ketones are atom-efficiently converted to isohexide diamines utilizing NH3, H2, and Ru/C and an acid resin cocatalyst.
Collapse
Affiliation(s)
- Simon Windels
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium)
| | - Jef R Vanhoof
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium)
| | - Sander Spittaels
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium)
| | - Robin Coeck
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium)
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium)
| | - Thomas Cuypers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium)
| |
Collapse
|
12
|
Zhang H, Zhao Q, Zhong K, Bai R, Dong J, Ma J, Zhang J, Strathmann TJ. Overlooked interaction between redox-mediator and bisphenol-A in permanganate oxidation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100421. [PMID: 38774192 PMCID: PMC11106538 DOI: 10.1016/j.ese.2024.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 05/24/2024]
Abstract
Research efforts on permanganate (Mn(VII)) combined with redox-mediator (RM), have received increasing attention due to their significant performance for bisphenol-A (BPA) removal. However, the mechanisms underpinning BPA degradation remain underexplored. Here we show the overlooked interactions between RM and BPA during permanganate oxidation by introducing an RM-N-hydroxyphthalimide (NHPI). We discovered that the concurrent generation of MnO2 and phthalimide-N-oxyl (PINO) radical significantly enhances BPA oxidation within the pH range of 5.0-6.0. The detection of radical cross-coupling products between PINO radicals and BPA or its derivatives corroborates the pivotal role of radical cross-coupling in BPA oxidation. Intriguingly, we observed the formation of an NHPI-BPA complex, which undergoes preferential oxidation by Mn(VII), marked by the emergence of an electron-rich domain in NHPI. These findings unveil the underlying mechanisms in the Mn(VII)/RM system and bridge the knowledge gap concerning BPA transformation via complexation. This research paves the way for further exploration into optimizing complexation sites and RM dosage, significantly enhancing the system's efficiency in water treatment applications.
Collapse
Affiliation(s)
- Honglong Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| | - Qiaoqiao Zhao
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, PR China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, PR China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, PR China
| | - Jiaojiao Dong
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Timothy J. Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, United States
| |
Collapse
|
13
|
Li XL, Qing SJ, Sun X, Yu Z, Xu HJ, Fu Y. Copper-Catalyzed Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran Assisted by TEMPOL in Liquid Sunlight Methanol. CHEMSUSCHEM 2024:e202401527. [PMID: 39166715 DOI: 10.1002/cssc.202401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
2,5-diformylfuran (DFF) is a significant biomass-derived compound with diverse applications in novel furan-based materials, fragrances, fuel additives, and drug synthesis. A pivotal challenge in DFF synthesis was developing a method to produce DFF under mild conditions using sustainable feedstocks. In this study, an affordable 4-hydroxy-2,2,6,6-tetramethylpiperidine (TEMPOL)- assisted Cu(OAc)2 catalytic system for aerobic oxidation reaction of HMF to DFF in liquid sunlight methanol solvent was developed. The effects of parameters such as metal species, catalyst amount, solvent species, base structure, and reaction temperature were systematically investigated. The evolution of product distribution in the reaction solution at various times was monitored and analyzed using 1H-NMR spectroscopy. FT-IR and ESI-MS characterizations were employed to integrate experimental findings and elucidate the reaction mechanism. The highest DFF yield of 96 % and complete conversion of HMF were obtained. Furthermore, a total DFF yield of 68.6 % was achieved from fructose using a two-steps method, demonstrating the potential for scalable production. The establishment of this catalytic system presents a novel approach for the selective preparation of DFF from sustainable feedstock.
Collapse
Affiliation(s)
- Xing-Long Li
- School of Carbon Neutrality Science and Engineering, Aust Hefei Institute for Advanced Research, Anhui University of Science and Technology, Hefei, 231131, P. R. China
| | - Shao-Jun Qing
- School of Carbon Neutrality Science and Engineering, Aust Hefei Institute for Advanced Research, Anhui University of Science and Technology, Hefei, 231131, P. R. China
| | - Xun Sun
- School of Carbon Neutrality Science and Engineering, Aust Hefei Institute for Advanced Research, Anhui University of Science and Technology, Hefei, 231131, P. R. China
| | - Zhen Yu
- School of Carbon Neutrality Science and Engineering, Aust Hefei Institute for Advanced Research, Anhui University of Science and Technology, Hefei, 231131, P. R. China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yao Fu
- Anhui Province Key Laboratory of Biomass Clean Energy, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
14
|
Porras-Santos LF, Sandoval-Lira J, Hernández-Pérez JM, Quintero L, López-Mendoza P, Sartillo-Piscil F. Ferrier Glycosylation Mediated by the TEMPO Oxoammonium Cation. J Org Chem 2024; 89:11281-11292. [PMID: 39102649 PMCID: PMC11334189 DOI: 10.1021/acs.joc.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The TEMPO oxoammonium cation has been proven to be both an efficient oxidizing reagent and an electrophilic substrate frequently found in organic reactions. Here, we report that this versatile chemical reagent can also be used as an efficient promoter for C- and N-glycosylation reactions through a Ferrier rearrangement with moderate to high yields. This unprecedented reactivity is explained in terms of a Lewis acid activation of glycal by TEMPO+ forming a type of glycal-TEMPO+ mesomeric structure, which occurs through an extended vinylogous hyperconjugation toward the π*(O═N+) orbital [LP(O1) → π*(C1═C2), π*(C1═C2) → σ*(C3-O3), and LP(O6) → π*(O═N+)]. This enables the formation of the respective Ferrier glycosyl cation, which is trapped by various nucleophiles. The extended hyperconjugation (or double hyperconjugation) toward the π*(O═N+) orbital, which confers the Lewis acid character of the TEMPO cation, was supported by natural bond orbital analysis at the M06-2X/6-311+G** level of theory.
Collapse
Affiliation(s)
- Luis F Porras-Santos
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Jacinto Sandoval-Lira
- Departamento de Ciencias Básicas, TecNM campus Instituto Tecnológico Superior de San Martín Texmelucan, Camino a la Barranca de Pesos, San Martín Texmelucan 74120, Puebla, Mexico
| | - Julio M Hernández-Pérez
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Pedro López-Mendoza
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| |
Collapse
|
15
|
Denkler LM, Aladahalli Shekar M, Ngan TSJ, Wylie L, Abdullin D, Engeser M, Schnakenburg G, Hett T, Pilz FH, Kirchner B, Schiemann O, Kielb P, Bunescu A. A General Iron-Catalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202403292. [PMID: 38735849 DOI: 10.1002/anie.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
We report an iron-catalyzed decarboxylative C(sp3)-O bond-forming reaction under mild, base-free conditions with visible light irradiation. The transformation uses readily available and structurally diverse carboxylic acids, iron photocatalyst, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) derivatives as oxygenation reagents. The process exhibits a broad scope in acids possessing a wide range of stereoelectronic properties and functional groups. The developed reaction was applied to late-stage oxygenation of a series of bio-active molecules. The reaction leverages the ability of iron complexes to generate carbon-centered radicals directly from carboxylic acids by photoinduced carboxylate-to-iron charge transfer. Kinetic, electrochemical, EPR, UV/Vis, HRMS, and DFT studies revealed that TEMPO has a triple role in the reaction: as an oxygenation reagent, an oxidant to turn over the Fe-catalyst, and an internal base for the carboxylic acid deprotonation. The obtained TEMPO adducts represent versatile synthetic intermediates that were further engaged in C-C and C-heteroatom bond-forming reactions using commercial organo-photocatalysts and nucleophilic reagents.
Collapse
Affiliation(s)
- Luca Mareen Denkler
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Meghana Aladahalli Shekar
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Tak Shing Jason Ngan
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Dinar Abdullin
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Tobias Hett
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Frank Hendrik Pilz
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Olav Schiemann
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Patrycja Kielb
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Ala Bunescu
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
16
|
Díaz-Ruiz M, Nieto-Rodríguez M, Maseras F. Revealing the Mechanistic Features of an Electrosynthetic Catalytic Reaction and the Role of Redox Mediators through DFT Calculations and Microkinetic Modeling. Chemphyschem 2024; 25:e202400402. [PMID: 38739104 DOI: 10.1002/cphc.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Organic electrosynthesis is an emerging field that provides original selectivity while adding features of atom economy, sustainability, and selectivity. Electrosynthesis is often enhanced by redox mediators or electroauxiliaries. The mechanistic understanding of organic electrosynthesis is however often limited by the low lifetime of intermediates and its difficult detection. In this work, we report a computational analysis of the mechanism of an appealing reaction previously reported by Mei and co-workers which is catalyzed by copper and employs iodide as redox mediator. Our scheme combines DFT calculations with microkinetic modeling and covers both the reaction in solution and the electrodic steps. A detailed mechanistic scheme is obtained which reproduces well experimental data and opens perspectives for the general treatment of these processes.
Collapse
Affiliation(s)
- Marina Díaz-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, Tarragona, 43007, Spain
| | - Marc Nieto-Rodríguez
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, Tarragona, 43007, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
17
|
Komeda J, Boudalis AK, Montenegro-Pohlhammer N, Antheaume C, Mizuno A, Turek P, Ruben M. Selective Transition Enhancement in a g-Engineered Diradical. Chemistry 2024; 30:e202400420. [PMID: 38563635 DOI: 10.1002/chem.202400420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
A diradical with engineered g-asymmetry was synthesized by grafting a nitroxide radical onto the [Y(Pc)2]⋅ radical platform. Various spectroscopic techniques and computational studies revealed that the electronic structures of the two spin systems remained minimally affected within the diradical system. Fluid-solution Electron Paramagnetic Resonance (EPR) experiments revealed a weak exchange coupling with |J| ~ 0.014 cm-1, subsequently rationalized by CAS-SCF calculations. Frozen solution continuous-wave (CW) EPR experiments showed a complicated and power-dependent spectrum that eluded analysis using the point-dipole model. Pulse EPR manipulations with varying microwave powers, or under varying magnetic fields, demonstrated that different resonances could be selectively enhanced or suppressed, based on their different tipping angles. In particular, Field-Swept Echo-Detected (FSED) spectra revealed absorptions of MW power-dependent intensities, while Field-Swept Spin Nutation (FSSN) experiments revealed two distinct Rabi frequencies. This study introduces a methodology to synthesize and characterize g-asymmetric two-spin systems, of interest in the implementation of spin-based CNOT gates.
Collapse
Affiliation(s)
- Joe Komeda
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Athanassios K Boudalis
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081, Strasbourg, France
- Centre Européen de Sciences Quantiques (CESQ) within the, Institut de Science et d'Ingénierie Suparamolaiculaires - ISIS, 8 allée Gaspard Monge, BP 70028, F-67083, Strasbourg Cedex, France
| | - Nicolas Montenegro-Pohlhammer
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, 8370854, Chile
| | - Cyril Antheaume
- Centre Européen de Sciences Quantiques (CESQ) within the, Institut de Science et d'Ingénierie Suparamolaiculaires - ISIS, 8 allée Gaspard Monge, BP 70028, F-67083, Strasbourg Cedex, France
| | - Asato Mizuno
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Philippe Turek
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081, Strasbourg, France
| | - Mario Ruben
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Centre Européen de Sciences Quantiques (CESQ) within the, Institut de Science et d'Ingénierie Suparamolaiculaires - ISIS, 8 allée Gaspard Monge, BP 70028, F-67083, Strasbourg Cedex, France
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Thamleena H, Mathew J, Sajith PK. Unraveling the Isotropic Hyperfine Coupling Constants of Nitroxide Radicals via Molecular Electrostatic Potential Analysis. J Phys Chem A 2024. [PMID: 39052117 DOI: 10.1021/acs.jpca.4c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Nitroxide radicals have wide and promising applications as organic magnetic materials. Modulating the isotropic hyperfine coupling constants (HFCCs) of these radicals through proper structural design is an effective strategy for their application as spin probes and spin labels. In the present work, density functional theory calculations were carried out to develop a robust descriptor based on the molecular electrostatic potential for nitrogen HFCCs of nitroxide radicals. Forty nitroxide radicals from five distinct classes, namely, derivatives of cyclic, acyclic, imino, nitronyl, and benzimidazole nitronyl nitroxides, were selected, and the molecular electrostatic potential (MESP) at the nitrogen atom (VN) of the NO moiety was calculated. The VN values efficiently capture the electronic changes associated with the steric and electronic nature of these systems. A significant correlation between VN values and the experimental HFCCs of nitrogen nuclei demonstrates the applicability of VN as a simple and efficient descriptor for monitoring HFCCs. Furthermore, a good correlation between VN and experimental nitrogen HFCCs for each class of nitroxide radicals indicates the use of VN in the evaluation of the magnetic nature of the nitroxide radicals. The findings in this work are expected to facilitate the design of novel nitroxide radicals with desirable magnetic properties based on MESP topology analysis.
Collapse
Affiliation(s)
- Hanna Thamleena
- Department of Chemistry, St. Joseph's College (Autonomous), (Affiliated to the University of Calicut), Devagiri, Kerala 673008, India
| | - Jomon Mathew
- Department of Chemistry, St. Joseph's College (Autonomous), (Affiliated to the University of Calicut), Devagiri, Kerala 673008, India
| | - Pookkottu K Sajith
- Department of Chemistry, Farook College (Autonomous), Kozhikode 673632, India
| |
Collapse
|
19
|
Ju M, Lee S, Marvich HM, Lin S. Accessing Alkoxy Radicals via Frustrated Radical Pairs: Diverse Oxidative Functionalizations of Tertiary Alcohols. J Am Chem Soc 2024; 146:19696-19703. [PMID: 39012345 PMCID: PMC11366976 DOI: 10.1021/jacs.4c07125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Alkoxy radicals are versatile reactive intermediates in organic synthesis. Here, we leverage the principle of frustrated radical pair to provide convenient access to these highly reactive species directly from tertiary alcohols via oxoammonium-mediated oxidation of the corresponding alkoxides. This approach enabled various synthetically useful transformations including β-scission, radical cyclization, and remote C-H functionalization, giving rise to versatile alkoxyamines that can be further elaborated to various functionalities.
Collapse
Affiliation(s)
- Minsoo Ju
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Sukwoo Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Halle M Marvich
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Li X, Zhou J, Deng W, Wang Z, Wen Y, Li Z, Qiu Y, Huang Y. Electroreductive deuteroarylation of alkenes enabled by an organo-mediator. Chem Sci 2024; 15:11418-11427. [PMID: 39054999 PMCID: PMC11268466 DOI: 10.1039/d4sc03049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Electroreduction mediated by organo-mediators has emerged as a concise and effective strategy, holding significant potential in the site-specific introduction of deuterium. In this study, we present an environmentally friendly electroreduction approach for anti-Markovnikov selective deuteroarylation of alkenes and aryl iodides with D2O as the deuterium source. The key to the protocol lies in the employment of a catalytic amount of 2,2'-bipyiridine as an efficient organo-mediator, which facilitates the generation of aryl radicals by assisting in the cleavage of the C-X (X = I or Br) bonds in aryl halides. Because its reduction potential matches that of aryl iodides, the organo-mediator can control the chemoselectivity of the reaction and avoid the side reactions of competitive substrate deuteration. These phenomena are theoretically supported by CV experiments and DFT calculations. Our protocol provides a series of mono-deuterated alkylarenes with excellent deuterium incorporation through two single-electron reductions (SER), without requiring metal catalysts, external reductants, and sacrificial anodes.
Collapse
Affiliation(s)
- Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University 94 Weijin Road Tianjin 300071 People's Republic of China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| |
Collapse
|
21
|
Dinda S, Bhavana R, Behera S, Mondal B. Metal-free electrocatalytic upcycling of polyethylene terephthalate plastic to C 2 products. Chem Commun (Camb) 2024; 60:7777-7780. [PMID: 38976316 DOI: 10.1039/d4cc01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Polyethylene terephthalate (PET) is one of the most used polymers, but the non-degradable and persistent nature of PET waste in the environment is a global menace. Hence upcycling PET waste becomes indispensable. Herein, we introduce the first metal-free electrochemical-upcycling of PET into value-added chemicals and H2 fuel using an organo-electrocatalyst (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO). Electrolysis at pH 10 produces glycolate and oxalate exclusively while at pH 14, over-oxidation and subsequent C-C bond cleavage produce formate and carbonate as well. Tuning the rate and product selectivity via pH regulation with mechanistic insight displays a sustainable route to implement waste PET recycling.
Collapse
Affiliation(s)
- Soumitra Dinda
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| | - R Bhavana
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| | - Snehanjali Behera
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| | - Biswajit Mondal
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| |
Collapse
|
22
|
Sugiyama K, Sakurai R, Sato F, Watanabe K, Fujimura T, Sato K. Fluorescence Quenching Effect of a Highly Active Nitroxyl Radical on 7-amino-4-methylcoumarin and Glutathione Sensing. J Fluoresc 2024:10.1007/s10895-024-03833-3. [PMID: 39028447 DOI: 10.1007/s10895-024-03833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Nitroxyl radical compounds, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), are stable radical compounds with a variety of unique characteristics, including fluorescence quenching. In this study, we investigated the fluorescence quenching effect of nortropine N-oxyl (NNO), which is a highly active nitroxyl radical that is more active than TEMPO in oxidation catalysis. The fluorescence intensity of 7-amino-4-methylcoumarin (AMC) was quenched by NNO and TEMPO to 5% and 95% of the initial fluorescence intensity, respectively, indicating highly efficient quenching by NNO. In addition, we used this reaction to measure glutathione concentration. The quenching effect of NNO was abrogated by the chemical reaction with glutathione, resulting in restoration of AMC fluorescence. This response was observed at glutathione concentrations from 10 µM to 1 mM, and good calibration curves were obtained from 10 to 250 µM.
Collapse
Affiliation(s)
- Kyoko Sugiyama
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba, Sendai, Miyagi, 981-8558, Japan
| | - Rin Sakurai
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba, Sendai, Miyagi, 981-8558, Japan
| | - Fumiya Sato
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba, Sendai, Miyagi, 981-8558, Japan
| | - Kazuhiro Watanabe
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba, Sendai, Miyagi, 981-8558, Japan
| | - Tsutomu Fujimura
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba, Sendai, Miyagi, 981-8558, Japan
| | - Katsuhiko Sato
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
23
|
Ouyang WT, Ji HT, Liu YY, Li T, Jiang YF, Lu YH, Jiang J, He WM. TEMPO/O 2 Synergistically Mediated BiBrO-Photocatalyzed Decarboxylative Phosphorylation of N-Arylglycines. Chemistry 2024; 30:e202304234. [PMID: 38644695 DOI: 10.1002/chem.202304234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
With both TEMPO and O2 (in air) as the homogeneous redox mediators, BiBrO as the heterogeneous semiconductor photocatalyst, the first example of semi-heterogeneous photocatalytic decarboxylative phosphorylation of N-arylglycines with diarylphosphine oxides was established. A series of α-amino phosphinoxides were efficiently synthesized.
Collapse
Affiliation(s)
- Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Yuan-Yuan Liu
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Yan-Fang Jiang
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Yu-Han Lu
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| |
Collapse
|
24
|
Innocent M, Tanguy C, Gavelle S, Aubineau T, Guérinot A. Iron-Catalyzed, Light-Driven Decarboxylative Alkoxyamination. Chemistry 2024; 30:e202401252. [PMID: 38736425 DOI: 10.1002/chem.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/14/2024]
Abstract
An iron-catalyzed visible-light driven decarboxylative alkoxyamination is disclosed. In the presence of FeBr2 and TEMPO, a large array of carboxylic acids including marketed drugs and biobased molecules is turned into the corresponding alkoxyamine derivatives. The versatility of the latter offers an entry towards molecular diversity generation from abundant starting materials and catalyst. Overall, this method proposes a unified and general approach for LMCT-based iron-catalyzed decarboxylative functionalization.
Collapse
Affiliation(s)
- Milan Innocent
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Clément Tanguy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Sigrid Gavelle
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Thomas Aubineau
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Amandine Guérinot
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
25
|
Leng BL, Lin X, Chen JS, Li XH. Electrocatalytic water-to-oxygenates conversion: redox-mediated versus direct oxygen transfer. Chem Commun (Camb) 2024; 60:7523-7534. [PMID: 38957004 DOI: 10.1039/d4cc01960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Electrocatalytic oxygenation of hydrocarbons with high selectivity has attracted much attention for its advantages in the sustainable and controllable production of oxygenated compounds with reduced greenhouse gas emissions. Especially when utilizing water as an oxygen source, by constructing a water-to-oxygenates conversion system at the anode, the environment and/or energy costs of producing oxygenated compounds and hydrogen energy can be significantly reduced. There is a broad consensus that the generation and transformation of oxygen species are among the decisive factors determining the overall efficiency of oxygenation reactions. Thus, it is necessary to elucidate the oxygen transfer process to suggest more efficient strategies for electrocatalytic oxygenation. Herein, we introduce oxygen transfer routes through redox-mediated pathways or direct oxygen transfer methods. Especially for the scarcely investigated direct oxygen transfer at the anode, we aim to detail the strategies of catalyst design targeting the efficient oxygen transfer process including activation of organic substrate, generation/adsorption of oxygen species, and transformation of oxygen species for oxygenated compounds. Based on these examples, the significance of balancing the generation and transformation of oxygen species, tuning the states of organic substrates and intermediates, and accelerating electron transfer for organic activation for direct oxygen transfer has been elucidated. Moreover, greener organic synthesis routes through heteroatom transfer and molecular fragment transfer are anticipated beyond oxygen transfer.
Collapse
Affiliation(s)
- Bing-Liang Leng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Xiu Lin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
26
|
Sekar P, Bericat-Vadell R, Patehebieke Y, Broqvist P, Wallentin CJ, Görlin M, Sá J. Decoupling Plasmonic Hot Carrier from Thermal Catalysis via Electrode Engineering. NANO LETTERS 2024; 24:8619-8625. [PMID: 38973705 PMCID: PMC11261604 DOI: 10.1021/acs.nanolett.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Increased attention has been directed toward generating nonequilibrium hot carriers resulting from the decay of collective electronic oscillations on metal known as surface plasmons. Despite numerous experimental endeavors, demonstrating hot carrier-mediated photocatalysis without a heating contribution has proven challenging, particularly for single electron transfer reactions where the thermal contribution is generally detrimental. An innovative engineering solution is proposed to enable single electron transfer reactions with plasmonics. It consists of a photoelectrode designed as an energy filter and photocatalysis performed with light function modulation instead of continuously. The photoelectrode, consisting of FTO/TiO2 amorphous (10 nm)/Au nanoparticles, with TiO2 acting as a step-shape energy filter to enhance hot electron extraction and charge-separated state lifetime. The extracted hot electrons were directed toward the counter electrode, while the hot holes performed a single electron transfer oxidation reaction. Light modulation prevented local heat accumulation, effectively decoupling hot carrier catalysis from the thermal contribution.
Collapse
Affiliation(s)
- Pandiaraj Sekar
- Department
of Chemistry-Ångström, Physical Chemistry Division, Uppsala University, Uppsala 751 20, Sweden
| | - Robert Bericat-Vadell
- Department
of Chemistry-Ångström, Physical Chemistry Division, Uppsala University, Uppsala 751 20, Sweden
| | - Yeersen Patehebieke
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen
10, Gothenburg 412 58, Sweden
| | - Peter Broqvist
- Department
of Chemistry-Ångström, Structural Chemistry Division, Uppsala University, Uppsala 751 20, Sweden
| | - Carl-Johan Wallentin
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen
10, Gothenburg 412 58, Sweden
| | - Mikaela Görlin
- Department
of Chemistry-Ångström, Structural Chemistry Division, Uppsala University, Uppsala 751 20, Sweden
| | - Jacinto Sá
- Department
of Chemistry-Ångström, Physical Chemistry Division, Uppsala University, Uppsala 751 20, Sweden
- Institute
of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| |
Collapse
|
27
|
Oh S, Stache EE. Recent advances in oxidative degradation of plastics. Chem Soc Rev 2024; 53:7309-7327. [PMID: 38884337 DOI: 10.1039/d4cs00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Oxidative degradation is a powerful method to degrade plastics into oligomers and small oxidized products. While thermal energy has been conventionally employed as an external stimulus, recent advances in photochemistry have enabled photocatalytic oxidative degradation of polymers under mild conditions. This tutorial review presents an overview of oxidative degradation, from its earliest examples to emerging strategies. This review briefly discusses the motivation and the development of thermal oxidative degradation of polymers with a focus on underlying mechanisms. Then, we will examine modern studies primarily relevant to catalytic thermal oxidative degradation and photocatalytic oxidative degradation. Lastly, we highlight some unique studies using unconventional approaches for oxidative polymer degradation, such as electrochemistry.
Collapse
Affiliation(s)
- Sewon Oh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Erin E Stache
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
28
|
Jiang Y, Zhu K, Hou J, Dai Q, Li Y, Li K, Deng Y, Zhu L, Jia H. Unlocking high-efficiency decontamination by building a novel heterogeneous catalytic reduction system of thiourea dioxide/biochar. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134471. [PMID: 38691994 DOI: 10.1016/j.jhazmat.2024.134471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Herein, we reported a new contaminant purification paradigm, which enabled highly efficient reductive denitration and dechlorination using a green, stable reducing agent thiourea dioxide (TDO) coupled with biochar (BC) over a wide pH range under anoxic conditions. Specifically, BC acted as both activators and electron shuttles for TDO decomposition to achieve complete anoxic degradation of p-nitrophenol (PNP), p-nitroaniline, 4-chlorophenol and 2,4-dichlorophenol within 2 h. During this process, multiple strongly reducing species (i.e., SO22-, SO2•- and e-/H•) were generated in BC/TDO systems, accounting for 13.3%, 9.7% and 75.5% of PNP removal, respectively. While electron transfer between TDO and H+ or contaminants mediated by BC led to H• generation and contaminant reduction. These processes depended on the electron-accepting capacity and electron-conducting domains of biochar. Significantly, the BC/TDO systems were highly efficient at a pH of 2.0-8.0, especially under acidic conditions, which performed robustly in common natural water constituents.
Collapse
Affiliation(s)
- Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Jiayi Hou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Qingyang Dai
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yuegen Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kai Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
29
|
Winter J, Lühr S, Hochadel K, Gálvez-Vázquez MDJ, Prenzel T, Schollmeyer D, Waldvogel SR. Simple electrochemical synthesis of cyclic hydroxamic acids by reduction of nitroarenes. Chem Commun (Camb) 2024; 60:7065-7068. [PMID: 38904167 PMCID: PMC11223186 DOI: 10.1039/d4cc02118e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The electrochemical reduction of nitroarenes allows direct access to manifold nitrogen containing heterocycles. This work reports the simple and direct electro-organic synthesis of 18 different examples of 2H,4H-4-hydroxy-1,4-benzoxazin-3-ones in up to 81% yield. The scalability of the method was demonstrated on a gram-scale.
Collapse
Affiliation(s)
- Johannes Winter
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Susan Lühr
- Department of Chemistry, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa 775000, Santiago, Chile
| | - Kyra Hochadel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | - Tobias Prenzel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
30
|
Broersen PJL, Koning JJN, Rothenberg G, Garcia AC. A Highly Efficient Electrosynthesis of Formaldehyde Using a TEMPO-Based Polymer Electrocatalyst. CHEMSUSCHEM 2024:e202400582. [PMID: 38953395 DOI: 10.1002/cssc.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Indexed: 07/04/2024]
Abstract
In the chemical industry, formaldehyde is an important bulk chemical. The traditional synthesis of formaldehyde involves an energy intensive oxidation of methanol over a metal oxide catalyst. The selective electrochemical oxidation of methanol is challenging. Herein, we report a catalytic system with an immobilized TEMPO electrode that selectively oxidizes methanol to formaldehyde with high turnover numbers. Upon the addition of various organic and inorganic bases, the activity of the catalyst could be tuned. The highest Faradaic efficiency that was achieved was 97.5 %, the highest turnover number was 17100. Additionally, we found that the rate determining step changed from the step in which the carbonyl specie is created from the methanol-TEMPO adduct to the oxidative regeneration of the TEMPO+ species. Finally, we showed that the system could be applied to the oxidation of other aliphatic alcohols.
Collapse
Affiliation(s)
- P J L Broersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - J J N Koning
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - G Rothenberg
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - A C Garcia
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| |
Collapse
|
31
|
Zhu X, Zhang M, Shen L, Su W. Visible-Light-Induced Hydrodifluoromethylation of Unactivated Alkenes with Difluoroacetic Anhydride. J Org Chem 2024; 89:8828-8835. [PMID: 38848324 DOI: 10.1021/acs.joc.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
We herein described a practical and efficient protocol for hydrodifluoromethylation of unactivated alkenes using readily available difluoroacetic anhydride as a difluoromethyl source by merging photocatalysis and N-hydroxyphthalimide activation. This method features a wide substrate scope and excellent compatibility with various functional groups, as demonstrated by more than 50 examples, including bioactive molecules and pharmaceutical derivatives. Mechanism investigation indicated that N-hydroxyphthalimide may also serve as the hydrogen atom donor.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Min Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lujie Shen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Weiping Su
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
32
|
Zou L, Sun R, Tao Y, Wang X, Zheng X, Lu Q. Photoelectrochemical Fe/Ni cocatalyzed C-C functionalization of alcohols. Nat Commun 2024; 15:5245. [PMID: 38898017 PMCID: PMC11187109 DOI: 10.1038/s41467-024-49557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
The simultaneous activation of reactants on the anode and cathode via paired electrocatalysis has not been extensively demonstrated. This report presents a paired oxidative and reductive catalysis based on earth-abundant iron/nickel cocatalyzed C-C functionalization of ubiquitous alcohols. A variety of alcohols (i.e., primary, secondary, tertiary, or unstrained cyclic alcohols) can be activated at very low oxidation potential of (~0.30 V vs. Ag/AgCl) via photoelectrocatalysis coupled with versatile electrophiles. This reactivity yields a wide range of structurally diverse molecules with broad functional group compatibility (more than 50 examples).
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaofan Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
33
|
Zhao X, Hou YL, Qian BC, Shen GB. Thermodynamic H-Abstraction Abilities of Nitrogen Centered Radical Cations as Potential Hydrogen Atom Transfer Catalysts in Y-H Bond Functionalization. ACS OMEGA 2024; 9:26708-26718. [PMID: 38911737 PMCID: PMC11191127 DOI: 10.1021/acsomega.4c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
Y-H bond functionalization has always been the focus of research interest in the area of organic synthesis. Direct hydrogen atom transfer (HAT) from the Y-H bond is one of the most efficient and practical methods to activate the Y-H bond. Recently, nitrogen centered radical cations were broadly utilized as H-abstraction catalysts to activate Y-H bonds via the HAT process. As a type of HAT catalyst, the H-affinity of nitrogen centered radical cations is a significant thermodynamic parameter to quantitatively evaluate the thermodynamic H-abstraction potentials of nitrogen centered radical cations. In this work, the pK a values of 120 protonated N-containing compounds in acetonitrile (AN) are predicted, and the H-affinities of 120 nitrogen centered radical cations in AN are derived from the reduction potentials of nitrogen centered radical cations and pK a of protonated N-containing compounds using Hess' law. This work focuses on the H-abstraction abilities of 120 nitrogen centered radical cations in AN to enrich the molecule library of novel HAT catalysts or H-abstractors and provides valuable thermodynamic guidelines for the application of nitrogen centered radical cations in Y-H bond functionalization.
Collapse
Affiliation(s)
- Xia Zhao
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yi-Lin Hou
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| |
Collapse
|
34
|
Sarker RK, Zargarian D. Reactions of cyclonickelated complexes with hydroxylamines and TEMPO˙: isolation of new TEMPOH adducts of Ni(II) and their reactivities with nucleophiles and oxidants. Dalton Trans 2024; 53:10208-10219. [PMID: 38826045 DOI: 10.1039/d4dt00605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
This contribution describes a study on the reactivities of the complexes [{κP,κC-(i-Pr)2PO-Ar}Ni(μ-Br)]2, 1a-d (Ar: C6H4, a; 3-Cl-C6H3, b; 3-OMe-C6H3, c; 4-OMe-napthalenyl, d), with hydroxylamines in the presence of TEMPO˙ (TEMPO˙ = (2,2,6,6-tetramethylpiperidinyl-1-yl)oxyl). The results of this study showed that treating 1a-d with a mixture of Et2NOH and TEMPO˙ did not afford the desired oxidation-induced functionalization of the Ni-aryl moiety in 1a-d, giving instead the corresponding κO-TEMPOH adducts [{κP,κC-(i-Pr)2PO-Ar}Ni(Br)(κO-TEMPOH)], 3a-d (TEMPOH = N-hydroxy-2,2,6,6-tetramethylpiperidine). The TEMPOH moiety in these zwitterionic compounds 3 can be displaced by a large excess of acetonitrile (MeCN), 10 equiv. of morpholine, or 1-2 equivalents of imidazole. Although these reactions have given the authenticated products [{κP,κC-(i-Pr)2PO-C6H4}Ni(Br)(NCMe)], 4a, [{κP,κC-(i-Pr)2PO-C6H4}Ni(Br)(morpholine)], 5a, and [{κP,κC-(i-Pr)2PO-C6H4}Ni(imidazole)2]Br, 6a, a few other products were also detected by NMR, indicating that the observed reactivities are far more complex than simple substitution of the TEMPOH moiety. Similarly, treating 3a with AgOC(O)CF3 results in the isolation of [{κP,κC-(i-Pr)2PO-C6H4}Ni{OC(O)CF3}(κO-TEMPOH)], 7a, arising from the substitution of the bromo ligand, whereas spectroscopic evidence suggests further reactivity, possibly including displacement of TEMPOH and oxidative decomposition.
Collapse
Affiliation(s)
- Rajib K Sarker
- Département de Chimie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| | - Davit Zargarian
- Département de Chimie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
35
|
Alzaidi O, Wirth T. Continuous Flow Electroselenocyclization of Allylamides and Unsaturated Oximes to Selenofunctionalized Oxazolines and Isoxazolines. ACS ORGANIC & INORGANIC AU 2024; 4:350-355. [PMID: 38855333 PMCID: PMC11157512 DOI: 10.1021/acsorginorgau.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/11/2024]
Abstract
The synthesis of selenofunctionalized oxazolines and isoxazolines from N-allyl benzamides and unsaturated oximes with diselenides was studied by utilizing a continuous flow electrochemical approach. At mild reaction conditions and short reaction times of 10 min product yields of up to 90% were achieved including a scale-up reaction. A broad substrate scope was studied and the reaction was shown to have a wide functional group tolerance.
Collapse
Affiliation(s)
- Ohud Alzaidi
- School
of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K.
- Department
of Chemistry, College of Science –
Al Khurma, Taif University, P.O. Box
11099, Taif 21944, Saudi Arabia
| | - Thomas Wirth
- School
of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K.
| |
Collapse
|
36
|
Seif-Eddine M, Cobb SJ, Dang Y, Abdiaziz K, Bajada MA, Reisner E, Roessler MM. Operando film-electrochemical EPR spectroscopy tracks radical intermediates in surface-immobilized catalysts. Nat Chem 2024; 16:1015-1023. [PMID: 38355827 DOI: 10.1038/s41557-024-01450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The development of surface-immobilized molecular redox catalysts is an emerging research field with promising applications in sustainable chemistry. In electrocatalysis, paramagnetic species are often key intermediates in the mechanistic cycle but are inherently difficult to detect and follow by conventional in situ techniques. We report a new method, operando film-electrochemical electron paramagnetic resonance spectroscopy (FE-EPR), which enables mechanistic studies of surface-immobilized electrocatalysts. This technique enables radicals formed during redox reactions to be followed in real time under flow conditions, at room temperature and in aqueous solution. Detailed insight into surface-immobilized catalysts, as exemplified here through alcohol oxidation catalysis by a surface-immobilized nitroxide, is possible by detecting active-site paramagnetic species sensitively and quantitatively operando, thereby enabling resolution of the reaction kinetics. Our finding that the surface electron-transfer rate, which is of the same order of magnitude as the rate of catalysis (accessible from operando FE-EPR), limits catalytic efficiency has implications for the future design of better surface-immobilized catalysts.
Collapse
Affiliation(s)
- Maryam Seif-Eddine
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Yunfei Dang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Kaltum Abdiaziz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Mark A Bajada
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maxie M Roessler
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
37
|
Hu Q, Wei B, Wang M, Liu M, Chen XW, Ran CK, Wang G, Chen Z, Li H, Song J, Yu DG, Guo C. Enantioselective Nickel-Electrocatalyzed Reductive Propargylic Carboxylation with CO 2. J Am Chem Soc 2024; 146:14864-14874. [PMID: 38754389 DOI: 10.1021/jacs.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The exploitation of carbon dioxide (CO2) as a sustainable, plentiful, and harmless C1 source for the catalytic synthesis of enantioenriched carboxylic acids has long been acknowledged as a pivotal task in synthetic chemistry. Herein, we present a current-driven nickel-catalyzed reductive carboxylation reaction with CO2 fixation, facilitating the formation of C(sp3)-C(sp2) bonds by circumventing the handling of moisture-sensitive organometallic reagents. This electroreductive protocol serves as a practical platform, paving the way for the synthesis of enantioenriched propargylic carboxylic acids (up to 98% enantiomeric excess) from racemic propargylic carbonates and CO2. The efficacy of this transformation is exemplified by its successful utilization in the asymmetric total synthesis of (S)-arundic acid, (R)-PIA, (S)-chizhine D, (S)-cochlearin G, and (S,S)-alexidine, thereby underscoring the potential of asymmetric electrosynthesis to achieve complex molecular architectures sustainably.
Collapse
Affiliation(s)
- Qingdong Hu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Boyuan Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Mingxu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gefei Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haoze Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
38
|
Zhang Q, Zhang J, Zhu W, Lu R, Guo C. Enantioselective nickel-catalyzed anodic oxidative dienylation and allylation reactions. Nat Commun 2024; 15:4477. [PMID: 38796470 PMCID: PMC11127924 DOI: 10.1038/s41467-024-48936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Precision control of stereochemistry in radical reactions remains a formidable challenge due to the prevalence of incidental racemic background reactions resulting from undirected substrate oxidation in the absence of chiral induction. In this study, we devised an thoughtful approach-electricity-driven asymmetric Lewis acid catalysis-to circumvent this impediment. This methodology facilitates both asymmetric dienylation and allylation reactions, resulting in the formation of all-carbon quaternary stereocenters and demonstrating significant potential in the modular synthesis of functional and chiral benzoxazole-oxazoline (Boox) ligands. Notably, the involvement of chiral Lewis acids in both the electrochemical activation and stereoselectivity-defining radical stages offers innovative departures for designing single electron transfer-based reactions, significantly underscoring the relevance of this approach as a multifaceted and universally applicable strategy for various fields of study, including electrosynthesis, organic chemistry, and drug discovery.
Collapse
Affiliation(s)
- Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ruimin Lu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
39
|
Tan XQ, Zhang P, Chen B, Mohamed AR, Ong WJ. Synergistic effect of dual phase cocatalysts: MoC-Mo 2C quantum dots anchored on g-C 3N 4 for high-stability photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 662:870-882. [PMID: 38382371 DOI: 10.1016/j.jcis.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
The extensive examination of hexagonal molybdenum carbide (β-Mo2C) as a non-noble cocatalyst in the realm of photocatalytic H2 evolution is predominantly motivated by its exceptional capacity to adsorb H+ ions akin to Pt and its advantageous conductivity characteristics. However, the H2 evolution rate of photocatalysts modified with β-Mo2C is limited as a result of their comparatively low ability to release H through desorption. Therefore, a facile method was employed to synthesize carbon intercalated dual phase molybdenum carbide (MC@C) quantum dots (ca. 3.13 nm) containing both α-MoC and β-Mo2C decorated on g-C3N4 (gCN). The synthesis process involved a simple and efficient combination of sonication-assisted self-assembly and calcination techniques. 3-MC@C/gCN exhibited the highest efficiency in generating H2, with a rate of 4078 µmol g-1h-1 under 4 h simulated sunlight irradiation, which is 13 times higher than pristine gCN. Furthermore, from the cycle test, 3-MC@C/gCN showcased exceptional photochemical stability of 65 h, as it maintained a H2 evolution rate of 40 mmol g-1h-1. The heightened level of activity observed in the 3-MC@C/gCN system can be ascribed to the synergistic effects of MoC-Mo2C that arise due to the existence of a carbon layer. The presence of a carbon layer enhanced the transmission of photoinduced electrons, while the MoC-Mo2C@C composite served as active sites, thereby facilitating the H2 production reaction of gCN. The present study introduces a potentially paradigm-shifting concept pertaining to the exploration of novel Mo-based cocatalysts with the aim of augmenting the efficacy of photocatalytic H2 production.
Collapse
Affiliation(s)
- Xin-Quan Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia; Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Peipei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binghui Chen
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia; Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China
| | - Abdul Rahman Mohamed
- Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Pulau Pinang, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia; Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China.
| |
Collapse
|
40
|
Kim J, Ling J, Lai Y, Milner PJ. Redox-Active Organic Materials: From Energy Storage to Redox Catalysis. ACS MATERIALS AU 2024; 4:258-273. [PMID: 38737116 PMCID: PMC11083122 DOI: 10.1021/acsmaterialsau.3c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 05/14/2024]
Abstract
Electroactive materials are central to myriad applications, including energy storage, sensing, and catalysis. Compared to traditional inorganic electrode materials, redox-active organic materials such as porous organic polymers (POPs) and covalent organic frameworks (COFs) are emerging as promising alternatives due to their structural tunability, flexibility, sustainability, and compatibility with a range of electrolytes. Herein, we discuss the challenges and opportunities available for the use of redox-active organic materials in organoelectrochemistry, an emerging area in fine chemical synthesis. In particular, we highlight the utility of organic electrode materials in photoredox catalysis, electrochemical energy storage, and electrocatalysis and point to new directions needed to unlock their potential utility for organic synthesis. This Perspective aims to bring together the organic, electrochemistry, and polymer communities to design new heterogeneous electrocatalysts for the sustainable synthesis of complex molecules.
Collapse
Affiliation(s)
- Jaehwan Kim
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jianheng Ling
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yihuan Lai
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
41
|
Thomas J, Mokkawes T, Senft L, Dey A, Gordon JB, Ivanovic-Burmazovic I, de Visser SP, Goldberg DP. Axial Ligation Impedes Proton-Coupled Electron-Transfer Reactivity of a Synthetic Compound-I Analogue. J Am Chem Soc 2024; 146:12338-12354. [PMID: 38669456 PMCID: PMC11305010 DOI: 10.1021/jacs.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, FeIV(O)(TBP8Cz+•) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3-) (2) (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J. Am. Chem. Soc. 2012, 134, 7392-7399). The new complexes FeIV(O)(TBP8Cz+•)(L) (L = 1-methyl imidazole (1-MeIm) (4a), 4-dimethylaminopyridine (DMAP) (4b), cyanide (CN-)(4c)) can be generated from either oxidation of the ferric precursors or by addition of L to the Compound-I (Cpd-I) analogue at low temperatures. These complexes were characterized by UV-vis, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies, and cryospray ionization mass spectrometry (CSI-MS). Kinetic studies using 4-OMe-TEMPOH as a test substrate indicate that coordination of a sixth axial ligand dramatically lowers the PCET reactivity of the Cpd-I analogue (rates up to 7000 times slower). Extensive density functional theory (DFT) calculations together with the experimental data show that the trend in reactivity with the axial ligands does not correlate with the thermodynamic driving force for these reactions or the calculated strengths of the O-H bonds being formed in the FeIV(O-H) products, pointing to non-Bell-Evans-Polanyi behavior. However, the PCET reactivity does follow a trend with the bracketed reduction potential of Cpd-I analogues and calculated electron affinities. The combined data suggest a concerted mechanism (a concerted proton electron transfer (CPET)) and an asynchronous movement of the electron/proton pair in the transition state.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thirakorn Mokkawes
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Laura Senft
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ivana Ivanovic-Burmazovic
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
42
|
Mattos GJ, Rothen JA, Tiuftiakov NY, Bakker E. Ion transfer mediated by TEMPO in ionophore-doped thin films for multi-ion sensing by cyclic voltammetry. Anal Chim Acta 2024; 1299:342388. [PMID: 38499432 DOI: 10.1016/j.aca.2024.342388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
We report here on the development of thin-layer ion-selective membranes containing lipophilic TEMPO as a phase-transfer redox mediator for the simultaneous detection of non-redoxactive ions. This redox probe was recently introduced by our group and provides ideal ion-transfer waves when the membrane is interrogated by cyclic voltammetry. To perform multianalyte detection in the same sensing film, plasticized PVC-based membranes were doped with lithium and potassium ionophores in addition to a lipophilic cation-exchanger. The ionophores allow for ion discrimination owing to the different ionophore-cation complexation constants and the oxidation of TEMPO to the oxoammonium form results in the selective transfer of lithium and potassium at different potentials. The resulting voltammograms have half-peak widths of 100 and 102 mV, and the peak separation between anodic and cathodic scans is 8 and 9 mV for lithium and potassium, respectively, close to theoretical expectations. High peak resolution was observed, and the ion-transfer waves are still distinguishable when the ion activities differ by three orders of magnitude. These parameters are remarkably better than those obtained with other redox probes, which is important for multianalyte detection in the same voltammetric scan. Optimized membranes showed independent Nernstian shifts (slopes of 59.23 mV and 54.8 mV for K+ and Li+, respectively) of the peak position for increasing ion concentrations. An idealized model for two ionophore-based membranes combining redox and phase-boundary potentials was applied to the proposed system with excellent correlation. Potassium and lithium ions were simultaneously detected in undiluted human serum samples with good accuracy and precision.
Collapse
Affiliation(s)
- Gabriel J Mattos
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland
| | - Justine A Rothen
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland
| | - Nikolai Yu Tiuftiakov
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland.
| |
Collapse
|
43
|
Nedzbala HS, Westbroek D, Margavio HRM, Yang H, Noh H, Magpantay SV, Donley CL, Kumbhar AS, Parsons GN, Mayer JM. Photoelectrochemical Proton-Coupled Electron Transfer of TiO 2 Thin Films on Silicon. J Am Chem Soc 2024; 146:10559-10572. [PMID: 38564642 DOI: 10.1021/jacs.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
TiO2 thin films are often used as protective layers on semiconductors for applications in photovoltaics, molecule-semiconductor hybrid photoelectrodes, and more. Experiments reported here show that TiO2 thin films on silicon are electrochemically and photoelectrochemically reduced in buffered acetonitrile at potentials relevant to photoelectrocatalysis of CO2 reduction, N2 reduction, and H2 evolution. On both n-type Si and irradiated p-type Si, TiO2 reduction is proton-coupled with a 1e-:1H+ stoichiometry, as demonstrated by the Nernstian dependence of the Ti4+/3+ E1/2 on the buffer pKa. Experiments were conducted with and without illumination, and a photovoltage of ∼0.6 V was observed across 20 orders of magnitude in proton activity. The 4 nm films are almost stoichiometrically reduced under mild conditions. The reduced films catalytically transfer protons and electrons to hydrogen atom acceptors, based on cyclic voltammogram, bulk electrolysis, and other mechanistic evidence. TiO2/Si thus has the potential to photoelectrochemically generate high-energy H atom carriers. Characterization of the TiO2 films after reduction reveals restructuring with the formation of islands, rendering TiO2 films as a potentially poor choice as protecting films or catalyst supports under reducing and protic conditions. Overall, this work demonstrates that atomic layer deposition TiO2 films on silicon photoelectrodes undergo both chemical and morphological changes upon application of potentials only modestly negative of RHE in these media. While the results should serve as a cautionary tale for researchers aiming to immobilize molecular monolayers on "protective" metal oxides, the robust proton-coupled electron transfer reactivity of the films introduces opportunities for the photoelectrochemical generation of reactive charge-carrying mediators.
Collapse
Affiliation(s)
- Hannah S Nedzbala
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Dalaney Westbroek
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Hannah R M Margavio
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Hyuenwoo Yang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Samantha V Magpantay
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Carrie L Donley
- Department of Chemistry, Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Amar S Kumbhar
- Department of Chemistry, Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gregory N Parsons
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
44
|
Yeo J, Kim K, Kwak SJ, Kim MS, Yang JH, Lee WB, Kim Y, Chae J, Chang J. Probing Local pH Change during Electrode Oxidation of TEMPO Derivative: Implication of Redox-Induced Acidity Alternation by Imidazolium-Linker Functional Groups. Anal Chem 2024; 96:5537-5545. [PMID: 38545995 DOI: 10.1021/acs.analchem.3c05796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The chemical degradation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-based aqueous energy storage and catalytic systems is pH sensitive. Herein, we voltammetrically monitor the local pH (pHlocal) at a Pt ultramicroelectrode (UME) upon electro-oxidation of imidazolium-linker functionalized TEMPO and show that its decrease is associated with the greater acidity of the cationic (oxidized) rather than radical (reduced) form of TEMPO. The protons that drive the decrease in pH arise from hydrolysis of the conjugated imidazolium-linker functional group of 4-[2-(N-methylimidazolium)acetoxy]-2,2,6,6-tetramethylpiperidine-1-oxyl chloride (MIMAcO-T), which was studied in comparison with 4-hydroxyl-TEMPO (4-OH-T). Voltammetric hysteresis is observed during the electrode oxidation of 4-OH-T and MIMAcO-T at a Pt UME in an unbuffered aqueous solution. The hysteresis arises from the pH-dependent formation and dissolution of Pt oxides, which interact with pHlocal in the vicinity of the UME. We find that electrogenerated MIMAcO-T+ significantly influences pHlocal, whereas 4-OH-T+ does not. Finite element analysis reveals that the thermodynamic and kinetic acid-base properties of MIMAcO-T+ are much more favorable than those of its reduced counterpart. Imidazolium-linker functionalized TEMPO molecules comprising different linking groups were also investigated. Reduced TEMPO molecules with carbonyl linkers behave as weak acids, whereas those with alkyl ether linkers do not. However, oxidized TEMPO+ molecules with alkyl ether linkers exhibit more facile acid-base kinetics than those with carbonyl ones. Density functional theory calculations confirm that OH- adduct formation on the imidazolium-linker functional group of TEMPO is responsible for the difference in the acid-base properties of the reduced and oxidized forms.
Collapse
Affiliation(s)
| | - Kyungmi Kim
- Sungshin Women's University, Seoul 01133, Republic of Korea
- Korea Institute of Science and Technology Europe, Campus E7 1, 66123 Saarbrücken, Germany
| | - Seung Jae Kwak
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi Song Kim
- Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Jung Hoon Yang
- Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and Engineering, Kookmin University, Seoul 02707, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Junghyun Chae
- Sungshin Women's University, Seoul 01133, Republic of Korea
| | | |
Collapse
|
45
|
Liang Y, Feng J, Li H, Wang X, Zhang Y, Fan W, Zhang S, Li MB. A Hydrogen Evolution Catalyst [Co 2O 2] Metallacycle Enables Regioselective Allene C(sp 2)-H Functionalization. Angew Chem Int Ed Engl 2024; 63:e202400938. [PMID: 38329239 DOI: 10.1002/anie.202400938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/09/2024]
Abstract
Selective functionalization of allenic C(sp2)-H is an ideal approach to upgrading simple allenes to synthetically useful allenes, albeit suffering from challenges associated with inert reactivity and inferior selectivity. Inspired by energy chemistry, a catalytic hydrogen evolution reaction (HER) strategy was leveraged to selectively activate weakly acidic allene C(sp2)-H bonds in a reductive mode. An array of [Co2O2] metallacycle complexes were readily devised starting from amino acids, and they were demonstrated as robust HER catalysts, which would selectively break allenic C(sp2)-H bonds to release hydrogen. With the newly developed HER catalyst, regioselective electrochemical functionalization of allenic C(sp2)-H with alcoholic α C(sp3)-H was unprecedentedly achieved. This strategy features excellent regioselectivity, unconventional chemoselectivity, good functional-group tolerance (62 examples), and mild conditions. Mechanism experiments revealed a reactive hydroxy-coordinated cobalt(II) species in the reaction. Density functional theory (DFT) calculations were also conducted to rationalize the regioselectivity observed in the reaction.
Collapse
Affiliation(s)
- Yating Liang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Jiayi Feng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Huilong Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Xiaoli Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Ying Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Sheng Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
46
|
Dagar M, Brennessel WW, Matson EM. Elucidation of Design Criteria for V-based Redox Mediators: Structure-Function Relationships that Dictate Rates of Heterogeneous Electron Transfer. Chemistry 2024:e202400764. [PMID: 38574277 DOI: 10.1002/chem.202400764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Redox mediators are attractive solutions for addressing the stringent kinetic stipulations required for efficient energy conversion processes. In this work, we compare the electrochemical properties of four vanadium complexes, namely [V(acac)3], [V6O7(OMe)12], [nBu4N]3[V6O13(TRISNO2)2], and [nBu4N]5[V18O46(NO3)] in non-aqueous solutions on glassy carbon electrodes. The goal of this study is to investigate the electron transfer kinetics and diffusivity of these compounds under identical experimental conditions to develop an understanding of structure-function relationships that dictate the physicochemical properties of vanadium oxide assemblies. Complex selection was dictated by two criteria - (1) nuclearity of the transition metal complexes (2) distribution of electron density in the native electronic configuration. Our analyses establish that electronic communication between metal centers significantly impacts charge transfer kinetics of these vanadium-based compounds.
Collapse
Affiliation(s)
- Mamta Dagar
- University of Rochester, Department of Chemistry, Rochester, NY 14627, USA
| | | | - Ellen M Matson
- University of Rochester, Department of Chemistry, Rochester, NY 14627, USA
| |
Collapse
|
47
|
Liu S, Li Y, Lin J, Ke Z, Grützmacher H, Su CY, Li Z. Sequential radical and cationic reactivity at separated sites within one molecule in solution. Chem Sci 2024; 15:5376-5384. [PMID: 38577367 PMCID: PMC10988588 DOI: 10.1039/d4sc00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites are expected to show both radical and cationic reactivity at different sites within one molecule. However, such "dual" reactivity has rarely been observed in the condensed phase. Herein we report the isolation of crystalline 1λ2,3λ2-1-phosphonia-3-phosphinyl-cyclohex-4-enes 2a,b˙+, which can be considered delocalized DRCs and were completely characterized by crystallographic, spectroscopic, and computational methods. These DRCs contain a radical and cationic site with seven and six valence electrons, respectively, which are both stabilized via conjugation, yet remain spatially separated. They exhibit reactivity that differs from that of conventional radical cations (CRCs); specifically they show sequential radical and cationic reactivity at separated sites within one molecule in solution.
Collapse
Affiliation(s)
- Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Yinwu Li
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Hansjörg Grützmacher
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
48
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
49
|
Liu C, Chen F, Zhao BH, Wu Y, Zhang B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 2024; 8:277-293. [PMID: 38528116 DOI: 10.1038/s41570-024-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yongmeng Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
50
|
Chen PY, Huang C, Jie LH, Guo B, Zhu S, Xu HC. Unlocking the Potential of Oxidative Asymmetric Catalysis with Continuous Flow Electrochemistry. J Am Chem Soc 2024; 146:7178-7184. [PMID: 38466344 DOI: 10.1021/jacs.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In the field of catalytic asymmetric synthesis, the less-treated path lies in oxidative catalytic asymmetric transformations. The hurdles of pinpointing the appropriate chemical oxidants and addressing their compatibility issues with catalysts and functionalities present significant challenges. Organic electrochemistry, employing traceless electrons for redox reactions, is underscored as a promising solution. However, the commonly used electrolysis in batch cells introduces its own set of challenges, hindering the advancement of electrochemical asymmetric catalysis. Here we introduce a microfluidic electrochemistry platform with single-pass continuous flow reactors that exhibits a wide-ranging applicability to various oxidative asymmetric catalytic transformations. This is exemplified through the sulfenylation of 1,3-dicarbonyls, dehydrogenative C-C coupling, and dehydrogenative alkene annulation processes. The unique properties of microfluidic electrochemical reactors not only eliminate the need for chemical oxidants but also enhance reaction efficiency and reduce the use of additives and electrolytes. These salient features of microfluidic electrochemistry expedite the discovery and development of oxidative asymmetric transformations. In addition, the continuous production facilitated by parallel single-pass reactors ensures straightforward reaction upscaling, removing the necessity for reoptimization across various scales, as evidenced by direct translation from milligram screening to hectogram asymmetric synthesis.
Collapse
Affiliation(s)
- Peng-Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Liang-Hua Jie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Bin Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shaobin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- NanoFCM INC., Building No. 5, Xinke Square, Xiamen 361006, People's Republic of China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|