1
|
Naser NY, Wixson WC, Larson H, Cossairt BM, Pozzo LD, Baneyx F. Biomimetic mineralization of positively charged silica nanoparticles templated by thermoresponsive protein micelles: applications to electrostatic assembly of hierarchical and composite superstructures. SOFT MATTER 2025; 21:166-178. [PMID: 39526900 DOI: 10.1039/d4sm00907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
High information content building blocks offer a path toward the construction of precision materials by supporting the organization and reconfiguration of organic and inorganic components through engineered functions. Here, we combine thermoresponsiveness with biomimetic mineralization by fusing the Car9 silica-binding dodecapeptide to the C-terminus of the (VPGVG)54 elastin-like polypeptide (ELP). Using small angle X-ray scattering, we show that the short Car9 cationic block is sufficient to promote the conversion of disordered unimers into 30 nm micelles comprising about 150 proteins, 5 °C above the transition temperature of the ELP. While both species catalyze self-limiting silica precipitation, micelles template the mineralization of highly monodisperse (62 nm) nanoparticles, while unimers yield larger polydisperse species. Strikingly, and unlike traditional synthetic silica, these particles exhibit a positive surface charge, likely due to cationic Car9 sidechains projecting from their surface. Capitalizing on the high monodispersity and positive charge of the micelle-templated products, we use smaller silica and gold particles bearing a native negative charge to create a variety of superstructures via electrostatic co-assembly. This simple biomimetic route to positively charged silica eliminates the need for multiple precursors or surface modifications and enables the rapid creation of single-material and composite architectures in which components of different sizes or compositions are well dispersed and integrated.
Collapse
Affiliation(s)
- Nada Y Naser
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - William C Wixson
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
2
|
Hanson MG, Ambre R, Joshi R, Amidon JD, Snow JB, Lawless VC, Worrell BT. Visible Light Triggerable CO Releasing Micelles. J Am Chem Soc 2024; 146:35029-35034. [PMID: 39663914 DOI: 10.1021/jacs.4c13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Carbon monoxide (CO), along with nitric oxide and hydrogen sulfide, is one of a trinity of known gasotransmitters, or endogenously produced gaseous molecules that signal and regulate a panoply of physiological functions. CO releasing molecules (CORMs) are chemical tools that enable the study and application of this ephemeral gas, that, ideally, release CO on-demand when externally stimulated. Surveying the available triggers, photolysis is potentially advantageous: It is contactless and grants practitioners unparalleled spatial and temporal control. However, current phototriggered CORMs are capricious and do not meet current needs. Presented here is a highly efficient platform for the visible light triggered release of CO gas. This platform is built on a unique CO containing functionality, the cyclopropenone, which undergoes facile decarbonylation through visible light (470 nm) mediated photoredox catalysis. Due to the exothermic strain-release that occurs upon formation of CO, this photoreaction is rapid, quantitative, and has tunable release rates. To render this photo-CORM water-soluble, deliverable, and to keep reactants in proximity, necessary components were polymerized into block copolymers that self-assemble into CO releasing micelles (CORMIs). This platform was compared directly to other state-of-the-art CORMs, showing significantly improved CO production efficiency, lower toxicity, tunable release rates, and consistent efficacy in ex vivo and in vitro settings.
Collapse
Affiliation(s)
- Mckenna G Hanson
- Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Ram Ambre
- Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Riya Joshi
- Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Jeffrey D Amidon
- Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Jackson B Snow
- Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Vivian C Lawless
- Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Brady T Worrell
- Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
3
|
Jiang J, Sun M, Gu Q, Liu S, Sun H, Fan Z, Zhu Y, Du J. Biodegradable Nanobowls with Controlled Dents. ACS Macro Lett 2024:35-42. [PMID: 39698747 DOI: 10.1021/acsmacrolett.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Nanobowls show promising potential in biomedical applications, such as bioimaging, cargo delivery, and disease theranostics, due to their unique concave structure and interior cavities. However, the lack of biodegradable nanobowls with manipulable size (especially the dent size) still exists as an obstacle for their in-depth exploration and application in biomedical fields. Herein, polypeptide-based nanobowls are successfully obtained by the self-assembly of a graft polypeptide [named TPE-P(GAAzo21-stat-GA29)] via a solvent-switch method. Through the synergistic effect between the hydrogen bonding and π-π stacking interactions, the size of nanobowls and the corresponding dents can be facilely controlled by altering either the initial polypeptide concentration or the cosolvents in self-assembly. Furthermore, such polypeptide-based nanobowls are demonstrated to be biocompatible and biodegradable in vitro, which may promote the development of biomedical nanobowls in the future.
Collapse
Affiliation(s)
- Jinhui Jiang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Min Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Qianxi Gu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Shangning Liu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, 750021 Yinchuan, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Anuradha, Joshi US, Jewrajka SK. Low Fouling Molecular Selective Channels through Self-assembly of Cross-linked Block Copolymer Micelles for Selective Separation of Dye and Salt. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61344-61359. [PMID: 39437335 DOI: 10.1021/acsami.4c14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We report the solvent-evaporation and ionic cross-linking mediated self-assembly of the shell cross-linked micelles of the amphiphilic triblock copolymer containing middle poly(methyl methacrylate) block (hydrophobic) and poly(2-dimethylamino)ethyl methacrylate end blocks (hydrophilic) on the membrane substrate to create molecular selective channels. The formation of selective channels on the substrate is attributed to the local increase of micelle concentration upon solvent evaporation, which leads to the core-core hydrophobic interaction. The post-ionic cross-linking of the shell part further reduces the intermicelle distance, thereby creating interstices for selective separation. The TUF-1:1 membrane prepared by the self-assembly of the cross-linked micelles (triblock copolymer:halide-terminated PEG-based = 1:1 w w-1) and by the post-ionic cross-linking shows molecular weight cutoff of 3000 g mol-1 and pure water permeance of 52 L m-2 h-1 bar-1. The membrane shows 99.5-99.9% rejection of Congo red and Direct red-80 in the presence or absence of salts and Na2SO4 to dye separation factor of about 900. The added functionality (PEG) in the micelle structure provides good fouling-resistant properties toward dye and bovine serum albumin. This work provides the membrane formation mechanism and the advantages of the membrane for fractionation and resource recovery applications.
Collapse
Affiliation(s)
- Anuradha
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Urvashi S Joshi
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Pan YN, Ye CC, Huang SL, Wang C, Han MY, Xu L. Precisely Prepared Hierarchical Micelles of Polyfluorene-block-Polythiophene-block-Poly(phenyl isocyanide) via Crystallization-Driven Self-Assembly. Angew Chem Int Ed Engl 2024:e202418131. [PMID: 39467009 DOI: 10.1002/anie.202418131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
The precise preparation of hierarchical micelles is a fundamental challenge in modern materials science and chemistry. Herein, poly(di-n-hexylfluorene)-block-poly(3-tetraethylene glycol thiophene) (poly(1m-b-2n)) diblock copolymers and polyfluorene-block-polythiophene-block-poly(phenyl isocyanide) triblock copolymers were synthesized using a one-pot process via the sequential addition of corresponding monomers using a Ni(II) complex as a single catalyst for living/controlled polymerization. The crystallization-driven self-assembly of amphiphilic conjugated poly(1m-b-2n) led to the formation of nanofibers with controlled lengths and narrow dispersity. The block copolymers exhibited white, yellow, and red emissions in different self-assembly states. By using uniform poly(1m-b-2n) nanofibers as seeds, introducing the polyfluorene-block-polythiophene-block-poly(phenyl isocyanide) triblock polymer as a unimer in the seed growth process, and adjusting the structure of the poly(phenyl isocyanide) block and the polarity of self-assembly solvent, A-B-A triblock micelles, multiarm branched micelles, and raft micelles were prepared.
Collapse
Affiliation(s)
- Ya-Nan Pan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications; College of Chemistry and Materials Science, Huaibei Normal University Huaibei, Anhui, 235000, P. R. China
| | - Chen-Chen Ye
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications; College of Chemistry and Materials Science, Huaibei Normal University Huaibei, Anhui, 235000, P. R. China
| | - Si-Lin Huang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications; College of Chemistry and Materials Science, Huaibei Normal University Huaibei, Anhui, 235000, P. R. China
| | - Chao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications; College of Chemistry and Materials Science, Huaibei Normal University Huaibei, Anhui, 235000, P. R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications; College of Chemistry and Materials Science, Huaibei Normal University Huaibei, Anhui, 235000, P. R. China
| | - Lei Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications; College of Chemistry and Materials Science, Huaibei Normal University Huaibei, Anhui, 235000, P. R. China
| |
Collapse
|
6
|
Hosseinpoor S, Pourayoubi M, Zmeškalová E, Poupon M. Supramolecular motifs formed by CH 3/Cl-substituted arene groups: evidence for structural differences in thiophosphoramides and similarities in their complexes. RSC Adv 2024; 14:32206-32220. [PMID: 39399254 PMCID: PMC11467859 DOI: 10.1039/d4ra05281a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Differences/similarities of supramolecular motifs are discussed in two new thiophosphoramide structures and their Ni molecular complexes: (C2H5O)2P(S)(NHC(S)NHCH2C6H4X) and [{(C2H5O)2P(S)(NC(S)NHCH2C6H4X)}2Ni] (X = Cl/CH3I/II and III/IV). The structures have equal numbers of donor/acceptor sites contributing to classical hydrogen bonds (PS/CS and 2 × NH in ligands and 2 × PS and 2 × NH in the complexes). However, these donor and acceptor sites contribute to inter/intramolecular hydrogen bonding in ligands and intramolecular hydrogen bonding in complexes. In the supramolecular assemblies of the ligands, the classic hydrogen bonds (N-H⋯S[double bond, length as m-dash]C) are restricted in dimer synthons, and the weaker interactions (formed by Cl/CH3 substituents) compete against each other. In the complexes, despite the lack of classic intermolecular hydrogen bond, numerous weak interactions, e.g., C-H⋯Y (Y = S, O, Ni, N, and π), contribute to the molecular assemblies, which do not include the participation of Cl/CH3. Thus, different packing features of ligands, but similar in complexes are observed. Each ligand and the associated complex show nearly equal supramolecular motifs in the slice of the substituted benzyl groups, related to the formation of C-H⋯Cl/π⋯π for the 4-Cl-C6H4CH2 groups in I/III and C-H⋯π for the 4-CH3-C6H4CH2 groups in II/IV. The repeatabilities of the motifs made by 4-Cl-C6H4CH2/4-CH3-C6H4CH2 were checked by surveying 142/844 structures with 178/1482 segments in the CSD, which show that 17% and 12% of the structures exhibited similarities with the title structures. The methods X-ray crystallography, 2D fingerprint plots, electrostatic potential surfaces, QTAIM, and energy framework calculations were applied to present the discussion.
Collapse
Affiliation(s)
- Saeed Hosseinpoor
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| | - Mehrdad Pourayoubi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| | - Eliška Zmeškalová
- Institute of Physics of the Czech Academy of Sciences Na Slovance 2, Prague 8 182 21 Czech Republic
| | - Morgane Poupon
- Institute of Physics of the Czech Academy of Sciences Na Slovance 2, Prague 8 182 21 Czech Republic
| |
Collapse
|
7
|
Obata M, Yamaguchi S, Yoshimura T. A Stochastic FRET Study on the Core Dimension of Polystyrene- block-Poly(Polyethylene Glycol Monomethyl Ether Acrylate) Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20596-20603. [PMID: 39292970 DOI: 10.1021/acs.langmuir.4c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Polystyrene-b-poly(polyethylene glycol monomethyl ether acrylate) (PSt-b-PPEGA) copolymers featuring pyrene and perylene as the Förster resonance energy transfer (FRET) donor (denoted as D-BCP) and acceptor (denoted as A-BCP), respectively, were synthesized via the reversible addition and fragmentation chain transfer (RAFT) polymerization. These copolymers were then used to form DA-mixed micelles via a dialysis method. The micelles consisted of D-BCP (mole fraction fD = 0.04), A-BCP (fA = 0.04), and label-free PSt-b-PPEGA (fN = 0.92). The decrease in fluorescence intensity of pyrene in the micelles confirmed the occurrence of FRET, with an observed efficiency of 0.32. A Monte Carlo approach was employed to estimate the expected FRET efficiency, assuming the random fractional distribution of D-BCP and A-BCP, along with the random spatial distribution of pyrene and perylene within the micellar core. The observed FRET efficiency suggested a core radius (Rc) of 0.95R0, where R0 was the Förster critical distance. With R0 calculated to be 3.2 nm based on Förster theory, Rc was determined to be approximately 3.0 nm, aligning closely with the dried-out core radius estimated from aggregation number and polystyrene density. This stochastic FRET methodology was further applied to investigate the swelling behavior of the polymer micelles in a mixture of N,N-dimethylformamide (DMF) and water. Dynamic light scattering analysis revealed minimal change in core dimension below 60 vol % DMF content. However, FRET analysis provided a deeper insight, showing an increase in core radius with DMF content up to 20 vol %, followed by saturation up to 50 vol %, offering a more comprehensive understanding of the micelle swelling behavior.
Collapse
Affiliation(s)
- Makoto Obata
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Shougo Yamaguchi
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Tomokazu Yoshimura
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| |
Collapse
|
8
|
Rosso AP, de Oliveira FA, Guégan P, Jager E, Giacomelli FC. Evaluation of polymersome permeability as a fundamental aspect towards the development of artificial cells and nanofactories. J Colloid Interface Sci 2024; 671:88-99. [PMID: 38795537 DOI: 10.1016/j.jcis.2024.05.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Polymersomes are synthetic vesicles with potential use in healthcare, chemical transformations in confined environment (nanofactories), and in the construction of artificial cells and organelles. In this framework, one of the most important features of such supramolecular structures is the permeability behavior allowing for selective control of mass exchange between the inner and outer compartments. The use of biological and synthetic nanopores in this regard is the most common strategy to impart permeability nevertheless, this typically requires fairly complex strategies to enable porosity. Yet, investigations concerning the permeability of polymer vesicles to different analytes still requires further exploration and, taking these considerations into account, we have detailed investigated the permeability behavior of a variety of polymersomes with regard to different analytes (water, protons, and rhodamine B) which were selected as models for solvents, ions, and small molecules. Polymersomes based on hydrophilic blocks of poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) or PEO (poly(ethylene oxide)) linked to the non-responsive blocks poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA) or poly(methyl methacrylate) (PMMA), or to the stimuli pH-responsive block poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) have been investigated. Interestingly, the produced PEO-based vesicles are notably larger than the ones produced using PHPMA-containing block copolymers. The experimental results reveal that all the vesicles are inherently permeable to some extent with permeability behavior following exponential profiles. Nevertheless, polymersomes based on PMMA as the hydrophobic component were demonstrated to be the least permeable to the small molecule rhodamine B as well as to water. The synthetic vesicles based on the pH-responsive PDPA block exhibited restrictive and notably slow proton permeability as attributed to partial chain protonation upon acidification of the medium. The dye permeability was evidenced to be much slower than ion or solvent diffusion, and in the case of pH-responsive assemblies, it was demonstrated to also depend on the ionic strength of the environment. These findings are understood to be highly relevant towards polymer selection for the production of synthetic vesicles with selective and time-dependent permeability, and it may thus contribute in advancing biomimicry and nanomedicine.
Collapse
Affiliation(s)
- Anabella P Rosso
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | - Philippe Guégan
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire (UMR-CNRS 8232), Sorbonne Université, Paris, France
| | - Eliezer Jager
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
9
|
Wang Y, Zhang X, Huang CB, Hu L, Wang XQ, Wang W, Yang HB. Inducing and Switching the Handedness of Polyacetylenes with Topologically Chiral [2]Catenane Pendants. Angew Chem Int Ed Engl 2024; 63:e202408271. [PMID: 38837513 DOI: 10.1002/anie.202408271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
To explore the chirality induction and switching of topological chirality, poly[2]catenanes composed of helical poly(phenylacetylenes) (PPAs) main chain and topologically chiral [2]catenane pendants are described for the first time. These poly[2]catenanes with optically active [2]catenanes on side chains were synthesized by polymerization of enantiomerically pure topologically chiral [2]catenanes with ethynyl polymerization site and/or point chiral moiety. The chirality information of [2]catenane pendants was successfully transferred to the main chain of polyene backbones, leading to preferred-handed helical conformations, while the introduction of point chiral units has negligible effect on the overall helices. More interestingly, attributed to unique dynamic feature of the [2]catenane pendants, these polymers revealed dynamic response behaviors to solvents, temperature, and sodium ions, resulting in the fully reversible switching on/off of the chirality induction. This work provides not only new design strategy for novel chiroptical switches with topologically chiral molecules but also novel platforms for the development of smart chiral materials.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chang-Bo Huang
- Coatings Applied Research Asia Pacific, BASF Advanced Chemicals Co., Ltd., Shanghai, 200137, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
10
|
Wang A, Ma Y, Zhao D. Pore engineering of Porous Materials: Effects and Applications. ACS NANO 2024; 18:22829-22854. [PMID: 39152943 DOI: 10.1021/acsnano.4c08708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Porous materials, characterized by their controllable pore size, high specific surface area, and controlled space functionality, have become cross-scale structures with microenvironment effects and multiple functions and have gained tremendous attention in the fields of catalysis, energy storage, and biomedicine. They have evolved from initial nanopores to multiscale pore-cavity designs with yolk-shell, multishells, or asymmetric structures, such as bottle-shaped, multichambered, and branching architectures. Various synthesis strategies have been developed for the interfacial engineering of porous structures, including bottom-up approaches by using liquid-liquid or liquid-solid interfaces "templating" and top-down approaches toward chemical tailoring of polymers with different cross-linking degrees, as well as interface transformation using the Oswald ripening, Kirkendall effect, or atomic diffusion and rearrangement methods. These techniques permit the design of functional porous materials with diverse microenvironment effects, such as the pore size effect, pore enrichment effect, pore isolation and synergistic effect, and pore local field enhancement effect, for enhanced applications. In this review, we delve into the bottom-up and top-down interfacial-oriented synthesis approaches of porous structures with advanced structures and microenvironment effects. We also discuss the recent progress in the applications of these collaborative effects and structure-activity relationships in the areas of catalysis, energy storage, electrochemical conversion, and biomedicine. Finally, we outline the persisting obstacles and prospective avenues in terms of controlled synthesis and functionalization of porous engineering. The perspectives proposed in this paper may contribute to promote wider applications in various interdisciplinary fields within the confined dimensions of porous structures.
Collapse
Affiliation(s)
- Aixia Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yuzhu Ma
- College of Energy Materials and Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
11
|
Yang N, Wang Y, Yan Q. Dynamic Gas-Bridged Bond: An Opportunity of Fabricating Dynamic Assembled Materials with Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43093-43101. [PMID: 39116111 DOI: 10.1021/acsami.4c11420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Gas molecules, as a family of unique polyatomic building blocks, have long been considered hard to involve in molecular assembly or construct assembled materials due to their structural simplicity yet paucity of defined interacting sites. To solve this non-trivial challenge, a core idea is to break the limit of current ways of bonding gas molecules, endowing them with new modes of interactions that match the basic requirements of molecular assembly. In recent years, a new concept, named the dynamic gas-bridged bond (DGB), has emerged, which allows for gas molecules to constitute a dynamic bridging structure between other building blocks with the aid of frustrated Lewis pairs. This makes it possible to harness gas in a supramolecular or dynamic manner. Herein, this perspective discusses distinct dynamic natures of DGBs and manifests their particular functions in various fields, including the control of molecular/polymeric self-assembly nanostructures, creation of multidimensional assembled materials, and recyclable catalysts. The future research direction and challenges of dynamic gas-bridged chemistry toward gas-programmed self-assembly and gas-constructed adaptive materials are highlighted.
Collapse
Affiliation(s)
- Nan Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangyang Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
12
|
Mao X, Cai J, Wu R, Liu B. Mechanistic Insights into Micelle-Enhanced Nanofiltration for Heavy Metal Removal: Transformation of Ion Transport and Fouling Phenomena. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13940-13949. [PMID: 39048295 DOI: 10.1021/acs.est.4c03741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Toxic heavy metals are widely present in typical scenarios, such as mines and electroplating wastewater, presenting significant risks to biological and environmental safety. Membrane processes encounter a challenge in effectively intercepting heavy metals due to their small hydration radius. This research showcases the high efficiency of micelle-enhanced nanofiltration (MENF) in removing heavy metals. At the critical micelle concentration, sodium dodecyl sulfate demonstrated a high removal of Cu2+, Ni2+, Zn2+, and Cd2+ while maintaining substantial potential for complexation of heavy metals. The formation of micelles and the bonding of heavy metals with surfactants bolstered the resistance of heavy metal ions to transmembrane transport. The presence of heavy metals in ionic form in wastewater facilitated their complexation with surfactants or micelles. Notably, the valence state and concentration of interfering ions in the environment could slightly influence the removal of heavy metals by MENF. Additionally, MENF displayed remarkable antifouling properties. The loose gel layer created by surfactant molecules and the micelle enhanced the membrane permeability and reduced the scaling tendency of heavy metals. This study contributes to an improved understanding of the mechanisms involved in heavy metal rejection by using MENF.
Collapse
Affiliation(s)
- Xin Mao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Junlong Cai
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Ruoxi Wu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
13
|
Jiang B, Zhang J, Yu K, Jia Z, Long H, He N, Zhang Y, Zou Y, Han Z, Li Y, Ma L. Dynamic Cleavage-Remodeling of Covalent Organic Networks into Multidimensional Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404446. [PMID: 38837518 DOI: 10.1002/adma.202404446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Indexed: 06/07/2024]
Abstract
Superstructures with complex hierarchical spatial configurations exhibit broader structural depth than single hierarchical structures and the associated broader application prospects. However, current preparation methods are greatly constrained by cumbersome steps and harsh conditions. Here, for the first time, a concise and efficient thermally responsive dynamic synthesis strategy for the preparation of multidimensional complex superstructures within soluble covalent organic networks (SCONs) with tunable morphology from 0D hollow supraparticles to 2D films is presented. Mechanism study reveals the thermally responsive dynamic "cleavage-remodeling" characteristics of SCONs, synthesized based on the unique bilayer structure of (2.2)paracyclophane, and the temperature control facilitates the process from reversible solubility to reorganization and construction of superstructures. Specifically, during the process, the oil-water-emulsion two-phase interface can be generated through droplet jetting, leading to the preparation of 0D hollow supraparticles and other bowl-like complex superstructures with high yield. Additionally, by modulating the volatility and solubility of exogenous solvents, defect-free 2D films are prepared relying on an air-liquid interface. Expanded experiments further confirm the generalizability and scalability of the proposed dynamic "cleavage-remodeling" strategy. Research on the enrichment mechanism of guest iodine highlights the superior kinetic mass transfer performance of superstructural products compared to single-hierarchical materials.
Collapse
Affiliation(s)
- Bo Jiang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Jie Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Kaifu Yu
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Zhimin Jia
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Honghan Long
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Ningning He
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Yingdan Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Yingdi Zou
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Ziqian Han
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| |
Collapse
|
14
|
Yang Y, Liu Y, Xu M, Cai J, Li Q, Wan Z, Yang X. Hierarchical Self-Aggregation of Multifunctional Steviol Glycosides in Aqueous Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16438-16448. [PMID: 38981019 DOI: 10.1021/acs.jafc.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Steviol glycosides (SGs) are a natural sweetener widely used in the food and beverage industry, but the low solubility and stability of SG aqueous solutions greatly limit their application performance, especially in liquid formulations. In this work, we explore the solubility behavior of rebaudioside A (Reb A) in water, a major component of SGs, with the aim of clarifying the underlying mechanisms of the solubility and stability constraints of SGs, as well as the impact on their multifunctional properties. We demonstrate for the first time that Reb A exhibits hierarchical self-assembly in solutions, forming spherical micelles first when the concentration exceeds its critical micelle concentration (5.071 mg/mL), which then further assemble into large rod-like aggregates. The formation of such large Reb A aggregates is mainly dominated by hydrogen bonding and short-range Coulomb interaction energy, thus leading to the low solubility and precipitation of Reb A solutions. Surprisingly, aggregated Reb A structures display significantly improved organoleptic properties, revealing that self-aggregation can be developed as a simple, efficient, and green strategy for improving the taste profile of SGs. Additionally, the self-aggregation of Reb A at high concentrations impairs active encapsulation and also affects its interfacial and emulsifying properties.
Collapse
Affiliation(s)
- Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Jiyang Cai
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
15
|
Fu WY, Chiu YL, Huang SC, Huang WY, Hsu FT, Lee HY, Wang TW, Keng PY. Boron Neutron Capture Therapy Enhanced by Boronate Ester Polymer Micelles: Synthesis, Stability, and Tumor Inhibition Studies. Biomacromolecules 2024; 25:4215-4232. [PMID: 38845149 PMCID: PMC11238341 DOI: 10.1021/acs.biomac.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Boron neutron capture therapy (BNCT) targets invasive, radioresistant cancers but requires a selective and high B-10 loading boron drug. This manuscript investigates boron-rich poly(ethylene glycol)-block-(poly(4-vinylphenyl boronate ester)) polymer micelles synthesized via atom transfer radical polymerization for their potential application in BNCT. Transmission electron microscopy (TEM) revealed spherical micelles with a uniform size of 43 ± 10 nm, ideal for drug delivery. Additionally, probe sonication proved effective in maintaining the micelles' size and morphology postlyophilization and reconstitution. In vitro studies with B16-F10 melanoma cells demonstrated a 38-fold increase in boron accumulation compared to the borophenylalanine drug for BNCT. In vivo studies in a B16-F10 tumor-bearing mouse model confirmed enhanced tumor selectivity and accumulation, with a tumor-to-blood (T/B) ratio of 2.5, surpassing BPA's T/B ratio of 1.8. As a result, mice treated with these micelles experienced a significant delay in tumor growth, highlighting their potential for BNCT and warranting further research.
Collapse
Affiliation(s)
- Wan Yun Fu
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Yi-Lin Chiu
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Shi-Chih Huang
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Wei-Yuan Huang
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Fang-Tzu Hsu
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Han Yu Lee
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Tzu-Wei Wang
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Pei Yuin Keng
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| |
Collapse
|
16
|
Guo H, Mi P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1988. [PMID: 39109479 DOI: 10.1002/wnan.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Haochen Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Cai C, Tang H, Li F, Xu Z, Lin J, Li D, Tang Z, Yang C, Gao L. Archimedean Spirals with Controllable Chirality: Disk Substrate-Mediated Solution Assembly of Rod-Coil Block Copolymers. JACS AU 2024; 4:2363-2371. [PMID: 38938804 PMCID: PMC11200227 DOI: 10.1021/jacsau.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Spirals are common in nature; however, they are rarely observed in polymer self-assembly systems, and the formation mechanism is not well understood. Herein, we report the formation of two-dimensional (2D) spiral patterns via microdisk substrate-mediated solution self-assembly of polypeptide-based rod-coil block copolymers. The spiral pattern consists of multiple strands assembled from the block copolymers, and two central points are observed. The spirals fit well with the Archimedean spiral model, and their chirality is dependent on the chirality of the polypeptide blocks. As revealed by a combination of experiments and theoretical simulations, these spirals are induced by an interplay of the parallel ordering tendency of the strands and circular confinement of the microdisks. This work presents the first example regarding substrate-mediated self-assembly of block copolymers into spirals. The gained information could not only enhance our understanding of natural spirals but also assist in both the controllable preparations and applications of spiral nanostructures.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Hongfeng Tang
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Feiyan Li
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhanwen Xu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiaping Lin
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Da Li
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhengmin Tang
- Department
of Laboratory Medicine, the First Affiliated Hospital, College of
Medicine, Zhejiang University, Hangzhou 311121, China
| | - Chunming Yang
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Liang Gao
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Jin B, Hu L, Li X. Mesogenic Ordering-Driven Self-Assembly of Liquid Crystalline Block Copolymers in Solution. Chemistry 2024; 30:e202400312. [PMID: 38454618 DOI: 10.1002/chem.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
With the development of nanotechnology, the preparation of polymeric nanoparticles with nicely defined structures has been well-developed, and the functionalization and subsequent applications of the resultant nanostructures are becoming increasingly important. Particularly, by introducing mesogenic ordering as the driving force for the solution-state self-assembly of liquid crystalline (LC) block copolymers (BCPs), micellar nanostructures with different morphologies, especially anisotropic morphologies, can be easily prepared. This review summarizes the recent progress in the solution-state self-assembly of LC BCPs and is mostly focused on four main related aspects, including an in-depth understanding of the mesogenic ordering-driven self-assembly, precise assembly methods, utilization of these methods to fabricate hierarchical structures, and the potential applications of these well-defined nanostructures. We hope not only to make a systematic summary of previous studies but also to provide some useful thinking for the future development of this field.
Collapse
Affiliation(s)
- Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingjuan Hu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Laboratory of High Energy Density Materials, MOE. Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
19
|
Yin Y, Zhang Y, Xie Q, He Y, Guo J. Controlled Self-Assembly of Natural Polyphenols Driven by Multiple Molecular Interactions. Chempluschem 2024; 89:e202300695. [PMID: 38251920 DOI: 10.1002/cplu.202300695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Indexed: 01/23/2024]
Abstract
Nature has exhibited a high degree of control over the structures and functions. Supramolecules have been utilized to mimic the subtle assembly in nature. However, sophisticated synthesis of molecular skeletons or programmable design of the driving forces raises great challenges in fabricating high-level superstructures in a controlled manner. Natural polyphenols show great promises as building blocks for a diverse of assemblies with controlled structures and functionalities. The intrinsically embedded phenolic groups (i. e., catechol and galloyl groups) are readily forming multiple molecular interactions, including coordination, hydrogen bonding, and π-π interactions with various materials of inorganic particles, organic compounds, synthetic polymers, and biomacromolecules, providing the self-assembled structures or nanocoating on surfaces. Subsequent assembly occurred by further bonding of polyphenols to construct supraparticles. To gain control over the self-assembly, the key lies in the interplay among the molecular interactions with one or two being dominant. In this Perspective, we introduce the representative polyphenol-based assemblies and their derived supraparticles to exhibit the effective harness of the controlled self-assembly by polyphenols.
Collapse
Affiliation(s)
- Yun Yin
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yajing Zhang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qiuping Xie
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
20
|
Ji X, Wang N, Wang J, Wang T, Huang X, Hao H. Non-destructive real-time monitoring and investigation of the self-assembly process using fluorescent probes. Chem Sci 2024; 15:3800-3830. [PMID: 38487216 PMCID: PMC10935763 DOI: 10.1039/d3sc06527h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Self-assembly has been considered as a strategy to construct superstructures with specific functions, which has been widely used in many different fields, such as bionics, catalysis, and pharmacology. A detailed and in-depth analysis of the self-assembly mechanism is beneficial for directionally and accurately regulating the self-assembly process of substances. Fluorescent probes exhibit unique advantages of sensitivity, non-destructiveness, and real-time self-assembly tracking, compared with traditional methods. In this work, the design principle of fluorescent probes with different functions and their applications for the detection of thermodynamic and kinetic parameters during the self-assembly process were systematically reviewed. Their efficiency, limitations and advantages are also discussed. Furthermore, the promising perspectives of fluorescent probes for investigating the self-assembly process are also discussed and suggested.
Collapse
Affiliation(s)
- Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| |
Collapse
|
21
|
Zheng Y, Niino H, Chatani S, Goto A. Preparation of Block Copolymer Self-Assemblies via Pisa in a Non-Polar Medium Based on RCMP. Macromol Rapid Commun 2024; 45:e2300635. [PMID: 38284465 DOI: 10.1002/marc.202300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Polymerization-induced self-assembly (PISA) is conducted in a non-polar medium (n-dodecane) via reversible complexation-mediated polymerization (RCMP). Stearyl methacrylate (SMA) is used to synthesize a macroinitiator, and subsequent block polymerization of benzyl methacrylate (BzMA) from the macroinitiator in n-dodecane afforded a PSMA-PBzMA block copolymer, where PSMA is poly(stearyl methacrylate) and PBzMA is poly(benzyl methacrylate). Because PSMA is soluble but PBzMA is insoluble in n-dodecane, the block copolymer formed a self-assembly during the block polymerization (PISA). Spherical micelles, worms, and vesicles are obtained, depending on the degrees of polymerization of PSMA and PBzMA. "One-pot" PISA is also attained; namely, BzMA is directly added to the reaction mixture of the macroinitiator synthesis, and PISA is conducted in the same pot without purification of the macroinitiator. The spherical micelle and vesicle structures are also fixed using a crosslinkable monomer during PISA. RCMP-PISA is highly attractive as it is odorless and metal-free. The "one-pot" synthesis does not require the purification of the macroinitiator. RCMP-PISA can provide a practical approach to synthesize self-assemblies in non-polar media.
Collapse
Affiliation(s)
- Yichao Zheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Hiroshi Niino
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan
| | - Atsushi Goto
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| |
Collapse
|
22
|
Jia S, Tao T, Xie Y, Yu L, Kang X, Zhang Y, Tang W, Gong J. Chirality Supramolecular Systems: Helical Assemblies, Structure Designs, and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307874. [PMID: 37890278 DOI: 10.1002/smll.202307874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Chirality, as one of the most striking characteristics, exists at various scales in nature. Originating from the interactions of host and guest molecules, supramolecular chirality possesses huge potential in the design of functional materials. Here, an overview of the recent progress in structure designs and functions of chiral supramolecular materials is present. First, three design routes of the chiral supramolecular structure are summarized. Compared with the template-induced and chemical synthesis strategies that depend on accurate molecular identification, the twisted-assembly technique creates chiral materials through the ordered stacking of the nanowire or films. Next, chirality inversion and amplification are reviewed to explain the chirality transfer from the molecular level to the macroscopic scale, where the available external stimuli on the chirality inversion are also given. Lastly, owing to the optical activity and the characteristics of the layer-by-layer stacking structure, the supramolecular chirality materials display various excellent performances, including smart response, shape-memorization, superior mechanical performance, and applications in biomedical fields. To sum up, this work provides a systematic review of the helical assemblies, structure design, and applications of supramolecular chirality systems.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang Kang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
23
|
Kim C, Goudeli E, Ercole F, Ju Y, Gu Y, Xu W, Quinn JF, Caruso F. Particle Engineering via Supramolecular Assembly of Macroscopic Hydrophobic Building Blocks. Angew Chem Int Ed Engl 2024; 63:e202315297. [PMID: 37945544 PMCID: PMC10953382 DOI: 10.1002/anie.202315297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Tailoring the hydrophobicity of supramolecular assembly building blocks enables the fabrication of well-defined functional materials. However, the selection of building blocks used in the assembly of metal-phenolic networks (MPNs), an emerging supramolecular assembly platform for particle engineering, has been essentially limited to hydrophilic molecules. Herein, we synthesized and applied biscatechol-functionalized hydrophobic polymers (poly(methyl acrylate) (PMA) and poly(butyl acrylate) (PBA)) as building blocks to engineer MPN particle systems (particles and capsules). Our method allowed control over the shell thickness (e.g., between 10 and 21 nm), stiffness (e.g., from 10 to 126 mN m-1 ), and permeability (e.g., 28-72 % capsules were permeable to 500 kDa fluorescein isothiocyanate-dextran) of the MPN capsules by selection of the hydrophobic polymer building blocks (PMA or PBA) and by controlling the polymer concentration in the MPN assembly solution (0.25-2.0 mM) without additional/engineered assembly processes. Molecular dynamics simulations provided insights into the structural states of the hydrophobic building blocks during assembly and mechanism of film formation. Furthermore, the hydrophobic MPNs facilitated the preparation of fluorescent-labeled and bioactive capsules through postfunctionalization and also particle-cell association engineering by controlling the hydrophobicity of the building blocks. Engineering MPN particle systems via building block hydrophobicity is expected to expand their use.
Collapse
Affiliation(s)
- Chan‐Jin Kim
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Eirini Goudeli
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Francesca Ercole
- Drug DeliveryDisposition and Dynamics ThemeMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| | - Yi Ju
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Yuang Gu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Wanjun Xu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - John F. Quinn
- Drug DeliveryDisposition and Dynamics ThemeMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
- Department of Chemical EngineeringFaculty of EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
24
|
Teng F, Xiang B, Liu L, Varlas S, Tong Z. Precise Control of Two-Dimensional Hexagonal Platelets via Scalable, One-Pot Assembly Pathways Using Block Copolymers with Crystalline Side Chains. J Am Chem Soc 2023; 145:28049-28060. [PMID: 38088129 DOI: 10.1021/jacs.3c09370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers (BCPs) in selective solvents provides a promising route for direct access to two-dimensional (2D) platelet micelles with excellent uniformity, although significant limitations also exist for this robust approach, such as tedious, multistep procedures, and low yield of assembled materials. Herein, we report a facile strategy for massively preparing 2D, highly symmetric hexagonal platelets with precise control over their dimensions based on BCPs with crystalline side chains. Mechanistic studies unveiled that the formation of hexagonal platelets was subjected to a hierarchical self-assembly process, involving an initial stage of formation of kinetically trapped spheres upon cooling driven by solvophobic interactions, and a second stage of fusion of such spheres to the 2D nuclei to initiate the lateral growth of hexagonal platelets via sequential particle attachments driven by thermodynamically ordered reorganization of the BCP upon aging. Moreover, the size of the developed 2D hexagonal platelets could be finely regulated by altering the copolymer concentration over a broad concentration range, enabling scale-up to a total solids concentration of at least 6% w/w. Our work reveals a new mechanism to create uniform 2D core-shell nanoparticles dictated by crystallization and particle fusion, while it also provides an alternative facile strategy for the design of soft materials with precise control of their dimensions, as well as for the scalability of the derived nanostructures.
Collapse
Affiliation(s)
- Feiyang Teng
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingbing Xiang
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill S3 7HF, Sheffield, U.K
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
25
|
Wang Z, Li F, Wang L, Liu Y, Li M, Cui N, Li C, Sun S, Hu S. A dissipative particle dynamics simulation of controlled loading and responsive release of theranostic agents from reversible crosslinked triblock copolymer vesicles. Phys Chem Chem Phys 2023; 26:304-313. [PMID: 38062783 DOI: 10.1039/d3cp04190e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
To control the transport stability and release efficiency of loaded theranostic drugs in triblock copolymer carriers, the reversible crosslinking ability is of great significance. A molecular level exploration of such a function is needed to extend existing stabilizing and responsive dissociation mechanisms of carriers. Here, dissipative particle dynamics simulations were used to first demonstrate the formation of triblock copolymer vesicular carriers. Chemical crosslinking was used to strengthen the structural stability of the vesicle shell to avoid drug leakage. Reversible decrosslinking along with dissociation of the vesicle and release of loaded drugs were then explored. The structural, energetic and dynamical properties of the system were discussed at the molecular level. The regulation mechanism of drug release patterns was revealed by systematically exploring the effect of intra and intermolecular repulsive interactions. The results indicate that the chemical crosslinking of copolymers enhanced the compactness of the vesicle shell with a strengthened microstructure, increased binding energy, and limited chain migration, thus achieving more stable delivery of drugs. In terms of drug release, we clarified how the pairwise interactions of beads in the solution system affect the responsive dissociation of the vesicle and associated release patterns (speed and amount) of drugs. More efficient delivery and smart release of theranostic drugs are achieved using such reversible crosslinked triblock copolymer vesicles.
Collapse
Affiliation(s)
- Zhikun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Fengting Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Li Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Yueqi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Miantuo Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Nannan Cui
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunling Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
26
|
White JM, Crabtree AA, Bates FS, Calabrese MA. Effect of chain architecture on the structure, dynamics, and rheology of thermoresponsive poloxamer hydrogels and associated blends. Macromolecules 2023; 56:6834-6847. [PMID: 38774522 PMCID: PMC11104561 DOI: 10.1021/acs.macromol.3c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Poloxamers, ABA triblock polymers composed of a poly(propylene oxide) (PPO) midblock (B) and poly(ethylene oxide) (PEO) endblocks (A), are widely studied for biomedical applications. Aqueous poloxamer 407 (P407; also referred to as F127) undergoes a solution-to-gel transition with increasing temperature, driven by the formation and ordering of micelles onto periodic lattices; however, the gel temperature and resulting modulus has limited tunability. Here, reverse P407 (RP407), a BAB polymer of the same composition and molar mass but the inverted architecture, is synthesized via anionic polymerization. The micellization and gelation temperatures of RP407 are higher than that of P407 and the PPO endblocks allow for intermicelle bridging; however, both single-component solutions favor body-centered cubic (BCC) packings. Further, aqueous RP407 displays a "soft gel" region with interesting rheological behavior, including viscoelastic aging and thermal hysteresis. Combining P407 and RP407 yields solutions with intermediate transition temperatures and alters the size and micelle packing. While the single-component solutions produce BCC packings, the blends form close-packed structures and larger micelles of higher aggregation numbers. Blends of P407 with an analogous AB diblock (E111P32) display similar behavior, whereas RP407/diblock blends form intermediate-sized BCC-packed micelles. These differences in packing and aggregation alter the local environments within the gels, which could have implications for applications such as drug delivery and protein stabilization.
Collapse
Affiliation(s)
- Joanna M White
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455
| | - Adelyn A Crabtree
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455
| |
Collapse
|
27
|
Sun Y, Zhang J, Liu F, Zhang Q. Kinetically Controlled Star Copolymer Self-Assembly for Rapid Fabrication of Nanoparticles with High Encapsulation Capacity. Chemistry 2023; 29:e202301024. [PMID: 37218025 DOI: 10.1002/chem.202301024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Rapid and scalable self-assembly of an amphiphilic 21-arm star copolymer, (polystyrene-block-polyethylene glycol)21 [(PS-b-PEG)21 ] in aqueous solution has been performed by reverse solvent exchange procedure. Transmission electron microscope (TEM) and nanoparticle tracking analysis (NTA) reveal the formation of nanoparticles with narrow size distribution. Further investigation indicates a kinetically controlled self-assembly mechanism of the copolymers, in which the star topology of the amphiphilic copolymer and deep quenching condition by reverse solvent exchange are key to accelerate intrachain contraction of the copolymer during phase separation. When interchain contraction dominant over interchain association, nanoparticles with low aggregation number could be formed. Thanks to the high hydrophobic contents of the (PS-b-PEG)21 polymers, the resulted nanoparticles could encapsulate a high capacity of hydrophobic cargo up to 19.84 %. The kinetically controlled star copolymer self-assembly process reported here provides a platform for the rapid and scalable fabrication of nanoparticle with high drug loading capacity (LC), which may find broad range of applications in, for example drug delivery, nanopesticide.
Collapse
Affiliation(s)
- Yawei Sun
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiaqi Zhang
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Qilu Zhang
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
28
|
Zhu Y, Cao S, Huo M, van Hest JCM, Che H. Recent advances in permeable polymersomes: fabrication, responsiveness, and applications. Chem Sci 2023; 14:7411-7437. [PMID: 37449076 PMCID: PMC10337762 DOI: 10.1039/d3sc01707a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Polymersomes are vesicular nanostructures enclosed by a bilayer-membrane self-assembled from amphiphilic block copolymers, which exhibit higher stability compared with their biological analogues (e.g. liposomes). Due to their versatility, polymersomes have found various applications in different research fields such as drug delivery, nanomedicine, biological nanoreactors, and artificial cells. However, polymersomes prepared with high molecular weight components typically display low permeability to molecules and ions. It hence remains a major challenge to balance the opposing features of robustness and permeability of polymersomes. In this review, we focus on the design and strategies for fabricating permeable polymersomes, including polymersomes with intrinsic permeability, the formation of nanopores in the membrane bilayers by protein insertion, and the construction of stimuli-responsive polymersomes. Then, we highlight the applications of permeable polymersomes in the fields of biomimetic nanoreactors, artificial cells and organelles, and nanomedicine, to underline the challenges in the development of polymersomes as soft matter with biomedical utilities.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| | - Shoupeng Cao
- Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Meng Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| |
Collapse
|
29
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
30
|
Jin H, Wu Z, Lin W, Chen Y, Zhang J, Zheng R, Wei H, Chen Q, Qian Q, Huang J, Zhang J, Yan Y. Formation of Size-Controllable Tetragonal Nanoprisms by Crystallization-Directed Ionic Self-Assembly of Anionic Porphyrin and PEO-Containing Triblock Cationic Copolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300688. [PMID: 37029578 DOI: 10.1002/smll.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
The creation of anisotropic nanostructures with precise size control is desirable for new properties and functions, but it is challenging for ionic self-assembly (ISA) because of the non-directional electrostatic interactions. Herein, the formation of size-controllable tetragonal nanoprisms is reported via crystallization-directed ionic self-assembly (CDISA) through evaporating a micellar solution on solid substrates. First, ISA is designed with a crystalline polyethylene oxide (PEO) containing cationic polymer poly(2-(2-guanidinoethoxy)ethyl methacrylate)-b-poly(ethyleneoxide)-b-poly(2-(2-guanidinoethoxy)-ethylmethacrylate) (PGn -PEO230 -PGn ) and an anionic 5,10,15,20-Tetrakis(4-sulfonatophenyl) porphyrin (TPPS) to form micelles in aqueous solution. The PG segments binds excessive TPPS with amplenet chargeto form hydrophilic corona, while the PEO segments are unprecedentedly dehydrated and tightly packed into cores. Upon naturally drying the micellar solution on a silicon wafer, PEO crystallizationdirects the micelles to aggregate into square nanoplates, which are further connected to nanoprisms. Length and width of the nanoprisms can be facilely tuned by varying the initial concentration. In this hierarchical process, the aqueous self-assembly is prerequisite and the water evaporation rate is crucial for the formation of nanostructures, which provides multiple factors for morphology regulating. Such precise size-control strategy is highly expected to provide a new vision for the design of advanced materials with size controllable anisotropic nanostructures.
Collapse
Affiliation(s)
- Hongjun Jin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ziyan Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Weilin Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Yinye Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jingran Zhang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Ruyi Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Haibing Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
31
|
Zhang ZE, Zhang YF, Zhang YZ, Li HL, Sun LY, Wang LJ, Han YF. Construction and Hierarchical Self-Assembly of Multifunctional Coordination Cages with Triangular Metal-Metal-Bonded Units. J Am Chem Soc 2023; 145:7446-7453. [PMID: 36947714 DOI: 10.1021/jacs.3c00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Herein, a series of face-capped (Tr2M3)4L4 (Tr = cycloheptatrienyl cationic ring; M = metal; L = organosulfur ligand) tetrahedral cages 1-3 functionalized with 12 appended crown ether moieties were designed and synthesized. The reversible binding of ammonium cations with peripheral crown ether moieties to adjust internal guest-binding was realized. Combination of a bisammonium linker and cage 3 led to the formation of a supramolecular gel SPN1 via host-guest interactions between the crown ether moieties and ammonium salts. The obtained supramolecular gel exhibited multiple-stimuli responsiveness, injectability, and excellent self-healing properties and could be further developed to a SPN1-based drug delivery system. In addition, the storage modulus of SPN1 was 20 times higher than that of the model gel without Pd-Pd bonded blocks, and SPN1 had better self-healing properties compared with the latter, demonstrating the importance of such cages in improving mechanical strength without losing the dynamic properties of the material. The cytotoxicity in vitro of the drug-loaded (doxorubicin or methotrexate) SPN1 was significantly improved compared to that of free drugs.
Collapse
Affiliation(s)
- Zi-En Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yan-Zhen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Hui-Ling Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Li-Juan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
32
|
Long-Range Ordered Nanostructures of Assembling Macromolecules via Rational Design of Kinetic Pathways: A Computational Perspective. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
33
|
Ye N, Pei YR, Han Q, Jin LY. Photoresponsive reversible self-assembly of rod-coil amphiphiles containing spiropyran groups. SOFT MATTER 2023; 19:1540-1548. [PMID: 36745471 DOI: 10.1039/d2sm01690g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive assembly deformation is a key feature in constructing smart soft materials, which makes them versatile and autonomous. In this study, rod-coil amphiphilic compounds containing spiropyran (SP) groups were developed and synthesized to investigate their stimuli-responsive assembly in a solution system with 99% water content. In addition to photochromic phenomena, reversible light-mediated morphological alterations occurred in these molecular aggregates. Based on the different flexible chain segments of rod-coil amphiphiles, the initial assemblies underwent a dissociation-reassembly process under ultraviolet (UV) irradiation, whereupon they deformed or disassembled to assemblies. Furthermore, as the UV source was removed, the original nanostructures were gradually recovered again via the ring-closing reaction process. These compounds, interestingly, can selectively combine with copper ions to produce cross-linked co-assembled nanostructures. The copper ion complex solution of rod-coil amphiphilic compounds emitted unique bright blue fluorescence, which allowed for the specific visual identification of copper ions in aqueous solutions.
Collapse
Affiliation(s)
- Nan Ye
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
34
|
Yao Y, Gao L, Cai C, Lin J, Lin S. Supramolecular Polymerization of Polymeric Nanorods Mediated by Block Copolymers. Angew Chem Int Ed Engl 2023; 62:e202216872. [PMID: 36604302 DOI: 10.1002/anie.202216872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Introducing a second component is an effective way to manipulate polymerization behavior. However, this phenomenon has rarely been observed in colloidal systems, such as polymeric nanoparticles. Here, we report the supramolecular polymerization of polymeric nanorods mediated by block copolymers. Experimental observations and simulation results illustrate that block copolymers surround the polymeric nanorods and mainly concentrate around the two ends, leaving the hydrophobic side regions exposed. These polymeric nanorods connect in a side-by-side manner through hydrophobic interactions to form bundles. As polymerization progresses, the block copolymers gradually deposit onto the bundles and finally assemble into helical nanopatterns on the outermost surface, which terminates the polymerization. It is anticipated that this work could offer inspiration for a general strategy of controllable supramolecular polymerization.
Collapse
Affiliation(s)
- Yike Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
35
|
Guo L, Xu J, Du B. Self-assembly of ABCBA Linear Pentablock Terpolymers. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2178008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Lei Guo
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Junting Xu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Binyang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Zhang X, Chen G, Zheng B, Wan Z, Liu L, Zhu L, Xie Y, Tong Z. Uniform Two-Dimensional Crystalline Platelets with Tailored Compositions for pH Stimulus-Responsive Drug Release. Biomacromolecules 2023; 24:1032-1041. [PMID: 36700709 DOI: 10.1021/acs.biomac.2c01481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two-dimensional, size-tunable, water-dispersible particle micelles with spatially defined chemistries can be obtained by using "living" crystallization-driven self-assembly (CDSA) approach. Nevertheless, a major obstacle of crystalline particles in drug delivery application is the difficulty in accessing to cargo within crystalline cores. In the present work, we design four different types of biocompatible two-dimensional platelets with a crystalline poly(ε-caprolactone) (PCL) core, a hydrophobic poly(4-vinylprydine) (P4VP) segment, and a water dispersible poly(N,N-dimethyl acrylamide) (PDMA) block in ethanol by seeded growth method. Transferring those uniform platelets with tailored compositions to an aqueous solution in the presence of a hydrophobic drug leads to efficient encapsulation of the cargo in the P4VP segments via hydrophobic interactions. These drug-loaded platelets exhibit pH-responsive release behavior in aqueous media due to the protonated-deprotonated process of P4VP blocks in acidic and neutral solutions. This work provides initial insight into biocompatible PCL platelets with low dispersity and precise chemistry control in stimulus-responsive drug delivery fields.
Collapse
Affiliation(s)
- Xu Zhang
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guanhao Chen
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bowen Zheng
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengwei Wan
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lingyuan Zhu
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
37
|
Schaller R, Hils C, Karg M, Schmalz H. Surface-Compartmentalized Micelles by Stereocomplex-Driven Self-Assembly. Macromol Rapid Commun 2023; 44:e2200682. [PMID: 36285394 DOI: 10.1002/marc.202200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Indexed: 11/08/2022]
Abstract
The unique corona structure of surface-compartmentalized micelles (Janus micelles, patchy micelles) opens highly relevant applications, e.g. as efficient particulate surfactants for emulsion stabilization or compatibilization of polymer blends. Here, stereocomplex-driven self-assembly (SCDSA) as a facile route to micelles with a semicrystalline stereocomplex (SC) core and a patch-like microphase separated corona, employing diblock copolymers with enantiomeric poly(L-lactide)/poly(D-lactide) blocks and highly incompatible corona-forming blocks (polystyrene (PS), poly(tert-butyl methacrylate)) is introduced. The spherical patchy SC micelles feature a narrow size distribution and show a compartmentalized, shamrock-like corona structure. Compared to SC micelles with a homogeneous PS corona the patchy micelles have a significantly higher interfacial activity attributable to the synergistic combination of an amphiphilic corona with the Pickering effect of nanoparticles. The patchy micelles are successfully employed in the stabilization of emulsions, underlining their application potential.
Collapse
Affiliation(s)
- Roman Schaller
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Matthias Karg
- Physical Chemistry I / Colloids and Nanooptics, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.,Bavarian Polymer Institute, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
38
|
Huo H, Zou J, Yang SG, Zhang J, Liu J, Liu Y, Hao Y, Chen H, Li H, Huang C, Ungar G, Liu F, Zhang Z, Zhang Q. Multicompartment Nanoparticles by Crystallization-Driven Self-Assembly of Star Polymers: Combining High Stability and Loading Capacity. Macromol Rapid Commun 2023; 44:e2200706. [PMID: 36353903 DOI: 10.1002/marc.202200706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/15/2022] [Indexed: 11/11/2022]
Abstract
Herein novel multicompartment nanoparticles (MCNs) that combine high stability and cargo loading capacity are developed. The MCNs are fabricated by crystallization-driven self-assembly (CDSA) of a tailor-made 21 arm star polymer, poly(L-lactide)[poly(tert-butyl acrylate)-block-poly(ethylene glycol)]20 [PLLA(PtBA-b-PEG)20 ]. Platelet-like or spherical MCNs containing a crystalline PLLA core and hydrophobic PtBA subdomains are formed and stabilized by PEG. Hydrophobic cargos, such as Nile Red and chemotherapeutic drug doxorubicin, can be successfully encapsulated into the collapsed PtBA subdomains with loading capacity two orders of magnitude higher than traditional CDSA nanoparticles. Depolarized fluorescence measurements of the Nile Red loaded MCNs suggest that the free volume of the hydrophobic chains in the nanoparticles may be the key for regulating their drug loading capacity. In vitro study of the MCNs suggests excellent cytocompatibility of the blank nanoparticles as well as a dose-dependent cellular uptake and cytotoxicity of the drug-loaded MCNs.
Collapse
Affiliation(s)
- Haohui Huo
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Zou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Shu-Gui Yang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiaqi Zhang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jie Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yutong Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Yanyun Hao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Goran Ungar
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Qilu Zhang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
39
|
Sun H, Leng Y, Zhou X, Li X, Wang T. Regulation of the nanostructures self-assembled from an amphiphilic azobenzene homopolymer: influence of initial concentration and solvent solubility parameter. SOFT MATTER 2023; 19:743-748. [PMID: 36621933 DOI: 10.1039/d2sm01059c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The control over the morphology and nanostructure of soft nanomaterials self-assembled from amphiphilic polymers is of high interest, but is still challenging. Herein, we manipulate the morphology of bowl-shaped nanoparticles by changing initial polymer concentrations, and prepare nanotubes and nanowires, both twisted and not, by using solvents with different solubility parameters. An amphiphilic azobenzene homopolymer (poly(4-(phenyldiazenyl)phenyl methacrylamide), PAzoMAA) is designed and synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, which can self-assemble into bowl-shaped nanoparticles promoted by the synergy of hydrogen bonding and π-π interaction. More significantly, the opening size of the bowl-shaped nanoparticles can be controlled by changing initial polymer concentrations. Nanotubes and nanowires, both twisted and not, are also obtained using a solvothermal method in alcohols. The relationship between the structure of the nanomaterials and the solubility parameters of the alcohols is investigated, revealing the molecular arrangement patterns of PAzoMAA in different nanostructures. Overall, we propose a facile strategy to manipulate the microstructure of bowl-shaped nanoparticles and one-dimensional nanomaterials by adjusting initial polymer concentration and solvent solubility parameters. Our study may bring new avenues for controlling the nanostructures of soft nanomaterials.
Collapse
Affiliation(s)
- Hui Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Ying Leng
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xiaoyan Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xiao Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
40
|
Zhang C, Gao L, Lin J, Wang L. Hierarchical 2D-1D micelles self-assembled from the heterogeneous seeded-growth of rod-coil block copolymers. NANOSCALE 2023; 15:1412-1421. [PMID: 36594400 DOI: 10.1039/d2nr05618f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Precise control of size and dimension is the key to constructing complex hierarchical nanostructures, particularly multi-dimensional hybrid nanoassemblies. Herein, we conducted Brownian dynamics simulations to examine the seeded-growth of rod-coil block copolymer assemblies and discovered that 2D-1D (disk-cylinder) hybrid micelles could be formed via liquid-crystallization-driven self-assembly (LCDSA). 2D nanodisk micelles with smectic-like LC cores served as seeds. After adding rod-coil block copolymers into the seed solution, the copolymers incorporated onto the 2D seed edges to generate junction points. Several cylindrical arms were formed from the elongation of junction points, resulting in 2D-1D multi-dimensional hybrid micelles. The structural transition of the micelle core from smectic-like (disk) to cholesteric-like (cylindrical arms) LC packing manners benefit from the fluidity of LC. Such a seeded-growth behavior simultaneously exhibits the features of heterogeneous nucleation and homogenous epitaxy growth. Intriguingly, the arms generate in sequence, and its junction position is in the para-position first, followed by ortho-position or meta-position, resembling the difference in the substituent activities on the benzene ring. These theoretical findings are consistent with experimental results, and provide explanations to some unaddressed issues in experiments. The obtained results also reveal that the hybrid micelles are a good stabilizer due to their high surface area and distinctive suspension behaviors.
Collapse
Affiliation(s)
- Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
41
|
Ikkene D, Six JL, Ferji K. Progress in Aqueous Dispersion RAFT PISA. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Cheng J, Yu Q, Tu K, Wang J, Zhang L, Cheng Z. Hierarchical Self-Assembly of Triphilic Main-Chain-Type Semifluorinated Alternating Graft Copolymers in Aqueous Solution. Macromol Rapid Commun 2023; 44:e2200570. [PMID: 36104160 DOI: 10.1002/marc.202200570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Indexed: 01/26/2023]
Abstract
Fluorinated copolymers can self-assemble in solution and form micelles with rare properties due to the peculiar behavior of fluorinated groups. However, the process description of the self-assembly is still largely phenomenological and difficult to explain due to the tendency of the fluorinated segments to segregate from both the hydrophilic and lipophilic segments, which can result in various morphologies. Herein, the controlled formation of ellipsoidal micelles, disklike micelles, and sheets by hierarchical self-assembly of triphilic main-chain-type semifluorinated alternating graft copolymers (AB)n A-g-mOEG is presented (where A represents unit of α,ω-diiodoperfluoroalkane, B represents the unit of α,ω-unconjugated diene, and mOEG represents methoxy oligo(ethylene glycol)), which are synthesized by step transfer-addition and radical-termination (START) polymerization and azide-alkyne click chemistry. Furthermore, the possible self-assembly mechanism of these micron-level aggregates is proposed, which is ascribed to the hierarchical self-assembly, crowding effect of hydrophilic chains and the interfacial tension between the fluoroalkane and alkane segments. This study can provide a facile and highly efficient approach to the synthesis of main-chain-type fluorinated graft copolymers and expand the research field for the solution self-assembly of fluorinated copolymers.
Collapse
Affiliation(s)
- Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qing Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jinying Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
43
|
Guo Y, Luo W, Zhang J, Hu W. Dynamic Monte Carlo Simulations of Strain-Induced Crystallization in Multiblock Copolymers: Effects of Asymmetric Block Rigidity. J Phys Chem B 2022; 126:10768-10775. [PMID: 36502404 DOI: 10.1021/acs.jpcb.2c06827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thermoplastic elastomers such as polyether-b-polyamides (or -polyesters), polyurethanes (or with -urea) and olefin block copolymers are commonly processed through a stretching process for achieving high elasticity and high toughness in their products, while the size diversity of semicrystalline microdomains of hard blocks appears as the key factor. By means of dynamic Monte Carlo simulations of strain-induced crystallization of locally concentrated and diluted crystallizable blocks alternatingly connected with noncrystallizable blocks in diblock and tetrablock copolymers, we have studied the size diversity of semicrystalline microdomains presumably raised by local concentration fluctuations of crystallizable blocks and found the dilution effects to persist from diblock to tetrablock copolymers. In the present work, we continued to study the effects of asymmetric block rigidity between crystallizable and noncrystallizable blocks on strain-induced crystallization of concentrated and diluted crystallizable blocks in diblock copolymers. The results showed that when crystallizable blocks hold higher thermodynamic rigidity than noncrystallizable blocks, the large semicrystalline domains become larger and the small semicrystalline domains become more, enhancing their size diversity. However, asymmetric kinetic rigidity has little effect. Our observations imply that industrial stretching processing could enhance the toughness of semicrystalline thermoplastic elastomers when their crystallizable blocks hold a higher thermodynamic rigidity relative to noncrystallizable blocks. Our integrated approach paved the way for a better understanding of the structure-property relationship in thermoplastic elastomers.
Collapse
Affiliation(s)
- Yaqian Guo
- School of Chemistry and Chemical Engineering, State Key Lab of Coordinate Chemistry, Nanjing University, Nanjing210023, China
| | - Wen Luo
- School of Chemistry and Chemical Engineering, State Key Lab of Coordinate Chemistry, Nanjing University, Nanjing210023, China
| | - Jiang Zhang
- School of Chemistry and Chemical Engineering, State Key Lab of Coordinate Chemistry, Nanjing University, Nanjing210023, China
| | - Wenbing Hu
- School of Chemistry and Chemical Engineering, State Key Lab of Coordinate Chemistry, Nanjing University, Nanjing210023, China
| |
Collapse
|
44
|
Becchi M, Capelli R, Perego C, Pavan GM, Micheletti C. Density-tunable pathway complexity in a minimalistic self-assembly model. SOFT MATTER 2022; 18:8106-8116. [PMID: 36239129 DOI: 10.1039/d2sm00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An open challenge in self-assembly is learning how to design systems that can be conditionally guided towards different target structures depending on externally-controlled conditions. Using a theoretical and numerical approach, here we discuss a minimalistic self-assembly model that can be steered towards different types of ordered constructs at the equilibrium by solely tuning a facile selection parameter, namely the density of building blocks. Metadynamics and Langevin dynamics simulations allow us to explore the behavior of the system in and out of equilibrium conditions. We show that the density-driven tunability is encoded in the pathway complexity of the system, and specifically in the competition between two different main self-assembly routes. A comprehensive set of simulations provides insight into key factors allowing to make one self-assembling pathway prevailing on the other (or vice versa), determining the selection of the final self-assembled products. We formulate and validate a practical criterion for checking whether a specific molecular design is predisposed for such density-driven tunability of the products, thus offering a new, broader perspective to realize and harness this facile extrinsic control of conditional self-assembly.
Collapse
Affiliation(s)
- Matteo Becchi
- Scuola Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy.
| | - Riccardo Capelli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
45
|
Liao C, Wang X. Photodeformable Azo Polymer Janus Particles Obtained upon Nonsolvent-Induced Phase Separation and Asynchronous Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12466-12479. [PMID: 36194641 DOI: 10.1021/acs.langmuir.2c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photodeformable submicron Janus particles (JPs), containing an epoxy-based azo polymer (BP-AZ-CN) and poly(methyl methacrylate) (PMMA), were fabricated upon nonsolvent-induced phase separation. The formation of the JPs was induced by gradually adding deionized water into a tetrahydrofuran (THF) solution of both polymers. The results show that the two polymers start to precipitate from the solution at almost the same water content and immediately separate into two phases in each particle due to the strong incompatibility between the two components. After the nucleation, the sizes of the aggregates increase with increasing water content in the following growth stage. The amount of BP-AZ-CN molecules assembling into the aggregates is controlled by the water content in the medium, while the aggregation of PMMA molecules is a slow diffusion-controlled process due to the much higher molecular weight of this polymer. With a further increase in the water content in the dispersion medium, the swollen aggregates collapse to form JPs. Interestingly, when a dispersion with a water content of 50 vol % is diluted with a THF/H2O mixture with the same water content, the shapes of the JPs are significantly modified and vitrified after removal of THF through evaporation. By increasing the dilution multiples adopted to dilute the intermediate dispersions, JPs with more asymmetric shapes are obtained due to the enhanced asynchronous aggregation. Ternary phase diagrams calculated according to the Flory-Huggins theory provide a semi-quantitative description and rationalization of the phase separation behavior related to the thermodynamic factors. The differences in the transport behavior and aggregation dynamics of the two polymers are also proven to be critical for the formation of the asymmetric structures. Upon irradiation, the BP-AZ-CN compartments of JPs exhibit remarkable elongation along the electric vibrational direction of a linearly polarized laser beam at a wavelength of 488 nm.
Collapse
Affiliation(s)
- Chuyi Liao
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing100084, People's Republic of China
| | - Xiaogong Wang
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing100084, People's Republic of China
| |
Collapse
|
46
|
Wang G, Li H, Li N, Chen D, He J, Xu Q, Lu J. Construction of Perylene‐based Amphiphilic Micelle and Its Efficient Adsorption and In Situ Photodegradation of Bisphenol A in Aqueous Solution. Angew Chem Int Ed Engl 2022; 61:e202210619. [DOI: 10.1002/anie.202210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Guan Wang
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Najun Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
47
|
Kaup R, Velders AH. Controlling Trapping, Release, and Exchange Dynamics of Micellar Core Components. ACS NANO 2022; 16:14611-14621. [PMID: 36107137 PMCID: PMC9527800 DOI: 10.1021/acsnano.2c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Whereas the formation and overall stability of hierarchically organized self-assembled supramolecular structures have been extensively investigated, the mechanistic aspects of subcomponent dynamics are often poorly understood or controlled. Here we show that the dynamics of polyamidoamine (PAMAM) dendrimer based micelles can be manipulated by changes in dendrimer generation, pH, and stoichiometry, as proven by NMR and FRET. For this, dendrimers were functionalized with either fluorescein (donor) or rhodamine (acceptor) and encapsulated into separate micelles. Upon mixing, exchange of dendrimers is revealed by an increase in FRET. While dendrimicelles based on dendrimer generations 4 and 5 show a clear increase in FRET in time, revealing the dynamic exchange of dendrimers between micellar cores, generation 6 based micelles appear to be kinetically trapped systems. Interestingly, generation 6 based dendrimicelles prepared at a pH of 7.8 rather than 7.0 do show exchange dynamics, which can be attributed to about 25% less charge of the dendrimer, corresponding to the charge of a virtual generation 5.5 dendrimer at neutral pH. Changing the pH of dendrimicelle solutions prepared at a pH of 7.8 to 7.0 shows the activated release of dendrimers. High-resolution NMR spectra of the micellar core are obtained from a 1.2 GHz spectrometer with sub-micromolar sensitivity, with DOSY discriminating released dendrimers from dendrimers still present in the micellar core. This study shows that dendrimer generation, charge density, and stoichiometry are important mechanistic factors for controlling the dynamics of complex coacervate core micelles. This knowledge can be used to tune micelles between kinetically trapped and dynamic systems, with tuning of exchange and/or release speeds, to be tailored for applications in, e.g., material science, sensors, or drug delivery.
Collapse
Affiliation(s)
- Rebecca Kaup
- Laboratory
of BioNanoTechnology, Wageningen University. Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Aldrik H. Velders
- Laboratory
of BioNanoTechnology, Wageningen University. Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Instituto
Regional de Investigacion Cientifica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
48
|
Wang G, Li H, Li N, Chen D, He J, Xu Q, Lu JM. Construction of Perylene‐based Amphiphilic Micelle and Its Efficient Adsorption and In‐situ Photodegradation of Bisphenol A in Aqueous Solution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guan Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University, No. 199, Ren'ai Road, Suzhou city, Jiangsu province 215000 CHINA
| | - Hua Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University, No. 199, Ren'ai Road, Suzhou city, Jiangsu province 215000 CHINA
| | - Najun Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Dongyun Chen
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jinghui He
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Qingfeng Xu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jian-Mei Lu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science No.199 Renai RoadSuzhou Industrial Park 215123 Suzhou CHINA
| |
Collapse
|
49
|
Kan X, Xiao S, Zheng Y, Cao Y, Xiao Y, Liu F, Jiang L, Xiao FS. Sustainable synthesis of ordered mesoporous materials without additional solvents. J Colloid Interface Sci 2022; 619:116-122. [DOI: 10.1016/j.jcis.2022.03.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 01/18/2023]
|
50
|
Zhang C, Lin J, Wang L, Gao L. 2D Liquid-Crystallization-Driven Self-Assembly of Rod-Coil Block Copolymers: Living Growth and Self-Similarity. J Phys Chem Lett 2022; 13:6215-6222. [PMID: 35770907 DOI: 10.1021/acs.jpclett.2c01570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid-crystallization-driven self-assembly (LCDSA) is an emerging methodology, which has been employed to construct controllable 1D nanostructures. However, 2D nanostructures via living LCDSA are rarely reported, and the complicated growth kinetics are not well-known. Herein, we perform Brownian dynamics (BD) simulations to investigate the 2D living growth of disklike micelles via LCDSA of rod-coil block copolymers. The 2D seeded-growth behavior is achieved by incorporating the unimers onto the edges of disklike seeds with smectic-like liquid-crystalline (LC) cores. The fluidity of such LC-like micellar cores is conducive to the chain adjustments of rod blocks during the 2D living growth process. The apparent growth rate and unique self-similarity kinetics are governed by the interplay between the variations in the growth rate coefficient and the reactive sites at the micelle edges. This work provides an in-depth understanding of the 2D living growth of micelles and guidance to construct well-defined 2D hierarchical nanostructures.
Collapse
Affiliation(s)
- Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|