1
|
Gong Z, Xiao Y, Zhou Y, Zhu D, Dai B, Wang Z, Wang C, Bian H. The Impact of High-Speed Crushing Process of Fibrous Polytetrafluoroethylene on Pyrolyzed Carbon Black/Natural Rubber Composites. Polymers (Basel) 2025; 17:222. [PMID: 39861294 PMCID: PMC11768828 DOI: 10.3390/polym17020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This study employed a high-speed rotating crushing process to modify pyrolyzed carbon black (CBp) using self-lubricating and low-friction polytetrafluoroethylene (PTFE). The effects of PTFE content on the dispersion, mechanical properties, wear resistance, and thermal stability of modified PTFE-CBp/natural rubber (NR) composites were investigated. The rotating crushing process from the high-speed grinder altered the physical structure of PTFE, forming tiny fibrous structures that interspersed among the CBp particles. This arrangement encouraged the alignment of CBp particles in specific directions and improved the surface activity of CBp, enhancing the dispersion of CBp within the NR matrix and consequently improving wear resistance. The experimental results indicated that as the amount of PTFE fibers increased, the hardness, wear resistance, and thermal stability of the PTFE-CBp/NR composite significantly improved. Compared to untreated CBp/NR composites, the hardness, modulus at 300%, and wear resistance of the 3 phr PTFE-CBp/NR composites increased by 20%, 24%, 21%, respectively, achieving the preparation of highly wear-resistant CBp/NR composites.
Collapse
Affiliation(s)
- Zheng Gong
- School of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (Z.G.); (Y.X.); (Y.Z.); (D.Z.); (B.D.); (Z.W.)
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yao Xiao
- School of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (Z.G.); (Y.X.); (Y.Z.); (D.Z.); (B.D.); (Z.W.)
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yukun Zhou
- School of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (Z.G.); (Y.X.); (Y.Z.); (D.Z.); (B.D.); (Z.W.)
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Donglin Zhu
- School of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (Z.G.); (Y.X.); (Y.Z.); (D.Z.); (B.D.); (Z.W.)
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Baochang Dai
- School of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (Z.G.); (Y.X.); (Y.Z.); (D.Z.); (B.D.); (Z.W.)
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Ziyang Wang
- School of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (Z.G.); (Y.X.); (Y.Z.); (D.Z.); (B.D.); (Z.W.)
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Chuansheng Wang
- School of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (Z.G.); (Y.X.); (Y.Z.); (D.Z.); (B.D.); (Z.W.)
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Huiguang Bian
- School of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (Z.G.); (Y.X.); (Y.Z.); (D.Z.); (B.D.); (Z.W.)
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
2
|
Liu X, Sau A, Green AR, Popescu MV, Pompetti NF, Li Y, Zhao Y, Paton RS, Damrauer NH, Miyake GM. Photocatalytic C-F bond activation in small molecules and polyfluoroalkyl substances. Nature 2025; 637:601-607. [PMID: 39566550 DOI: 10.1038/s41586-024-08327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Organic halides are highly useful compounds in chemical synthesis, in which the halide serves as a versatile functional group for elimination, substitution and cross-coupling reactions with transition metals or photocatalysis1-3. However, the activation of carbon-fluorine (C-F) bonds-the most commercially abundant organohalide and found in polyfluoroalkyl substances (PFAS), or 'forever chemicals'-is much rarer. Current approaches based on photoredox chemistry for the activation of small-molecule C-F bonds are limited by the substrates and transition metal catalysts needed4. A general method for the direct activation of organofluorines would have considerable value in organic and environmental chemistry. Here we report an organic photoredox catalyst system that can efficiently reduce C-F bonds to generate carbon-centred radicals, which can then be intercepted for hydrodefluorination (swapping F for H) and cross-coupling reactions. This system enables the general use of organofluorines as synthons under mild reaction conditions. We extend this method to the defluorination of PFAS and fluorinated polymers, a critical challenge in the breakdown of persistent and environmentally damaging forever chemicals.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Arindam Sau
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Alexander R Green
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Mihai V Popescu
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Yingzi Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Yucheng Zhao
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA.
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA.
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
van de Wouw HL, Yen ST, Valet M, Garcia JA, Gomez CO, Vian A, Liu Y, Pollock J, Pospíšil P, Campàs O, Sletten EM. Non-Ionic Fluorosurfactants for Droplet-Based in vivo Applications. Angew Chem Int Ed Engl 2024; 63:e202404956. [PMID: 39340199 DOI: 10.1002/anie.202404956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Fluorocarbon oils are uniquely suited for many biomedical applications due to their inert, bioorthogonal properties. In order to interface fluorocarbon oils with biological systems, non-ionic fluorosurfactants are necessary. However, there is a paucity of non-ionic fluorosurfactants with low interfacial tension (IFT) to stabilize fluorocarbon phases in aqueous environments (such as oil-in-water emulsions). We developed non-ionic fluorosurfactants composed of a polyethylene glycol (PEG) segment covalently bonded to a flexible perfluoropolyether (PFPE) segment that confer low IFTs between a fluorocarbon oil (HFE-7700) and water. The synthesis of a panel of surfactants spanning a molecular weight range of 0.64-66 kDa with various hydrophilic-lipophilic balances allowed for identification of minimal IFTs, ranging from 1.4 to 17.8 mN m-1. The majority of these custom fluorosurfactants display poor solubility in water, allowing their co-introduction with fluorocarbon oils and minimal leaching. We applied the PEG5PFPE1 surfactant for mechanical force measurements in zebrafish, enabling exceptional sensitivity.
Collapse
Affiliation(s)
- Heidi L van de Wouw
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095, USA
- Present address: School of Chemistry and Biochemistry, Georgia Institute of Technology, 770 State Street N.W., Atlanta, GA, 30332, USA
| | - Shuo-Ting Yen
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Manon Valet
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
| | - Joseph A Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095, USA
| | - Carlos O Gomez
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Antoine Vian
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jennifer Pollock
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Petr Pospíšil
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
| | - Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Max Planck Institute of Molecular Cell Biology and Genetics, Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Guan T, Zhang N. Recent Advances in Electrodeposition of Nickel-Based Nanocomposites Enhanced with Lubricating Nanoparticles. NANOMANUFACTURING AND METROLOGY 2024; 7:25. [PMID: 39679139 PMCID: PMC11638300 DOI: 10.1007/s41871-024-00245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Recently, nanomaterials such as graphene, polytetrafluoroethylene, WS2, and MoS2 have emerged as pioneering additives and fillers in metal nanocomposite electrodeposition, offering innovative solutions for lubrication and tribological enhancement. Electrodeposition, known for its high efficiency, reliability, operational simplicity, and cost-effectiveness, has become a preferred method for the protection of industrial components from excessive wear or abrasion. In particular, nickel (Ni) matrix composites fabricated via electrodeposition function as an environmentally friendly substitute for coatings such as hard chromium. These Ni-based composites exhibit multifunctional properties, including enhanced hardness, modified surface wettability, improved anti-friction/wear performance, and lubrication properties. This review begins by explaining the principles and mechanisms of electrodeposition, along with the chemical structures and properties of lubricating nanoparticles. It discusses dispersion methodologies of these nanoparticles in the electrolyte solution to address aggregation problems. In addition, it introduces codeposition models for Ni/nanomaterials and examines the key parameters that influence this codeposition process. This review systematically explores the mechanical properties, tribological performance, and surface wettability of resulting Ni-based nanocomposites, along with their potential applications and practical advantages. Finally, it discusses the opportunities and challenges associated with nanomaterial-enhanced metal composites, aiming to introduce new avenues for their utilization in electrodeposition.
Collapse
Affiliation(s)
- Tianyu Guan
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin 4, D04 V1W8 Ireland
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin 4, D04 V1W8 Ireland
| |
Collapse
|
5
|
Lang C, Chen Z, Hassanpouryouzband A, Farahani MV, Zhang L, Zhao J, Song Y. Spontaneous Lifting and Self-Cleaning of Gas Hydrate Crystals. ACS NANO 2024; 18:33671-33680. [PMID: 39565105 DOI: 10.1021/acsnano.4c12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Crystal fouling, which refers to the accumulation of precipitates on surfaces and the associated damage, is a common problem in many industrial processes. In deepwater oil and gas transportation, hydrate blockage poses as a considerable barrier. Consequently, modifying hydrophobicity of surfaces has become an increasingly focused strategy to mitigate hydrate. However, the design of surfaces that effectively control the hydrate remains challenging. Herein, we report a superior smooth anti-hydrate material based on silanized modification. The low-adhesion silanized silicon wafer (SSW) realizes a win-win strategy of hard formation and easy removal. Through a comprehensive study combining experimental validation with theoretical analysis, the unique characteristics of SSW in the field of anti-hydrate surfaces were deeply discussed. Various hydrate crystals exhibited a completely different hydrate growth mode at the SSW surface, in which hydrate crystals spontaneously elevated and lifted themselves off from the surface. The presence of the fluorine element on the SSW surface allowed self-lifting growth of hydrate crystals after they covered the water droplet. And the loose and porous crystal structure in this self-lifting growth could reduce the contact area between the hydrate crystals and the substrate, allowing the crystals with minimal adhesion force and removal disturbance. Furthermore, the gas enrichment on the SSW surface also reduced the contact with the substrate, thereby decreasing the adhesion and allowing self-cleaning behavior. These results indicate that the silanized surface is a promising candidate for developing anti-hydrate materials for hydrocarbon production and transportation industry.
Collapse
Affiliation(s)
- Chen Lang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zherui Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
| | | | | | - Lunxiang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiafei Zhao
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Ok S, Steinhart M, Améduri B. TFE Terpolymers: Once Promising - Are There Still Perspectives in the 21 st Century? Part II: Processing, Properties, Applications. Macromol Rapid Commun 2024; 45:e2400412. [PMID: 39352302 DOI: 10.1002/marc.202400412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 12/11/2024]
Abstract
Tetrafluoroethylene (TFE) terpolymers have emerged as advantageous substitutes for polytetrafluoroethylene (PTFE). Therefore, they are being considered as alternatives to PTFE in many application areas. The advantages of TFE terpolymers include their facile processability at elevated temperatures, their solubility in some polar organic solvents, their inertness against aqueous acids, aqueous bases and a large number of mostly nonpolar organic solvents, their low dielectric constant, their low refractive index as well as useful electro- and thermochemical properties. This review on TFE terpolymers focuses on their processing including shaping and surface modification as well as on selected properties including wettability, dielectric properties, mechanical response behavior, chemical stability, and degradability. Applications including their use as elastomeric sealing material, liner and cladding layer as well as their use as material for membranes, microfluidic devices, photonics, photovoltaics, energy storage, energy harvesting, sensors, and nanothermitic composites will be discussed. The review concludes with a discussion of the future potential of TFE terpolymers and scientific challenges to be addressed by future research on TFE terpolymers.
Collapse
Affiliation(s)
- Salim Ok
- Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. box 24885, Safat, 13109, Kuwait
| | - Martin Steinhart
- School of Biology and Chemistry and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49069, Osnabrück, Germany
| | - Bruno Améduri
- Institut Charles Gerhardt, University of Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| |
Collapse
|
7
|
Sworen JC, Morken PA, Smith AP, Boyle JE, Cervantes Garcia MD, Kramer J, Wadsley MP, Davis MC. Interrogation of a fluoropolymer dispersion manufactured with a non-fluorinated polymerization aid for targeted and non-targeted fluorinated residuals by liquid chromatography high resolution mass spectrometry. J Chromatogr A 2024; 1736:465369. [PMID: 39288502 DOI: 10.1016/j.chroma.2024.465369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Recent advances in fluoropolymer polymerization have focused on replacing perfluorinated polymerization aids (PAs) with hydrocarbon-based alternatives. Hydrocarbon PAs are vulnerable to fluorinated radicals during polymerization, leading to the creation of hundreds of process-specific polyfluorinated residuals. These residuals, which include low molecular weight extractable or leachable impurities, are challenging to detect at trace levels. This study investigates a polytetrafluoroethylene (PTFE) dispersion prepared with a hydrocarbon-based surfactant (DOSS) to measure these process-specific fluorinated residues. Liquid chromatography high resolution mass spectrometry is one of the few analytical methods that offers the sensitivity and selectivity required to detect these residuals in complex matrices at concentrations as low as parts per billion. The results indicate that using a hydrocarbon PA during emulsion polymerization produces numerous polyfluorinated residuals. These must be identified and monitored to develop effective abatement strategies, ensuring responsible fluoropolymer manufacturing.
Collapse
Affiliation(s)
- John C Sworen
- The Chemours Company, 201 Discovery Blvd, Newark, DE, USA
| | - Peter A Morken
- The Chemours Company, 201 Discovery Blvd, Newark, DE, USA
| | - Adam P Smith
- The Chemours Company, 8480 DuPont Road, Washington, WV, USA
| | - Jill E Boyle
- The Chemours Company, 201 Discovery Blvd, Newark, DE, USA
| | | | - Jordyn Kramer
- The Chemours Company, 201 Discovery Blvd, Newark, DE, USA
| | | | | |
Collapse
|
8
|
Abdullaev A, Mei X, Liu F, Peng K, You Y, Wu F, Islam MZ, Yang Q, Si Y, Fu Y. Superhydrophobic Electrospun PI/PTFE Membranes with Ultralow Dielectric Constants for High-Frequency Telecommunication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61004-61015. [PMID: 39445635 DOI: 10.1021/acsami.4c13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
High-frequency, high-power, and high-speed telecommunication in a complex environment promotes the development of dielectric materials toward a low dielectric constant, low dielectric loss, good thermal properties, and long-term reliability. Here, polyimide/polytetrafluoroethylene (PI/PTFE) nanofiber membranes with an inherent super hydrophobicity, excellent dielectric properties, good thermal stability, and enhanced tensile strength were prepared via a simple electrospinning strategy and an imidization reaction. The obtained PI/PTFE membranes demonstrate a superlow average dielectric constant of 1.22-1.27 and a dielectric loss of 0.032-0.048 in high frequency, together with an enhanced tensile strength, benefiting from the special nanofiber-bead structure formed in the composite membrane. The mixing of polyamic acid (PAA) and PTFE in the electrospinning solution endows the obtained PI/PTFE nanofiber membrane with a uniform distribution of PTFE and thus an inherent superhydrophobicity with a water contact angle of 156.1 and 159.2° for PI/PTFE-30% and PI/PTFE-40%, respectively. Besides, the hydrophobicity could be kept even after standing more than 10,000 water drops, and the thermal properties exhibited promising results with Tmax = 587 °C and Td5% = 423 °C, rendering these PI/PTFE membranes favorable alternatives for prospective telecommunication.
Collapse
Affiliation(s)
- Azim Abdullaev
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- School of Textile Science and Engineering, International Silk Institute, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Xiangyu Mei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Fujian Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Kun Peng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Yujie You
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Feiyan Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Md Zahidul Islam
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Qingbiao Yang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Yinsong Si
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Yaqin Fu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- School of Textile Science and Engineering, International Silk Institute, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| |
Collapse
|
9
|
Zhang H, Chen JX, Qu JP, Kang YB. Photocatalytic low-temperature defluorination of PFASs. Nature 2024; 635:610-617. [PMID: 39567791 DOI: 10.1038/s41586-024-08179-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are found in many everyday consumer products, often because of their high thermal and chemical stabilities, as well as their hydrophobic and oleophobic properties1. However, the inert carbon-fluorine (C-F) bonds that give PFASs their properties also provide resistance to decomposition through defluorination, leading to long-term persistence in the environment, as well as in the human body, raising substantial safety and health concerns1-5. Despite recent advances in non-incineration approaches for the destruction of functionalized PFASs, processes for the recycling of perfluorocarbons (PFCs) as well as polymeric PFASs such as polytetrafluoroethylene (PTFE) are limited to methods that use either elevated temperatures or strong reducing reagents. Here we report the defluorination of PFASs with a highly twisted carbazole-cored super-photoreductant KQGZ. A series of PFASs could be defluorinated photocatalytically at 40-60 °C. PTFE gave amorphous carbon and fluoride salts as the major products. Oligomeric PFASs such as PFCs, perfluorooctane sulfonic acid (PFOS), polyfluorooctanoic acid (PFOA) and derivatives give carbonate, formate, oxalate and trifluoroacetate as the defluorinated products. This allows for the recycling of fluorine in PFASs as inorganic fluoride salt. The mechanistic investigation reveals the difference in reaction behaviour and product components for PTFE and oligomeric PFASs. This work opens a window for the low-temperature photoreductive defluorination of the 'forever chemicals' PFASs, especially for PTFE, as well as the discovery of new super-photoreductants.
Collapse
Affiliation(s)
- Hao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jin-Xiang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| | - Yan-Biao Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
10
|
Ryu C, Ri JG, Kim YS, Rim CH, Kim CI, Yu CJ. Interfacial properties of a ZnO/PTFE composite from density functional tight-binding simulations. RSC Adv 2024; 14:35097-35103. [PMID: 39497777 PMCID: PMC11533984 DOI: 10.1039/d4ra06790h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Metal-oxide-reinforced plastic nanocomposites are widely used in high-tech industries, but the reinforcement mechanism of the metal oxide is not fully understood. Here we investigate the interfacial properties of a zinc-oxide-reinforced amorphous polytetrafluoroethylene (a-PTFE) composite as a prototype for such composites using superlattice modeling and density functional tight-binding molecular dynamics simulations. To study the ZnO/a-PTFE composites, the superlattice supercells are built using a ZnO (112̄0) surface supercell and a-PTFE layer with an experimental density of 1.8 g cm-3 and various thicknesses. Our calculations demonstrate that the binding energy between ZnO and a-PTFE is negative, indicating their attractive binding, and electron accumulation occurs in the middle space between ZnO and a-PTFE, as well as around ZnO, evidencing that the newly formed interfacial chemical bonds are partially covalent. We further reveal that the tensile stress and elastic moduli of the ZnO/a-PTFE superlattice increases with increasing ZnO fraction, with values placed between those of ZnO and a-PTFE, which confirms the enhancement of the mechanical strength of the composites by incorporating ZnO into the a-PTFE matrix. This work provides a design guideline for developing high-performance metal-oxide-reinforced plastic composites.
Collapse
Affiliation(s)
- Chol Ryu
- Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University Ryongnam-Dong, Taesong District Pyongyang Democratic People's Republic of Korea
| | - Jun-Gi Ri
- Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University Ryongnam-Dong, Taesong District Pyongyang Democratic People's Republic of Korea
| | - Yun-Sim Kim
- Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University Ryongnam-Dong, Taesong District Pyongyang Democratic People's Republic of Korea
| | - Chung-Hyok Rim
- Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University Ryongnam-Dong, Taesong District Pyongyang Democratic People's Republic of Korea
| | - Chung-Il Kim
- Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University Ryongnam-Dong, Taesong District Pyongyang Democratic People's Republic of Korea
| | - Chol-Jun Yu
- Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University Ryongnam-Dong, Taesong District Pyongyang Democratic People's Republic of Korea
| |
Collapse
|
11
|
Ok S, Steinhart M, Scheler U, Améduri B. TFE Terpolymers: Once Promising - Are There Still Perspectives in the 21st Century: Synthesis, Characterization, and Properties-Part I. Macromol Rapid Commun 2024; 45:e2400294. [PMID: 39108073 DOI: 10.1002/marc.202400294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/17/2024] [Indexed: 10/12/2024]
Abstract
Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high-temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co-monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene-propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties.
Collapse
Affiliation(s)
- Salim Ok
- Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. box 24885, Safat, 13109, Kuwait
| | - Martin Steinhart
- School of Biology and Chemistry and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49069, Osnabrück, Germany
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V. Dresden, Hohe Strasse 6, D-01069, Dresden, Germany
| | - Bruno Améduri
- Institut Charles Gerhardt, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34001, France
| |
Collapse
|
12
|
Hou J, Lin Y, Zhu C, Chen Y, Lin R, Lin H, Liu D, Guan D, Yu B, Wang J, Wu H, Cui Z. Zwitterion-Lubricated Hydrogel Microspheres Encapsulated with Metformin Ameliorate Age-Associated Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402477. [PMID: 38874373 PMCID: PMC11321630 DOI: 10.1002/advs.202402477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Chondrocyte senescence and reduced lubrication play pivotal roles in the pathogenesis of age-related osteoarthritis (OA). In the present study, highly lubricated and drug-loaded hydrogel microspheres are designed and fabricated through the radical polymerization of sulfobetaine (SB)-modified hyaluronic acid methacrylate using microfluidic technology. The copolymer contains a large number of SB and carboxyl groups that can provide a high degree of lubrication through hydration and form electrostatic loading interactions with metformin (Met@SBHA), producing a high drug load for anti-chondrocyte senescence. Mechanical, tribological, and drug release analyses demonstrated enhanced lubricative properties and prolonged drug dissemination of the Met@SBHA microspheres. RNA sequencing (RNA-seq) analysis, network pharmacology, and in vitro assays revealed the extraordinary capacity of Met@SBHA to combat chondrocyte senescence. Additionally, inducible nitric oxide synthase (iNOS) has been identified as a promising protein modulated by Met in senescent chondrocytes, thereby exerting a significant influence on the iNOS/ONOO-/P53 pathway. Notably, the intra-articular administration of Met@SBHA in aged mice ameliorated cartilage senescence and OA pathogenesis. Based on the findings of this study, Met@SBHA emerges as an innovative and promising strategy in tackling age-related OA serving the dual function of enhancing joint lubrication and mitigating cartilage senescence.
Collapse
Affiliation(s)
- Jiahui Hou
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yanpeng Lin
- Department of RadiologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Chencheng Zhu
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yupeng Chen
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Rongmin Lin
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Hancheng Lin
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Dahai Liu
- School of MedicineFoshan UniversityFoshanGuangdong528000China
| | - Daogang Guan
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Bin Yu
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jun Wang
- School of MedicineFoshan UniversityFoshanGuangdong528000China
| | - Hangtian Wu
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zhuang Cui
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
13
|
Zhang J, Lin Z, Ai F, Du W, Yin Y, Guo H. Effect of ultraviolet aged polytetrafluoroethylene microplastics on copper bioavailability and Microcystis aeruginosa growth. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106967. [PMID: 38833998 DOI: 10.1016/j.aquatox.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Microplastics (MPs) are ubiquitous in aquatic environments, which can act as carriers to affect the bioavailability of heavy metals. The aging process in the environment changes the physicochemical properties of MPs, thereby affecting their environmental behavior and co-toxicity with other pollutants. However, relevant research is limited. In this study, we compared the properties and Cu2+ adsorption capacity of pristine and aged polytetrafluoroethylene (PTFE) MPs and further explored the influence on copper bioavailability and bio-effects on Microcystis aeruginosa. Aging process induced surface oxidation and cracks of PTFE MPs, and decreased the stability of MPs in water by increasing zeta potential. PTFE MPs had a strong adsorption capacity for Cu2+ and increased the bioavailability of copper to microalgae, which was not affected by the aging process. Pristine and aged PTFE MPs adhered to cyanobacterium surfaces and caused shrinkage and deformation of cells. Inhibition of cyanobacterium growth, photosynthesis and reduction of total antioxidant capacity were observed in the treatment of PTFE MPs. Combined exposure of pristine MPs and Cu2+ had stronger toxic effects to cyanobacterium, and increased Microcystin-LR release, which could cause harm to aquatic environment. Aging reduced the toxic effects of PTFE MPs on microalgae. Furthermore, soluble exopolysaccharide (EPS) content was significantly higher in co-exposure of aged MPs and Cu2+, which could reduce the toxicity to cyanobacterium cells. These results indicate that aging process alleviates the toxicity to microalgae and environmental risks caused by PTFE MPs. This study improves understanding of the combined toxicity of aged MPs and metals in freshwater ecosystems.
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zihan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Herlem G, Roina Y, Fregnaux M, Gonçalves AM, Cattey H, Picaud F, Auber F. Direct Defluorination and Amination of Polytetrafluoroethylene and Other Fluoropolymers by Lithium Alkylamides. Molecules 2024; 29:3045. [PMID: 38998995 PMCID: PMC11243494 DOI: 10.3390/molecules29133045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Polytetrafluoroethylene (PTFE) and, by extension, fluoropolymers are ubiquitous in science, life, and the environment as perfluoroalkyl pollutants (PFAS). In all cases, it is difficult to transform these materials due to their chemical inertness. Herein, we report a direct amination process of PTFE and some fluoropolymers such as polyvinylidene fluoride (PVDF) and Nafion by lithium alkylamide salts. Synthesizing these reactants extemporaneously between lithium metal and an aliphatic primary di- or triamine that also serves as a solvent leads to the rapid nucleophilic substitution of fluoride by an alkylamide moiety when in contact with the fluoropolymer. Moreover, lithium alkylamides dissolved in suitable solvents other than amines can react with fluoropolymers. This highly efficient one-pot process opens the way for further surface or bulk modification if needed, providing an easy, inexpensive, and fast experiment protocol on large scales.
Collapse
Affiliation(s)
- Guillaume Herlem
- Laboratoire SINERGIES, CHU Jean Minjoz, UFR Sciences & Techniques, 16 Route de Gray, 25030 Besançon CEDEX, France
| | - Yaelle Roina
- Laboratoire SINERGIES, CHU Jean Minjoz, UFR Sciences & Techniques, 16 Route de Gray, 25030 Besançon CEDEX, France
| | - Mathieu Fregnaux
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, UMR 8180, 78035 Versailles CEDEX, France
| | - Anne-Marie Gonçalves
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, UMR 8180, 78035 Versailles CEDEX, France
| | - Hélène Cattey
- Institut ICMUB—CNRS 6302, Université de Bourgogne, UFR Sciences et Techniques Mirande, 9 Avenue Alain Savary, 21000 Dijon CEDEX, France
| | - Fabien Picaud
- Laboratoire SINERGIES, CHU Jean Minjoz, UFR Sciences & Techniques, 16 Route de Gray, 25030 Besançon CEDEX, France
| | - Frédéric Auber
- Laboratoire SINERGIES, CHU Jean Minjoz, UFR Sciences & Techniques, 16 Route de Gray, 25030 Besançon CEDEX, France
| |
Collapse
|
15
|
Liang Q, Liu X, Tang J, Yan X, He L, Chen E, Wu S, Liu J, Tang M, Chen Z, Wang Z. An Ultrathin Composite Polymer Electrolyte Dual-Reinforced by a Polymer of Intrinsic Microporosity (PIM-1) and Poly(tetrafluoroethylene) (PTFE) Porous Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306994. [PMID: 38098339 DOI: 10.1002/smll.202306994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/06/2023] [Indexed: 05/30/2024]
Abstract
The performances of solid-state polymer electrolytes are urgently required to be further improved for high energy density lithium metal batteries. Herein, a highly reinforced ultrathin composite polymer electrolyte (PLPP) is successfully fabricated in a large scale by densely filling the well-dispersed mixture of polyethylene oxide (PEO), Li-salt (LiTFSI) and a polymer of intrinsic microporosity (PIM-1) into porous poly(tetrafluoroethylene) (PTFE) matrix. Based on the macro-plus-micro synergistic enhancement of the PTFE with excellent mechanical properties and the soluble PIM-1 with suitable functional groups, the PLPP electrolyte exhibits excellent properties including mechanical stress, thermal stability, lithium-ion transference number, voltage window and ionic conductivity, which are all superior to the typical PEO/LiTFSI electrolytes. As a result, the Li/PLPP/Li symmetric cell can stably cycle for > 2000 h, and the LiFePO4/PLPP/Li full cell exhibits excellent rate performance (>10 C) and high cycling stability with an initial capacity of 158.8 mAh g-1 and a capacity retention of 78.8% after 300 cycles. In addition, the excellent mechanical properties as well as the wide voltage window reasonably result in the stable operation of full cells with either high-loading cathode up to 28.1 mg cm-2 or high voltage cathode with high energy density.
Collapse
Affiliation(s)
- Qian Liang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xuezhi Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Junyan Tang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiao Yan
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Lei He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - En Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Sihan Wu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Junjie Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Mi Tang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zhiquan Chen
- Hubei Key Laboratory of Nuclear Solid State Physics, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Zhengbang Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
16
|
Ghasemlou M, Oladzadabbasabadi N, Ivanova EP, Adhikari B, Barrow CJ. Engineered Sustainable Omniphobic Coatings to Control Liquid Spreading on Food-Contact Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15657-15686. [PMID: 38518221 DOI: 10.1021/acsami.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The adhesion of sticky liquid foods to a contacting surface can cause many technical challenges. The food manufacturing sector is confronted with many critical issues that can be overcome with long-lasting and highly nonwettable coatings. Nanoengineered biomimetic surfaces with distinct wettability and tunable interfaces have elicited increasing interest for their potential use in addressing a broad variety of scientific and technological applications, such as antifogging, anti-icing, antifouling, antiadhesion, and anticorrosion. Although a large number of nature-inspired surfaces have emerged, food-safe nonwetted surfaces are still in their infancy, and numerous structural design aspects remain unexplored. This Review summarizes the latest scientific research regarding the key principles, fabrication methods, and applications of three important categories of nonwettable surfaces: superhydrophobic, liquid-infused slippery, and re-entrant structured surfaces. The Review is particularly focused on new insights into the antiwetting mechanisms of these nanopatterned structures and discovering efficient platform methodologies to guide their rational design when in contact with food materials. A detailed description of the current opportunities, challenges, and future scale-up possibilities of these nanoengineered surfaces in the food industry is also provided.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
17
|
Chu C, Ma LL, Alawi H, Ma W, Zhu Y, Sun J, Lu Y, Xue Y, Chen G. Mechanistic exploration of polytetrafluoroethylene thermal plasma gasification through multiscale simulation coupled with experimental validation. Nat Commun 2024; 15:1654. [PMID: 38395949 PMCID: PMC10891128 DOI: 10.1038/s41467-024-45077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/15/2024] [Indexed: 02/25/2024] Open
Abstract
The ever-growing quantities of persistent Polytetrafluoroethylene (PTFE) wastes, along with consequential ecological and human health concerns, stimulate the need for alternative PTFE disposal method. The central research challenge lies in elucidating the decomposition mechanism of PTFE during high-temperature waste treatment. Here, we propose the PTFE microscopic thermal decomposition pathways by integrating plasma gasification experiments with multi-scale simulations strategies. Molecular dynamic simulations reveal a pyrolysis-oxidation & chain-shortening-deep defluorination (POCD) degradation pathway in an oxygen atmosphere, and an F abstraction-hydrolysis-deep defluorination (FHD) pathway in a steam atmosphere. Density functional theory computations demonstrate the vital roles of 1O2 and ·H radicals in the scission of PTFE carbon skeleton, validating the proposed pathways. Experimental results confirm the simulation results and show that up to 80.12% of gaseous fluorine can be recovered through plasma gasification within 5 min, under the optimized operating conditions determined through response surface methodology.
Collapse
Affiliation(s)
- Chu Chu
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, China
| | - Long Long Ma
- School of Energy &Environment, Key Lab Energy Thermal Conversion & Control, Southeast University, Nanjing, 210096, China
| | - Hyder Alawi
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, China
| | - Wenchao Ma
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, China.
| | - YiFei Zhu
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junhao Sun
- Postdoctoral Programme, Guosen Securities, Shenzhen, 518001, China
| | - Yao Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Yixian Xue
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, China
- School of Ecology and Environment, Tibet University, Lhasa, 850012, Tibet, China
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300314, China
| |
Collapse
|
18
|
Biao YW, Xu JY, Chen WR. Factors affecting the occurrence and accumulation of perfluoroalkyl acids in indoor dust in Tainan, Taiwan. CHEMOSPHERE 2024; 349:140882. [PMID: 38072200 DOI: 10.1016/j.chemosphere.2023.140882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are environmentally and biologically persistent chemicals. In this study, we investigated the concentrations of six PFAAs in dust samples collected from different indoor environments in a college campus in Tainan, Taiwan, and assessed the health risk of PFAAs exposure to college students. We also analyzed the effects of dust characteristics (total organic carbon, moisture content, and dust content) on PFAAs levels. With regard to the space type, the median of total PFAAs concentrations were in the order of laboratories (528.9 μg kg-1) > offices (304.2 μg kg-1) > dormitories (180.1 μg kg-1) > classrooms (105.1 μg kg-1). With regard to the height from the ground, the median total PFAAs concentrations were in the order of dust near the floors (>2 m; 383.6 μg kg-1) > near the ceiling (0-2 m; 202.5 μg kg-1) > on the ground (0 m; 145.6 μg kg-1). The main species of PFAAs, perfluorooctane sulfonate and short-chain perfluoroalkyl carboxylates, accounted for respectively 30%-60% and ∼20%-37% of total PFAAs pollution in the indoor space types and sampling heights under consideration. The average daily intake (ADI) values of six PFAAs for college students were found to be 0.059-0.126 ng kg-1 BW day-1 (BW: body weight), with dormitories and workplaces (i.e., laboratories and offices) accounting for over 40% and ∼50% of the ADI, respectively. The estimated hazard quotient ranged from 0.0029 to 0.0063, three orders of magnitude lower than 1, suggesting relatively low risks for college students exposed to the six PFAAs monitored in indoor dust. The analysis of dust characteristics revealed that total organic carbon did not have a significant effect on PFAAs levels as we expected. In contrast, dust moisture and cation content dominated PFAAs accumulation.
Collapse
Affiliation(s)
- Yi-Wei Biao
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Jing-Ya Xu
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Wan-Ru Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.
| |
Collapse
|
19
|
Zhang J, Pei R, Tan J, Ni Z, Ye S, Luo Y. Visualizing Water Monomers and Chiral OH -(H 2O) Complexes Infiltrated in a Macroscopic Hydrophobic Teflon Matrix. J Am Chem Soc 2023. [PMID: 38048434 DOI: 10.1021/jacs.3c09950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Insights into the interaction of fluoroalkyl groups with water are crucial to understanding the polar hydrophobicity of fluorinated compounds, such as Teflon. While an ordered hydrophobic-like 2D water layer has been demonstrated to be present on the surface of macroscopically hydrophobic fluorinated polymers, little is known about how the water infiltrates into the Teflon and what is the molecular structure of the water infiltrated into the Teflon. Using highly sensitive femtosecond sum frequency generation vibrational spectroscopy (SFG-VS), we observe for the first time that monomeric H2O and chiral OH-(H2O) complexes are present in macroscopically hydrophobic Teflon. The species are inhomogeneously distributed inside the Teflon matrix and at the Teflon surface. No water clusters or single-file water "wires" are observed in the matrix. SFG free induction decay (SFG-FID) experiments demonstrate that the OH oscillators of physically absorbed molecular water at the surface dephase on the time scale of <230 fs, whereas the water monomers and hydrated hydroxide ions infiltrated in the Teflon matrix dephase much more slowly (680-830 fs), indicating that the embedded monomeric H2O and OH-(H2O) complexes are decoupled from the outer environment. Our findings can well interpret ultrafast water permeation through fluorous nanochannels and the charging mechanism of Teflon, which may tailor the desired applications of organofluorines.
Collapse
Affiliation(s)
- Jiahui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
20
|
Fróis A, Santos AC, Louro CS. Corrosion of Fixed Orthodontic Appliances: Causes, Concerns, and Mitigation Strategies. METALS 2023; 13:1955. [DOI: 10.3390/met13121955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The orthodontic supply market is a prosperous billion-dollar industry, driven by an increasing demand for orthodontic appliances. The supremacy of metallic first-generation biomaterials is evident for manufacturing brackets, archwires, bands, and other components due to their well-recognized chemical inertness, spontaneous passivation, biocompatibility, and favorable mechanical properties combination. However, the oral cavity is the ultimate corrosion-promoting environment for any metallic material. In this work, the general picture of the intraoral degradation of fixed orthodontic appliances is first addressed, from the causes to the harmful effects and their oral clinical implications. Current mitigation strategies are also pointed out, including the alloys’ bulk composition adjustment combined with new and advanced manufacturing processes and/or their surface treatment or coating deposition. The versatile use of thin films and coatings stands out with different deposition technologies: Many in vivo and in vitro efforts have been devoted to oral aging, from monolithic to composite architectures and micro- to nano-scale materials, to meet the best and safest oral practice demands. Unfortunately, literature data suggest that even the existing commercially available protective coatings have drawbacks and are fallible. Further multidisciplinary research is still required to effectively mitigate the corrosion behavior of fixed orthodontic appliances.
Collapse
Affiliation(s)
- António Fróis
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Rua Luis Reis Santos, 3030-177 Coimbra, Portugal
- Faculty of Medicine, Biophysics Institute, Coimbra Institute for Clinical and Biomedical Research/Centre for Innovative Biomedicine and Biotechnology (iCBR/CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Area of Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cristina Santos
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Rua Luis Reis Santos, 3030-177 Coimbra, Portugal
- Faculty of Medicine, Biophysics Institute, Coimbra Institute for Clinical and Biomedical Research/Centre for Innovative Biomedicine and Biotechnology (iCBR/CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Area of Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cristina Santos Louro
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Rua Luis Reis Santos, 3030-177 Coimbra, Portugal
| |
Collapse
|
21
|
Chen K, Guo X, Chen M. Controlled Radical Copolymerization toward Well-Defined Fluoropolymers. Angew Chem Int Ed Engl 2023; 62:e202310636. [PMID: 37581580 DOI: 10.1002/anie.202310636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/16/2023]
Abstract
In the past 80 years, fluoropolymers have found broad applications in both industrial and academic settings, owing to their unique physicochemical properties. Copolymerizations of fluoroalkene feedstocks present an important avenue to obtain high-performance materials by merging intrinsic attributes of fluorocarbons and great versatility of comonomers. Recently, while massive investigations have disclosed the great potentials of precisely synthesized polymers, researchers have made considerable efforts to approach well-defined fluorinated copolymers. This minireview discusses challenges in controlled radical copolymerizations (CRCPs) of fluoroalkenes and provides a concise perspective on recent progress in CRCPs of fluoroalkenes (e.g., tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropene, perfluoroalkyl vinyl ethers) with non-fluorinated vinyl comonomers, which have enabled on-demand preparations of various main-chain fluoropolymers with predefined molar masses, low dispersities, as well as regulable chemical compositions and sequences. The synthetic advantages of CRCPs will promote controlled and facile access to customized fluoropolymers for high-tech applications such as batteries, coatings and so on.
Collapse
Affiliation(s)
- Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xing Guo
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
22
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
23
|
Wang X, Chen S, Zhang K, Huang L, Shen H, Chen Z, Rong C, Wang G, Jiang Z. A Polytetrafluoroethylene-Based Solvent-Free Procedure for the Manufacturing of Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7232. [PMID: 38005162 PMCID: PMC10673244 DOI: 10.3390/ma16227232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Lithium-ion batteries (LIBs) have recently become popular for energy storage due to their high energy density, storage capacity, and long-term cycle life. Although binders make up only a small proportion of LIBs, they have become the key to promoting the transformation of the battery preparation process. Along with the development of binders, the battery manufacturing process has evolved from the conventional slurry-casting (SC) process to a more attractive solvent-free (SF) method. Compared with traditional LIBs manufacturing method, the SF method could dramatically reduce and increase the energy density due to the reduced preparation steps and enhanced electrode loading. Polytetrafluoroethylene (PTFE), as a typical binder, has played an important role in fabricating high-performance LIBs, particularly in regards to the SF technique. In this paper, the development history and application status of PTFE binder was introduced, and then its contributions and the inherent problems involved in the SF process were described and analyzed. Finally, the viewpoints concerning the future trends for PTFE-based SF manufacturing methods were also discussed. We hope this work can inspire future research concerning high-quality SF binders and assist in promoting the evolution of the SF manufacturing technology in regards to LIBs.
Collapse
Affiliation(s)
- Xuehan Wang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (X.W.); (K.Z.); (H.S.); (G.W.); (Z.J.)
| | - Shuli Chen
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China; (S.C.); (L.H.)
| | - Kaiqi Zhang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (X.W.); (K.Z.); (H.S.); (G.W.); (Z.J.)
| | - Licheng Huang
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China; (S.C.); (L.H.)
| | - Huilin Shen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (X.W.); (K.Z.); (H.S.); (G.W.); (Z.J.)
| | - Zheng Chen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (X.W.); (K.Z.); (H.S.); (G.W.); (Z.J.)
| | - Changru Rong
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China; (S.C.); (L.H.)
| | - Guibin Wang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (X.W.); (K.Z.); (H.S.); (G.W.); (Z.J.)
| | - Zhenhua Jiang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (X.W.); (K.Z.); (H.S.); (G.W.); (Z.J.)
| |
Collapse
|
24
|
Améduri B. Fluoropolymers as Unique and Irreplaceable Materials: Challenges and Future Trends in These Specific Per or Poly-Fluoroalkyl Substances. Molecules 2023; 28:7564. [PMID: 38005292 PMCID: PMC10675016 DOI: 10.3390/molecules28227564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
In contrast to some low-molar-mass per- and polyfluoroalkyl substances (PFASs), which are well established to be toxic, persistent, bioaccumulative, and mobile, fluoropolymers (FPs) are water-insoluble, safe, bioinert, and durable. These niche high-performance polymers fulfil the 13 polymer-of-low-concern (PLC) criteria in their recommended conditions of use. In addition, more recent innovations (e.g., the use of non-fluorinated surfactants in aqueous radical (co)polymerization of fluoroalkenes) from industrial manufacturers of FPs are highlighted. This review also aims to show how these specialty polymers endowed with outstanding properties are essential (even irreplaceable, since hydrocarbon polymer alternatives used in similar conditions fail) for our daily life (electronics, energy, optics, internet of things, transportation, etc.) and constitute a special family separate from other "conventional" C1-C10 PFASs found everywhere on Earth and its oceans. Furthermore, some information reports on their recycling (e.g., the unzipping depolymerization of polytetrafluoroethylene, PTFE, into TFE), end-of-life FPs, and their risk assessment, circular economy, and regulations. Various studies are devoted to environments involving FPs, though they present a niche volume (with a yearly production of 330,300 t) compared to all plastics (with 460 million t). Complementary to other reviews on PFASs, which lack of such above data, this review presents both fundamental and applied strategies as evidenced by major FP producers.
Collapse
Affiliation(s)
- Bruno Améduri
- Institute Charles Gerhardt, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
25
|
K C PB, Maharjan A, Acharya M, Lee D, Kusma S, Gautam R, Kwon JT, Kim C, Kim K, Kim H, Heo Y. Polytetrafluorethylene microplastic particles mediated oxidative stress, inflammation, and intracellular signaling pathway alteration in human derived cell lines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165295. [PMID: 37419366 DOI: 10.1016/j.scitotenv.2023.165295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Microplastics (MPs) are now widely distributed across the aerial, terrestrial, and aquatic environments. Thus, exposure to MPs via the oral, inhalation, or dermal routes is inevitable. Polytetrafluoroethylene (PTFE)-MPs is mainly used for manufacturing nonstick cookware, semiconductors, and medical devices; however, their toxicity has been rarely studied. In the present study, six different human cell lines, which are representative of tissues and cells that directly or indirectly come into contact with MPs, were exposed to two different sizes of irregular shape PTFE-MPs (with an average diameter of 6.0 or 31.7 μm). PTFE-MPs-mediated cytotoxicity, oxidative stress, and changes in proinflammatory cytokine production were then evaluated. We found that the PTFE-MPs did not induce cytotoxicity under any of the experimental conditions. However, PTFE-MPs (especially average diameter of 6.0 μm) induced nitric oxide and reactive oxygen species production in all the cell lines tested. Moreover, both sizes of PTFE-MPs increased the secretion of tumor necrosis factor alpha and interleukin-6 from the U937 macrophage cell line and the A549 lung epithelial cell line, respectively. In addition, PTFE-MPs activated the MAPK signaling pathways, especially the ERK pathway, in A549 and U937 cells, and in the THP-1 dendritic cell line. We also found that the expression of the NLRP3 inflammasome was reduced in the U937 and THP-1 cell lines following treatment with the PTFE-MPs sized 31.7 μm average diameter. Furthermore, expression of the apoptosis regulator, BCL2, was markedly increased in the A549 and U937 cell lines. Thus, although PTFE-MPs exert different effects on different cell types, our findings suggest that PTFE-MPs-associated toxicity may be specifically linked to the activation of the ERK pathway, which ultimately induces oxidative stress and inflammation.
Collapse
Affiliation(s)
- Pramod Bahadur K C
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea
| | - Sarina Kusma
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ravi Gautam
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea
| | - Jung-Taek Kwon
- Environmental Health Research Department, National Institute of Environmental Research, 22689 Incheon, Republic of Korea.
| | - ChangYul Kim
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan 38430, Republic of Korea.
| | - KilSoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Center, 41061 Daegu, Republic of Korea; College of Veterinary Medicine, Kyungpook National University, 41566 Daegu, Republic of Korea.
| | - HyoungAh Kim
- College of Medicine, Department of Preventive Medicine, The Catholic University of Korea, 06591 Seoul, Republic of Korea.
| | - Yong Heo
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan 38430, Republic of Korea; Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea.
| |
Collapse
|
26
|
Hamaura J, Hori H, Fujishima A, Mukae H. Efficient Mineralization of Fluoroelastomers Using Superheated Water in the Presence of Potassium Hydroxide. Molecules 2023; 28:7057. [PMID: 37894535 PMCID: PMC10608947 DOI: 10.3390/molecules28207057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The mineralization of fluoroelastomers (FKMs) in superheated water in the presence of potassium hydroxide (KOH) was investigated with the aim of developing a methodology for recycling the fluorine element. Two FKMs-an "uncrosslinked FKM", representing a poly(vinylidene fluoride-co-hexafluoropropylene) (poly(VDF-co-HFP)) copolymer with a VDF/HFP molar ratio of 78/22 and a "crosslinked FKM" consisting of this copolymer (cured by peroxide) and carbon black-were treated. The fluorine content of these FKMs was efficiently transformed into F- ions in the reaction solution using low KOH concentrations (0.10-0.50 M) at 200-250 °C. When the uncrosslinked or crosslinked FKMs reacted with aqueous KOH (0.20 M) at a rather low temperature (200 °C) for 18 h, the fluorine content of these FKMs was completely mineralized (both F- yields were 100%). Although the crosslinked FKM contained carbon black, the fluorine mineralization of the FKM was not inhibited. The addition of Ca(OH)2 to the reaction solutions after the superheated water treatment at 250 °C for 6 h with aqueous KOH (0.50 M) led to the production of pure CaF2, identified using X-ray spectroscopy, with 100% and 93% yields for the uncrosslinked and crosslinked FKMs, respectively.
Collapse
Affiliation(s)
- Jin Hamaura
- Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Hisao Hori
- Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Ayane Fujishima
- Technology Innovation Center, Daikin Industries, Ltd., 1-1 Nishi-Hitotsuya, Settsu 566-8585, Japan
| | - Hirofumi Mukae
- Technology Innovation Center, Daikin Industries, Ltd., 1-1 Nishi-Hitotsuya, Settsu 566-8585, Japan
| |
Collapse
|
27
|
Fan Z, Li B, Ren D, Xu M. Recent Progress of Low Dielectric and High-Performance Polybenzoxazine-Based Composites. Polymers (Basel) 2023; 15:3933. [PMID: 37835982 PMCID: PMC10575129 DOI: 10.3390/polym15193933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
With the rapid advancement of intelligent electronics, big data platforms, and other cutting-edge technologies, traditional low dielectric polymer matrix composites are no longer sufficient to satisfy the application requirements of high-end electronic information materials, particularly in the realm of high integration and high-frequency, high-speed electronic communication device manufacturing. Consequently, resin-based composites with exceptional low dielectric properties have garnered unprecedented attention. In recent years, benzoxazine-based composites have piqued the interest of scholars in the fields of high-temperature-resistant, low dielectric electronic materials due to their remarkable attributes such as high strength, high modulus, high heat resistance, low curing shrinkage, low thermal expansion coefficient, and excellent flame retardancy. This article focuses on the design and development of modification of polybenzoxazine based on low dielectric polybenzoxazine modification methods. Studies on manufacturing polybenzoxazine co-polymers and benzoxazine-based nanocomposites have also been reviewed.
Collapse
Affiliation(s)
| | | | | | - Mingzhen Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.F.); (B.L.); (D.R.)
| |
Collapse
|
28
|
Najm A, Niculescu AG, Rădulescu M, Gaspar BS, Grumezescu AM, Beuran M. Novel Material Optimization Strategies for Developing Upgraded Abdominal Meshes. Int J Mol Sci 2023; 24:14298. [PMID: 37762601 PMCID: PMC10531784 DOI: 10.3390/ijms241814298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Over 20 million hernias are operated on globally per year, with most interventions requiring mesh reinforcement. A wide range of such medical devices are currently available on the market, most fabricated from synthetic polymers. Yet, searching for an ideal mesh is an ongoing process, with continuous efforts directed toward developing upgraded implants by modifying existing products or creating innovative systems from scratch. In this regard, this review presents the most frequently employed polymers for mesh fabrication, outlining the market available products and their relevant characteristics, further focusing on the state-of-the-art mesh approaches. Specifically, we mainly discuss recent studies concerning coating application, nanomaterials addition, stem cell seeding, and 3D printing of custom mesh designs.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
29
|
Ma Z, Zhao M, Yang Z, Wang X, Dai C. Development and Gelation Mechanism of Ultra-High-Temperature-Resistant Polymer Gel. Gels 2023; 9:726. [PMID: 37754407 PMCID: PMC10530838 DOI: 10.3390/gels9090726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
To expand the applicability of gel fracturing fluids in ultra-high-temperature reservoirs, a temperature-resistant polymer was synthesized using the solution polymerization method. Subsequently, an ultra-high-temperature-resistant polymer gel was formulated by incorporating an organic zirconium crosslinking agent. A comprehensive investigation was carried out to systematically study and evaluate the steady shear property, dynamic viscoelasticity, and temperature and shear resistance performance, as well as the core damage characteristics of the polymer gel. The obtained results demonstrate that the viscosity remained at 147 mPa·s at a temperature of 200 °C with a shear rate of 170 s-1. Compared with the significant 30.9% average core damage rate observed in the guanidine gum fracturing fluid, the core damage attributed to the polymer gel was substantially mitigated, measuring only 16.6%. Finally, the gelation mechanism of the polymer gel was scrutinized in conjunction with microscopic morphology analysis. We expect that this study will not only contribute to the effective development of deep and ultradeep oil and gas reservoirs but also furnish a theoretical foundation for practical field applications.
Collapse
Affiliation(s)
- Zhenfeng Ma
- National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China; (Z.M.); (Z.Y.); (X.W.); (C.D.)
- Shandong Key Laboratory of Oilfield Chemistry, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingwei Zhao
- National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China; (Z.M.); (Z.Y.); (X.W.); (C.D.)
- Shandong Key Laboratory of Oilfield Chemistry, China University of Petroleum (East China), Qingdao 266580, China
| | - Ziteng Yang
- National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China; (Z.M.); (Z.Y.); (X.W.); (C.D.)
- Shandong Key Laboratory of Oilfield Chemistry, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiangyu Wang
- National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China; (Z.M.); (Z.Y.); (X.W.); (C.D.)
- Shandong Key Laboratory of Oilfield Chemistry, China University of Petroleum (East China), Qingdao 266580, China
| | - Caili Dai
- National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China; (Z.M.); (Z.Y.); (X.W.); (C.D.)
- Shandong Key Laboratory of Oilfield Chemistry, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
30
|
Liu L, Gu YC, Zhang CP. Recent Advances in the Synthesis and Transformation of Carbamoyl Fluorides, Fluoroformates, and Their Analogues. CHEM REC 2023; 23:e202300071. [PMID: 37098875 DOI: 10.1002/tcr.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Indexed: 04/27/2023]
Abstract
Carbamoyl fluorides, fluoroformates, and their analogues are a class of important compounds and have been evidenced as versatile building blocks for the preparation of useful molecules in organic chemistry. While major achievements were made in the synthesis of carbamoyl fluorides, fluoroformates, and their analogues in the last half of 20th century, an increasing number of reports have focused on using O/S/Se=CF2 species or their equivalents as the fluorocarbonylation reagents for the direct construction of these compounds from the parent heteroatom-nucleophiles in recent years. This review mainly summarizes the advances in the synthesis and typical application of carbamoyl fluorides, fluoroformates, and their analogues by the halide exchanges and fluorocarbonylation reactions since 1980.
Collapse
Affiliation(s)
- Lei Liu
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG426EY, UK
| | - Cheng-Pan Zhang
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
31
|
Shi L, Bao F, Liu Y, Li H, Zhu T, Liu H, Yu J, Qiao Y, Zhu C, Xu J. Design and Synthesis of Low Dielectric Poly(aryl ether ketone) from Incorporation Bulky Fluorene Groups and Regular Hydroquinone Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11439-11447. [PMID: 37524048 DOI: 10.1021/acs.langmuir.3c01307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
To decrease the dipole polarization rate and reduce the dielectric constant of poly(aryl ether ketone) (PAEK) resin, 1,4-di(4-fluorobenzoyl) cyclohexane (DFBCH), a weakly polarizing cyclohexane-based monomer, was designed and synthesized as the primary reactant. The bulky fluorene group was incorporated to increase the free volume of the resin, further reducing the dielectric constant. Additionally, hydroquinone with a symmetric and regular structure was utilized to enhance the molecular chain's regularity and reduce dipole relaxation, further lowering the resin's dielectric constant and dielectric loss. The PFQEKs series resins exhibited excellent thermal stability with glass transition temperature (Tg) ranging from 222 to 239 °C and 5% weight loss (Td5%) ranging from 458 to 463 °C, with different monomer ratios. As the hydroquinone content increased, the dielectric constant (Dk) and dielectric loss (Df) of the resin decreased significantly, with Dk ranging from 2.92 to 2.77 and Df ranging from 0.011 to 0.008 at 10 GHz.
Collapse
Affiliation(s)
- Ludi Shi
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Bao
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanxing Liu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hong Li
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tang Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huichao Liu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiali Yu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yongna Qiao
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Caizhen Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
32
|
Yu P, Wang H, Li T, Wang G, Jia Z, Dong X, Xu Y, Ma Q, Zhang D, Ding H, Yu B. Mechanically Robust, Recyclable, and Self-Healing Polyimine Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300958. [PMID: 37088727 PMCID: PMC10323645 DOI: 10.1002/advs.202300958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
To achieve energy saving and emission reduction goals, recyclable and healable thermoset materials are highly attractive. Polymer copolymerization has been proven to be a critical strategy for preparing high-performance polymeric materials. However, it remains a huge challenge to develop high-performance recyclable and healable thermoset materials. Here, polyimine dynamic networks based on two monomers with bulky pendant groups, which not only displayed mechanical properties higher than the strong and tough polymers, e.g., polycarbonate, but also excellent self-repairing capability and recyclability as thermosets are developed. Owing to the stability of conjugation effect by aromatic benzene rings, the final polyimine networks are far more stable than the reported counterparts, exhibiting excellent hydrolysis resistance under both alkaline condition and most organic solvents. These polyimine materials with conjugation structure can be completely depolymerized into monomers recovery in an acidic aqueous solution at ambient temperature. Resulting from the bulky pendant units, this method allows the exchange reactions of conjugation polyimine vitrimer easily within minutes for self-healing function. Moreover, the introduction of trifluoromethyl diphenoxybenzene backbones significantly increases tensile properties of polyimine materials. This work provides an effective strategy for fabricating high-performance polymer materials with multiple functions.
Collapse
Affiliation(s)
- Ping Yu
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
- Jiangsu Marine Resources Development InstituteLianyungangJiangsu222005P. R. China
| | - Haiyue Wang
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Ting Li
- Shanghai Cedar Composites Technology Co., Ltd201306ShanghaiP. R. China
| | - Guimei Wang
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Zichen Jia
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Xinyu Dong
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Yang Xu
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Qilin Ma
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Dongen Zhang
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Hongliang Ding
- State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Bin Yu
- State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
33
|
Vidakis N, Petousis M, Moutsopoulou A, Papadakis V, Spiridaki M, Mountakis N, Charou C, Tsikritzis D, Maravelakis E. Nanocomposites with Optimized Polytetrafluoroethylene Content as a Reinforcement Agent in PA12 and PLA for Material Extrusion Additive Manufacturing. Polymers (Basel) 2023; 15:2786. [PMID: 37447432 DOI: 10.3390/polym15132786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Herein, polytetrafluoroethylene (PTFE) is evaluated as a reinforcement agent in material extrusion (MEX) additive manufacturing (AM), aiming to develop nanocomposites with enhanced mechanical performance. Loadings up to 4.0 wt.% were introduced as fillers of polylactic acid (PLA) and polyamide 12 (PA12) matrices. Filaments for MEX AM were prepared to produce corresponding 3D-printed samples. For the thorough characterization of the nanocomposites, a series of standardized mechanical tests were followed, along with AFM, TGA, Raman spectroscopy, EDS, and SEM analyses. The results showed an improved mechanical response for filler concentrations between 2.0 and 3.0 wt.%. The enhancement for the PLA/PTFE 2.0 wt.% in the tensile strength reached 21.1% and the modulus of elasticity 25.5%; for the PA12/PTFE 3.0 wt.%, 34.1%, and 41.7%, respectively. For PLA/PTFE 2.0 wt.%, the enhancement in the flexural strength reached 57.6% and the modulus of elasticity 25.5%; for the PA12/PTFE 3.0 wt.%, 14.7%, and 17.2%, respectively. This research enables the ability to deploy PTFE as a reinforcement agent in the PA12 and PLA thermoplastic engineering polymers in the MEX AM process, expanding the potential applications.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Amalia Moutsopoulou
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Vassilis Papadakis
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100m, 70013 Heraklion, Greece
| | - Mariza Spiridaki
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Chrysa Charou
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Dimitris Tsikritzis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Emmanuel Maravelakis
- Department of Electronic Engineering, Hellenic Mediterranean University (HMU), 73133 Chania, Greece
| |
Collapse
|
34
|
Bagryantseva I, Ponomareva V, Kungurtsev Y. High-Conductive CsH 2PO 4 Membranes with PVDF-Based Polymers Additives. MEMBRANES 2023; 13:617. [PMID: 37504983 PMCID: PMC10385413 DOI: 10.3390/membranes13070617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The study is devoted to one of the important problems of hydrogen energy-the comparative analysis and creation of novel highly conductive and durable medium-temperature proton membranes based on cesium dihydrogen phosphate and fluoropolymers. The proton conductivity, structural characteristics and mechanical properties of (1 - x)CsH2PO4-x fluoropolymer electrolytes (x-mass fraction, x = 0-0.3) have been investigated and analyzed. UPTFE and PVDF-based polymers (F2M, F42, and SKF26) with high thermal stability and mechanical properties have been chosen as polymer additives. The used fluoropolymers are shown to be chemical inert matrices for CsH2PO4. According to the XRD data, a monoclinic CsH2PO4 (P21/m) phase was retained in all of the polymer electrolytes studied. Highly conductive and mechanically strong composite membranes with thicknesses of ~50-100 μm were obtained for the soluble fluoropolymers (F2M, F42, and SKF26). The size and shape of CsH2PO4 particles and their distribution have been shown to significantly affect proton conductivity and the mechanical properties of the membranes. The thin-film polymer systems with uniform distributions of salt particles (up to ~300 nm) were produced via the use of different methods. The best results were achieved via the pretreatment of the suspension in a bead mill. The ability of the membranes to resist plastic deformation increases with the growth of the polymer content in comparison with the pure CsH2PO4, and the values of the mechanical strength characteristics are comparable to the best low-temperature polymer membranes. The proton-conducting membranes (1 - x)CsH2PO4-x fluoropolymer with the optimal combination of the conductivity and mechanical and hydrophobic properties are promising for use in solid acid fuel cells and other medium-temperature electrochemical devices.
Collapse
Affiliation(s)
- Irina Bagryantseva
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Valentina Ponomareva
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, 630090 Novosibirsk, Russia
| | - Yuri Kungurtsev
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
35
|
Sheldon DJ, Parr JM, Crimmin MR. Room Temperature Defluorination of Poly(tetrafluoroethylene) by a Magnesium Reagent. J Am Chem Soc 2023; 145:10486-10490. [PMID: 37154713 DOI: 10.1021/jacs.3c02526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Perfluoroalkyl substances (PFAS) are pervasive in the environment. The largest single use material within the PFAS compound class is poly(tetrafluoroethylene) (PTFE), a robust and chemically resistant polymer. Despite their widespread use and serious concerns about their role as pollutants, methods for repurposing PFAS are rare. Here we show that a nucleophilic magnesium reagent reacts with PTFE at room temperature, generating a molecular magnesium fluoride which is easily separated from the surface-modified polymer. The fluoride in turn can be used to transfer the fluorine atoms to a small array of compounds. This proof-of-concept study demonstrates that the atomic fluorine content of PTFE can be harvested and reused in chemical synthesis.
Collapse
Affiliation(s)
- Daniel J Sheldon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K
| | - Joseph M Parr
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K
| | - Mark R Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K
| |
Collapse
|
36
|
Lee D, Manthiram A. Stable Cycling with Intimate Contacts Enabled by Crystallinity-Controlled PTFE-Based Solvent-Free Cathodes in All-Solid-State Batteries. SMALL METHODS 2023:e2201680. [PMID: 37096885 DOI: 10.1002/smtd.202201680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/15/2023] [Indexed: 05/03/2023]
Abstract
All-solid-state batteries (ASSBs) employing Li-metal anodes and inorganic solid electrolytes are attracting great attention due to high safety and energy density for next-generation energy storage devices. However, the volume change of cathode active materials can cause contact loss, resulting in charge carrier isolation, heterogeneous current distribution, and poor electrochemical properties in ASSBs. Here, a simple, yet effective, solvent-free electrode engineering approach with polytetrafluoroethylene (PTFE) as a binder for ASSBs is reported, enabling intimate contact and stable interfaces with the cathode. It is substantiated that the crystallinity of PTFE can be controlled depending on the heat history, and highly crystalline PTFE displays robust mechanical properties. High-nickel LiNi0 . 8 Mn0.1 Co0.1 O2 cathode prepared with crystalline PTFE show improved cycle and rate performances in ASSBs. In addition, it is revealed that the intimate contact between cathode particles with a stable cathode electrolyte layer is maintained during cycling by postmortem studies. This simple engineering method can be applied to prepare cathodes with a variety of active materials and solid electrolytes in ASSBs.
Collapse
Affiliation(s)
- Dongsoo Lee
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| |
Collapse
|
37
|
Ameduri B. Fluoropolymers: A special class of per- and polyfluoroalkyl substances (PFASs) essential for our daily life. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
38
|
Kanbara T, Arase M, Tanaka M, Yamaguchi A, Tagami K, Yajima T. Amine-catalyzed Synthesis of Fluorine-containing Polymers through Halogen Bonding. Chem Asian J 2023; 18:e202300035. [PMID: 36811265 DOI: 10.1002/asia.202300035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Fluorine-containing polymers are one of the most useful materials among various polymers. In this study, we have developed synthesis methods for fluorine-containing polymers through sequential and chain polymerization based on the generation of perfluoroalkyl radicals by photoirradiation halogen bonding of perfluoroalkyl iodide and amines. In sequential polymerization, fluoroalkyl-alkyl-alternating polymers were synthesized by the polyaddition of diene and diiodoperfluoroalkane. In chain polymerization, polymers with perfluoroalkyl terminals were synthesized by polymerization of general-purpose monomers, with perfluoroalkyl iodide as the initiating species. Block polymers were also synthesized by successive chain polymerization to the polyaddition product.
Collapse
Affiliation(s)
- Tadashi Kanbara
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Mizuki Arase
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Miyu Tanaka
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Airi Yamaguchi
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Koto Tagami
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
39
|
Yamamoto H, Tada K, Hwang J, Hirai D, Hiroi Z, Matsumoto K, Hagiwara R. Mechanism of Reductive Fluorination by PTFE-Decomposition Fluorocarbon Gases for WO 3. Inorg Chem 2023; 62:2116-2127. [PMID: 36690346 DOI: 10.1021/acs.inorgchem.2c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reductive fluorination, which entails the substitution of O2- from oxide compounds with F- from fluoropolymers, is considered a practical approach for preparing transition-metal oxyfluorides. However, the current understanding of the fundamental reaction paths remains limited due to the analytical complexities posed by high-temperature reactions in glassware. Therefore, to expand this knowledgebase, this study investigates the reaction mechanisms behind the reductive fluorination of WO3 using polytetrafluoroethylene (PTFE) in an Ni reactor. Here, we explore varied reaction conditions (temperature, duration, and F/W ratio) to suppress the formation of carbon byproducts, minimize the dissipation of fluorine-containing tungsten (VI) compounds, and achieve a high fluorine content. The gas-solid reaction paths are analyzed using infrared spectroscopy, which revealed tetrafluoroethylene (C2F4), hexafluoropropene (C3F6), and iso-octafluoroisobutene (i-C4F8) to be the reactive components in the PTFE-decomposition gas during the reactions with WO3 at 500 °C. CO2 and CO are further identified as gaseous byproducts of the reaction evincing that the reaction is prompted by difluorocarbene (:CF2) formed after the cleavage of C═C bonds in i-C4F8, C3F6, and C2F4 upon contact with the WO3 surface. The solid-solid reaction path is established through a reaction between WO3 and WO3-xFx where solid-state diffusion of O2- and F- is discerned at 500 °C.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto606-8501, Japan.,Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka563-8577, Japan
| | - Kohei Tada
- Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka563-8577, Japan
| | - Jinkwang Hwang
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto606-8501, Japan
| | - Daigorou Hirai
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Zenji Hiroi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Kazuhiko Matsumoto
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto606-8501, Japan
| | - Rika Hagiwara
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto606-8501, Japan
| |
Collapse
|
40
|
Adi MA, Altarawneh M. Formation of perfluorocarboxylic acids (PFCAs) from thermolysis of Teflon model compound. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21360-21367. [PMID: 36266595 DOI: 10.1007/s11356-022-23714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
It has been widely postulated that thermal degradation of polytetrafluoroethylene (PTFE; commercially known as Teflon) under the presence of moisture presents a likely source for the formation of the notorious perfluorocarboxylic acids (CF3(CF2)nCO(OH) PFCAs) and perfluorinated aldehydes (CF3(CF2)nCO(F/H). Thus, deployment of objects laden with Teflon at the peak of their thermal stability may contribute to the atmospheric budget of PFCAs. However, the underlying mechanism remains largely speculative. This study reports potential energy surfaces for reactions that govern oxidative transformation of n-C8F18 (as a model compound of PTFE) into tridecafluoroheptanoyl fluoride and perfluoroheptanoic acid. Central to computed pathways are dissociative addition reactions of water over the carbonyl group and elimination of hydroperoxyl radicals. Facile activation enthalpies are encountered in the involved steps. Our analysis discloses that formation of the building monomer C2F4 should be suppressed under thermolysis oxidation conditions at which synthesis of trifluoroacetic acids is preferred. Constructed kinetic model illustrates a near-complete conversion of the PTFE model compound into perfluorocarboxylic acids (CF3(CF2)nCO(OH) and perfluorinated aldehydes. Outcomes from this study should be instrumental in providing a better understanding of the likely contribution of fluoropolymers in the observed environmental loads of perfluorocarboxylic acids.
Collapse
Affiliation(s)
- Maissa A Adi
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, PO Box 15551, Al-Ain, United Arab Emirates
| | - Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, PO Box 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
41
|
Ni H, Yuan J, Ji J, Guo Y, Zhong S, Lin Y, Zheng Y, Jiang Q. Long term toxicities following developmental exposure to perfluorooctanoic acid: Roles of peroxisome proliferation activated receptor alpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120722. [PMID: 36436667 DOI: 10.1016/j.envpol.2022.120722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a widespread persistent organic pollutant. Fertile chicken eggs were exposed to PFOA and incubated to hatch. At three time points post hatch (0-, 1- and 3-months old), chickens were subjected to electrocardiography and sacrificed. Serum was subjected to LC-MS/MS for PFOA concentration, and organs were subjected to histopathological assessments. Additionally, PPARα-silencing lentivirus was co-applied with PFOA exposure, and the corresponding phenotypes were evaluated. Western blotting was performed to assess expressions of FABPs and pSMAD2 in heart and liver samples. Considerable amount of PFOA were detected in hatchling chicken serum, but not in one-month-old or three-month-old chicken serum. PFOA exposure resulted in developmental cardiotoxicity and hepatotoxicity in hatchling chickens. Meanwhile, one-month-old chickens still exhibited elevated heart rate, but classical cardiac remodeling (thicker right ventricular wall) were observed in exposed animals. Three-month-old chickens exhibited similar results as one-month-old ones. PPARα silencing only had partial protective effects in hatchling chickens, but the protective effects seemed to increase as chickens aged. Western blotting results indicated that L-FABP was involved in PFOA-induced hepatotoxicity, while pSMAD2 was involved in PFOA-induced cardiotoxicity. In summary, developmental exposure to PFOA resulted in persistent cardiotoxicity, but not hepatotoxicity. PPARα participates in both cardiotoxicity and hepatotoxicity.
Collapse
Affiliation(s)
- Hao Ni
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yajie Guo
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Shuping Zhong
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, China.
| |
Collapse
|
42
|
Vasilev AP, Lazareva NN, Struchkova TS, Okhlopkova AA, Danilova SN. Mechanical and Tribological Properties of Polytetrafluoroethylene Modified with Combined Fillers: Carbon Fibers, Zirconium Dioxide, Silicon Dioxide and Boron Nitride. Polymers (Basel) 2023; 15:polym15020313. [PMID: 36679195 PMCID: PMC9862799 DOI: 10.3390/polym15020313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The introduction of combined fillers can effectively improve the mechanical and tribological properties of polytetrafluoroethylene (PTFE). In this work, three different types of nanosized fillers (zirconium dioxide, silicon dioxide, and boron nitride) were introduced in a carbon fiber-reinforced polymer matrix for the development of polymer composite materials (PCM). Tensile and compressive testing were carried out, and the hardness of created PCM was evaluated. It is shown that the compressive strength of PCM increased by 30-70%, and the hardness, increased by 38-55% compared to the initial PTFE. The tribological properties of the developed PCM were evaluated under dry friction conditions. An analysis of the results of an experimental study of wear confirmed that the inclusion of combined fillers (two- and three-component) in PTFE significantly increased wear resistance compared to the polymer matrix with a slight increase in the coefficient of friction. It has been shown that the introduction of three-component fillers has an antagonistic effect on the wear resistance of PCMs compared to two-component fillers. The thermodynamic properties of the composites were analyzed by differential scanning calorimetry and a thermomechanical analyzer. The surface morphology of polymer composites after wear testing was studied by IR spectroscopy and scanning electron microscopy to investigate and suggest a possible mechanism for increasing the wear resistance of the developed composites.
Collapse
|
43
|
Shindalkar SS, Humbe SS, Joshi GM, Kumar CR. Engineering properties of Teflon derived blends and composites: a review. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2086815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Sarang S. Shindalkar
- Department of Engineering Physics and Engineering Materials, Institute of Chemical Technology Mumbai Marathwada Campus Jalna, Jalna, India
| | - Shankar S. Humbe
- Department of Engineering Physics and Engineering Materials, Institute of Chemical Technology Mumbai Marathwada Campus Jalna, Jalna, India
| | - Girish M. Joshi
- Department of Engineering Physics and Engineering Materials, Institute of Chemical Technology Mumbai Marathwada Campus Jalna, Jalna, India
| | - C. Ramesh Kumar
- Automotive Research Centre, School of Mechanical Engineering VIT Vellore, Vellore, India
| |
Collapse
|
44
|
PTFE porous membrane technology: A comprehensive review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Liu Y, Liu Y, Bai Z, Wang D, Xu Y, Li Q. Nanofibrous polytetrafluoroethylene/poly(ε-caprolactone) membrane with hierarchical structures for vascular patch. J Tissue Eng Regen Med 2022; 16:1163-1172. [PMID: 36330594 DOI: 10.1002/term.3354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/01/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
With the prevalence of cardiovascular diseases, developing cardiovascular supplements is becoming increasingly urgent. The ability of cells to rapidly adhere and proliferate to achieve endothelialization is extremely important for vascular grafts. In this work, we electrospun polytetrafluoroethylene (PTFE) nanofibrous membranes and used induced crystallization to manufacture poly(ε-caprolactone) (PCL) shish-kebab microstructures on PTFE nanofibers to overcome the inertness of PTFE, and promote cell adhesion and proliferation. PCL lamella periodically grew on the surface of PTFE nanofibers yielding a hierarchical structure, which improved the biocompatibility and mechanical properties of the PTFE nanofibrous membrane. The deposition of PCL lamella improved the hydrophilicity of electrospun PTFE nanofibers membrane, leading to good cell proliferation and adhesion. Also, due to the surface inertness of the substrate material PTFE, this PTFE/PCL composite film has good anti-platelet adhesion properties. Furthermore, cell proliferation could be regulated by controlling the integrity of the PCL crystal network. The vascular patch showed similar mechanical properties to natural blood vessels, providing a new strategy for vascular tissue engineering.
Collapse
Affiliation(s)
- Yulu Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China
| | - Ya Liu
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhiyuan Bai
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Dongfang Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Yiyang Xu
- Henan NanoNew Material Technology Co., LTD, Zhengzhou, China
| | - Qian Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Effect of heat treatments and aggressive media on mechanical properties of porous polytetrafluoroethylene membranes fabricated via electrospinning. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Hamaura J, Honma R, Hori H, Manseri A, Ameduri B. Efficient fluoride recovery from poly(vinylidene fluoride), poly(vinylidene fluoride-co-hexafluoropropylene) copolymer and poly(ethylene-co-tetrafluoroethylene) copolymer using superheated water with alkaline reagent. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Ru J, Mastan E, Zhou L, Shao C, Zhao J, Wang S, Zhu S. Digital Strategies to Improve Product Quality and Production Efficiency of Fluorinated Polymers: 1. Development of Kinetic Model and Experimental Verification for Fluorinated Ethylene Propylene Copolymerization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Ru
- Hangzhou Juyong Technology, Ltd., Hangzhou310030, P. R. China
- Hangzhou Oxygen Plant Group Co., Ltd., Hangzhou310014, P. R. China
| | - Erlita Mastan
- Hangzhou Juyong Technology, Ltd., Hangzhou310030, P. R. China
| | - Liyang Zhou
- Zhejiang Juhua Co., Ltd., Quzhou324004, P. R. China
| | | | - Jie Zhao
- Zhejiang Juhua Co., Ltd., Quzhou324004, P. R. China
| | - Shuhua Wang
- Zhejiang Juhua Co., Ltd., Quzhou324004, P. R. China
| | - Shiping Zhu
- Hangzhou Juyong Technology, Ltd., Hangzhou310030, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, P. R. China
| |
Collapse
|
49
|
Tadiello L, Drexler HJ, Beweries T. Low-Field Flow 31P NMR Spectroscopy for Organometallic Chemistry: On-Line Analysis of Highly Air-Sensitive Rhodium Diphosphine Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Tadiello
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hans-Joachim Drexler
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Torsten Beweries
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
50
|
Mu H, Li J, Chen L, Hu H, Wang J, Gu C, Zhang XX, Ren HQ, Wu B. Distribution, source and ecological risk of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants. ENVIRONMENT INTERNATIONAL 2022; 167:107447. [PMID: 35940032 DOI: 10.1016/j.envint.2022.107447] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Municipal wastewater treatment plants (WWTPs) are sinks of per- and polyfluoroalkyl substances (PFASs) generated by human activities and are also sources of PFASs in aquatic environment. This study analyzed distribution, source and ecological risk of 14 PFASs in influent and effluent samples from 148 Chinese municipal WWTPs. Composition and concentrations of PFASs in the influents and effluents had obvious spatial differences. Fluoropolymer processing aids/wrappers and textile treatments/coatings were found to be the dominant sources in WWTP influents, which accounted for 78.34% of all sources. Consumption structure and metal and transportation equipment manufacturing affected the spatial differences of PFASs in WWTPs. Further, mean removal rate of total PFASs in all WWTPs was -5.45%. The conventional treatment processes can not effectively remove PFASs and no significant difference was found among different treatment processes. However, risk quotient values of PFASs in effluents were all below 0.1, indicating low risk or no risk to aquatic organisms. It should be noted that the composition, source and ecological risk of PFASs in east China were different from the other regions, which need more attentions. This study sheds insights into occurrencesof PFASs in municipal WWTPs, which should be helpful for their control strategy development.
Collapse
Affiliation(s)
- Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jiahao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|