1
|
Elsharkawy K, Radwan M, El-Aswar EI. Unveiling the role of rubber seals in the generation of decentralized disinfection by-products in chlorinated water distribution systems. CHEMOSPHERE 2025; 372:144094. [PMID: 39788382 DOI: 10.1016/j.chemosphere.2025.144094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors. Trihalomethanes (THMs) and haloacetic acids (HAAs) emanating from RS recorded 12.1 μg L-1 and 2.3 μg L-1, respectively, after contact with chlorinated water. RS additionally revealed modest amounts (∼1.5 and 0.25-0.3 μg L-1) of haloacetaldehydes (HALs) and haloacetonitriles (HANs), respectively, posing potential cytotoxic risks. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR) analyses showed remarkable morphological alterations in RS due to exposure to chlorinated water, whether in ultrapure water or real water. Moreover, the correlation analysis of 2D-COS-FT-IR exhibited the hydroxyl group (O-H) as the most sensitive functional group among other groups toward chlorine. The biofilm in the plastic pipes exposed a negligible role in the formation of X-DBPs, emphasizing the main contributions of RS and the water matrix to the formation of X-DBPs in drinking water. Our results highlight the need to consider them alongside other DBP precursors to safeguard water quality and to explore safer alternatives for sealing water pipes within the distribution system.
Collapse
Affiliation(s)
- Khaled Elsharkawy
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Mahmoud Radwan
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Eslam Ibrahim El-Aswar
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
2
|
Yin R, Dao PU, Zhao J, Wang K, Lu S, Shang C, Ren H. Reactive Nitrogen Species Generated from Far-UVC Photolysis of Nitrate Contribute to Pesticide Degradation and Nitrogenous Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20676-20686. [PMID: 39504477 DOI: 10.1021/acs.est.4c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Climate change has resulted in increased use of pesticides and fertilizers in agriculture, leading to elevated pesticide and nitrate levels in aquatic ecosystems that receive agricultural runoff. In this study, we demonstrate that far-UVC (UV222) photolysis of nitrate rapidly degrades four pesticides in surface water, with a degradation rate constant 37.1-144.75 times higher than that achieved by UV254 photolysis of nitrate. The improved pesticide degradation is due not only to the enhanced direct photolysis by UV222 compared to UV254 but also to the increased generation of hydroxyl radicals (HO•) and reactive nitrogen species (e.g., NO2• and ONOO-) in the UV222/nitrate process. We determined the innate quantum yields of nitrate photolysis at 222 nm and incorporated these values into a kinetic model, allowing for the accurate prediction of nitrate photodecay and reactive species generation. While reactive nitrogen species predominantly contribute to pesticide degradation in the UV222/nitrate process, they also lead to the formation of nitration byproducts. Using stable isotope-labeled nitrate (15NO3-) combined with mass spectrometry, we confirmed that the nitration byproducts are formed from the reactive nitrogen species generated from nitrate photolysis. Additionally, we demonstrate that the UV222/nitrate process increases the formation potential of highly toxic nitrogenous chlorinated products (e.g., trichloronitromethane) during postchlorination in real surface water.
Collapse
Affiliation(s)
- Ran Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Phuong Uyen Dao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Kun Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| |
Collapse
|
3
|
Li J, Shi W, Liu Y, Li J, Chen J, Hu C, Dong H. Revealing the impact of sample enrichment method on concentration and cytotoxicity of volatile disinfection byproducts in drinking water: A quantitative study for liquid-liquid extraction. WATER RESEARCH 2024; 266:122370. [PMID: 39236505 DOI: 10.1016/j.watres.2024.122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Liquid-liquid extraction (LLE) combined with the N2 blow-down method is a promising tool for bioanalysis of drinking water. However, detailed information on which disinfection byproduct (DBP) classes are retained in LLE extracts is currently unavailable. In this study, the recovery of seven classes of volatile DBPs and total adsorbable organic halogens (TOX) during the LLE method, combined with three common N2 blow-down methods, for bioanalysis in real tap water was analyzed at a 2-L scale, along with their corresponding cytotoxicity. The total concentration of seven classes of volatile DBPs in drinking water in Suzhou ranged from 64.6 to 83.0 µg/L, with the majority contributed by trihalomethanes (THMs: 59.9 µg/L), haloaldehydes (HALs: 5.4 µg/L), haloacetamides (HAMs: 3.4 µg/L), and haloacetonitriles (HANs: 3.2 µg/L). During the LLE - N2 blow-down process for bioanalysis, about 69-85 % of targeted volatile DBPs and 64-75 % of TOX were lost, respectively. Seven classes of volatile DBPs accounted for 52.8-64.3 % and 23.8-61.3 % of TOX in tap water and LLE - N2 blow-down samples, respectively, suggesting that targeted aliphatic DBPs are the key contributors to TOX. Furthermore, although LLE - solvent exchange had a better recovery performance than other N2 blow-down methods, the recoveries of volatile DBPs using this method were still not ideal. For example, HALs and HAMs had a slightly better recovery (>50 %), while most volatile DBPs had a poor recovery, including iodo-trihalomethanes (I-THMs, 0 %), haloketones (28 %), THMs (26 %), halonitromethanes (33 %), and HANs (38 %). During LLE - solvent exchange, 31 % and 36 % of targeted DBPs and TOX, respectively, in real tap water can be retained, which shows better performance than non-ionic macroporous copolymers (XAD). More importantly, the water volume required in this method for cytotoxicity analysis is 2 L, which greatly reduces the burden of water sample collection, transport, and pre-treatment compared to XAD (which typically requires 5 or 10 L). In general, this paper reveals the fate of volatile DBPs during LLE - N2 blow-down and indicates that LLE - solvent exchange is a good substitute for the XAD method in bioanalysis.
Collapse
Affiliation(s)
- Jiafu Li
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou 215123, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenshan Shi
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou 215123, China
| | - Yuting Liu
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou 215123, China
| | - Junlin Li
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou 215123, China
| | - Jingsi Chen
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou 215123, China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Lau SS, Feng Y, Gu AZ, Russell C, Pope G, Mitch WA. Regulated 1-2 Carbon Disinfection Byproducts do not Correlate with Cytotoxicity with Increasing Disinfectant Contact Time During Chlorination, Chlorination Followed by Chloramination or Granular Activated Carbon Followed by Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20289-20299. [PMID: 39484837 DOI: 10.1021/acs.est.4c06604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulations typically use four trihalomethanes (THM4) and five haloacetic acids (HAA5) as metrics of consumer exposure to disinfection byproducts (DBPs) and their chronic health risks. Their use as exposure metrics assumes that their concentrations correlate with DBP-associated toxicity. For a chlorine-disinfected surface water, this study demonstrates that increasing chlorine contact time from 1 to 7 days was associated with a 62-76% increase in THM4 and HAA5 but a 40-47% decrease in total cytotoxicity. Thus, the use of THM4 and HAA5 may divert regulatory attention away from the low water age sections of distribution systems near treatment facilities that may feature the highest cytotoxicity but lowest THM4/HAA5 concentrations. Among common options to reduce THM4/HAA5, this study also shows that chlorine disinfection followed by chloramines for maintaining a distribution system residual did not substantially reduce cytotoxicity. Granular activated carbon followed by chlorine reduced cytotoxicity by 28-80%, even at the lowest water ages where cytotoxicity was maximized. These findings highlight the need to identify DBPs that better correlate with toxicity than THM4/HAA5 to serve as metrics of exposure. These metrics could help identify distribution system locations exhibiting higher consumer risk and develop modifications to disinfection systems that effectively reduce consumer risk.
Collapse
Affiliation(s)
- Stephanie S Lau
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Yinmei Feng
- School of Civil and Environmental Engineering, College of Engineering, Cornell University, 220 Hollister Hall, 527 College Avenue, Ithaca, New York 14853, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, College of Engineering, Cornell University, 220 Hollister Hall, 527 College Avenue, Ithaca, New York 14853, United States
| | - Caroline Russell
- Carollo Engineers, Inc, 8911 Capital of Texas Hwy North, Suite 2200, Austin, Texas 78759, United States
| | - Greg Pope
- Carollo Engineers, Inc, 8911 Capital of Texas Hwy North, Suite 2200, Austin, Texas 78759, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
5
|
Olanrewaju RO, Lee JH, Kim YG, Lee J. Antimicrobial and antibiofilm activities of halogenated phenols against Staphylococcus aureus and other microbes. CHEMOSPHERE 2024; 367:143646. [PMID: 39476987 DOI: 10.1016/j.chemosphere.2024.143646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/09/2024]
Abstract
Antimicrobial resistance is a global public health crisis that undermines the efficacy of treatments for infectious diseases, contributing to higher healthcare costs. Among Gram-positive bacteria, Staphylococcus aureus poses significant challenges due to its ability to develop resistance to multiple antibiotics, particularly in food and healthcare settings. Biofilm formation by S. aureus further enhances its resistance and pathogenicity. This study investigated the effects of 126 halogenated compounds on S. aureus biofilms, identifying five potent halogenated phenols. Among these, 2,4,6-triiodophenol (2,4,6-TIP) emerged as the most effective, exhibiting strong biofilm inhibition at a minimum inhibitory concentration (MIC) of 5 μg mL-1. Additionally, 2,4,6-TIP demonstrated efficacy against biofilms formed by methicillin-resistant S. aureus MW2 and various Gram-negative bacteria, including Vibrio parahaemolyticus and uropathogenic Escherichia coli (UPEC), as well as the fungal species Candida albicans. It also prevented the formation of polymicrobial biofilms involving S. aureus and C. albicans. Beyond its antibiofilm properties, 2,4,6-TIP was effective in controlling key virulence factors in S. aureus, such as metabolic, hemolysis and protease activities. It also reduced swimming motility in V. parahaemolyticus and UPEC, and impaired hyphal formation in C. albicans. Transcriptomic analysis further revealed that 2,4,6-TIP significantly repressed the gene expression of RNAIII, a key regulator of biofilm and virulence production in S. aureus. Furthermore, in silico analysis, plant and nematode models showed that 2,4,6-TIP exhibited reduced toxicity compared to phenol. These findings unveiled the strong antimicrobial potential of 2,4,6-TIP and suggest a broad-spectrum capacity to target the virulent characteristics of medically important pathogens. It also highlights that strategic halogenation may play a critical role in enhancing the activity of phenolic compounds while alleviating their toxicity profiles. t.
Collapse
Affiliation(s)
- Rauf Olalekan Olanrewaju
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea.
| |
Collapse
|
6
|
Ding S, Du Z, Qu R, Wu M, Xiao R, Wang P, Chen X, Chu W. Reactivity, Pathways, and Iodinated Disinfection Byproduct Formation during Chlorination of Iodotyrosines Derived from Edible Seaweed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17999-18008. [PMID: 39322975 DOI: 10.1021/acs.est.4c03542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Iodine derived from edible seaweed significantly enhances the formation of iodinated disinfection byproducts (I-DBPs) during household cooking. Reactions of chlorine with monoiodotyrosine (MIT) and diiodotyrosine (DIT) derived from seaweed were investigated. Species-specific second-order rate constants (25 °C) for the reaction of hypochlorous acid with neutral and anionic MIT were calculated to be 23.87 ± 5.01 and 634.65 ± 75.70 M-1 s-1, respectively, while the corresponding rate constants for that with neutral and anionic DIT were determined to be 12.51 ± 19.67 and 199.12 ± 8.64 M-1 s-1, respectively. Increasing temperature facilitated the reaction of chlorine with MIT and DIT. Based on the identification of 59 transformation products/DBPs from iodotyrosines by HPLC/Q-Orbitrap HRMS, three dominant reaction pathways were proposed. Thermodynamic results of computational modeling using density functional theory revealed that halogen exchange reaction follows a stepwise addition-elimination pathway. Among these DBPs, 3,5-diiodo-4-hydroxy-benzaldehyde and 3,5-diiodo-4-hydroxy-benzacetonitrle exhibited high toxic risk. During chlorination of MIT and DIT, iodinated trihalomethanes and haloacetic acids became dominant species at common cooking temperature (80 °C). These results provide insight into the mechanisms of halogen exchange reaction and imply important implications for the toxic risk associated with the exposure of I-DBPs from household cooking with iodine-containing food.
Collapse
Affiliation(s)
- Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu Province 210098, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Ruixin Qu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Menglin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Pin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiaoyan Chen
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Jiang Y, Zang S, Qiao Y, Tan Y, Tao H, Li Q, Ma Y, Wang X, Ma J. Occurrence, toxicity, and control of halogenated aliphatic and phenolic disinfection byproducts in the chlorinated and chloraminated desalinated water. WATER RESEARCH 2024; 268:122566. [PMID: 39393182 DOI: 10.1016/j.watres.2024.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Seawater desalination is widely used to overcome the freshwater shortage worldwide. However, even after three-stage reverse osmosis treatment, the desalinated water still contained 14.6 μg/L of aliphatic disinfection byproducts (DBPs), 384.2 ng/L of bromophenolic DBPs, 3.5 ng/L of iodophenolic DBPs, 1024.7 μg/L of Br-, 2.8 μg/L of I-, and 2.4 mg C/L of dissolved organic carbon (DOC). After the desalinated water was disinfected with chlor(am)ine, the concentrations of halogenated aliphatic and phenolic DBPs further increased, and bromophenolic DBPs were the toxicity forcing agents. When surface water was mixed with desalinated water and then chlorinated, the yield of aliphatic and phenolic DBPs significantly elevated. Separately chlorinating desalinated water and surface water before mixing could mitigate this adverse situation. Chloramine disinfection was more conducive to reducing the total calculated toxicity of disinfected desalinated waters and mixed waters compared to chlorine disinfection. The treatment of desalinated water with granular activated carbon could effectively remove DOC and UV254, leading to a reduction in the content of total organic halogen after chlor(am)ination. Although anion exchange resin could adsorb Br-, it also released the organic precursors of DBPs, ultimately increasing the yield of DBPs. The results of this study can provide a reference for the seawater desalination industry to improve seawater pre-treatment and desalination processes and thus minimize the DBPs.
Collapse
Affiliation(s)
- Youwei Jiang
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Shuang Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yue Qiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yirang Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongfei Tao
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Qiao Li
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Yingjie Ma
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Xianshi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Zhan Y, Zeng X, Chu W, Wei X, Chen X, Liu B, Hur K, Dong S. Nonadditive Cytotoxicity in Select Disinfection Byproducts and Disinfected Secondary Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39255388 DOI: 10.1021/acs.est.4c08404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Toxicity studies of water disinfection byproducts (DBPs) typically assume additive interactions. Coupling results from both the bottom-up cytotoxicity interaction approach by selecting six common DBPs and the top-down cytotoxicity fractionating the disinfected secondary effluent containing a much broader DBP selection, we demonstrated a novel effect of clear, nonadditive cytotoxicity at low chemical concentrations regardless of the number of DBP types involved. We revealed that the cytotoxicity interactions were influenced by the chemical's type, concentration factor, and mixing ratio. For the bottom-up approach, the average combination indices (CIs) were 1.61 (chloracetamide + chloroacetonitrile, antagonism), 1.03 (bromoacetamide+bromoacetonitrile, near additivity), and 0.69 (iodoacetamide + iodoacetonitrile, synergism) across the DBPs' concentration range of 10-4-10-7 M. These cytotoxicity interactions also varied with the components' mixing ratios. For the top-down approach, we obtained two fractions of DBP mixtures from the disinfected secondary effluent using solvents of different polarities. The effect of the concentration on CI values was significant, with a maximum 43.1% relative deviation in CI from LC5 to LC95. The average CI values across the sample concentration range of 1-50 × (concentration factor) varied from 1.68 (antagonism) to 0.89 (slight synergism) as the ratio of mixture A increased. These results call for further research in prioritizing the forcing DBPs in mixtures.
Collapse
Affiliation(s)
- Yuehao Zhan
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuefeng Zeng
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaohong Chen
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Bingjun Liu
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
| | - Kyu Hur
- 3-2-9 Yushima, Bunkyo Ward, Tokyo 113-0034, Japan
| | - Shengkun Dong
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
| |
Collapse
|
9
|
Hu S, Li X, Li G, Li Z, He F, Tian G, Zhao X, Liu R. New Species and Cytotoxicity Mechanism of Halohydroxybenzonitrile Disinfection Byproducts in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15816-15826. [PMID: 39166926 DOI: 10.1021/acs.est.4c06163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Recently, seven dihalohydroxybenzonitriles (diHHBNs) have been determined as concerning nitrogenous aromatic disinfection byproducts (DBPs) in drinking water. Herein, eight new monohalohydroxybenzonitriles (monoHHBNs), including 3-chloro-2-hydroxybenzonitrile, 5-chloro-2-hydroxybenzonitrile, 3-chloro-4-hydroxybenzonitrile, 3-bromo-2-hydroxybenzonitrile, 5-bromo-2-hydroxybenzonitrile, 3-bromo-4-hydroxybenzonitrile, 5-iodo-2-hydroxybenzonitrile, and 3-iodo-4-hydroxybenzonitrile, were detected and identified in drinking water for the first time. Thereafter, the relative concentration-cytotoxicity contribution of each HHBN was calculated based on the acquired occurrence level and cytotoxicity data in this study, the genome-scale cytotoxicity mechanism was explored, and a quantitative structure-activity relationship (QSAR) model was developed. Results indicated that new monoHHBNs were present in drinking water at concentrations of 0.04-1.83 ng/L and exhibited higher cytotoxicity than some other monohalogenated aromatic DBPs. Notably, monoHHBNs showed concentration-cytotoxicity contribution comparable to diHHBNs, which have been previously identified as potential toxicity drivers in drinking water. Transcriptomic analysis revealed immunotoxicity and genotoxicity as dominant cytotoxicity mechanisms for HHBNs in Chinese hamster ovary (CHO-K1) cells, with potential carcinogenic effects. The QSAR model suggested oxidative stress and cellular uptake efficiency as important factors for their cytotoxicity, highlighting the importance of potential iodinated HHBNs in drinking water, such as 3,5-diiodo-2-hydroxybenzonitrile, for future studies. These findings are meaningful for better understanding the health risk and toxicological significance of HHBNs in drinking water.
Collapse
Affiliation(s)
- Shaoyang Hu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Guangzhao Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Falin He
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Guang Tian
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Guo X, Ji X, Liu Z, Feng Z, Zhang Z, Du S, Li X, Ma J, Sun Z. Complex impact of metals on the fate of disinfection by-products in drinking water pipelines: A systematic review. WATER RESEARCH 2024; 261:121991. [PMID: 38941679 DOI: 10.1016/j.watres.2024.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Metals in the drinking water distribution system (DWDS) play an important role on the fate of disinfection by-products (DBPs). They can increase the formation of DBPs through several mechanisms, such as enhancing the proportion of reactive halogen species (RHS), catalysing the reaction between natural organic matter (NOM) and RHS through complexation, or by increasing the conversion of NOM into DBP precursors. This review comprehensively summarizes these complex processes, focusing on the most important metals (copper, iron, manganese) in DWDS and their impact on various DBPs. It organizes the dispersed 'metals-DBPs' experimental results into an easily accessible content structure and presents their underlying common or unique mechanisms. Furthermore, the practically valuable application directions of these research findings were analysed, including the toxicity changes of DBPs in DWDS under the influence of metals and the potential enhancement of generalization in DBP model research by the introduction of metals. Overall, this review revealed that the metal environment within DWDS is a crucial factor influencing DBP levels in tap water.
Collapse
Affiliation(s)
- Xinming Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Xiaoyue Ji
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zhuoran Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - ZiFeng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Du
- Institute of NBC Defense. PLA Army, P.O.Box1048, Beijing 102205 China
| | - Xueyan Li
- Suzhou University Science & Technology, School of Environmental Science & Engineering, Suzhou 215009, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China.
| |
Collapse
|
11
|
Anderson B, Black GP, Young TM. Disinfection Byproducts in Drinking Water from the Tap: Variability in Household Calculated Additive Toxicity (CAT). ACS ES&T WATER 2024; 4:3532-3539. [PMID: 39144678 PMCID: PMC11320572 DOI: 10.1021/acsestwater.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024]
Abstract
Recent studies have implemented a calculated additive toxicity (CAT) approach that sums measured disinfection byproduct (DBP) concentrations weighted by their respective in vitro bioassay potencies to estimate their associated risk in disinfected waters. In this study, the CAT approach was used to systematically investigate 21 regulated and unregulated DBPs measured in drinking water at the household level. Water samples from the tap were collected from over 120 randomly selected participants supplied by eight public water systems using four distinct source water types, two types of disinfection processes, and across two seasons. The purpose of this study was to compare CAT using multiple biological end points, examine household variability, identify DBPs driving toxicity, and assess if current regulated DBPs are adequate predictors of unregulated DBPs. Our results support the significance of unregulated DBPs, particularly haloacetonitriles and iodoacetic acid, as drivers of toxicity. Simple linear models between regulated versus unregulated concentrations and CAT were overall weak with 67% considered poor (r 2 < 0.3). These results reveal that current regulatory monitoring approaches may not be adequately capturing true household exposure due to higher contribution of unregulated DBPs to CAT and poor predictability between regulated and unregulated DBP-mediated CAT.
Collapse
Affiliation(s)
- Berkley
N. Anderson
- Department of Civil and Environmental
Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | | | - Thomas M. Young
- Department of Civil and Environmental
Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
12
|
Qiu T, Shi W, Chen J, Li J. Haloketones: A class of unregulated priority DBPs with high contribution to drinking water cytotoxicity. WATER RESEARCH 2024; 259:121866. [PMID: 38852393 DOI: 10.1016/j.watres.2024.121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Although unregulated aliphatic disinfection byproducts (DBPs) had a much higher concentration and cytotoxicity than known aromatic DBPs, a recent study indicated that seven classes of regulated and unregulated priority DBPs (one and two-carbon-atom DBPs) just accounted for 16.2% of disinfected water cytotoxicity in the U.S., meaning some of the highly toxic aliphatic DBPs may be overlooked. Haloketones (HKs) are an essential class of priority DBPs with a 1-100 µg/L concentration in drinking water but lack cytotoxicity data. This study investigated the cytotoxicity of seven HKs using Chinese hamster ovary (CHO) cells. The order for cytotoxicity of HKs from most to least toxic was: 1,3-dichloroacetone (LC50: 1.0 ± 0.20 μM) ≈ 1,3-dibromoacetone (1.5 ± 0.19 μM) ≈ bromoacetone (1.9 ± 0.49 μM) > chloroacetone (4.3 ± 0.22 μM) > 1,1,3-trichloropropanone (6.6 ± 0.46 μM) > 1,1,1-trichloroacetone (222 ± 7.7 μM) > hexachloroacetone (3269 ± 344 μM). The cytotoxicity of HKs was higher than most regulated and priority aliphatic DBPs in mono-halogenated, di-halogenated, and tri-halogenated categories. A prediction model of HK cytotoxicity was developed based on the quantitative structure-activity relationship (QSAR), optimizing structures and computing descriptors with Gaussian 09 W. The average concentrations of HKs in representative drinking water samples from South Carolina (U.S.) and Suzhou (China) were 12.4 and 0.9 μg/L, respectively, accounting for 18.8% and 1.7% of their specific total DBPs measured (i.e. not TOX). For South Carolina drinking water, their contributions to total calculated additive cytotoxicity of aliphatic DBPs and overall drinking water cytotoxicity were 86.7% and 14.0%, respectively, demonstrating that HKs are an essential class of overlooked DBPs with a high contribution to drinking water cytotoxicity. Our study can help to explain the conflict that why regulated and priority DBPs (except HKs) just accounted for 16% of chlorinated drinking water cytotoxicity even enough they had much higher concentration and cytotoxicity than known aromatic DBPs.
Collapse
Affiliation(s)
- Tian Qiu
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jingsi Chen
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
13
|
Song Z, Xu J, Guan J, Wang P, Qiu J, Lei Y, Zhang X, Kong Q, Zhou Y, Yang X. Nanoscale Sequential Reactor Design Achieves Effective Removal of Disinfection Byproduct Precursors in Catalytic Ozonation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12697-12707. [PMID: 38956762 DOI: 10.1021/acs.est.3c09295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Transforming dissolved organic matter (DOM) is a crucial approach to alleviating the formation of disinfection byproducts (DBPs) in water treatment. Although catalytic ozonation effectively transforms DOM, increases in DBP formation potential are often observed due to the accumulation of aldehydes, ketones, and nitro compound intermediates during DOM transformation. In this study, we propose a novel strategy for the sequential oxidation of DOM, effectively reducing the levels of accumulation of these intermediates. This is achieved through the development of a catalyst with a tailored surface and nanoconfined active sites for catalytic ozonation. The catalyst features a unique confinement structure, wherein Mn-N4 moieties are uniformly anchored on the catalyst surface and within nanopores (5-20 Å). This design enables the degradation of the large molecular weight fraction of DOM on the catalyst surface, while the transformed smaller molecular weight fraction enters the nanopores and undergoes rapid degradation due to the confinement effect. The generation of *Oad as the dominant reactive species is essential for effectively reducing these ozone refractory intermediates. This resulted in over 70% removal of carbonaceous and nitrogenous DBP precursors as well as brominated DBP precursors. This study highlights the importance of the nanoscale sequential reactor design and provides new insights into eliminating DBP precursors by the catalytic ozonation process.
Collapse
Affiliation(s)
- Zilong Song
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaguang Xu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingmeng Guan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Junlang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Lau SS, Bokenkamp K, Tecza A, Wagner ED, Plewa MJ, Mitch WA. Mammalian Cell Genotoxicity of Potable Reuse and Conventional Drinking Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8654-8664. [PMID: 38709862 DOI: 10.1021/acs.est.4c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Potable reuse water is increasingly part of the water supply portfolio for municipalities facing water shortages, and toxicity assays can be useful for evaluating potable reuse water quality. We examined the Chinese hamster ovary cell acute direct genotoxicity of potable reuse waters contributed by disinfection byproducts (DBPs) and anthropogenic contaminants and used the local conventional drinking waters as benchmarks for evaluating potable reuse water quality. Our results showed that treatment trains based on reverse osmosis (RO) were more effective than RO-free treatment trains for reducing the genotoxicity of influent wastewaters. RO-treated reuse waters were less genotoxic than the local tap water derived from surface water, whereas reuse waters not treated by RO were similarly genotoxic as the local drinking waters when frequent replacement of granular activated carbon limited contaminant breakthrough. The genotoxicity contributed by nonvolatile, uncharacterized DBPs and anthropogenic contaminants accounted for ≥73% of the total genotoxicity. The (semi)volatile DBPs of current research interest contributed 2-27% toward the total genotoxicity, with unregulated DBPs being more important genotoxicity drivers than regulated DBPs. Our results underscore the need to look beyond known, (semi)volatile DBPs and the importance of determining whole water toxicity when assessing the quality of disinfected waters.
Collapse
Affiliation(s)
- Stephanie S Lau
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Katherine Bokenkamp
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - Aleksander Tecza
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
15
|
Rosenblum JS, Liethen A, Miller-Robbie L. Prioritization and Risk Ranking of Regulated and Unregulated Chemicals in US Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6878-6889. [PMID: 38564650 PMCID: PMC11044589 DOI: 10.1021/acs.est.3c08745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 04/04/2024]
Abstract
Drinking water constituents were compared using more than six million measurements (USEPA data) to prioritize and risk-rank regulated and unregulated chemicals and classes of chemicals. Hazard indexes were utilized for hazard- and risk-based chemicals, along with observed (nondetects = 0) and censored (nondetects = method detection limit/2) data methods. Chemicals (n = 139) were risk-ranked based on population exposed, resulting in the highest rankings for inorganic compounds (IOCs) and disinfection byproducts (DBPs), followed by semivolatile organic compounds (SOCs), nonvolatile organic compounds (NVOCs), and volatile organic compounds (VOCs) for observed data. The top 50 risk-ranked chemicals included 15 that were unregulated, with at least one chemical from each chemical class (chromium-6 [#1, IOC], chlorate and NDMA [#11 and 12, DBP], 1,4-dioxane [#25, SOC], PFOS, PFOA, PFHxS [#42, 44, and 49, NVOC], and 1,2,3-trichloropropane [#48, VOC]). These results suggest that numerous unregulated chemicals are of higher exposure risk or hazard in US drinking water than many regulated chemicals. These methods could be applied following each Unregulated Contaminant Monitoring Rule (UCMR) data collection phase and compared to retrospective data that highlight what chemicals potentially pose the highest exposure risk or hazard among US drinking water, which could inform regulators, utilities, and researchers alike.
Collapse
Affiliation(s)
- James S. Rosenblum
- Civil and Environmental Engineering
Department, Colorado School of Mines Golden, Colorado 80401, United States
| | - Alexander Liethen
- Civil and Environmental Engineering
Department, Colorado School of Mines Golden, Colorado 80401, United States
| | - Leslie Miller-Robbie
- Civil and Environmental Engineering
Department, Colorado School of Mines Golden, Colorado 80401, United States
| |
Collapse
|
16
|
Yin R, Zhang Y, Wang Y, Zhao J, Shang C. Far-UVC Photolysis of Peroxydisulfate for Micropollutant Degradation in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6030-6038. [PMID: 38517061 DOI: 10.1021/acs.est.3c09120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Increasing radical yields to reduce UV fluence requirement for achieving targeted removal of micropollutants in water would make UV-based advanced oxidation processes (AOPs) less energy demanding in the context of United Nations' Sustainable Development Goals and carbon neutrality. We herein demonstrate that, by switching the UV radiation source from conventional low-pressure UV at 254 nm (UV254) to emerging Far-UVC at 222 nm (UV222), the fluence-based concentration of HO• in the UV/peroxydisulfate (UV/PDS) AOP increases by 6.40, 2.89, and 6.00 times in deionized water, tap water, and surface water, respectively, with increases in the fluence-based concentration of SO4•- also by 5.06, 5.81, and 55.47 times, respectively. The enhancement to radical generation is confirmed using a kinetic model. The pseudo-first-order degradation rate constants of 16 micropollutants by the UV222/PDS AOP in surface water are predicted to be 1.94-13.71 times higher than those by the UV254/PDS AOP. Among the tested water matrix components, chloride and nitrate decrease SO4•- but increase HO• concentration in the UV222/PDS AOP. Compared to the UV254/PDS AOP, the UV222/PDS AOP decreases the formation potentials of carbonaceous disinfection byproducts (DBPs) but increases the formation potentials of nitrogenous DBPs.
Collapse
Affiliation(s)
- Ran Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Yuliang Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yongyi Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
17
|
Zheng S, Lin T, Chen H, Zhang X, Jiang F. Impact of changes in biofilm composition response following chlorine and chloramine disinfection on nitrogenous disinfection byproduct formation and toxicity risk in drinking water distribution systems. WATER RESEARCH 2024; 253:121331. [PMID: 38377929 DOI: 10.1016/j.watres.2024.121331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
In practical drinking water treatment, chlorine and chloramine disinfection exhibit different mechanisms that affect biofilm growth. This study focused on the influence of biofilm composition changes, especially extracellular polymeric substance (EPS) fractions, on the potential formation and toxicity of nitrogenous disinfection by-products (N-DBP). Significant differences in microbial diversity and community structure were observed between the chlorine and chloramine treatments. Notably, the biofilms from the chloramine-treated group had higher microbial dominance and greater accumulation of organic precursors, as evidenced by the semi-quantitative confocal laser-scanning microscopy assay of more concentrated microbial aggregates and polysaccharide proteins in the samples. Additionally, the chloramine-treated group compared with chlorine had a higher EPS matrix content, with a 13.5 % increase in protein. Furthermore, the protein distribution within the biofilm differed; in the chlorine group, proteins were concentrated in the central region, whereas in the chloramine group, proteins were primarily located at the water-biofilm interface. Notably, functional prediction analyses of protein fractions in biofilms revealed specific functional regulation patterns and increased metabolism-related abundance of proteins in the chlorine-treated group. This increase was particularly pronounced for proteins such as dehydrogenases, reductases, transcription factors, and acyl-CoA dehydrogenases. By combining the Fukui function and density functional calculations to further analyse the effect of biofilm component changes on N-DBP production under chlorine/chloramine and by assessing the toxicity risk potential of N-DBP, it was determined that chloramine disinfection is detrimental to biofilm control and the accumulation of protein precursors has a higher formation potential of N-DBPs and toxicity risk, increasing the health risk of drinking water.
Collapse
Affiliation(s)
- Songyuan Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Zhang
- Suzhou Water Supply Company, Suzhou 215002, China
| | - Fuchun Jiang
- Suzhou Water Supply Company, Suzhou 215002, China
| |
Collapse
|
18
|
Wang Y, Xing C, Cai B, Qiu W, Zhai J, Zeng Y, Zhang A, Shi S, Zhang Y, Yang X, Fu TM, Shen H, Wang C, Zhu L, Ye J. Impact of antioxidants on PM 2.5 oxidative potential, radical level, and cytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169555. [PMID: 38157913 DOI: 10.1016/j.scitotenv.2023.169555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Antioxidants are typically seen as agents that mitigate environmental health risks due to their ability to scavenge free radicals. However, our research presents a paradox where these molecules, particularly those within lung fluid, act as prooxidants in the presence of airborne particulate matter (PM2.5), thus enhancing PM2.5 oxidative potential (OP). In our study, we examined a range of antioxidants found in the respiratory system (e.g., vitamin C, glutathione (GSH), and N-acetylcysteine (NAC)), in plasma (vitamin A, vitamin E, and β-carotene), and in food (tert-butylhydroquinone (TBHQ)). We aimed to explore antioxidants' prooxidant and antioxidant interactions with PM2.5 and the resulting OP and cytotoxicity. We employed OH generation assays and electron paramagnetic resonance assays to assess the pro-oxidative and anti-oxidative effects of antioxidants. Additionally, we assessed cytotoxicity interaction using a Chinese hamster ovary cell cytotoxicity assay. Our findings revealed that, in the presence of PM2.5, all antioxidants except vitamin E significantly increased the PM2.5 OP by generating more OH radicals (OH generation rate: 0.16-24.67 pmol·min-1·m-3). However, it's noteworthy that these generated OH radicals were at least partially neutralized by the antioxidants themselves. Among the pro-oxidative antioxidants, vitamin A, β-carotene, and TBHQ showed the least ability to quench these radicals, consistent with their observed impact in enhancing PM2.5 cytotoxicity (PM2.5 LC50 reduced to 91.2 %, 88.8 %, and 75.1 % of PM2.5's original level, respectively). Notably, vitamin A and TBHQ-enhanced PM2.5 OP were strongly associated with the presence of metals and organic compounds, particularly with copper (Cu) contributing significantly (35 %) to TBHQ's pro-oxidative effect. Our study underscores the potential health risks associated with the interaction between antioxidants and ambient pollutants.
Collapse
Affiliation(s)
- Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Chunbo Xing
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Wenhui Qiu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Shao Shi
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China.
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| |
Collapse
|
19
|
Ji C, Miao J, Zhao N, Dai Y, Yang J, Qu J, Zhu J, Zhao M. N-nitrosamines induced gender-dimorphic effects on infant rats at environmental levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169196. [PMID: 38097075 DOI: 10.1016/j.scitotenv.2023.169196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The safety of drinking water has always been a concern for people all over the world. N-nitrosamines (NAs), a kind of nitrogenous disinfection by-products (N-DBPs), are generally detected as a mixture in drinking water at home and abroad. Studies have shown that individual NAs posed strong carcinogenicity at high concentrations. However, health risks of NAs at environmental levels (concentrations in drinking water) are still unclear. Therefore, the potential health risks of environmentally relevant NAs exposure in drinking water needs to be conducted. In this study, blood biochemical analysis and metabolomics based on nuclear magnetic resonance (NMR) were performed to comprehensively investigate NAs induced metabolic disturbance in infant rats at environmental levels. Results of blood biochemical indices analysis indicated that AST in the serum of male rats in NAs-treated group exhibited a significant gender-specific difference. Multivariate statistics showed that two and eight significantly disturbed metabolic pathways were identified in the serum samples of NAs-treated male and female rats, respectively. In the urine samples of NAs-treated female rats, glycine, serine, and threonine metabolism pathway was significantly disturbed; while three significantly disturbed metabolic pathways were found in the urine of NAs-treated male rats. Finally, results of spearman correlation coefficients suggested that the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota (data derived from our published paper). Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management. ENVIRONMENTAL IMPLICATION: N-nitrosamines (NAs) are a kind of nitrogenous disinfection by-products (N-DBPs) generated during drinking water disinfection processes. Herein, health risks of NAs at environmental levels (concentrations in drinking water) are investigated using blood biochemical analysis and nuclear magnetic resonance (NMR)-based metabolomics. Results confirmed NAs induced gender-specific on the metabolism in rat and the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota. Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management.
Collapse
Affiliation(s)
- Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiahui Miao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiawen Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Life Science, Taizhou University, Taizhou 318000, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
20
|
Zhou P, Tian L, Siddique MS, Song S, Graham NJD, Zhu YG, Yu W. Divergent Fate and Roles of Dissolved Organic Matter from Spatially Varied Grassland Soils in China During Long-Term Biogeochemical Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1164-1176. [PMID: 38164759 DOI: 10.1021/acs.est.3c08046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Terrestrial dissolved organic matter (DOM) is critical to global carbon and nutrient cycling, climate change, and human health. However, how the spatial and compositional differences of soil DOM affect its dynamics and fate in water during the carbon cycle is largely unclear. Herein, the biodegradation of DOM from 14 spatially distributed grassland soils in China with diverse organic composition was investigated by 165 days of incubation experiments. The results showed that although the high humified fraction (high-HS) regions were featured by high humic-like fractions of 4-25 kDa molecular weight, especially the abundant condensed aromatics and tannins, they unexpectedly displayed greater DOM degradation during 45-165 days. In contrast, the unique proteinaceous and 25-100 kDa fractions enriched in the low humified fraction (low-HS) regions were drastically depleted and improved the decay of bulk DOM but only during 0-45 days. Together, DOM from the high-HS regions would cause lower CO2 outgassing to the atmosphere but higher organic loads for drinking water production in the short term than that from the low-HS regions. However, this would be reversed for the two regions during the long-term transformation processes. These findings highlight the importance of spatial and temporal variability of DOM biogeochemistry to mitigate the negative impacts of grassland soil DOM on climate, waters, and humans.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shian Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Liu H, Zhang X, Karanfil T, Liu C. Insight into the chemical transformation and organic release of polyurethane microplastics during chlorination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122976. [PMID: 37984473 DOI: 10.1016/j.envpol.2023.122976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
The ubiquitous occurrence of microplastics in water and wastewater is a growing concern. In this study, the chemical transformation and organic release of virgin and UV-aged thermoplastic polyurethane (TPU) polymers during chlorination were investigated. As compared to virgin TPU polymer, the UV-aged TPU polymer exhibited high chlorine reactivity with noticeable destruction on its surface functional groups after chlorination, which could be ascribed to the UV-induced activation of hard segment of TPU backbone and increased contact area. The concentrations of leached organics increased by 1.6-fold with obviously high abundances of low-molecular-weight components. Additives, monomers, compounds relating to TPU chain extension, and their chlorination byproducts contributed to the increased organic release. Meanwhile, the formation of chloroform, haloacetic acids, trichloroacetaldehyde, and dichloroacetonitrile increased by 3.8-, 1.7-, 4.9-, and 2.4-fold, respectively. Two additives and six chlorination byproducts in leachate from chlorinated UV-aged TPU were predicted as highly toxic, e.g., butyl octyl phthalate, palmitic acid, 2,6-di-tert-butyl-1,4-benzoquinone, and chlorinated aniline. Evaluated by human hepatocarcinoma cells, the 50% lethal concentration factor of organics released from chlorinated UV-aged TPU was approximately 10% of that from its virgin counterpart, indicating a substantially increased level of cytotoxicity. This study highlights that the release of additives and chlorination byproducts from the chemical transformation of UV-aged microplastics during chlorination may be of potentially toxic concern.
Collapse
Affiliation(s)
- Hang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xian Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
| | - Chao Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Escher BI, Blanco J, Caixach J, Cserbik D, Farré MJ, Flores C, König M, Lee J, Nyffeler J, Planas C, Redondo-Hasselerharm PE, Rovira J, Sanchís J, Schuhmacher M, Villanueva CM. In vitro bioassays for monitoring drinking water quality of tap water, domestic filtration and bottled water. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:126-135. [PMID: 37328620 PMCID: PMC10907286 DOI: 10.1038/s41370-023-00566-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Location-specific patterns of regulated and non-regulated disinfection byproducts (DBPs) were detected in tap water samples of the Barcelona Metropolitan Area. However, it remains unclear if the detected DBPs together with undetected DPBs and organic micropollutants can lead to mixture effects in drinking water. OBJECTIVE To evaluate the neurotoxicity, oxidative stress response and cytotoxicity of 42 tap water samples, 6 treated with activated carbon filters, 5 with reverse osmosis and 9 bottled waters. To compare the measured effects of the extracts with the mixture effects predicted from the detected concentrations and the relative effect potencies of the detected DBPs using the mixture model of concentration addition. METHODS Mixtures of organic chemicals in water samples were enriched by solid phase extraction and tested for cytotoxicity and neurite outgrowth inhibition in the neuronal cell line SH-SY5Y and for cytotoxicity and oxidative stress response in the AREc32 assay. RESULTS Unenriched water did not trigger neurotoxicity or cytotoxicity. After up to 500-fold enrichment, few extracts showed cytotoxicity. Disinfected water showed low neurotoxicity at 20- to 300-fold enrichment and oxidative stress response at 8- to 140-fold enrichment. Non-regulated non-volatile DBPs, particularly (brominated) haloacetonitriles dominated the predicted mixture effects of the detected chemicals and predicted effects agreed with the measured effects. By hierarchical clustering we identified strong geographical patterns in the types of DPBs and their association with effects. Activated carbon filters did not show a consistent reduction of effects but domestic reverse osmosis filters decreased the effect to that of bottled water. IMPACT STATEMENT Bioassays are an important complement to chemical analysis of disinfection by-products (DBPs) in drinking water. Comparison of the measured oxidative stress response and mixture effects predicted from the detected chemicals and their relative effect potencies allowed the identification of the forcing agents for the mixture effects, which differed by location but were mainly non-regulated DBPs. This study demonstrates the relevance of non-regulated DBPs from a toxicological perspective. In vitro bioassays, in particular reporter gene assays for oxidative stress response that integrate different reactive toxicity pathways including genotoxicity, may therefore serve as sum parameters for drinking water quality assessment.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany.
- Eberhard Karls University Tübingen, Environmental Toxicology, Department of Geosciences, Tübingen, Germany.
| | - Jordi Blanco
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Dora Cserbik
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Maria J Farré
- Catalan Institute for Water Research, ICRA, Girona, Spain
- University of Girona, Girona, Spain
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Maria König
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Jungeun Lee
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Jo Nyffeler
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Carles Planas
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Paula E Redondo-Hasselerharm
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
- IMDEA Water, Madrid, Spain
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
- Environmental Engineering Laboratory, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Sanchís
- Catalan Institute for Water Research, ICRA, Girona, Spain
- University of Girona, Girona, Spain
- Catalan Water Agency, Barcelona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Universitat Rovira i Virgili, Tarragona, Spain
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
- Hospital del Mar Medical Research Institute, IMIM, Barcelona, Spain
| |
Collapse
|
23
|
Wang Y, Ma B, Zhao J, Tang Z, Li W, He C, Xia D, Linden KG, Yin R. Rapid Inactivation of Fungal Spores in Drinking Water by Far-UVC Photolysis of Free Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21876-21887. [PMID: 37978925 DOI: 10.1021/acs.est.3c05703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Effective and affordable disinfection technology is one key to achieving Sustainable Development Goal 6. In this work, we develop a process by integrating Far-UVC irradiation at 222 nm with free chlorine (UV222/chlorine) for rapid inactivation of the chlorine-resistant and opportunistic Aspergillus niger spores in drinking water. The UV222/chlorine process achieves a 5.0-log inactivation of the A. niger spores at a chlorine dosage of 3.0 mg L-1 and a UV fluence of 30 mJ cm-2 in deionized water, tap water, and surface water. The inactivation rate constant of the spores by the UV222/chlorine process is 0.55 min-1, which is 4.6-fold, 5.5-fold, and 1.8-fold, respectively, higher than those of the UV222 alone, chlorination alone, and the conventional UV254/chlorine process under comparable conditions. The more efficient inactivation by the UV222/chlorine process is mainly attributed to the enhanced generation of reactive chlorine species (e.g., 6.7 × 10-15 M of Cl•) instead of hydroxyl radicals from UV222 photolysis of chlorine, which is verified through both experiments and a kinetic model. We further demonstrate that UV222 photolysis damages the membrane integrity and benefits the penetration of chlorine and radicals into cells for inactivation. The merits of the UV222/chlorine process over the UV254/chlorine process also include the more effective inhibition of the photoreactivation of the spores after disinfection and the lower formation of chlorinated disinfection byproducts and toxicity.
Collapse
Affiliation(s)
- Yongyi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanxin Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
24
|
Chen W, Gu Z, He C, Li Q. Molecular Characteristics and Formation Mechanisms of Unknown Ozonation Byproducts during the Treatment of Flocculated Nanofiltration Leachate Concentrates Using O 3 and UV/O 3 Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20349-20359. [PMID: 37942774 DOI: 10.1021/acs.est.3c05134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Both ozone (O3) and UV/O3 treatment processes can effectively remove organic matter in the flocculated membrane filtration concentrate from landfill leachate, but the ozonation byproducts (OBPs) generated in the processes remain unknown. Using electrospray ionization-coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), this study investigated the molecular characteristics of unknown OBPs and their formation mechanisms during the treatment of flocculated nanofiltration concentrate (FNFC) using the O3 and UV/O3 processes. The results showed that after being treated by the O3 and UV/O3 processes, the average value of the oxygen-to-carbon ratio (O/Cavg) in the FNFC organic matter increased substantially from 0.49 to 0.61-0.64 and 0.63-0.71, respectively, with an O3 dosage of 13.4-54.4 mg/min. The main OBPs were CHO and CHON compounds, which were mainly produced through oxygenation (+O2/+O3 and -H2+O2), oxidative deamination (-NH3+O2), decyclopropyl (-C3H4), and deisopropyl (-C3H6) reactions. The hydroxyl radical (•OH) can intensify these reactions, resulting in an abundance of OBPs with a high oxidation degree and low molecular weight. OBPs at five m/z values were fragmented and analyzed with tandem mass spectrometry, and abundant hydroxyl groups, carboxyl groups, and carbonyl groups were tentatively identified, presenting a potential toxicity to aquatic organisms. Due to the high molecular diversity of the OBPs in FNFC, their lower ΔGCoxo compared to natural fulvic acid, and potential toxicity, their impact on the water environment should be given more attention.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
25
|
Rougé V, Nguyen PTTH, Allard S, Lee Y. Reaction of Amino Acids with Ferrate(VI): Impact of the Carboxylic Group on the Primary Amine Oxidation Kinetics and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18509-18518. [PMID: 36441566 DOI: 10.1021/acs.est.2c03319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferrate (Fe(VI)) is a novel oxidant that can be used to mitigate disinfection byproduct (DBP) precursors. However, the reaction of Fe(VI) with organic nitrogen, which is a potential precursor of potent nitrogenous DBPs, remains largely unexplored. The present work aimed to identify the kinetics and products for the reaction of Fe(VI) with primary amines, notably amino acids. A new kinetic model involving ionizable intermediates was proposed and can describe the unusual pH effect on the Fe(VI) reactivity toward primary amines and amino acids. The Fe(VI) oxidation of phenylalanine produced a mixture of nitrile, nitrite/nitrate, amide, and ammonia, while nitroalkane was an additional product in the case of glycine. The product distribution for amino acids significantly differed from that of uncarboxylated primary amines that mainly generate nitriles. A general reaction pathway for primary amines and amino acids was proposed and notably involved the formation of imines, the degradation of which was affected by the presence of a carboxylic group. In comparison, ozonation led to higher yields of nitroalkanes that could be readily converted to potent halonitroalkanes during chlor(am)ination. Based on this study, Fe(VI) can effectively mitigate primary amine-based, nitrogenous DBP precursors with little formation of toxic halonitroalkanes.
Collapse
Affiliation(s)
- Valentin Rougé
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Pham Thi Thai Ha Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | | | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| |
Collapse
|
26
|
Ding S, Deng Y, Wu M, Qu R, Du Z, Chu W. Leaching of organic matter and iodine, formation of iodinated disinfection by-products and toxic risk from Laminaria japonica during simulated household cooking. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132241. [PMID: 37567136 DOI: 10.1016/j.jhazmat.2023.132241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/16/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Iodinated disinfection by-products (I-DBPs) exhibited potential health risk owing to the high toxicity. Our recent study demonstrated that I-DBPs from Laminaria japonica (Haidai), the commonly edible seaweed, upon simulated household cooking condition were several hundred times more than the concentration of drinking water. Here, the characterization of Haidai and its leachate tandem with the formation, identification and toxicity of I-DBPs from the cooking of Haidai were systemically investigated. The dominant organic matter in Haidai leachate were polysaccharides, while the highest iodine specie was iodide (∼90% of total iodine). Several unknown I-DBPs generated from the cooking of Haidai were tentatively proposed, of which 3,5-diiodo-4-hydroxybenzaldehyde was dominant specie. Following a simulated household cooking with real chloraminated tap water, the presence of Haidai sharply increased aggregate iodinated trihalomethanes, iodinated haloacetic acids, and total organic iodine concentrations to 97.4 ± 7.6 μg/L,16.4 ± 2.1 μg/L, and 0.53 ± 0.06 mg/L, respectively. Moreover, the acute toxicity of Haidai soup to Vibrio qinghaiensis sp.-Q67 was around 7.3 times higher than that of tap water in terms of EC50. These results demonstrated that the yield of I-DBPs from the cooking of Haidai and other seaweed should be carefully considered.
Collapse
Affiliation(s)
- Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| | - Menglin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ruixin Qu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
27
|
Du Z, Ding S, Xiao R, Fang C, Jia R, Chu W. Disinfection by-product precursors introduced by sandstorm events: Composition, formation characteristics and potential risks. WATER RESEARCH 2023; 244:120429. [PMID: 37542764 DOI: 10.1016/j.watres.2023.120429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Sandstorms, a natural meteorological event, occur repeatedly during the dry season and can accumulate large amounts of natural/anthropogenic pollutants during the deposition process, potentially introducing disinfection by-product (DBP) precursors into surface waters. In this study, the characteristics of sandstorm-derived dissolved organic matter (DOM) and its DBP formation potential were elucidated. Overall, sandstorm-derived DOM mainly consisted of low-molecular-weight, low-aromaticity, high-nitrogen organic matter, with a dissolved organic carbon (DOC) release yield of 14.4 mg-DOC/g. The halogenated DBP formation potential (calculated as total organic halogen) of sandstorm-derived DOM was comparable to that of surface water, while the normalized DBP-associated toxicity was 1.96 times higher. Similar to DOM introduced by other depositional pathways, sandstorm-derived DOM also had higher yields of highly cytotoxic DBPs (haloacetaldehydes [HALs], haloacetonitriles [HANs] and halonitromethanes [HNMs]). The average atmospheric deposition flux for DOM during the sandstorm event (50.4 ± 2.1 kg km-2 day-1) was 6.95 times higher than that of dry deposition, indicating a higher probability of contaminant input. Simultaneously, the estimation revealed that the sandstorm will increase the formation potential of toxicity forcing agents, such as HALs, HANs and HNMs, in surface water by 3.87%, 2.39% and 9.04%, respectively. Considering the high frequency of sandstorm events and the sorption of other organic pollutants by sand and dust, the impact of sandstorms on surface water quality should be of concern.
Collapse
Affiliation(s)
- Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; Shandong Province Water Supply and Drainage Monitoring Centre, Jinan 250101, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Ruibao Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; Shandong Province Water Supply and Drainage Monitoring Centre, Jinan 250101, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China.
| |
Collapse
|
28
|
Lau S, Feng Y, Gu AZ, Russell C, Pope G, Mitch WA. Cytotoxicity Comparison between Drinking Water Treated by Chlorination with Postchloramination versus Granular Activated Carbon (GAC) with Postchlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13699-13709. [PMID: 37640368 PMCID: PMC10501121 DOI: 10.1021/acs.est.3c03591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Granular activated carbon treatment with postchlorination (GAC/Cl2) and chlorination followed by chloramination (Cl2/NH2Cl) represent two options for utilities to reduce DBP formation in drinking water. To compare the total cytotoxicity of waters treated by a pilot-scale GAC treatment system with postchlorination (and in some instances with prechlorination upstream of GAC (i.e., (Cl2)/GAC/Cl2)) and chlorination/chloramination (Cl2/NH2Cl) at ambient and elevated Br- and I- levels and at three different GAC ages, we applied the Chinese hamster ovary (CHO) cell cytotoxicity assay to whole-water extracts in conjunction with calculations of the cytotoxicity contributed by the 33 (semi)volatile DBPs lost during extractions. At both ambient and elevated Br- and I- levels, GAC/Cl2 and Cl2/NH2Cl achieved comparable reductions in the formation of regulated trihalomethanes (THMs) and haloacetic acids (HAAs). Nonetheless, GAC/Cl2 always resulted in lower total cytotoxicity than Cl2/NH2Cl, even at up to 65% total organic carbon breakthrough. Prechlorination formed (semi)volatile DBPs that were removed by the GAC, yet there was no substantial difference in total cytotoxicity between Cl2/GAC/Cl2 and GAC/Cl2. The poorly characterized fraction of DBPs captured by the bioassay dominated the total cytotoxicity when the source water contained ambient levels of Br- and I-. When the water was spiked with Br- and I-, the known, unregulated (semi)volatile DBPs and the uncharacterized fraction of DBPs were comparable contributors to total cytotoxicity; the contributions of regulated THMs and HAAs were comparatively minor.
Collapse
Affiliation(s)
- Stephanie
S. Lau
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Yinmei Feng
- School
of Civil and Environmental Engineering, College of Engineering, Cornell University, 220 Hollister Hall, 527 College Ave, Ithaca, New York 14853, United States
| | - April Z. Gu
- School
of Civil and Environmental Engineering, College of Engineering, Cornell University, 220 Hollister Hall, 527 College Ave, Ithaca, New York 14853, United States
| | - Caroline Russell
- Carollo
Engineers, Inc., 8911 Capital of Texas Hwy North, Suite 2200, Austin, Texas 78759, United States
| | - Greg Pope
- Carollo
Engineers, Inc., 8911 Capital of Texas Hwy North, Suite 2200, Austin, Texas 78759, United States
| | - William A. Mitch
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
29
|
Zhao X, Chen C, Chen H, Guo Y, Zhang X, Li M, Cao L, Wang Y, Gong T, Che L, Yang G, Xian Q. Evolutions of dissolved organic matter and disinfection by-products formation in source water during UV-LED (275 nm)/chlorine process. WATER RESEARCH 2023; 243:120284. [PMID: 37441900 DOI: 10.1016/j.watres.2023.120284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Ultraviolet light-emitting diode (UV-LED) is a promising option for the traditional low-pressure UV lamp, but the evolutions of DOM composition, the formation of disinfection by-products (DBPs) and their toxicity need further study in raw water during UV-LED/chlorine process. In UV-LED (275 nm)/chlorine process, two-dimensional correlation spectroscopy (2DCOS) analysis on synchronous fluorescence and UV-vis spectra indicated the protein-like fractions responded faster than the humic-like components, the reactive sequence of peaks for DOM followed the order: 340 nm→240 nm→410 nm→205 nm→290 nm. Compared to chlorination for 30 mins, the UV-LED/chlorine process enhanced the degradation efficiency of three fluorescent components (humic-like, tryptophan-like, tyrosine-like) by 5.1%-46.1%, and the formation of carbonaceous DBPs (C-DBPs) significantly reduced by 43.8% while the formation of nitrogenous DBPs (N-DBPs) increased by 27.3%. The concentrations of C-DBPs increased by 17.8% whereas that of N-DBPs reduced by 30.4% in 24 h post-chlorination. The concentrations of brominated DBPs increased by 17.2% during UV-LED/chlorine process, and further increased by 18.5% in 24 h post-chlorination. According to the results of principal component analysis, the non-fluorescent components of DOM might be important precursors in the formation of haloketones, haloacetonitriles and halonitromethanes during UV-LED/chlorine process. Unlike chlorine treatment, the reaction of DOM in UV-LED/chlorine treatment generated fewer unknown DBPs. Compared with chlorination, the cytotoxicity of C-DBPs reduced but the cytotoxicity of both N-DBPs and Br-DBPs increased during UV-LED/chlorine process. Dichloroacetonitrile had the highest cytotoxicity, followed by monobromoacetic acid, bromochloroacetonitrile and trichloroacetic acid during 30 mins of UV-LED/chlorine process. Therefore, besides N-DBPs, the more toxic Br-DBPs formation in bromide-containing water is also not negligible in the practical applications of UV-LED (275 nm)/chlorine process.
Collapse
Affiliation(s)
- Xiating Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chuze Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haoran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yaxin Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xueqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mengting Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Liu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Lei Che
- Zhejiang Eco Environmental Technology Co. LTD, Huzhou City, Zhejiang Province 313000, China
| | - Guoying Yang
- Zhejiang Eco Environmental Technology Co. LTD, Huzhou City, Zhejiang Province 313000, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
30
|
Rager JE, Rider CV. Wrangling Whole Mixtures Risk Assessment: Recent Advances in Determining Sufficient Similarity. CURRENT OPINION IN TOXICOLOGY 2023; 35:100417. [PMID: 37790747 PMCID: PMC10545370 DOI: 10.1016/j.cotox.2023.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Human health risk assessments for complex mixtures can address real-world exposures and protect public health. While risk assessors typically prefer whole mixture approaches over component-based approaches, data from the precise exposure of interest are often unavailable and surrogate data from a sufficiently similar mixture(s) are required. This review describes recent advances in determining sufficient similarity of whole, complex mixtures spanning the comparison of chemical features, bioactivity profiles, and statistical evaluation to determine "thresholds of similarity". Case studies, including water disinfection byproducts, botanical ingredients, and wildfire emissions, are used to highlight tools and methods. Limitations to application of sufficient similarity in risk-based decision making are reviewed and recommendations presented for developing best practice guidelines.
Collapse
Affiliation(s)
- Julia E. Rager
- The Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill
| | - Cynthia V. Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences
| |
Collapse
|
31
|
Yang B, Cui H, Gao J, Cao J, Klobučar G, Li M. Using a Battery of Bioassays to Assess the Toxicity of Wastewater Treatment Plant Effluents in Industrial Parks. TOXICS 2023; 11:702. [PMID: 37624206 PMCID: PMC10457805 DOI: 10.3390/toxics11080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Bioassays, as an addition to physico-chemical water quality evaluation, can provide information on the toxic effects of pollutants present in the water. In this study, a broad evaluation of environmental health risks from industrial wastewater along the Yangtze River, China, was conducted using a battery of bioassays. Toxicity tests showed that the wastewater treatment processes were effective at lowering acetylcholinesterase (AChE) inhibition, HepG2 cells' cytotoxicity, the estrogenic effect in T47D-Kbluc cells, DNA damage of Euglena gracilis and the mutagenicity of Salmonella typhimurium in the analyzed wastewater samples. Polycyclic aromatic hydrocarbons (PAHs) were identified as potential major toxic chemicals of concern in the wastewater samples of W, J and T wastewater treatment plants; thus, the potential harm of PAHs to aquatic organisms has been investigated. Based on the health risk assessment model, the risk index of wastewater from the industrial parks along the Yangtze River was below one, indicating that the PAHs were less harmful to human health through skin contact or respiratory exposure. Overall, the biological toxicity tests used in this study provide a good basis for the health risk assessment of industrial wastewater and a scientific reference for the optimization and operation of the treatment process.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haiyan Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jie Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Liu Y, Gao J, Zhu Q, Zhou X, Chu W, Huang J, Liu C, Yang B, Yang M. Zerovalent Iron/Cu Combined Degradation of Halogenated Disinfection Byproducts and Quantitative Structure-Activity Relationship Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11241-11250. [PMID: 37461144 DOI: 10.1021/acs.est.3c01960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Previous studies have reported that zerovalent iron (ZVI) can reduce several aliphatic groups of disinfection byproducts (DBPs) (e.g., haloacetic acids and haloacetamides) effectively, and the removal efficiency can be significantly improved by metallic copper. Information regarding ZVI/Cu combined degradation of different types of halogenated DBPs can help understand the fate of overall DBPs in drinking water distribution and storage systems consisting of unlined cast iron/copper pipes and related potential control strategies. In this study, we found that, besides aliphatic DBPs, many groups of new emerging aromatic DBPs formed in chlorinated and chloraminated drinking water can be effectively degraded by ZVI/Cu; meanwhile, total organic halogen and total ion intensity were reduced significantly after treatment. Moreover, a robust quantitative structure-activity relationship model was developed and validated based on the ZVI/Cu combined degradation rate constants of 14 typical aromatic DBPs; it can predict the degradation rate constants of other aromatic DBPs for screening and comparative purposes, and the optimized descriptors indicate that DBPs possessing a lower value of the lowest unoccupied molecular orbital energy and a higher value of dipole moment tend to present higher degradation rate constants. In addition, toxicity data of 47 DBPs (belonging to 18 groups) were predicted by two previously established toxicity models, demonstrating that, although most DBPs exhibit higher toxicity than their dehalogenated products, some DBPs show lower toxicity than their lowly halogenated analogs.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qingyao Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jingxiong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
33
|
Pérez-Albaladejo E, Pinteño R, Aznar-Luque MDC, Casado M, Postigo C, Porte C. Genotoxicity and endocrine disruption potential of haloacetic acids in human placental and lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162981. [PMID: 36963690 DOI: 10.1016/j.scitotenv.2023.162981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Chlorination of water results in the formation of haloacetic acids (HAAs) as major disinfection byproducts (DBPs). Previous studies have reported some HAAs species to act as cytotoxic, genotoxic, and carcinogenic. This work aimed at further exploring the toxicity potential of the most investigated HAAs (chloroacetic (CAA), bromoacetic (BAA), iodoacetic (IAA) acid) and HAAs species with high content of bromine (tribromoacetic acid (TBAA)), and iodine in their structures (chloroiodoacetic (CIAA) and diiodoacetic acid (DIAA)) to human cells. Novel knowledge was generated regarding cytotoxicity, oxidative stress, endocrine disrupting potential, and genotoxicity of these HAAs by using human placental and lung cells as in vitro models, not previously used for DBP assessment. IAA showed the highest cytotoxicity (EC50: 7.5 μM) and ability to generate ROS (up to 3-fold) in placental cells, followed by BAA (EC50: 20-25 μM and 2.1-fold). TBAA, CAA, DIAA, and CIAA showed no significant cytotoxicity (EC50 > 250 μM). All tested HAAs decreased the expression of the steroidogenic gene hsd17b1 up to 40 % in placental cells, and IAA and BAA (0.01-1 μM) slightly inhibited the aromatase activity. HAAs also induced the formation of micronuclei in A549 lung cells after 48 h of exposure. IAA and BAA showed a non-significant increase in micronuclei formation at low concentrations (1 μM), while BAA, CAA, CIAA and TBAA were genotoxic at exposure concentrations above 10 μM (100 μM in the case of DIAA). These results point to genotoxic and endocrine disruption effects associated with HAA exposure at low concentrations (0.01-1 μM), and the usefulness of the selected bioassays to provide fast and sensitive responses to HAA exposure, particularly in terms of genotoxicity and endocrine disruption effects. Further studies are needed to define thresholds that better protect public health.
Collapse
Affiliation(s)
| | - Raquel Pinteño
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Marta Casado
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva s/n, Granada 18071, Spain; Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Institute for Water Research, University of Granada, C/ Ramón y Cajal 4, Granada, 18071, Spain.
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
34
|
Du Z, Li G, Ding S, Song W, Zhang M, Jia R, Chu W. Effects of UV-based oxidation processes on the degradation of microplastic: Fragmentation, organic matter release, toxicity and disinfection byproduct formation. WATER RESEARCH 2023; 237:119983. [PMID: 37099872 DOI: 10.1016/j.watres.2023.119983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
The occurrence and transformation of microplastics (MPs) remaining in the water treatment plants has recently attracted considerable attention. However, few efforts have been made to investigate the behavior of dissolved organic matter (DOM) derived from MPs during oxidation processes. In this study, the characteristics of DOM leached from MPs during typical ultraviolet (UV)-based oxidation was focused on. The toxicity and disinfection byproduct (DBP) formation potentials of MP-derived DOM were further investigated. Overall, UV-based oxidation significantly enhanced the aging and fragmentation of highly hydroscopic MPs. The mass scales of leachates to MPs increased from 0.03% - 0.18% at initial stage to 0.09% - 0.71% after oxidation, which were significantly higher than those leached by natural light exposure. Combined fluorescence analysis with high resolution mass spectrometer scan confirmed that the dominant MP-derived DOM are chemical additives. PET-derived DOM and PA6-derived DOM showed inhibition of Vibrio fischeri activity with corresponding EC50 of 2.84 mg/L and 4.58 mg/L of DOC. Bioassay testing with Chlorella vulgaris and Microcystis aeruginosa showed that high concentrations of MP-derived DOM inhibited algal growth by disrupting the cell membrane permeability and integrity. MP-derived DOM had a similar chlorine consumption (1.63 ± 0.41 mg/DOC) as surface water (1.0 - 2.0 mg/DOC), and MP-derived DOM mainly served as precursors for the investigated DBPs. Contrary to the results of previous studies, the DBP yields from MP-derived DOM were relatively lower than those of aquatic DOM under simulated distribution system conditions. This suggests that MP-derived DOM itself rather than serving as DBP precursor might be potential toxic concern.
Collapse
Affiliation(s)
- Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai, 200092, China
| | - Guifang Li
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai, 200092, China
| | - Wuchang Song
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Mengyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Ruibao Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai, 200092, China.
| |
Collapse
|
35
|
Yang X, Ding S, Xiao R, Wang P, Du Z, Zhang R, Chu W. Identification of key precursors contributing to the formation of CX 3R-type disinfection by-products along the typical full-scale drinking water treatment processes. J Environ Sci (China) 2023; 128:81-92. [PMID: 36801044 DOI: 10.1016/j.jes.2022.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/18/2023]
Abstract
Identification and characterization of disinfection by-product (DBP) precursors could help optimize drinking water treatment processes and improve the quality of finished water. This study comprehensively investigated the characteristics of dissolved organic matter (DOM), the hydrophilicity and molecule weight (MW) of DBP precursor and DBP-associated toxicity along the typical full-scale treatment processes. The results showed that dissolved organic carbon and dissolved organic nitrogen content, the fluorescence intensity and the SUVA254 value in raw water significantly decreased after the whole treatment processes. Conventional treatment processes were in favor of the removal of high-MW and hydrophobic DOM, which are important precursors of trihalomethane and haloacetic acid. Compared with conventional treatment processes, Ozone integrated with biological activated carbon (O3-BAC) processes enhanced the removal efficiencies of DOM with different MW and hydrophobic fractions, leading to a further decrease in almost all DBP formation potential and DBP-associated toxicity. However, almost 50% of the detected DBP precursors in raw water has not been removed after the coagulation-sedimentation-filtration integrated with O3-BAC advanced treatment processes. These remaining precursors were found to be mainly hydrophilic and low-MW (< 1.0 kDa) organics. Moreover, they would largely contribute to the formation of haloacetaldehydes and haloacetonitriles, which dominated the calculated cytotoxicity. Since current drinking water treatment process could not effectively control the highly toxic DBPs, the removal of hydrophilic and low-MW organics in drinking water treatment plants should be focused on in the future.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Pin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Ruihua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
36
|
Kralles ZT, Werner CA, Dai N. Overlooked Contribution of the Indole Moiety to the Formation of Haloacetonitrile Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7074-7085. [PMID: 37079884 DOI: 10.1021/acs.est.3c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Haloacetonitriles (HANs) are a group of disinfection byproducts with high toxicity and frequent occurrence. Past studies have focused on the free amine groups, especially those in amino acids, as HAN precursors. This study reports, for the first time, that the indole moiety such as that in the tryptophan side chain is also a potent precursor for the most common HANs dichloroacetonitrile, bromochloroacetonitrile, and dibromoacetonitrile. 3-Indolepropionic acid, differing from tryptophan only in the absence of the free amine group, formed HANs at levels 57-76% of those by tryptophan at a halogen/nitrogen molar ratio of 10. Experiments with tryptophan-(amino-15N) showed that the indole contributed to 28-51% of the HANs formed by tryptophan. At low oxidant excess (e.g., halogen/precursor = 5), 3-indolepropionic acid even formed more HANs than Trp by 3.5-, 2.5-, and 1.8-fold during free chlorination, free bromination, and chlorination in the presence of bromide (0.6 mg/L), respectively. Indole's HAN formation pathway was investigated by exploring the chlorination/bromination products of 3-indolepropionic acid using liquid chromatography-orbitrap high-resolution mass spectrometry. A total of 22 intermediates were detected, including pyrrole ring-opening products with an N-formyl group, 2-substituted anilines with different hydroxyl/halogen substitutions, and an intermediate with a postulated non-aromatic ring structure.
Collapse
Affiliation(s)
- Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Christian A Werner
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
37
|
Chen M, Rholl CA, Persaud SL, Wang Z, He Z, Parker KM. Permanganate preoxidation affects the formation of disinfection byproducts from algal organic matter. WATER RESEARCH 2023; 232:119691. [PMID: 36774754 DOI: 10.1016/j.watres.2023.119691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
During harmful algal blooms (HABs), permanganate may be used as a preoxidant to improve drinking water quality by removing algal cells and degrading algal toxins. However, permanganate also lyses algal cells, releasing intracellular algal organic matter (AOM). AOM further reacts with permanganate to alter the abundance of disinfection byproduct (DBP) precursors, which in turn affects DBP formation during disinfection. In this study, we evaluated the impacts of preoxidation by permanganate applied at commonly used doses (i.e., 1-5 mg/L) on DBP generation during chlorination and chloramination of AOM. We found that permanganate preoxidation increased trichloronitromethane (TCNM) formation by up to 3-fold and decreased dichloroacetonitrile (DCAN) formation by up to 40% during chlorination, indicating that permanganate oxidized organic amines in AOM to organic nitro compounds rather than organic nitrile compounds. To test this proposed mechanism, we demonstrated that permanganate oxidized organic amines in known DBP precursors (i.e., tyrosine, tryptophan) to favor the production of TCNM over DCAN during chlorination. Compared to the decreased formation of DCAN during chlorination, permanganate increased DCAN formation by 30-50% during chloramination of AOM. This difference likely arose from monochloramine's ability to react with non-nitrogenous precursors (e.g., organic aldehydes) that formed during permanganate preoxidation of AOM to generate nitrogen-containing intermediates that go on to form DCAN. Our results also showed that permanganate preoxidation favored the formation of dichlorobromomethane (DCBM) over trichloromethane (TCM) during chlorination and chloramination. The increased formation of DBPs, especially nitrogenous DBPs that are more toxic than carbonaceous DBPs, may increase the overall toxicity in finished drinking water when permanganate preoxidation is implemented.
Collapse
Affiliation(s)
- Moshan Chen
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Carter A Rholl
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Shane L Persaud
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Zixuan Wang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Zhen He
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
38
|
Peterson ES, Summers RS, Cook SM. Control of Pre-formed Halogenated Disinfection Byproducts with Reuse Biofiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2516-2526. [PMID: 36724198 DOI: 10.1021/acs.est.2c05504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Disinfection byproduct (DBP) pre-formation is a major issue when prechlorination is used before or during advanced treatment of impacted drinking water sources. Control strategies for pre-formed DBPs before final disinfection, especially for currently nonregulated although highly toxic DBP species, are not yet established. This study evaluated the biodegradation potential of pre-formed DBPs, including haloacetonitriles (HANs), haloacetamides (HAMs), and haloacetaldehydes (HALs), during biofiltration with sand, anthracite, and biological activated carbon of three wastewater effluents under potable reuse conditions. Up to 90%+ removal of di- and trihalogenated HANs, HAMs, and HALs was observed, and removal was associated with active heterotrophic biomass and removal of biodegradable organic carbon. Unlike the microbial dehalogenation pathway of haloacetic acids (HAAs), removal of HANs and HAMs appeared to result from a biologically mediated hydrolysis pathway (i.e., HANs to HAMs and HAAs) that may be prone to inhibition. After prechlorination, biofiltration effectively controlled pre-formed DBP concentrations (e.g., from 271 μg/L to as low as 22 μg/L in total) and DBP-associated calculated toxicity (e.g., 96%+ reduction). Abiotic residual adsorption capacity in biological activated carbon media was important for controlling trihalomethanes. Overall, the toxicity-driving DBP species exhibited high biodegradation potential and biofiltration showed significant promise as a pre-formed DBP control technology.
Collapse
Affiliation(s)
- Eric S Peterson
- Environmental Engineering Program, University of Colorado Boulder, 428 UCB, Boulder, Colorado 80309, United States
| | - R Scott Summers
- Environmental Engineering Program, University of Colorado Boulder, 428 UCB, Boulder, Colorado 80309, United States
| | - Sherri M Cook
- Environmental Engineering Program, University of Colorado Boulder, 428 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
39
|
Chen Y, Liang Q, Liang W, Li W, Liu Y, Guo K, Yang B, Zhao X, Yang M. Identification of Toxicity Forcing Agents from Individual Aliphatic and Aromatic Disinfection Byproducts Formed in Drinking Water: Implications and Limitations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1366-1377. [PMID: 36633507 DOI: 10.1021/acs.est.2c07629] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, a study found that aromatic DBP fractions dominate the overall toxicity of chlorinated drinking water. However, key toxicity drivers have not been reported via comprehensive evaluation based on the formation of aliphatic and aromatic DBPs in drinking water. In this study, the occurrence of 37 aliphatic and 19 aromatic DBPs in drinking samples with different water characteristics collected in a Chinese megacity was explored. According to the individual DBP concentrations and cytotoxicity potencies as well as the "TIC-Tox" method, haloacetonitriles and halonitrophenols were found to be the toxicity drivers among the measured aliphatic and aromatic DBPs, respectively. However, when aromatic and aliphatic DBPs are taken into consideration together, aliphatic DBPs were calculated to present higher toxicity contribution than aromatic DBPs, which is inconsistent with the previous study. TOX showed significant positive correlations with most aliphatic DBPs but no aromatic DBPs, and the overall toxicity of the water sample concentrates is significantly related to the total calculated cytotoxicity and aliphatic DBPs, suggesting that current selected aromatic DBPs are insufficient to represent the overall aromatic DBPs. UV254 and DOC rather than SUVA are better surrogates for predicting DBP formation potential for DOM with a lower humification degree as indicated by fluorescence results.
Collapse
Affiliation(s)
- Yuru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| | - Qiuhong Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| | - Wenjie Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| | - Wenlong Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| | - Yan Liu
- Shenzhen Shenshui Baoan Water Group Co., Ltd., Shenzhen518101, China
| | - Kexin Guo
- Shenzhen Pingshan Drainage Co., Ltd., Shenzhen518118, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
40
|
Du Z, Ding S, Xiao R, Fang C, Song W, Jia R, Chu W. Does Snowfall Introduce Disinfection By-product Precursors to Surface Water? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14487-14497. [PMID: 36196960 DOI: 10.1021/acs.est.2c04408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Snow with large specific surface area and strong adsorption capacity can effectively adsorb atmospheric pollutants, which could/might lead to the increase of disinfection by-product (DBP) precursors in surface water. In this study, the contents and characteristics of dissolved organic matter (DOM) in meltwater were investigated, and DBP formation and the DBP-associated cytotoxicity index during chlorination of meltwater was first explored. Overall, meltwater exhibited high nitrogen contents. Meltwater-derived DOM was mainly composed of organics with low molecular weights, low aromaticity, and high unsaturated degrees. DBP formation potentials and cytotoxicity indexes in chlorinated meltwater were positively correlated with air quality index and were significantly impacted by snowfall stages. The trihalomethane and haloacetic acid yields from meltwater were relatively low, while yields of highly cytotoxic DBPs, especially halonitromethanes (6.3-10.8 μg-HNMs/mg-DOC), were significantly higher than those of surface water (1.7 μg-HNMs/mg-DOC). Notably, unsaturated nonaromatic organic nitrates in meltwater were important precursors of halonitromethanes. The actual monitoring results showed that snowfall significant increased the haloacetaldehydes and nitrogenous DBP formation levels of surface water. Considering increased DBP formation and DBP-associated toxicity, it was demonstrated that DOM derived from snowfall in atmosphere-polluted areas could deteriorate surface water quality and pose potential risks to drinking water.
Collapse
Affiliation(s)
- Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Wuchang Song
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Shandong Province Water Supply and Drainage Monitoring Centre, Jinan250101, China
| | - Ruibao Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Shandong Province Water Supply and Drainage Monitoring Centre, Jinan250101, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| |
Collapse
|
41
|
Wu M, Ding S, Cao Z, Du Z, Tang Y, Chen X, Chu W. Insights into the formation and mitigation of iodinated disinfection by-products during household cooking with Laminaria japonica (Haidai). WATER RESEARCH 2022; 225:119177. [PMID: 36206687 DOI: 10.1016/j.watres.2022.119177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Iodinated disinfection by-products (I-DBPs) have attracted extensive interests because of their higher cytotoxicity and genotoxicity than their chlorinated and brominated analogues. Our recent studies have firstly demonstrated that cooking with seaweed salt could enhance the formation of I-DBPs with several tens of μg/L level. Here, I-DBP formation and mitigation from the reaction of disinfectant with Laminaria japonica (Haidai), an edible seaweed with highest iodine content, upon simulated household cooking process was systematically investigated. The total iodine content in Haidai ranged from 4.6 mg-I/g-Haidai to 10.0 mg-I/g-Haidai, and more than 90% of iodine is soluble iodide. During simulated cooking, the presence of disinfectant simultaneously decreased iodide by 15.0-32.8% to 2.7-5.8 mg/L and increased total organic iodine by 1.3-10.9 times to 0.5-1.8 mg/L in Haidai soup, proving I-DBP formation. The concentrations of iodinated trihalomethanes and haloacetic acids were at the levels of several hundreds of μg/L and several μg/L, respectively, which are 2-3 orders and 1-2 orders of magnitude more than those in drinking water. Effects of key factors including disinfectant specie, disinfectant dose, temperature and time on I-DBP formation were also ascertained, and temperature and disinfectant specie played a decisive role in the formation and speciation of I-DBPs. In order to avoid the potential health risk from the exposure of I-DBPs in Haidai soup, it is prerequisite to soak and wash dry Haidai sample over 30.0 min before cooking, which could effectively remove major soluble iodide. In general, this study provided the new insight into I-DBP formation from daily household cooking with Haidai and the corresponding enlightenment for inhabitants to eat Haidai in daily life.
Collapse
Affiliation(s)
- Menglin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhongqi Cao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuyang Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoyan Chen
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
42
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
43
|
Liu J, Ling L, Hu Q, Wang C, Shang C. Effects of operating conditions on disinfection by-product formation, calculated toxicity, and changes in organic matter structures during seawater chlorination. WATER RESEARCH 2022; 220:118631. [PMID: 35635923 DOI: 10.1016/j.watres.2022.118631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
This study systematically quantified the impacts of different operation conditions, e.g., pH, chlorine dosages, contact times, and temperatures towards the disinfection by-product (DBP) formation, integrated toxicity, and structural changes in seawater natural organic matter during seawater chlorination. Higher concentrations of total DBPs were found under longer contact times, higher chlorine dosages, higher temperatures, and lower pH. The concentration of tribromomethane, the most abundant DBP, was found lowest at pH 10. Monobromoacetic acid, dibromoacetonitrile, and dibromoacetaldehyde were the three main contributors to integrated cyto- and geno-toxicity, stressing the need to monitor DBPs based on their contributions to integrated toxicity, regardless they are regulated or nonregulated. The concentrations of total organic chlorine remained stable under different conditions, while those of total organic bromine increased with increasing contact times, chlorine dosages, and temperatures, but with decreasing pH, indicating the changes of toxicity in chlorinated seawater compared to drinking water or groundwater. Changes of ultraviolet absorbance at 254 nm and fluorescence excitation emission matrix values are useful indicators for monitoring the concentrations of high molecular weight adsorbable organic bromine and total organic halogen under all operating conditions.
Collapse
Affiliation(s)
- Jiajian Liu
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Li Ling
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Chii Shang
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
44
|
Rougé V, Lee Y, von Gunten U, Allard S. Kinetic and mechanistic understanding of chlorite oxidation during chlorination: Optimization of ClO 2 pre-oxidation for disinfection byproduct control. WATER RESEARCH 2022; 220:118515. [PMID: 35700645 DOI: 10.1016/j.watres.2022.118515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/13/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Chlorine dioxide (ClO2) applications to drinking water are limited by the formation of chlorite (ClO2-) which is regulated in many countries. However, when ClO2 is used as a pre-oxidant, ClO2- can be oxidized by chlorine during subsequent disinfection. In this study, a kinetic model for the reaction of chlorine with ClO2- was developed to predict the fate of ClO2- during chlorine disinfection. The reaction of ClO2- with chlorine was found to be highly pH-dependent with formation of ClO3- and ClO2 in ultrapure water. In presence of dissolved organic matter (DOM), 60-70% of the ClO2- was transformed to ClO3- during chlorination, while the in situ regenerated ClO2 was quickly consumed by reaction with DOM. The remaining 30-40% of the ClO2- first reacted to ClO2 which then formed chlorine from the DOM-ClO2 reaction. Since only part of the ClO2- was transformed to ClO3-, the sum of the molar concentrations of oxychlorine species (ClO2- + ClO3-) decreased during chlorination. By kinetic modelling, the ClO2- concentration after 24 h of chlorination was accurately predicted in synthetic waters but was largely overestimated in natural waters, possibly due to a ClO2- decay enhanced by high concentrations of chloride and in situ formed bromine from bromide. Understanding the chlorine-ClO2- reaction mechanism and the corresponding kinetics allows to potentially apply higher ClO2 doses during the pre-oxidation step, thus improving disinfection byproduct mitigation while keeping ClO2-, and if required, ClO3- below the regulatory limits. In addition, ClO2 was demonstrated to efficiently degrade haloacetonitrile precursors, either when used as pre-oxidant or when regenerated in situ during chlorination.
Collapse
Affiliation(s)
- Valentin Rougé
- Department of Chemistry, Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Sébastien Allard
- Department of Chemistry, Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
45
|
Peterson ES, Johnson S, Shiokari S, Yu Y, Cook SM, Summers RS. Impacts of carbon-based advanced treatment processes on disinfection byproduct formation and speciation for potable reuse. WATER RESEARCH 2022; 220:118643. [PMID: 35667166 DOI: 10.1016/j.watres.2022.118643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
For the potable reuse of municipal wastewater effluent, carbon based advanced treatment (CBAT) using coagulation, ozonation, biofiltration and/or granular activated carbon (GAC) adsorption is a promising approach for controlling disinfection byproduct (DBP) formation. However, CBAT can also favor a shift in DBP formation to more toxic brominated DBP species. To protect public health, treatment-specific DBP formation and speciation trends need to be identified and understood. First, this study systematically evaluated the treatment of six wastewater effluents with four CBAT process trains (experimental n was 55) and measured DBP formation and speciation trends. Overall, CBAT decreased DBP formation by >90% and GAC preferentially removed highly-reactive effluent organic matter as indicated by lower yields of both highly-forming and highly-toxic classes of carbonaceous and nitrogenous DBPs. Since GAC treatment also induced systematic speciation changes by increasing the ratio of bromide to dissolved organic matter, the second part of this study focused on understanding the health impacts of DBP speciation changes on calculated additive toxicity (CAT). Based on the evaluation of 20 DBPs, measured using established methods, the CAT values from cyto- and genotoxicity metrics decreased by as much as 85% due to high levels of precursor removal by GAC. Expanding the evaluation to include 52 DBPs, measured using more extensive analytical methods, resulted in the same conclusions. This study also developed a "speciation potency" metric, that re-scales class-by-class speciation trends using toxic potency factors (e.g., cytotoxicity [LC50]). The observed shifts in DBP speciation after treatment increased the class-level toxic potency factors by up to a factor of 4; a greater amount of precursor removal is required for treatment to reduce toxicity, which was achieved with CBAT trains. This proposed approach of combining speciation potency with DBP yields enables evaluation of DBP-associated risk with easily measured surrogates (i.e., bromide and dissolved organic carbon [DOC]). By identifying and quantitatively comparing DBP formation and speciation trends over multiple wastewater effluents and treatment trains, this study demonstrates that CBAT can be a robust approach to DBP precursor removal for potable reuse.
Collapse
Affiliation(s)
- Eric S Peterson
- Environmental Engineering Program, University of Colorado Boulder, 428 UCB, Boulder, CO 80309, USA.
| | - Sierra Johnson
- Environmental Engineering Program, University of Colorado Boulder, 428 UCB, Boulder, CO 80309, USA
| | - Steven Shiokari
- Environmental Engineering Program, University of Colorado Boulder, 428 UCB, Boulder, CO 80309, USA
| | - Yun Yu
- Environmental Engineering Program, University of Colorado Boulder, 428 UCB, Boulder, CO 80309, USA
| | - Sherri M Cook
- Environmental Engineering Program, University of Colorado Boulder, 428 UCB, Boulder, CO 80309, USA
| | - R Scott Summers
- Environmental Engineering Program, University of Colorado Boulder, 428 UCB, Boulder, CO 80309, USA
| |
Collapse
|
46
|
Granger CO, Richardson SD. Do DBPs swim in salt water pools? Comparison of 60 DBPs formed by electrochemically generated chlorine vs. conventional chlorine. J Environ Sci (China) 2022; 117:232-241. [PMID: 35725075 DOI: 10.1016/j.jes.2022.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022]
Abstract
Disinfectants are added to swimming pools to kill harmful pathogens. Although liquid chlorine (sodium hypochlorite) is the most commonly used disinfectant, alternative disinfection techniques like electrochemically generated mixed oxidants or electrochemically generated chlorine, often referred to as salt water pools, are growing in popularity. However, these disinfectants react with natural organic matter and anthropogenic contaminants introduced to the pool water by swimmers to form disinfection byproducts (DBPs). DBPs have been linked to several adverse health effects, such as bladder cancer, adverse birth outcomes, and asthma. In this study, we quantified 60 DBPs using gas chromatography-mass spectrometry and assessed the calculated cytotoxicity and genotoxicity of an indoor community swimming pool before and after switching to a salt water pool with electrochemically generated chlorine. Interestingly, the total DBPs increased by 15% upon implementation of the salt water pool, but the calculated cytotoxicity and genotoxicity decreased by 45% and 15%, respectively. Predominant DBP classes formed were haloacetic acids, with trichloroacetic acid and dichloroacetic acid contributing 57% of the average total DBPs formed. Haloacetonitriles, haloacetic acids, and haloacetaldehydes were the primary drivers of calculated cytotoxicity, and haloacetic acids were the primary driver of calculated genotoxicity. Diiodoacetic acid, a highly toxic iodinated DBP, is reported for the first time in swimming pool water. Bromide impurities in sodium chloride used to electrochemically generate chlorine led to a 73% increase in brominated DBPs, primarily driven by bromochloroacetic acid. This study presents the most extensive DBP study to-date for salt water pools.
Collapse
Affiliation(s)
- Caroline O Granger
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC 29208, USA
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC 29208, USA.
| |
Collapse
|
47
|
Liu Y, Liu K, Plewa MJ, Karanfil T, Liu C. Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide. J Environ Sci (China) 2022; 117:151-160. [PMID: 35725067 DOI: 10.1016/j.jes.2022.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Algal blooms and wastewater effluents can introduce algal organic matter (AOM) and effluent organic matter (EfOM) into surface waters, respectively. In this study, the impact of bromide and iodide on the formation of halogenated disinfection byproducts (DBPs) during chlorination and chloramination from various types of dissolved organic matter (DOM, e.g., natural organic matter (NOM), AOM, and EfOM) were investigated based on the data collected from literature. In general, higher formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was observed in NOM than AOM and EfOM, indicating high reactivities of phenolic moieties with both chlorine and monochloramine. The formation of haloacetaldehydes (HALs), haloacetonitriles (HANs) and haloacetamides (HAMs) was much lower than THMs and HAAs. Increasing initial bromide concentrations increased the formation of THMs, HAAs, HANs, and HAMs, but not HALs. Bromine substitution factor (BSF) values of DBPs formed in chlorination decreased as specific ultraviolet absorbance (SUVA) increased. AOM favored the formation of iodinated THMs (I-THMs) during chloramination using preformed chloramines and chlorination-chloramination processes. Increasing prechlorination time can reduce the I-THM concentrations because of the conversion of iodide to iodate, but this increased the formation of chlorinated and brominated DBPs. In an analogous way, iodine substitution factor (ISF) values of I-THMs formed in chloramination decreased as SUVA values of DOM increased. Compared to chlorination, the formation of noniodinated DBPs is low in chloramination.
Collapse
Affiliation(s)
- Yunsi Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiang Liu
- Water Conservancy Development Research Center, Taihu Basin Authority, Ministry of Water Resources, Shanghai 200433, China
| | - Michael J Plewa
- Department of Crop Sciences, and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Chao Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Richardson SD. A catalyst for integrating analytical biology, analytical chemistry, and engineering to improve drinking water safety: The groundbreaking work of Dr. Michael Plewa. J Environ Sci (China) 2022; 117:6-9. [PMID: 35725090 DOI: 10.1016/j.jes.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
49
|
Mitch WA. Bridging boundaries: On the contributions of Dr. Michael Plewa to the disinfection byproduct field. J Environ Sci (China) 2022; 117:3-5. [PMID: 35725083 DOI: 10.1016/j.jes.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, California 94305, USA.
| |
Collapse
|
50
|
Wang Z, Liao Y, Li X, Shuang C, Pan Y, Li Y, Li A. Effect of ammonia on acute toxicity and disinfection byproducts formation during chlorination of secondary wastewater effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153916. [PMID: 35183634 DOI: 10.1016/j.scitotenv.2022.153916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Ammonia nitrogen (NH3-N) significantly affects the occurrence of disinfection byproducts (DBPs) and residual chlorine in chlorinated wastewater, thereby affecting the acute toxicity to aquatic organisms. In this paper, the formation of thirty-five halogenated DBPs and the changes in acute toxicity of luminescent bacteria and zebrafish embryos were evaluated after chlorination of seven secondary wastewater effluents with different NH3-N concentrations. Results showed that NH3-N significantly reduced the formation of most DBPs by 82-100%. The acute toxicity was enhanced after chlorination and increased linearly with increasing NH3-N concentration for luminescent bacteria (r = 0.986, p < 0.05) and zebrafish embryos (r = 0.972, p < 0.05) due to the coexistence of DBPs and monochloramine. According to the toxicity classification system of wastewater, the fitting results indicated that the toxicity level was acceptable for chlorinated wastewater with NH3-N concentration below 1.00 mg-N/L. DBPs might be the main toxicant to luminescent bacteria in the wastewater with low NH3-N concentrations (0.06-0.31 mg-N/L), which accounted for 68-97% of the toxicity contribution. By contrast, monochloramine contributed over 80% to the toxicity of luminescent bacteria and zebrafish embryos in the wastewater with high NH3-N concentrations (2.66-7.17 mg-N/L). Compared to chlorination, chlorine dioxide and ultraviolet disinfection unaffected by NH3-N could reduce acute toxicity by nearly 100%, primarily due to the lack of residual disinfectant. In view of the high toxicity caused by chlorination, chlorination-dechlorination or chlorine dioxide and UV disinfection are highly recommended for the treatment of wastewater with high NH3-N concentration.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yufeng Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362008, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362008, China.
| |
Collapse
|