1
|
Sood A, Das SS, Singhmar R, Sahoo S, Wahajuddin M, Naseem Z, Choi S, Kumar A, Han SS. An overview of additive manufacturing strategies of enzyme-immobilized nanomaterials with application incatalysis and biomedicine. Int J Biol Macromol 2025; 292:139174. [PMID: 39732251 DOI: 10.1016/j.ijbiomac.2024.139174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Meticulous and bespoke fabrication of structural materials with simple yet innovative outlines along with on-demand availability is the imperative aspiration for numerous fields. The alliance between nanotechnology and enzymes has led to the establishment of an inimitable and proficient class of materials. With the advancement in the field of additive manufacturing, the fabrication of some complex biological architects is achievable with similitude to the instinctive microenvironment of the biological tissue. Rendering these enzymes-linked nanomaterials through 3D printing for biosensing, catalytic, and biomedical applications is challenging due to the need for a precise controlled, regulated system with scaleup capability for commercialization. The current review highlights the importance of nanomaterials as a persuasive matrix for enzyme immobilization along with the key parameters that regulate the rate of immobilization and the activity of the concerned enzyme. Precise attention has been devoted to the different strategies for immobilizing enzymes in the nanomaterial's matrix. The present review offers a comprehensive discussion on the utility of 3D printing technology for enzyme-immobilized nanomaterials in biosensing, catalysis, and biomedical applications. The employment of 3D printing grants new developments and avenues in the vast field of enzyme- immobilized nanomaterials.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Sabya Sachi Das
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Ritu Singhmar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP Bradford, UK
| | - Zaiba Naseem
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP Bradford, UK
| | - Soonmo Choi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Anuj Kumar
- Renewable and Sustainable Energy Research Center, Technology Innovation Institute (TII), Masdar City, P.O. Box 9639, Abu Dhabi, United Arab Emirates; School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
2
|
Behrens MA, Franzén A, Carlert S, Skantze U, Lindfors L, Olsson U. On the Ostwald ripening of crystalline and amorphous nanoparticles. SOFT MATTER 2025. [PMID: 40019147 DOI: 10.1039/d4sm01544d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Ostwald ripening of crystalline and amorphous nanoparticle dispersions of a model organic compound are compared. While amorphous nanoparticles show a rapid ripening on the timescale of minutes, the crystalline nanoparticles do not ripen within the timescale of weeks. A metastable zone for crystal growth, presumably involving a free energy barrier, is identified, and we propose that this explains the absence of Ostwald ripening in the nanocrystal dispersion. As Ostwald ripening is a process typically occurring near equilibrium, even a small barrier may prevent ripening.
Collapse
Affiliation(s)
| | - Alexandra Franzén
- Division of Physical Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
- AstraZeneca R&D Mölndal, Pharmaceutical Development, Pepperedsleden 1, SE-431 83 Mölndal, Sweden
| | - Sara Carlert
- AstraZeneca R&D Mölndal, Pharmaceutical Development, Pepperedsleden 1, SE-431 83 Mölndal, Sweden
| | - Urban Skantze
- AstraZeneca R&D Mölndal, Pharmaceutical Development, Pepperedsleden 1, SE-431 83 Mölndal, Sweden
| | - Lennart Lindfors
- AstraZeneca R&D Mölndal, Pharmaceutical Development, Pepperedsleden 1, SE-431 83 Mölndal, Sweden
| | - Ulf Olsson
- Division of Physical Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
3
|
Yang M, Shi Y, Song Q, Wei Z, Dun X, Wang Z, Wang Z, Qiu CW, Zhang H, Cheng X. Optical sorting: past, present and future. LIGHT, SCIENCE & APPLICATIONS 2025; 14:103. [PMID: 40011460 DOI: 10.1038/s41377-024-01734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 02/28/2025]
Abstract
Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as passive and active sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.
Collapse
Affiliation(s)
- Meng Yang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zeyong Wei
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Xiong Dun
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Hui Zhang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| |
Collapse
|
4
|
Zuo Y, Sun M, Li T, Sun L, Han S, Chai Y, Huang B, Wang X. Capturing Copper Single Atom in Proton Donor Stimulated O-End Nitrate Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415632. [PMID: 39967378 DOI: 10.1002/adma.202415632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Ammonia (NH3) is vital in global production and energy cycles. Electrocatalytic nitrate reduction (e-NO3RR) offers a promising route for nitrogen (N) conversion and NH3 synthesis, yet it faces challenges like competing reactions and low catalyst activity. This study proposes a synergistic mechanism incorporating a proton donor to mediate O-end e-NO3RR, addressing these limitations. A novel method combining ultraviolet radiation reduction, confined synthesis, and microwave treatment was developed to create a model catalyst embedding Cu single atoms on La-based nanoparticles (p-CNCusLan-m). DFT analysis emphasizes the critical role of La-based clusters as proton donors in e-NO3RR, while in situ characterization reveals an O-end adsorption reduction mechanism. The catalyst achieves a remarkable Faraday efficiency (FENH3) of 97.7%, producing 10.6 mol gmetal -1 h-1 of NH3, surpassing most prior studies. In a flow cell, it demonstrated exceptional stability, with only a 9% decrease in current density after 111 hours and a NH3 production rate of 1.57 mgNH3/h/cm-2. The proton donor mechanism's effectiveness highlights its potential for advancing electrocatalyst design. Beyond NH3 production, the O-end mechanism opens avenues for exploring molecular-oriented coupling reactions in e-NO3RR, paving the way for innovative electrochemical synthesis applications.
Collapse
Affiliation(s)
- Yunpeng Zuo
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Mingzi Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Tingting Li
- Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan, 461002, P. R. China
| | - Libo Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Shuhe Han
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Bolong Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| |
Collapse
|
5
|
Wang J, Yang J, Wardini JL, Waluyo I, Hunt A, Crumlin EJ, Fairley N, Bowman WJ, Hwang HY, Yildiz B. Fermi Level Equilibration and Charge Transfer at the Exsolved Metal-Oxide Interface. J Am Chem Soc 2025; 147:2991-2997. [PMID: 39818799 DOI: 10.1021/jacs.4c14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Exsolution is a promising approach for fabricating oxide-supported metal nanocatalysts through redox-driven metal precipitation. A defining feature of exsolved nanocatalysts is their anchored metal-oxide interface, which exhibits exceptional structural stability in (electro)catalysis. However, the electronic interactions at this unique interface remain unclear, despite their known impact on catalytic performance. In this study, we confirm charge transfer between the host oxide and the exsolved metal by demonstrating a two-stage Fermi level (EF) evolution on SrTi0.65Fe0.35O3-δ (STF) during metallic iron (Fe0) exsolution. Combining ambient pressure X-ray photoelectron spectroscopy with theoretical analysis, we show that EF initially rises due to electron doping from oxygen vacancy formation in STF. Subsequently, upon Fe0 precipitation, EF stabilizes and becomes insensitive to further oxygen release in STF, driven by EF equilibration and charge transfer between STF and the exsolved Fe0. These findings highlight the importance of considering electronic metal-support interactions when optimizing exsolved nanocatalysts.
Collapse
Affiliation(s)
- Jiayue Wang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jing Yang
- Computational Materials Design Department, Max Planck Institute for Sustainable Materials, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
| | - Jenna L Wardini
- Department of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Neal Fairley
- Casa Software Ltd, Teignmouth, Devon TQ14 8NE, United Kingdom
| | - William J Bowman
- Department of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Harold Y Hwang
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Nguyen LKT, Do MH, Duong PD, Tran TMD, Ngo TQN, Nguyen XT, Le VD, Nguyen CH, Fajgar R, Nguyen TD. In situ synthesis of gold nanoparticles embedded in a magnetic nanocomposite of glucosamine/alginate for enhancing recyclable catalysis performance of nitrophenol reduction. NANOSCALE ADVANCES 2025; 7:886-898. [PMID: 39720124 PMCID: PMC11664256 DOI: 10.1039/d4na00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
In this study, we introduce an in situ synthesis technique for incorporating gold nanoparticles (AuNPs) into a magnetic nanocomposite made of glucosamine and alginate (GluN/Alg) via ionotropic gelation. GluN acted as a reducing agent for gold ions, leading to the formation of AuNPs which embedded in the nanocomposite Fe3O4@GluN/Alg. Analytical techniques confirmed the crystallite structure of the nanocomposite AuNPs/Fe3O4@GluN/Alg, which had an average size of 30-40 nm. This nanocomposite demonstrated high catalytic efficiency in reducing 2-, 3-, and 4-nitrophenols, exhibiting rapid kinetics with pseudo-first order rate constants between 1.16 × 10-3 s-1 and 2.29 × 10-3 s-1. The reduction rates and recyclability for nitrophenols followed the order: 4-nitrophenol > 2-nitrophenol ∼ 3-nitrophenol. These results indicate that the nanocomposite holds significant promise for customized applications in environment and medicine, positioning it as a highly versatile material.
Collapse
Affiliation(s)
- Le-Kim-Thuy Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Manh-Huy Do
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Phuoc-Dat Duong
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Thi-My-Duyen Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
| | - Thi-Quynh-Nhu Ngo
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
| | - Xuan-Thom Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Cao-Hien Nguyen
- Department of Chemical Technology, Ho Chi Minh City University of Industry and Trade Ho Chi Minh City 700000 Vietnam
| | - Radek Fajgar
- Institute of Chemical Process Fundamentals of the AS CR Prague Czech Republic
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| |
Collapse
|
7
|
Stanberry JS, Andrews HB, Thompson CV, Ticknor BW, Manard BT. Microextraction-Single Particle-Inductively Coupled Plasma-Mass Spectrometry for the Direct Analysis of Nanoparticles on Surfaces. Anal Chem 2025; 97:1688-1694. [PMID: 39791991 DOI: 10.1021/acs.analchem.4c04794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A novel employment of single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) was developed, where a microextraction (ME) probe is used to sample nanoparticles from a surface and analyze them in a single analytical step. The effects of several parameters on the performance of ME-SP-ICP-MS were investigated, including the flow rate, choice of carrier solution, particle size, and the design of the microextraction probe head itself. The optimized ME-SP-ICP-MS technique was used to compare the extraction efficiency (EE, defined as the ratio of particles measured to particles deposited on the surface) of the commercial probe head to a newly designed SP polyether ether ketone (PEEK) probe head. The SP PEEK probe head was found to have increased EE compared to the commercial probe head (8.5 ± 3% vs 3.9 ± 3%, respectively). Increasing the carrier solution flow rate was found to decrease the total analysis time at the cost of decreasing EE. Extraction efficiencies for ME-SP-ICP-MS were typically 4-10%, which is similar to transport efficiencies (1-10%) for conventional SP-ICP-MS. Lastly, ME-SP-ICP-MS was employed for the analysis of nano- and microparticles. The sizes of gold nanoparticles, 30 ± 3 and 51 ± 1.9 nm (certified sizes), and iron-based microparticles, 1000 ± 50 nm (certified size), were accurately determined to be 32.2 ± 2.5, 50.8 ± 3.4, and 1030 ± 57 nm, respectively, by ME-SP-ICP-MS. This work demonstrates the potential of ME-SP-ICP-MS for the direct analysis of particles on common collection surfaces (GSR tabs, carbon planchettes, etc.) while retaining spatial information on particle distribution across the surface.
Collapse
Affiliation(s)
- Jordan S Stanberry
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Hunter B Andrews
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Cyril V Thompson
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Brian W Ticknor
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Benjamin T Manard
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
8
|
Lan Z, Chen R, Zou D, Zhao C. Microfluidic Nanoparticle Separation for Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411278. [PMID: 39632600 PMCID: PMC11775552 DOI: 10.1002/advs.202411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
A deeper understanding of disease heterogeneity highlights the urgent need for precision medicine. Microfluidics, with its unique advantages, such as high adjustability, diverse material selection, low cost, high processing efficiency, and minimal sample requirements, presents an ideal platform for precision medicine applications. As nanoparticles, both of biological origin and for therapeutic purposes, become increasingly important in precision medicine, microfluidic nanoparticle separation proves particularly advantageous for handling valuable samples in personalized medicine. This technology not only enhances detection, diagnosis, monitoring, and treatment accuracy, but also reduces invasiveness in medical procedures. This review summarizes the fundamentals of microfluidic nanoparticle separation techniques for precision medicine, starting with an examination of nanoparticle properties essential for separation and the core principles that guide various microfluidic methods. It then explores passive, active, and hybrid separation techniques, detailing their principles, structures, and applications. Furthermore, the review highlights their contributions to advancements in liquid biopsy and nanomedicine. Finally, it addresses existing challenges and envisions future development spurred by emerging technologies such as advanced materials science, 3D printing, and artificial intelligence. These interdisciplinary collaborations are anticipated to propel the platformization of microfluidic separation techniques, significantly expanding their potential in precision medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Rui Chen
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Da Zou
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Chun‐Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
9
|
Rödig B, Funkner D, Frank T, Schürmann U, Rieder J, Kienle L, Kunz W, Kellermeier M. Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2054. [PMID: 39728590 DOI: 10.3390/nano14242054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process. To this end, solutions of soluble salts of metal cations (e.g., chlorides) and the respective anions (e.g., sodium carbonate or sulfide) are mixed in the presence of different amounts of sodium silicate at elevated pH levels. Upon mixing, metal carbonate/sulfide particles nucleate, and their subsequent growth causes a sensible decrease of pH in the vicinity. Dissolved silicate species respond to this local acidification by condensation reactions, which eventually lead to the formation of amorphous silica layers that encapsulate the metal carbonate/sulfide cores and, thus, effectively inhibit any further growth. The as-obtained carbonate nanodots can readily be converted into the corresponding metal oxides by secondary thermal treatment, during which their nanometric size is maintained. Although the described method clearly requires optimization towards actual applications, the results of this study highlight the potential of bottom-up self-assembly for the synthesis of functional nanoparticles at mild conditions.
Collapse
Affiliation(s)
- Bastian Rödig
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Diana Funkner
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Thomas Frank
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Ulrich Schürmann
- Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Julian Rieder
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Lorenz Kienle
- Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Matthias Kellermeier
- Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany
| |
Collapse
|
10
|
Jahangirzadeh
Varjovi M, Tosoni S. DFT Investigation of X 55 (X = Ni, Pd, and Pt) Clusters on Ultrathin Supported MgO Films: Evidence of Oxygen Spillover and Relevance for Catalytic Model Studies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21331-21342. [PMID: 39720334 PMCID: PMC11664593 DOI: 10.1021/acs.jpcc.4c04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 12/26/2024]
Abstract
The adsorption of X 55 (X = Ni, Pd, and Pt) nanoclusters is simulated by using first-principles methods on MgO(100) and on a MgO monolayer supported on Ag(100), considering the presence of interfacial oxygen. On both the free-standing MgO surface and MgO/Ag, all clusters exhibit robust adhesion and negative charge transfer. Ab initio molecular dynamics calculations at 200 K demonstrate the stability of the X 55 nanoparticles on the MgO/Ag support. The presence of oxygen segregated at the MgO-Ag interface significantly stabilizes the adsorbed X 55 clusters, particularly Ni55, and induces electron withdrawal. Thermodynamically favorable reverse oxygen spillover from the interface to the adsorbed particles occurs for Ni, Pd, and Pt, altering the particles' charge polarity. Simulation of higher oxygen loading at the surface results in spontaneous spillover, with some oxygen atoms segregating back at the MgO/Ag interface, which can thus act as a buffer during oxidation processes on the metal nanoparticles. Our computational results, which provide detailed insights into the adsorption of X 55 nanoclusters on various supports, efficiently present a wide range of scenarios and hypotheses, serving as realistic models for experimental studies.
Collapse
Affiliation(s)
| | - Sergio Tosoni
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
11
|
Yin Y, Trichet AAP, Qian J, Smith JM. Shape Measurement of Single Gold Nanorods in Water Using Open-Access Optical Microcavities. J Phys Chem Lett 2024; 15:12105-12111. [PMID: 39602329 DOI: 10.1021/acs.jpclett.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Shape measurement of single nanoparticles in fluids is an outstanding challenge with applications in characterizing synthetic functional nanoparticles and in early warning detection of rod-shaped pathogens in water supplies. Here we introduce a novel technique to measure the aspect ratio of rod-shaped particles by analyzing changes in the polarization state of a laser beam transmitted through an optical microcavity through which the particle diffuses. The resolution in aspect ratio measurement is found to be around 1%. Our work opens the new possibility of in situ and single-particle shape measurement, which has promising applications in nanoparticle characterization, water monitoring, and beyond.
Collapse
Affiliation(s)
- Yumeng Yin
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Aurélien A P Trichet
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jiangrui Qian
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jason M Smith
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
12
|
Wei W, Wang Z, Wang B, He X, Wang Y, Bai Y, Yang Q, Pang W, Duan X. Acoustofluidic manipulation for submicron to nanoparticles. Electrophoresis 2024; 45:2132-2153. [PMID: 38794970 DOI: 10.1002/elps.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Particles, ranging from submicron to nanometer scale, can be broadly categorized into biological and non-biological types. Submicron-to-nanoscale bioparticles include various bacteria, viruses, liposomes, and exosomes. Non-biological particles cover various inorganic, metallic, and carbon-based particles. The effective manipulation of these submicron to nanoparticles, including their separation, sorting, enrichment, assembly, trapping, and transport, is a fundamental requirement for different applications. Acoustofluidics, owing to their distinct advantages, have emerged as a potent tool for nanoparticle manipulation over the past decade. Although recent literature reviews have encapsulated the evolution of acoustofluidic technology, there is a paucity of reports specifically addressing the acoustical manipulation of submicron to nanoparticles. This article endeavors to provide a comprehensive study of this topic, delving into the principles, apparatus, and merits of acoustofluidic manipulation of submicron to nanoparticles, and discussing the state-of-the-art developments in this technology. The discourse commences with an introduction to the fundamental theory of acoustofluidic control and the forces involved in nanoparticle manipulation. Subsequently, the working mechanism of acoustofluidic manipulation of submicron to nanoparticles is dissected into two parts, dominated by the acoustic wave field and the acoustic streaming field. A critical analysis of the advantages and limitations of different acoustofluidic platforms in nanoparticles control is presented. The article concludes with a summary of the challenges acoustofluidics face in the realm of nanoparticle manipulation and analysis, and a forecast of future development prospects.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Zhaoxun Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Bingnan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Xinyuan He
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Yaping Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Yang Bai
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Qingrui Yang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
13
|
Punia B, Chaudhury S, Kolomeisky A. How dynamic surface restructuring impacts intra-particle catalytic cooperativity. J Chem Phys 2024; 161:194107. [PMID: 39560082 DOI: 10.1063/5.0239455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Recent experiments indicated that nanoparticles (NPs) might efficiently catalyze multiple chemical reactions, frequently exhibiting new phenomena. One of those surprising observations is intra-particle catalytic cooperativity, when the reactions at one active site can stimulate the reactions at spatially distant sites. Theoretical explanations of these phenomena have been presented, pointing out the important role of charged hole dynamics. However, the crucial feature of nanoparticles that can undergo dynamic structural surface rearrangements, potentially affecting the catalytic properties, has not yet been accounted for. We present a theoretical study of the effect of dynamic restructuring in NPs on intra-particle catalytic cooperativity. It is done by extending the original static discrete-state stochastic framework that quantitatively evaluates the catalytic communications. The dynamic restructuring is modeled as stochastic transitions between states with different dynamic properties of charged holes. Our analysis reveals that the communication times always decrease with increasing rates of dynamic restructuring, while the communication lengths exhibit a dynamic behavior that depends on how dynamic fluctuations affect migration and death rates of charged holes. Computer simulations fully support theoretical predictions. These findings provide important insights into the microscopic mechanisms of catalysis on single NPs, suggesting specific routes to rationally design more efficient catalytic systems.
Collapse
Affiliation(s)
- Bhawakshi Punia
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Anatoly Kolomeisky
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Physics and Astronomy, and Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| |
Collapse
|
14
|
Bani Asadi F, Shirzaei F, Shaterian HR. Fe 3O 4@SiO 2@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst for preparation of new dimethyldihydropyrimido[4,5-b]quinolone derivatives. Mol Divers 2024:10.1007/s11030-024-11013-5. [PMID: 39546219 DOI: 10.1007/s11030-024-11013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 11/17/2024]
Abstract
Efficient synthesis of novel dimethyldihydropyrimido[4,5-b]quinolones via three-component condensation of barbituric acid, arylaldehydes, and 3,4-dimethylaniline catalyzed by Fe3O4@SiO2@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst was described. The new heterogeneous nanocatalyst was characterized by FE-SEM, XRD, FT-IR, TGA-DTG, and VSM techniques. The new ionic liquid was characterized by 13CNMR, 1HNMR, and FT-IR techniques. The present work has advantages, such as excellent yields, short reaction times, environmentally friendly protocol, easy separation, and purification of products. The catalysts kept its catalytic properties after even five recoverability and reusability.
Collapse
Affiliation(s)
- Fatemeh Bani Asadi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, PO Box: 987-98155, Zahedan, 98197-45845, Iran
| | - Farhad Shirzaei
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, PO Box: 987-98155, Zahedan, 98197-45845, Iran
| | - Hamid Reza Shaterian
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, PO Box: 987-98155, Zahedan, 98197-45845, Iran.
| |
Collapse
|
15
|
Thuan ND, Cuong HM, Nam NH, Lan Huong NT, Hong HS. Morphological analysis of Pd/C nanoparticles using SEM imaging and advanced deep learning. RSC Adv 2024; 14:35172-35183. [PMID: 39502866 PMCID: PMC11536297 DOI: 10.1039/d4ra06113f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
In this study, we present a comprehensive approach for the morphological analysis of palladium on carbon (Pd/C) nanoparticles utilizing scanning electron microscopy (SEM) imaging and advanced deep learning techniques. A deep learning detection model based on an attention mechanism was implemented to accurately identify and delineate small nanoparticles within unlabeled SEM images. Following detection, a graph-based network was employed to analyze the structural characteristics of the nanoparticles, while density-based spatial clustering of applications with noise was utilized to cluster the detected nanoparticles, identifying meaningful patterns and distributions. Our results demonstrate the efficacy of the proposed model in detecting nanoparticles with high precision and reliability. Furthermore, the clustering analysis reveals significant insights into the morphological distribution and structural organization of Pd/C nanoparticles, contributing to the understanding of their properties and potential applications.
Collapse
Affiliation(s)
- Nguyen Duc Thuan
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology Hanoi Vietnam
| | - Hoang Manh Cuong
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology Hanoi Vietnam
| | - Nguyen Hoang Nam
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology Hanoi Vietnam
| | - Nguyen Thi Lan Huong
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology Hanoi Vietnam
| | - Hoang Si Hong
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology Hanoi Vietnam
| |
Collapse
|
16
|
Raju RK. Exploring Nanocluster Potential Energy Surfaces via Deep Reinforcement Learning: Strategies for Global Minimum Search. J Phys Chem A 2024; 128:9122-9134. [PMID: 39397328 PMCID: PMC11514025 DOI: 10.1021/acs.jpca.4c04416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
The search for global minimum (GM) configurations in nanoclusters is complicated by intricate potential energy landscapes replete with numerous local minima. The complexity of these landscapes escalates with increasing cluster size and compositional diversity. Evolutionary algorithms, such as genetic algorithms, are hampered by slow convergence rates and a propensity for prematurely settling on suboptimal solutions. Likewise, the basin hopping technique faces difficulties in navigating these complex landscapes effectively, particularly at larger scales. These challenges highlight the need for more sophisticated methodologies to efficiently scan the potential energy surfaces of nanoclusters. In response, our research has developed a novel deep reinforcement learning (DRL) framework specifically designed to explore the potential energy surfaces (PES) of nanoclusters, aiming to identify the GM configurations along with other low-energy states. This study demonstrates the framework's effectiveness in managing various nanocluster types, including both mono- and multimetallic compositions, and its proficiency in navigating complex energy landscapes. The model is characterized by remarkable adaptability and sustained efficiency, even as cluster sizes and feature vector dimensions increase. The demonstrated adaptability of DRL in this context underscores its considerable potential in materials science, particularly for the efficient discovery and optimization of novel nanomaterials. To the best of our knowledge, this is the first DRL framework designed for the GM search in nanoclusters, representing a significant innovation in the field.
Collapse
Affiliation(s)
- Rajesh K. Raju
- National
Research Council Canada, Clean Energy Innovation
(CEI) Research Centre, Mississauga, Ontario L5K 1B4, Canada
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
17
|
Ashour M, Ibrahim R, Abd El-Salam Y, Abdel Samad F, Mahmoud A, Mohamed T. Using Femtosecond Laser Light to Investigate the Concentration- and Size-Dependent Nonlinear Optical Properties of Laser-Ablated CuO Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1674. [PMID: 39453010 PMCID: PMC11509968 DOI: 10.3390/nano14201674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
In this work, the nonlinear optical (NLO) properties of CuO nanoparticles (CuO NPs) were studied experimentally using the pulsed laser ablation (PLA) technique. A nanosecond Nd: YAG laser was employed as the ablation excitation source to create CuO NPs in distilled water. Various CuO NPs samples were prepared at ablation periods of 20, 30, and 40 min. Utilizing HR-TEM, the structure of the synthesized CuO NPs samples was verified. In addition, a UV-VIS spectrophotometer was used to investigate the linear features of the samples. The Z-scan technique was utilized to explore the NLO properties of CuO NPs samples, including the nonlinear absorption coefficient (β) and nonlinear refractive index (n2). An experimental study on the NLO features was conducted at a variety of excitation wavelengths (750-850 nm), average excitation powers (0.8-1.2 W), and CuO NPs sample concentrations and sizes. The reverse saturable absorption (RSA) behavior of all CuO NPs samples differed with the excitation wavelength and average excitation power. In addition, the CuO NPs samples demonstrated excellent optical limiters at various excitation wavelengths, with limitations dependent on the size and concentration of CuO NPs.
Collapse
Affiliation(s)
- Mohamed Ashour
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
- High Institute of Optics Technology HIOT, Sheraton Heliopolis, Cairo 11799, Egypt
| | - Rasha Ibrahim
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Yasmin Abd El-Salam
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma Abdel Samad
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Alaa Mahmoud
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
- Department of Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
18
|
Farris R, Neyman KM, Bruix A. Determining the chemical ordering in nanoalloys by considering atomic coordination types. J Chem Phys 2024; 161:134114. [PMID: 39365020 DOI: 10.1063/5.0214377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/25/2024] [Indexed: 10/05/2024] Open
Abstract
The energetically most favorable chemical ordering of bimetallic nanoparticles can be characterized by combining global optimization algorithms and surrogate energy models. The latter approximate the energy of nanoalloys relying on structural descriptors, training models, and data. Here, we systematically evaluate the performance of highly data-efficient topological descriptors [Kozlov et al., Chem. Sci. 6, 3868 (2015)] for predicting the energies of metal nanoalloys with different chemical orderings. We also introduce a new descriptor based on atomic coordination types, which results in a less data-efficient and interpretable approach, but improves the general accuracy and the quantification of orderings in the inner parts of nanoparticles. The capacity of both the original and new approaches in combination with a basin hopping algorithm is illustrated by generating convex hulls of PdZn nanoalloys and predicting the resulting active surface site distribution as a function of particle composition. Finally, we show how these approaches can be combined with machine-learning adsorption models in electrocatalysis studies for a fast evaluation of the reactivity landscape of targeted nanoalloys.
Collapse
Affiliation(s)
- Riccardo Farris
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Konstantin M Neyman
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, 08028 Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
| | - Albert Bruix
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Jaligam MM, Takahashi C, Heidt B, Shen AQ. Enhanced antibacterial efficacy: rapid analysis of silver-decorated azithromycin-infused Soluplus® nanoparticles against E. coli and S. epidermidis biofilms. NANOSCALE 2024; 16:17877-17885. [PMID: 39246196 DOI: 10.1039/d4nr02583k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The escalating threat of antibiotic-resistant bacterial biofilms necessitates innovative antimicrobial strategies. This study introduces silver-decorated azithromycin-infused Soluplus® nanoparticles (Ag-AZI-Sol NPs) synthesized via a controlled emulsion diffusion method to ensure sustained release of antimicrobial silver ions for over six hours-a critical factor for continuous antibacterial efficacy. The efficacy of these nanoparticles was evaluated against biofilms formed by Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis), pathogens that cause hospital-acquired infections. Concentrations of 5 and 10 μg mL-1 of Ag-AZI-Sol NPs induced significant morphological changes within the biofilms, disrupting the bacterial extracellular matrix as observed using scanning electron microscopy (SEM). This disruption peaked between two and six hours, coinciding with damage to bacterial cells by the silver ions. Antibacterial assay measurements confirmed a significant reduction in the growth rate among the Ag-AZI-Sol NP-treated bacteria compared with controls. Electrochemical analysis using laser-induced graphene (LIG) and chronoamperometry revealed a decline in current, indicating an effective antibacterial effect. This innovative biosensing technique makes use of the high conductivity and surface area of LIG to detect changes in bacterial activity quickly and sensitively. Our findings highlight the potent microbicidal properties of Ag-AZI-Sol NPs and suggest diverse applications from food processing to medical device coatings.
Collapse
Affiliation(s)
- Murali Mohan Jaligam
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Chisato Takahashi
- National Institute of Advanced Industrial Science and Technology (AIST), 205 Sakurazaka 4-chome, Moriyama-ku, Nagoya, Aichi, 463-8560, Japan.
| | - Benjamin Heidt
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
20
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
21
|
Hongal AM, Shettar AK, Hoskeri JH, Vedamurthy AB. Silver nanoparticles mediated apoptosis and cell cycle arrest in lung cancer A549. 3 Biotech 2024; 14:238. [PMID: 39310035 PMCID: PMC11415561 DOI: 10.1007/s13205-024-04064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
The present study was aimed to synthesize the silver nanoparticles from Alangium salvifolium Wang. and evaluating its biomedical applications. The leaves of A. salvifolium collected and subjected for the standard procedure of Soxhlet extraction using distilled water as a solvent. With the help of an aqueous extract AgNPs were synthesized from silver nitrate using phyto-reduction method. Further, synthesized AgNPs were characterized using several analytical techniques such as UV, FTIR, SEM-EDX, XRD, particles size and zeta potential. Synthesized AgNPs were tested for antibacterial, antioxidant, anticancer for lung cancer cell line and flowcytometry-based pathway studies. The visual observation confirmed the formation of AgNPs from the aqueous extract by changing yellow to brown colour formation. Further, characterization techniques also confirmed the formation of AgNPs. Antibacterial activity results showed that the tested AgNPs were potent against bacterial pathogens with a higher zone of inhibition. Further, the antioxidant and anticancer activity of AgNPs revealed that the AgNPs have exhibited significant results with a good percentage of inhibition. Further, the flow cytometry studies confirmed that the AgNPs inducing apoptosis and cell cycle arrest in lung cancer. The phytochemicals of A. salvifolium plant have successfully synthesized AgNPs. In the case of performed biological activity, the synthesized silver nanoparticles exhibited potent activity. In future these AgNPs can be taken for molecular and in vivo studies to identify their efficacy using in vivo and molecular models.
Collapse
Affiliation(s)
- Annapurneshwari M. Hongal
- P G Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003 India
| | - Arun K. Shettar
- Division of Pre-Clinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd, Hubli, Karnataka 580031 India
| | - Joy H. Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women’s University, Vijayapura, Karnataka India
| | - A. B. Vedamurthy
- P G Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003 India
| |
Collapse
|
22
|
Wang M, Zhang S, Gong Y, Zhang W, Wang Y, Chen Y, Zheng Q, Liu Z, Tang C. Highly Stable Carboranyl Ligated Gold Nano-Catalysts for Regioselective Aromatic Bromination. Angew Chem Int Ed Engl 2024; 63:e202409283. [PMID: 38962888 DOI: 10.1002/anie.202409283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Achieving electronic/steric control and realizing selectivity regulation in nanocatalysis remains a formidable challenge, as the dynamic nature of metal-ligand interfaces, including dissolution (metal leaching) and structural reconstruction, poses significant obstacles. Herein, we disclose carboranyls (CBs) as unprecedented carbon-bonded functional ligands (Eads.CB-Au(111)=-2.90 eV) for gold nanoparticles (AuNPs), showcasing their exceptional stabilization capability that is attributed by strong Au-C bonds combined with B-H⋅⋅⋅Au interactions. The synthesized CB@AuNPs exhibit core(Aun)-satellite(CB2Au-) structure, showing high stability towards multiple stimuli (110 °C, pH=1-12, thiol etchants). In addition, different from conventional AuNP catalysts such as triphenylphosphine (PPh3) stabilized AuNPs, dissolution of catalytically active gold species was suppressed in CB@AuNPs under the reaction conditions. Leveraging these distinct features, CB@AuNPs realized outstanding p : o selectivities in aromatic bromination. Unbiased arenes including chlorobenzene (up to >30 : 1), bromobenzene (15 : 1) and phenyl acrylate were examined using CB@AuNPs as catalysts to afford highly-selective p-products. Both carboranyl ligands and carboranyl derived counterions are crucial for such regioselective transformation. This work has provided valuable insights for AuNPs in realizing diverse regioselective transformations.
Collapse
Affiliation(s)
- Mengyue Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengye Zhang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wangyang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, CAS, Shanghai, 201204, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipan Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai, 200032, China
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
24
|
Yang J, Tsai PA. Microfluidic supercritical CO 2 applications: Solvent extraction, nanoparticle synthesis, and chemical reaction. BIOMICROFLUIDICS 2024; 18:051301. [PMID: 39345267 PMCID: PMC11435780 DOI: 10.1063/5.0215567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
SupercriticalCO 2 , known for its non-toxic, non-flammable and abundant properties, is well-perceived as a green alternative to hazardous organic solvents. It has attracted considerable interest in food, pharmaceuticals, chromatography, and catalysis fields. When supercriticalCO 2 is integrated into microfluidic systems, it offers several advantages compared to conventional macro-scale supercritical reactors. These include optical transparency, small volume, rapid reaction, and precise manipulation of fluids, making microfluidics a versatile tool for process optimization and fundamental studies of extraction and reaction kinetics in supercriticalCO 2 applications. Moreover, the small length scale of microfluidics allows for the production of uniform nanoparticles with reduced particle size, beneficial for nanomaterial synthesis. In this perspective, we review microfluidic investigations involving supercriticalCO 2 , with a particular focus on three primary applications, namely, solvent extraction, nanoparticle synthesis, and chemical reactions. We provide a summary of the experimental innovations, key mechanisms, and principle findings from these microfluidic studies, aiming to spark further interest. Finally, we conclude this review with some discussion on the future perspectives in this field.
Collapse
Affiliation(s)
- Junyi Yang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Peichun Amy Tsai
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
25
|
Zinzani S, Baletto F. Coalescence of AuPd nanoalloys in implicit environments. Phys Chem Chem Phys 2024; 26:21965-21973. [PMID: 38963293 DOI: 10.1039/d4cp00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The optimal design of nanoparticles and nanoalloys arises from the control of their morphology which depends on the synthesis process they undergo. Coalescence is widely accepted as one of the most common synthetic mechanisms, and it occurs both in the liquid and gas phases. Coalescence is when two existing seeds collide and aggregate into a larger object. The resulting aggregate is expected to be far from the equilibrium isomer, i.e. the global minimum of the potential energy surface. While the coalescence of nanoparticles is well studied in a vacuum, sparse computational studies are available for the coalescence in an environment. Using molecular dynamics simulations, we study the coalescence of Au and Pd nanoseeds surrounded by an interacting environment. Comparing the initial stages of the coalescence in a vacuum and the presence of an interacting environment, we show that the formation kinetics strongly depends on the environment and on the size of the nanoalloy. Furthermore, we show that it is possible to tune the resulting nanoalloys' surface chemical composition by changing their surrounding environment.
Collapse
Affiliation(s)
- Sofia Zinzani
- Università degli Studi di Milano - Dipartimento di Fisica, Via Celoria 16, Milano I-20133, Italy.
| | - Francesca Baletto
- Università degli Studi di Milano - Dipartimento di Fisica, Via Celoria 16, Milano I-20133, Italy.
| |
Collapse
|
26
|
Layek A, Patil S, Gupta R, Yadav P, Jayachandran K, Maity DK, Choudhury N. Understanding electrocatalytic mechanisms and ultra-trace uranyl detection with Pd nanoparticles electrodeposited in deep eutectic solvents. Analyst 2024; 149:4464-4476. [PMID: 39037712 DOI: 10.1039/d4an00788c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This research paper investigates the electrocatalytic mechanisms and ultra-trace detection abilities of uranyl ions (UO22+) using palladium nanoparticles (PdNPs) electrodeposited in deep eutectic solvents (DESs). The unique properties of DESs, such as their adjustable viscosity and ionic conductivity, offer an advantageous and environmentally friendly medium for Pd nanoparticle electrodeposition, resulting in highly active and stable electrocatalysts. Various characterization techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), were used to examine the morphology, size distribution, and crystallographic structure of the Pd nanoparticles. Electrochemical tests revealed that the Pd-modified electrodes show exceptional electrocatalytic activity and current sensitivity towards uranyl ions, with detection limits as low as 3.4 nM. Density functional theory (DFT) calculations were conducted to elucidate the mechanism of the electrocatalytic reduction of UO22+ by the PdNPs, providing a plausible explanation for the high sensitivity of PdNPs in detecting uranyl ions based on the calculated structural parameters and reaction energetics. This study underscores the potential of Pd nanoparticles electrodeposited in DESs as a promising method for sensitive uranyl ion detection, contributing to advancements in environmental monitoring and nuclear safety.
Collapse
Affiliation(s)
- Arkaprava Layek
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
| | - Sushil Patil
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Ruma Gupta
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Priya Yadav
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Kavitha Jayachandran
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
| | - D K Maity
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Niharendu Choudhury
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
27
|
Sarmah D, Choudhury A, Bora U. Palladium nanoparticle catalyzed synthesis of indoles via intramolecular Heck cyclisation. Org Biomol Chem 2024; 22:6419-6431. [PMID: 39069947 DOI: 10.1039/d4ob01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A system utilizing palladium(II)-PEG has been devised for the intramolecular Heck cyclization of N-vinyl and N-allyl-2-haloanilines. The synthesis of a variety of indoles, including 2,3-diester substituted ones and 3-methyl indoles, has been accomplished using this catalytic system. The N-vinyl starting materials are obtained by the aza-Michael addition of 2-haloanilines with alkynecarboxylate esters, which, upon cyclization, yield ester-substituted indoles. Conversely, N-allyl-2-haloanilines yield 3-methylated indoles as the major products. The high activity of the system is owed to the in situ generation of Pd nanoparticles.
Collapse
Affiliation(s)
- Debasish Sarmah
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
- Department of Chemistry, Dakshin Kamup College, Mirza, Kamrup, Assam, India
| | - Anup Choudhury
- Department of Chemistry, Handique Girls' College, Guwahati, Assam, India
| | - Utpal Bora
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
| |
Collapse
|
28
|
Ternero P, Preger C, Eriksson AC, Rissler J, Hübner JM, Messing ME. In-Flight Tuning of Au-Sn Nanoparticle Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16393-16399. [PMID: 39058950 PMCID: PMC11308768 DOI: 10.1021/acs.langmuir.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Multimetallic nanoparticles possess a variety of beneficial properties with potential relevance for various applications. These metallic nanoparticles can consist of randomly ordered alloys, which retain the properties of the constituting elements, or ordered intermetallics, which possess extended properties. Depending on the desired application, specific alloys or intermetallic compounds are required. However, it remains challenging to achieve particular morphologies, crystal structures, chemical compositions, and particle sizes because of the inherent complexity of nanoparticle synthesis. In this work, Au-Sn nanoparticles were synthesized using a continuous one-step gas-phase synthesis method that offers the possibility to anneal the nanoparticles in flight directly after generation to tune their properties. The bimetallic model system Au-Sn, comprising both alloys and intermetallic compounds, was studied in the temperature range of 300 to 1100 °C. The bimetallic Au/Sn ratio in the nanoparticles can be adjusted with in-flight annealing between 70/30 and 40/60 atomic %. While Au-rich alloys are obtained at lower temperatures, the increase in the annealing temperature leads to the formation of more Sn-rich intermetallic phases. Surface and size effects greatly influence particle morphologies and phase fractions. This research opens new opportunities for the synthesis of customized nanoparticles by temperature adjustment and particle size selection.
Collapse
Affiliation(s)
- Pau Ternero
- Department
of Physics and NanoLund, Lund University, 221 00 Lund, Sweden
| | - Calle Preger
- Department
of Design Sciences and NanoLund, Lund University, 221 00 Lund, Sweden
- MAX
IV Laboratory, Lund University, 221 00 Lund, Sweden
| | | | - Jenny Rissler
- Department
of Design Sciences and NanoLund, Lund University, 221 00 Lund, Sweden
| | - Julia-Maria Hübner
- Faculty
of Chemistry and Food Chemistry, TUD Dresden
University of Technology, 01062 Dresden, Germany
| | - Maria E. Messing
- Department
of Physics and NanoLund, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
29
|
Morriss CE, Cheung CK, Nunn E, Parmeggiani F, Powell NA, Kimber RL, Haigh SJ, Lloyd JR. Biosynthesis Parameters Control the Physicochemical and Catalytic Properties of Microbially Supported Pd Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311016. [PMID: 38461530 DOI: 10.1002/smll.202311016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Indexed: 03/12/2024]
Abstract
The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan Morriss
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Casey K Cheung
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Elliot Nunn
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci, Milan, 20133, Italy
| | | | - Richard L Kimber
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
30
|
Tan SF, Roslie H, Salim T, Han Z, Wu D, Liang C, Teo LF, Lam YM. Operando Electrodeposition of Nonprecious Metal Copper Nanocatalysts on Low-Dimensional Support Materials for Nitrate Reduction Reactions. ACS NANO 2024; 18:19220-19231. [PMID: 38976597 DOI: 10.1021/acsnano.4c04947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Supported nonprecious metal catalysts such as copper (Cu) are promising replacements for Pt-based catalysts for a wide range of energy-related electrochemical reactions. Direct electrochemical deposition is one of the most straightforward and versatile methods to synthesize supported nonprecious metal catalysts. However, further advancement in the design of supported nonprecious metal catalysts requires a detailed mechanistic understanding of the interplay between kinetics and thermodynamics of the deposition phenomena under realistic reaction conditions. Here, we study the electrodeposition of Cu on carbon nanotubes and graphene derivatives under electrochemical conditions using in situ liquid cell transmission electron microscopy (TEM). By combining real-time imaging, electrochemical measurements, X-ray photoelectron spectroscopy (XPS), and finite-element analysis (FEA), we show that low-dimensional support materials, especially carbon nanotubes, are excellent for generating uniform and finely dispersed platinum group metal-(PGM)-free catalysts under mild electrochemical conditions. The electrodeposited Cu on graphene and carbon nanotubes is also observed to show good electrochemical activity toward nitrate reduction reactions (NO3RRs), further supported by density functional theory (DFT) calculations. Nitrogen doping plays an important role in guiding nonprecious metal deposition, but its low electrical conductivity may give rise to lower NO3RR activity compared to its nondoped analogue. The development of supported nonprecious metals through interfacial and surface engineering for the design of supported catalysts will substantially reduce the demand for precious metals and generate robust catalysts with better durability, thereby presenting opportunities for solving the critical problems in energy storage and electrocatalysis.
Collapse
Affiliation(s)
- Shu Fen Tan
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798 Singapore
| | - Hany Roslie
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Teddy Salim
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798 Singapore
| | - Zengyu Han
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Dongshuang Wu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Caihong Liang
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Lim Fong Teo
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Yeng Ming Lam
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798 Singapore
| |
Collapse
|
31
|
Burguera S, Piña MDLN, Bauzá A. On the influence of metal nanoparticle and π-system sizes in the stability of noncovalent adducts: a theoretical study. Phys Chem Chem Phys 2024. [PMID: 39034821 DOI: 10.1039/d4cp02149e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Herein we have computationally evaluated the relationship between Ag and Au nanoparticle (Ag/AuNP) size and π-surface extension in the formation of noncovalent complexes at the PBE0-D3/def2-TZVP level of theory. The NP-π interaction is known in supramolecular chemistry as a Regium-π bond (Rg-π), and differentiates from classical coordination bonds in strength and type of metal orbitals involved. In this study, the Rg-π complexes involved small Ag/AuNPs composed by 1 to 5 atoms and benzene, naphthalene and anthracene as π-systems, being characterized using several molecular modeling tools, including molecular electrostatic potential (MEP) calculations, energy decomposition analysis (EDA), quantum theory of atoms in molecules (QTAIM), non covalent interaction plot (NCIplot) and natural bonding orbital (NBO) methodologies. We believe the results reported herein will be useful for those scientists working in catalysis, molecular recognition and materials science fields, where structural-energetic relationships of weak interactions are crucial to achieve product selectivity, a particular molecular recognition mode or a specific molecular assembly.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Ctra. de Valldemossa, km. 7.5, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain.
| | - María de Las Nieves Piña
- Department of Chemistry, Ctra. de Valldemossa, km. 7.5, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain.
| | - Antonio Bauzá
- Department of Chemistry, Ctra. de Valldemossa, km. 7.5, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain.
| |
Collapse
|
32
|
Emmanuel M. Unveiling the revolutionary role of nanoparticles in the oil and gas field: Unleashing new avenues for enhanced efficiency and productivity. Heliyon 2024; 10:e33957. [PMID: 39055810 PMCID: PMC11269882 DOI: 10.1016/j.heliyon.2024.e33957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Prominent oil corporations are currently engaged in a thorough examination of the potential implementation of nanoparticles within the oil and gas sector. This is evidenced by the substantial financial investments made towards research and development, which serves as a testament to the significant consideration given to nanoparticles. Indeed, nanoparticles has garnered increasing attention and innovative applications across various industries, including but not limited to food, biomedicine, electronics, and materials. In recent years, the oil and gas industry has conducted extensive research on the utilization of nanoparticles for diverse purposes, such as well stimulation, cementing, wettability, drilling fluids, and enhanced oil recovery. To explore the manifold uses of nanoparticles in the oil and gas sector, a comprehensive literature review was conducted. Reviewing several published study data leads to the conclusion that nanoparticles can effectively increase oil recovery by 10 %-15 % of the initial oil in place while tertiary oil recovery gives 20-30 % extra initial oil in place. Besides, it has been noted that the properties of the reservoir rock influence the choice of the right nanoparticle for oil recovery. The present work examines the utilization of nanoparticles in the oil and gas sector, providing a comprehensive analysis of their applications, advantages, and challenges. The article explores various applications of nanoparticles in the industry, including enhanced oil recovery, drilling fluids, wellbore strengthening, and reservoir characterization. By delving into these applications, the article offers a thorough understanding of how nanoparticles are employed in different processes within the sector. This analysis may prove highly advantageous for future studies and applications in the oil and gas sector.
Collapse
Affiliation(s)
- Marwa Emmanuel
- University of Dodoma, College of Natural and Mathematical Sciences, Chemistry Department, Dodoma, Tanzania
| |
Collapse
|
33
|
Emad-Abbas N, Naji J, Moradi P, Kikhavani T. 3-(Sulfamic acid)-propyltriethoxysilane on biochar nanoparticles as a practical, biocompatible, recyclable and chemoselective nanocatalyst in organic reactions. RSC Adv 2024; 14:22147-22158. [PMID: 39005254 PMCID: PMC11240877 DOI: 10.1039/d4ra02265c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Recyclable and inexpensive catalysts, waste regeneration, use of available and safe solvents are important principles of green chemistry. Therefore, in this project, biochar nanoparticles (BNPs) were synthesized by the pyrolysis method from chicken manure. Then, 3-(sulfamic acid)-propyltriethoxysilane (SAPES) was immobilized on the surface of BNPs (SAPES@BNPs). The prepared catalyst (SAPES@BNPs) was used as a commercial, practical, biocompatible and reusable catalyst in the selective oxidation of sulfides to sulfoxides. Further, the catalytic application of SAPES@BNPs was explored in the multicomponent synthesis of tetrahydrobenzo[b]pyrans under mild and green conditions. BNPs were characterized using SEM, TGA and XRD techniques. SAPES@BNPs were characterized using SEM, FT-IR spectroscopy, WDX, EDS, TGA, and XRD techniques. Particle size distribution was obtained by histogram graph. SAPES@BNPs can be recovered and reused several times. The purity of the products was studied using NMR spectroscopy.
Collapse
Affiliation(s)
| | - Jalil Naji
- Department of Physics, Faculty of Science, Ilam University Ilam Iran
| | - Parisa Moradi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Tavan Kikhavani
- Department of Chemical Engineering, Faculty of Engineering, Ilam University Ilam Iran
| |
Collapse
|
34
|
Ibarra J, Aguirre MJ, del Río R, Henriquez R, Faccio R, Dalchiele EA, Arce R, Ramírez G. α-Fe 2O 3/, Co 3O 4/, and CoFe 2O 4/MWCNTs/Ionic Liquid Nanocomposites as High-Performance Electrocatalysts for the Electrocatalytic Hydrogen Evolution Reaction in a Neutral Medium. Int J Mol Sci 2024; 25:7043. [PMID: 39000155 PMCID: PMC11240971 DOI: 10.3390/ijms25137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Transition metal oxides are a great alternative to less expensive hydrogen evolution reaction (HER) catalysts. However, the lack of conductivity of these materials requires a conductor material to support them and improve the activity toward HER. On the other hand, carbon paste electrodes result in a versatile and cheap electrode with good activity and conductivity in electrocatalytic hydrogen production, especially when the carbonaceous material is agglomerated with ionic liquids. In the present work, an electrode composed of multi-walled carbon nanotubes (MWCNTs) and cobalt ferrite oxide (CoFe2O4) was prepared. These compounds were included on an electrode agglomerated with the ionic liquid N-octylpyridinium hexafluorophosphate (IL) to obtain the modified CoFe2O4/MWCNTs/IL nanocomposite electrode. To evaluate the behavior of each metal of the bimetallic oxide, this compound was compared to the behavior of MWCNTs/IL where a single monometallic iron or cobalt oxides were included (i.e., α-Fe2O3/MWCNTs/IL and Co3O4/MWCNTs/IL). The synthesis of the oxides has been characterized by X-ray diffraction (XRD), RAMAN spectroscopy, and field emission scanning electronic microscopy (FE-SEM), corroborating the nanometric character and the structure of the compounds. The CoFe2O4/MWCNTs/IL nanocomposite system presents excellent electrocatalytic activity toward HER with an onset potential of -270 mV vs. RHE, evidencing an increase in activity compared to monometallic oxides and exhibiting onset potentials of -530 mV and -540 mV for α-Fe2O3/MWCNTs/IL and Co3O4/MWCNTs/IL, respectively. Finally, the system studied presents excellent stability during the 5 h of electrolysis, producing 132 μmol cm-2 h-1 of hydrogen gas.
Collapse
Affiliation(s)
- José Ibarra
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago 8331150, Chile; (J.I.); (R.d.R.)
| | - María Jesus Aguirre
- Millennium Institute on Green Ammonia as Energy Vector (MIGA), Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
- Departamento Química de los Materiales, Facultad de Química y Biologia, Universidad de Santiago de Chile, Av. B O’Higgins 3363, Estación Central, Santiago 9170022, Chile
| | - Rodrigo del Río
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago 8331150, Chile; (J.I.); (R.d.R.)
- Millennium Institute on Green Ammonia as Energy Vector (MIGA), Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Rodrigo Henriquez
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso 2362807, Chile;
| | - Ricardo Faccio
- Área Física & Centro NanoMat, DETEMA, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, CC 1157, Montevideo 11800, Uruguay;
| | - Enrique A. Dalchiele
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Herrera y Reissig 565, C.C. 30, Montevideo 11000, Uruguay;
| | - Roxana Arce
- Millennium Institute on Green Ammonia as Energy Vector (MIGA), Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago 8331150, Chile; (J.I.); (R.d.R.)
- Millennium Institute on Green Ammonia as Energy Vector (MIGA), Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| |
Collapse
|
35
|
Bousada GM, Nogueira da Silva V, Fernandes de Souza B, de Oliveira RS, Machado Junior I, da Cunha CHF, Astruc D, Teixeira RR, Lopes Moreira RP. Niobic acid as a support for microheterogeneous nanocatalysis of sodium borohydride hydrolysis under mild conditions. RSC Adv 2024; 14:19459-19471. [PMID: 38887643 PMCID: PMC11182415 DOI: 10.1039/d4ra01879f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
This study explores the stabilization by niobic acid, of Pt, Ni, Pd, and Au nanoparticles (NPs) for the efficient microheterogeneous catalysis of NaBH4 hydrolysis for hydrogen production. Niobic acid is the most widely studied Nb2O5 polymorph, and it is employed here for the first time for this key reaction relevant to green energy. Structural insights from XRD, Raman, and FTIR spectroscopies, combined with hydrogen production data, reveal the role of niobic acid's Brønsted acidity in its catalytic activity. The supported NPs showed significantly higher efficiency than the non-supported counterparts regarding turnover frequency, average hydrogen production rate, and cost. Among the tested NPs, PtNPs and NiNPs demonstrate the most favorable results. The data imply mechanism changes during the reaction, and the kinetic isotope assay indicates a primary isotope effect. Reusability assays demonstrate consistent yields over five cycles for PtNPs, although catalytic efficiency decreases, likely due to the formation of reaction byproducts.
Collapse
Affiliation(s)
- Guilherme Mateus Bousada
- Department of Chemistry, Universidade Federal de Viçosa Viçosa Minas Gerais 36570-000 Brazil
- Institut des Sciences Moléculaires, Université de Bordeaux, UMR CNRS 5255 Talence 33405 Cedex France
| | | | | | | | | | | | - Didier Astruc
- Institut des Sciences Moléculaires, Université de Bordeaux, UMR CNRS 5255 Talence 33405 Cedex France
| | - Robson Ricardo Teixeira
- Department of Chemistry, Universidade Federal de Viçosa Viçosa Minas Gerais 36570-000 Brazil
| | | |
Collapse
|
36
|
Chen YR, Thanh DTH, Tran QTP, Liu BL, Srinophakun P, Chiu CY, Chen KH, Chang YK. The Utilization of Chicken Egg White Waste-Modified Nanofiber Membrane for Anionic Dye Removal in Batch and Flow Systems: Comprehensive Investigations into Equilibrium, Kinetics, and Breakthrough Curve. MEMBRANES 2024; 14:128. [PMID: 38921495 PMCID: PMC11205732 DOI: 10.3390/membranes14060128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
This study investigated the use of chicken egg white (CEW) waste immobilized on weak acidic nanofiber membranes for removing the anionic acid orange 7 (AO7) dye in batch and continuous flow modes. Different experiments were conducted to evaluate the effectiveness of CEW-modified nanofiber membranes for AO7 removal, focusing on CEW immobilization conditions, adsorption kinetics, and thermodynamics. The CEW-modified nanofiber membrane (namely NM-COOH-CEW) exhibited a maximum AO7 adsorption capacity of 589.11 mg/g within approximately 30 min. The Freundlich isotherm model best represented the equilibrium adsorption data, while the adsorption kinetics followed a pseudo-second-order rate model. Breakthrough curve analysis using the Thomas model and the bed depth service time (BDST) model showed that the BDST model accurately described the curve, with an error percentage under 5%. To investigate AO7 elution efficiency, different concentrations of organic solvents or salts were tested as eluents. The NM-COOH-CEW nanofiber membrane exhibited promising performance as an effective adsorbent for removing AO7 dye from contaminated water.
Collapse
Affiliation(s)
- Yun-Rou Chen
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Dinh Thi Hong Thanh
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Quynh Thi Phuong Tran
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 70880, Vietnam;
| | - Bing-Lan Liu
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan;
| | - Penjit Srinophakun
- Department of Chemical Engineering, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand;
| | - Chen-Yaw Chiu
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Kuei-Hsiang Chen
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Yu-Kaung Chang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli Dist., Taoyuan City 320315, Taiwan
| |
Collapse
|
37
|
Paganelli S, Massimi N, Di Michele A, Piccolo O, Rampazzo R, Facchin M, Beghetto V. Use of carboxymethyl cellulose as binder for the production of water-soluble catalysts. Int J Biol Macromol 2024; 270:132541. [PMID: 38777012 DOI: 10.1016/j.ijbiomac.2024.132541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Bio-based polymers are materials of high interest given the harmful environmental impact that involves the use of non-biodegradable fossil products for industrial applications. These materials are also particularly interesting as bio-based ligands for the preparation of metal nanoparticles (MNPs), employed as catalysts for the synthesis of high value chemicals. In the present study, Ru (0) and Rh(0) Metal Nanoparticles supported on Sodium Carboxymethyl cellulose (MNP(0)s-CMCNa) were prepared by simply mixing RhCl3x3H2O or RuCl3 with an aqueous solution of CMCNa, followed by NaBH4 reduction. The formation of MNP(0)s-CMCNa was confirmed by FT-IR and XRD, and their size estimated to be around 1.5 and 2.2 nm by TEM analysis. MNP(0)s-CMCNa were employed for the hydrogenation of (E)-cinnamic aldehyde, furfural and levulinic acid. Hydrogenation experiments revealed that CMCNa is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles allowing to obtain high conversions (>90 %) and selectivities (>98 %) with all substrates tested. Easy recovery by liquid/liquid extraction allowed to separate the catalyst from the reaction products, and recycling experiments demonstrated that MNPs-CS were highly efficiency up to three times in best hydrogenation conditions.
Collapse
Affiliation(s)
- Stefano Paganelli
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy.
| | - Nicola Massimi
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Alessandro Di Michele
- Università degli Studi di Perugia, Dipartimento Fisica e Geologia, Via Pascoli, 06123 Perugia, Italy
| | - Oreste Piccolo
- Studio di Consulenza Scientifica (SCSOP), Via Bornò 5, 23896 Sirtori, LC, Italy
| | - Rachele Rampazzo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy; Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy.
| |
Collapse
|
38
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Huggias S, Serradell MDLÁ, Azcárate JC, Casella ML, Peruzzo PJ, Bolla PA. Catalytic Performance in Nitroarene Reduction of Nanocatalyst Based on Noble Metal Nanoparticles Supported on Polymer/s-Layer Protein Hybrids. J Phys Chem B 2024. [PMID: 38646680 DOI: 10.1021/acs.jpcb.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
We present a novel bionanocatalyst fabricated by the adsorption-reduction of metal ions on a polyurethane/S-layer protein biotemplate. The bioinspired support was obtained by the adsorption of S-layer proteins (isolated from Lentilactobacillus kefiri) on polyurethane particles. Silver and platinum nanoparticles were well-loaded on the surface of the support after the combination with metallic salts and reduction with H2 at room temperature. Transmission electron microscopy analysis revealed the strawberry-like morphology of the bionanocatalysts with a particle size, dn, of 2.39 nm for platinum and 9.60 nm for silver. Both systems catalyzed the hydrogenation of p-nitrophenol to p-aminophenol with high efficiency in water at mild conditions in the presence of NaBH4. Three different amounts of bionanocatalyst were tested, and in all cases, conversions between 97 and 99% were observed. The catalysts displayed excellent recyclability over ten cycles, and no extensive damage in their nanostructure was noted after them. The bionanocatalysts were stable during their production, storage, and use, thanks to the fact that the biosupport provides an effective driving force in the formation and stabilization of the metallic nanoparticles. The successful bioinspired production strategy and the good catalytic ability of the systems are encouraging in the search for nontoxic, simple, clean, and eco-friendly procedures for the synthesis and exploitation of nanostructures.
Collapse
Affiliation(s)
- Sofia Huggias
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" - CINDECA (UNLP-CONICET CCT La Plata), Calle 47 No 257, La Plata B1900AJK, Argentina
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 s/n, La Plata 1900, Argentina
| | - Julio C Azcárate
- Centro Atómico Bariloche (CAB), Comisión Nacional de Energía Atómica - CONICET, Avda. E. Bustillo km 9500, San Carlos de Bariloche R8402AGP, Argentina
| | - Mónica L Casella
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" - CINDECA (UNLP-CONICET CCT La Plata), Calle 47 No 257, La Plata B1900AJK, Argentina
| | - Pablo J Peruzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - INIFTA (UNLP - CONICET CCT La Plata), Diag. 113 y 64, La Plata B1904DPIB1904DPI, Argentina
| | - Patricia A Bolla
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" - CINDECA (UNLP-CONICET CCT La Plata), Calle 47 No 257, La Plata B1900AJK, Argentina
| |
Collapse
|
40
|
Alshammasi MS, Chen P, Escobedo FA. Revealing the Origin of Cooperative Adsorption of Chains on Nanoparticle Surfaces through Coarse-Grained Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8015-8023. [PMID: 38578076 DOI: 10.1021/acs.langmuir.3c03951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This work aims to deepen our understanding of the molecular origin of the recently observed phenomenon of polymer cooperative adsorption onto faceted nanoparticle (NP) surfaces. By exploring a large parameter space for polymer/NP interactions through coarse-grained (CG) molecular dynamics (MD) simulations, it is found that consistent with experiments the presence or absence of cooperativity is related to solvent quality and relative interaction strengths between the polymer and the adsorbent. Specifically, positive cooperativity is associated with stronger polymer-polymer interaction than polymer-surface interactions and vice versa for negative cooperativity. This contrast in interaction energies manifests in positive cooperativity (i.e., increased affinity) and negative cooperativity (i.e., decreased affinity) as concentration increases. It is also found that increasing chain length strengthens cooperativity effects and that the nanoscale confinement of polymer chains to the adsorbing facet (due to weaker affinity to corners and edges) enhances positive cooperativity but weakens negative cooperativity. Moreover, adsorption onto a spherical NP shows stronger positive cooperativity but weaker negative cooperativity compared with adsorption onto a cubic NP of equal surface area. It was further found that as polymer bulk concentration increases, the free energy of adsorption decreases in positive cooperativity, increases in negative cooperativity, and is independent of concentration in noncooperative systems consistent with the phenomenological explanation of cooperativity. We further found that positive cooperativity is associated with growing fluctuations in the adsorption density at critical bulk polymer concentrations. This behavior can be attributed to the competition between enthalpic gains and entropic losses upon adsorption. Overall, our results shed light on the microscopic origin of cooperative adsorption and the role of solvent quality, which can be leveraged in, for example, controlling NP growth into target shapes and designing NP catalysts with improved performance.
Collapse
Affiliation(s)
- Mohammed Suliman Alshammasi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Fernando A Escobedo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
41
|
Cai Y, Naser NY, Ma J, Baneyx F. Precision Loading and Delivery of Molecular Cargo by Size-Controlled Coacervation of Gold Nanoparticles Functionalized with Elastin-like Peptides. Biomacromolecules 2024; 25:2390-2398. [PMID: 38478587 DOI: 10.1021/acs.biomac.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Thermoresponsive elastin-like peptides (ELPs) have been extensively investigated in biotechnology and medicine, but little attention has been paid to the process by which coacervation causes ELP-decorated particles to aggregate. Using gold nanoparticles (AuNPs) functionalized with a cysteine-terminated 96-repeat of the VPGVG sequence (V96-Cys), we show that the size of the clusters that reversibly form above the ELP transition temperature can be finely controlled in the 250 to 930 nm range by specifying the concentration of free V96-Cys in solution and using AuNPs of different sizes. We further find that the localized surface plasmon resonance peak of the embedded AuNPs progressively red-shifts with cluster size, likely due to an increase in particle-particle contacts. We exploit this fine control over size to homogeneously load precise amounts of the dye Nile Red and the antibiotic Tetracycline into clusters of different hydrodynamic diameters and deliver cargos near-quantitatively by deconstructing the aggregates below the ELP transition temperature. Beyond establishing a key role for free ELPs in the agglomeration of ELP-functionalized particles, our results provide a path for the thermally controlled delivery of precise quantities of molecular cargo. This capability might prove useful in combination photothermal therapies and theranostic applications, and to trigger spatially and temporally uniform responses from biological, electronic, or optical systems.
Collapse
Affiliation(s)
- Yifeng Cai
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Nada Y Naser
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
42
|
He YF, Yang SY, Lv WL, Qian C, Wu G, Zhao X, Liu XW. Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification. ACS NANO 2024; 18:9704-9712. [PMID: 38512797 DOI: 10.1021/acsnano.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Label-free probing of the material composition of (bio)nano-objects directly in solution at the single-particle level is crucial in various fields, including colloid analysis and medical diagnostics. However, it remains challenging to decipher the constituents of heterogeneous mixtures of nano-objects with high sensitivity and resolution. Here, we present deep-learning plasmonic scattering interferometric microscopy, which is capable of identifying the composition of nanoparticles automatically with high throughput at the single-particle level. By employing deep learning to decode the quantitative relationship between the interferometric scattering patterns of nanoparticles and their intrinsic material properties, this technique is capable of high-throughput, label-free identification of diverse nanoparticle types. We demonstrate its versatility in analyzing dynamic surface chemical reactions on single nanoparticles, revealing its potential as a universal platform for nanoparticle imaging and reaction analysis. This technique not only streamlines the process of nanoparticle characterization, but also proposes a methodology for a deeper understanding of nanoscale dynamics, holding great potential for addressing extensive fundamental questions in nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Yi-Fan He
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Yu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Li Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Gang Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaona Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xian-Wei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
43
|
Lei L, Cao Q, Ma J, Hou F. One-Step Hydrothermal/Solvothermal Preparation of Pt/TiO 2: An Efficient Catalyst for Biobutanol Oxidation at Room Temperature. Molecules 2024; 29:1450. [PMID: 38611730 PMCID: PMC11013154 DOI: 10.3390/molecules29071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The selective oxidation of biobutanol to prepare butyric acid is an important conversion process, but the preparation of low-temperature and efficient catalysts for butanol oxidation is currently a bottleneck problem. In this work, we prepared Pt-TiO2 catalysts with different Pt particle sizes using a simple one-step hydrothermal/solvothermal method. Transmission electron microscopy and X-ray diffraction results showed that the average size of the Pt particles ranged from 1.1 nm to 8.7 nm. Among them, Pt-TiO2 with an average particle size of 3.6 nm exhibited the best catalytic performance for biobutanol. It was capable of almost completely converting butanol, even at room temperature (30 °C), with a 98.9% biobutanol conversion, 98.4% butyric acid selectivity, and a turnover frequency (TOF) of 36 h-1. Increasing the reaction temperature to 80 and 90 °C, the corresponding TOFs increased rapidly to 355 and 619 h-1. The relationship between the electronic structure of Pt and its oxidative performance suggests that the synergistic effect of the dual sites, Pt0 and Pt2+, could be the primary factor contributing to its elevated reactivity.
Collapse
Affiliation(s)
- Lijun Lei
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| | - Qianyue Cao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China;
| | - Jiachen Ma
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| | - Fengxiao Hou
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| |
Collapse
|
44
|
Mancuso F, Fornasiero P, Prato M, Melchionna M, Franco F, Filippini G. Nanostructured electrocatalysts for organic synthetic transformations. NANOSCALE 2024; 16:5926-5940. [PMID: 38441238 DOI: 10.1039/d3nr06669j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Organic chemists have made and are still making enormous efforts toward the development of novel green catalytic synthesis. The necessity arises from the imperative of safeguarding human health and the environment, while ensuring efficient and sustainable chemical production. Within this context, electrocatalysis provides a framework for the design of new organic reactions under mild conditions. Undoubtedly, nanostructured materials are under the spotlight as the most popular and in most cases efficient platforms for advanced organic electrosynthesis. This Minireview focuses on the recent developments in the use of nanostructured electrocatalysts, highlighting the correlation between their chemical structures and resulting catalytic abilities, and pointing to future perspectives for their application in cutting-edge areas.
Collapse
Affiliation(s)
- Francesco Mancuso
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
- Center for Energy, Environment and Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE) Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Basque Foundation for Science Ikerbasque, 48013 Bilbao, Spain
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
- Center for Energy, Environment and Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Federico Franco
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
45
|
Chepkasov IV, Radina AD, Kvashnin AG. Structure-driven tuning of catalytic properties of core-shell nanostructures. NANOSCALE 2024; 16:5870-5892. [PMID: 38450538 DOI: 10.1039/d3nr06194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The annual increase in demand for renewable energy is driving the development of catalysis-based technologies that generate, store and convert clean energy by splitting and forming chemical bonds. Thanks to efforts over the last two decades, great progress has been made in the use of core-shell nanostructures to improve the performance of metallic catalysts. The successful preparation and application of a large number of bimetallic core-shell nanocrystals demonstrates the wide range of possibilities they offer and suggests further advances in this field. Here, we have reviewed recent advances in the synthesis and study of core-shell nanostructures that are promising for catalysis. Particular attention has been paid to the structural tuning of the catalytic properties of core-shell nanostructures and to theoretical methods capable of describing their catalytic properties in order to efficiently search for new catalysts with desired properties. We have also identified the most promising areas of research in this field, in terms of experimental and theoretical studies, and in terms of promising materials to be studied.
Collapse
Affiliation(s)
- Ilya V Chepkasov
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| | - Aleksandra D Radina
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| | - Alexander G Kvashnin
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| |
Collapse
|
46
|
Wang X, He M, Zhao Y, He J, Huang J, Zhang L, Xu Z, Kang Y, Xue P. Bimetallic PtPd Atomic Clusters as Apoptosis/Ferroptosis Inducers for Antineoplastic Therapy through Heterogeneous Catalytic Processes. ACS NANO 2024; 18:8083-8098. [PMID: 38456744 DOI: 10.1021/acsnano.3c11610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Active polymetallic atomic clusters can initiate heterogeneous catalytic reactions in the tumor microenvironment, and the products tend to cause manifold damage to cell metabolic functions. Herein, bimetallic PtPd atomic clusters (BAC) are constructed by the stripping of Pt and Pd nanoparticles on nitrogen-doped carbon and follow-up surface PEGylation, aiming at efficacious antineoplastic therapy through heterogeneous catalytic processes. After endocytosed by tumor cells, BAC with catalase-mimic activity can facilitate the decomposition of endogenous H2O2 into O2. The local oxygenation not only alleviates hypoxia to reduce the invasion ability of cancer cells but also enhances the yield of •O2- from O2 catalyzed by BAC. Meanwhile, BAC also exhibit peroxidase-mimic activity for •OH production from H2O2. The enrichment of reactive oxygen species (ROS), including the radicals of •OH and •O2-, causes significant oxidative cellular damage and triggers severe apoptosis. In another aspect, intrinsic glutathione (GSH) peroxidase-like activity of BAC can indirectly upregulate the level of lipid peroxides and promote ferroptosis. Such deleterious redox dyshomeostasis caused by ROS accumulation and GSH consumption also results in immunogenic cell death to stimulate antitumor immunity for metastasis suppression. Collectively, this paradigm is expected to inspire more facile designs of polymetallic atomic clusters in disease therapy.
Collapse
Affiliation(s)
- Xiaoqin Wang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Mengting He
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jie He
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jiansen Huang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
47
|
Zhao Z, Li H, Gao X. Microwave Encounters Ionic Liquid: Synergistic Mechanism, Synthesis and Emerging Applications. Chem Rev 2024; 124:2651-2698. [PMID: 38157216 DOI: 10.1021/acs.chemrev.3c00794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Progress in microwave (MW) energy application technology has stimulated remarkable advances in manufacturing and high-quality applications of ionic liquids (ILs) that are generally used as novel media in chemical engineering. This Review focuses on an emerging technology via the combination of MW energy and the usage of ILs, termed microwave-assisted ionic liquid (MAIL) technology. In comparison to conventional routes that rely on heat transfer through media, the contactless and unique MW heating exploits the electromagnetic wave-ions interactions to deliver energy to IL molecules, accelerating the process of material synthesis, catalytic reactions, and so on. In addition to the inherent advantages of ILs, including outstanding solubility, and well-tuned thermophysical properties, MAIL technology has exhibited great potential in process intensification to meet the requirement of efficient, economic chemical production. Here we start with an introduction to principles of MW heating, highlighting fundamental mechanisms of MW induced process intensification based on ILs. Next, the synergies of MW energy and ILs employed in materials synthesis, as well as their merits, are documented. The emerging applications of MAIL technologies are summarized in the next sections, involving tumor therapy, organic catalysis, separations, and bioconversions. Finally, the current challenges and future opportunities of this emerging technology are discussed.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Hong Li
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xin Gao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
48
|
Sredojević DN, Vukoje I, Trpkov Đ, Brothers EN. A DFT study of CO 2 electroreduction catalyzed by hexagonal boron-nitride nanosheets with vacancy defects. Phys Chem Chem Phys 2024; 26:8356-8365. [PMID: 38391270 DOI: 10.1039/d3cp06186h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In addition to providing a sustainable route to green alternative energy and chemical supplies from a cheap and abundant carbon source, recycling CO2 offers an excellent way to reduce net anthropogenic global CO2 emissions. This can be achieved via catalysis on 2D materials. These materials are atomically thin and have unique electrical and catalytic properties compared to bigger nanoparticles and conventional bulk catalysts, opening a new arena in catalysis. This paper examines the efficacy of hexagonal boron nitride (h-BN) lattices with vacancy defects for CO2 electroreduction (CO2RR). We conducted in-depth investigations on different CO2RR electrocatalytic reaction pathways on various h-BN vacancy sites using a computational hydrogen model (CHE). It was shown that CO binds to h-BN vacancies sufficiently to ensure additional electron transfer processes, leading to higher-order reduction products. For mono-atomic defects VN (removed nitrogen), the electrochemical path of (H+ + e-) pair transfers that would lead to the formation of methanol is most favorable with a limiting potential of 1.21 V. In contrast, the reaction pathways via VB (removed boron) imposes much higher thermodynamic barriers for the formation of all relevant species. With a divacancy VBN, the hydrogen evolution reaction (HER) would be the most probable process due to the low rate-determining barrier of 0.69 eV. On the tetravacancy defects VB3N the pathways toward the formation of both CH4 and CH3OH impose a limiting potential of 0.85 V. At the same time, the HER is suppressed by requiring much higher energy (2.15 eV). Modeling the edges of h-BN reveals that N-terminated zigzag conformation would impose the same limiting potential for the formation of methanol and methane (1.73 V), simultaneously suppressing the HER (3.47 V). At variance, the armchair conformation favors the HER, with a rate-determining barrier of 1.70 eV. Hence, according to our calculations, VB3N and VN are the most appropriate vacancy defects for catalyzing CO2 electroreduction reactions.
Collapse
Affiliation(s)
- Dušan N Sredojević
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia.
| | - Ivana Vukoje
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia.
| | - Đorđe Trpkov
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia.
| | | |
Collapse
|
49
|
Carabineiro SAC. Catalysis by Metal-Oxide Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:415. [PMID: 38470746 DOI: 10.3390/nano14050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Catalysis is an important field dealing with innovation, sustainability, and materials science that has been witnessing remarkable advancements through nanotechnology [...].
Collapse
|
50
|
Kolagkis PX, Galathri EM, Kokotos CG. Green and sustainable approaches for the Friedel-Crafts reaction between aldehydes and indoles. Beilstein J Org Chem 2024; 20:379-426. [PMID: 38410780 PMCID: PMC10896228 DOI: 10.3762/bjoc.20.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
The synthesis of indoles and their derivatives, more specifically bis(indolyl)methanes (BIMs), has been an area of great interest in organic chemistry, since these compounds exhibit a range of interesting biological and pharmacological properties. BIMs are naturally found in cruciferous vegetables and have been shown to be effective antifungal, antibacterial, anti-inflammatory, and even anticancer agents. Traditionally, the synthesis of BIMs has been achieved upon the acidic condensation of an aldehyde with indole, utilizing a variety of protic or Lewis acids. However, due to the increased environmental awareness of our society, the focus has shifted towards the development of greener synthetic technologies, like photocatalysis, organocatalysis, the use of nanocatalysts, microwave irradiation, ball milling, continuous flow, and many more. Thus, in this review, we summarize the medicinal properties of BIMs and the developed BIM synthetic protocols, utilizing the reaction between aldehydes with indoles, while focusing on the more environmentally friendly methods developed over the years.
Collapse
Affiliation(s)
- Periklis X Kolagkis
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Eirini M Galathri
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| |
Collapse
|