1
|
Guo X, He Y, Zhou Y, Lai Y, Li M, Huang G, Chen B, Wang M. In situ purification of ammonium nitrogen wastewater in rare earth mine by native bacteria isolating fromoriginal mining area. BIORESOURCE TECHNOLOGY 2025; 418:131942. [PMID: 39643056 DOI: 10.1016/j.biortech.2024.131942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Ammonium sulfate ((NH4)2SO4) leaching method to extract rare earth elements (REEs) of mine has produced a large amount of NH4+-N-enriched wastewater derived from ore body, leading to many serious environmental pollution problems. This study was the first time to establish an in-situ treatment for real REEs wastewater outside and inside the ore body by an isolated indigenous microorganism. The results stated that Citrobacter sp. X-9 achieved the highest NH4+-N removal efficiency among the isolated six microbial strains. Moreover, the microbe to treat the REEs wastewater outside ore body gave the greatest NH4+-N removal efficiency under the optimized conditions in the Erlenmeyer flask (250-mL) and bioreactor (10-L). Furthermore, compared to the others' modes, the in-situ treatment by cyclic mode with Citrobacter sp. X-9 possessed superior performance in NH4+-N removal efficiency for wastewater inside of ore body, showing that the established in-situ treatment was the potential approach for REEs wastewater purification.
Collapse
Affiliation(s)
- Xu Guo
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- School of Food and Biological Engineering, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Yulin Lai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Ming Li
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment of China, Beijing 100006, China
| | - Guanglu Huang
- Longyan Rare Earth Development CO., LTD., Longyan 364000, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
2
|
Rojas-Villalta D, Rojas-Rodríguez D, Villanueva-Ilama M, Guillén-Watson R, Murillo-Vega F, Gómez-Espinoza O, Núñez-Montero K. Exploring Extremotolerant and Extremophilic Microalgae: New Frontiers in Sustainable Biotechnological Applications. BIOLOGY 2024; 13:712. [PMID: 39336139 PMCID: PMC11428398 DOI: 10.3390/biology13090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Exploring extremotolerant and extremophilic microalgae opens new frontiers in sustainable biotechnological applications. These microorganisms thrive in extreme environments and exhibit specialized metabolic pathways, making them valuable for various industries. The study focuses on the ecological adaptation and biotechnological potential of these microalgae, highlighting their ability to produce bioactive compounds under stress conditions. The literature reveals that extremophilic microalgae can significantly enhance biomass production, reduce contamination risks in large-scale systems, and produce valuable biomolecules such as carotenoids, lipids, and proteins. These insights suggest that extremophilic microalgae have promising applications in food, pharmaceutical, cosmetic, and biofuel industries, offering sustainable and efficient alternatives to traditional resources. The review concludes that further exploration and utilization of these unique microorganisms can lead to innovative and environmentally friendly solutions in biotechnology.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - David Rojas-Rodríguez
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Melany Villanueva-Ilama
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Rossy Guillén-Watson
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francinie Murillo-Vega
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Olman Gómez-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kattia Núñez-Montero
- Facultad Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| |
Collapse
|
3
|
Matsumura M, Asaoka S, Yoshida G, Ihara I. Enhanced growth of benthic microalgae by tablet from liquid dairy cattle manure-based anaerobic digestate. CHEMOSPHERE 2024; 363:142943. [PMID: 39059643 DOI: 10.1016/j.chemosphere.2024.142943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
An effective strategy for utilizing anaerobic digestates is required to promote biomass power generation. We developed an anaerobic digestate tablet using liquid dairy cattle manure derived from a small mesophilic anaerobic digester installed on a dairy farm. Anaerobic digestate tablets are intended for use in the fertilization of oligotrophic coastal seas to promote primary production. The purpose of this study was to evaluate (1) the dissolution behavior of nutrients from anaerobic digestate tablets and (2) the effect of the application of anaerobic digestate tablets on the growth of benthic microalgae using a culture experiment. Batch experiments were conducted to investigate the dissolution behavior of the nutrients. Cumulative amounts of dissolved inorganic nitrogen and phosphate in the anaerobic digestate tablet ranged from 110 to 28.9 μg g-1 after 28 days. The dissolved inorganic nitrogen in the anaerobic digestate tablet was mainly ammonium nitrogen and accounted for 92.4-96.9%, which is advantageous for the growth of microalgae. The growth curve of the benthic microalga Nitzchia longissima was monitored using f/2 medium added to the anaerobic digestate tablet. The growth of Nitzchia longissima was two orders of magnitude greater than that of the positive control. The enhanced growth of Nitzchia longissima by the anaerobic digestate tablet was considered a concomitant effect of moderate dissolution of ammonium nitrogen and high affinity for benthic microalgae. In conclusion, the anaerobic digestate tablets prepared in this study have the advantage of supplying nitrogen to benthic microalgae. This study proposes a new method for utilizing anaerobic digestates.
Collapse
Affiliation(s)
- Minori Matsumura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Satoshi Asaoka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| | - Gen Yoshida
- Graduated School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ikko Ihara
- Graduated School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
4
|
Singh P, Mohanty SS, Mohanty K. Comprehensive assessment of microalgal-based treatment processes for dairy wastewater. Front Bioeng Biotechnol 2024; 12:1425933. [PMID: 39165401 PMCID: PMC11333367 DOI: 10.3389/fbioe.2024.1425933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
The dairy industry is becoming one of the biggest sectors within the global food industry, and these industries use almost 34% of the water. The amount of water used is governed by the production process and the technologies employed in the plants. Consequently, the dairy industries generate almost 0.2-10 L of wastewater per liter of processed milk, which must be treated before being discharged into water bodies. The cultivation of microalgae in a mixotrophic regime using dairy wastewater enhances biomass growth, productivity, and the accumulation of value-added product. The generated biomass can be converted into biofuels, thus limiting the dependence on petroleum-based crude oil. To fulfill the algal biorefinery model, it is important to utilize every waste stream in a cascade loop. Additionally, the harvested water generated from algal biomass production can be recycled for further microalgal growth. Economic and sustainable wastewater management, along with proper reclamation of nutrients from dairy wastewater, is a promising approach to mitigate the problem of water scarcity. A bibliometric study revealing limited work on dairy wastewater treatment using microalgae for biofuel production. And, limited work is reported on the pretreatment of dairy wastewater via physicochemical methods before microalgal-based treatment. There are still significant gaps remains in large-scale cultivation processes. It is also crucial to discover robust strains that are highly compatible with the specific concentration of contaminants, as this will lead to increased yields and productivity for the targeted bio-product. Finally, research on reutilization of culture media in photobioreactor is necessary to augument the productivity of the entire process. Therefore, the incorporation of the microalgal biorefinery with the wastewater treatment concept has great potential for promoting ecological sustainability.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Satya Sundar Mohanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
5
|
Geng Y, Xiong Z, Yang L, Lian CA, Pavlostathis SG, Qiu Z, Chen H, Luo Q, Liu Y, Liu Z, Shao P, Zou JP, Jiang H, Luo S, Yu K, Luo X. Bidirectional Enhancement of Nitrogen Removal by Indigenous Synergetic Microalgal-Bacterial Consortia in Harsh Low-C/N Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5394-5404. [PMID: 38463002 DOI: 10.1021/acs.est.3c10322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Conventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.89 mg N L-1 h-1, 1.84-fold more efficient than a common microalgal-bacterial system. Metagenomics-based metabolic reconstruction revealed bidirectional microalgal-bacterial interactions. The presence of microalgae increased the abundance of bacterial N-related genes by 1.5- to 57-fold. Similarly, the presence of bacteria increased the abundance of microalgal N assimilation by 2.5- to 15.8-fold. Furthermore, nine bacterial species were isolated, and the bidirectional promotion of N removal by the microalgal-bacterial system was verified. The mechanism of microalgal N assimilation enhanced by indole-3-acetic acid was revealed. In addition, the bidirectional mode of the system ensured the scavenging of toxic byproducts from nitrate metabolism to maintain the stability of the system. Collectively, the bidirectional enhancement system of synergetic microalgae-bacteria was established as an effective N removal strategy to broaden the stable application of this system for the effective treatment of low C/N ratio wastewater.
Collapse
Affiliation(s)
- Yanni Geng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Chun-Ang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Houxing Chen
- ECO-ADVANCE CO., LED, Ganzhou, Jiangxi 341000, P. R. China
| | - Qingchun Luo
- ECO-ADVANCE CO., LED, Ganzhou, Jiangxi 341000, P. R. China
| | - Yuanqi Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Zhuochao Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Hualin Jiang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Shenglian Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
- School of Life Science, Jinggangshan University, Ji'an 343009, P. R. China
| |
Collapse
|
6
|
Han M, Xie P, Ren N, Ho SH. Cytoprotective alginate microcapsule serves as a shield for microalgal encapsulation defensing sulfamethoxazole threats and safeguarding nutrient recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133454. [PMID: 38198867 DOI: 10.1016/j.jhazmat.2024.133454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microalgal encapsulation technology is expected to broaden more possibilities for employing microalgae for upgrading conventional biological wastewater treatment. However, only limited and fragmented information is currently available on microalgal encapsulation and pollutant removal. It is ambiguous whether it hold potential for wastewater treatment. Particularly, it remains to be determined whether this technology can provide more possibilities in harsh sewage environments. Here, potential of encapsulated technology to recover nutrients from wastewater was examined, simultaneously compared with commonly adopted suspended system. Results indicate the encapsulated microalgal system showed outstanding advantages in nutrient recovery and defense against antibiotic threats. Moreover, by examining the cellular oxidative stress response and changes of the photosynthetic system, the encapsulated system exhibited potential cytoprotective advantages to microalgal cells for defensing antibiotic threats. Molecular dynamics simulation revealed that the differences among superficial aggregation between the nutrients' ions and molecular sulfamethoxazole on the cross-linked alginate microcapsule surface dominated the nutrient recovery and cytoprotective functions. Ultimately, the molecular nature of pollutants was found to be the most critical aspect for predicting application of this microalgal microcapsule. Cytoprotective systems created with alginate microcapsules can potentially handle more diverse threats with a single type of surface charge in their outermost layer.
Collapse
Affiliation(s)
- Meina Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
7
|
Ye M, Li Q, Li YY. Evaluation of anaerobic membrane bioreactor treating dairy processing wastewater: Elemental flow, bioenergy production and reduction of CO 2 emission. BIORESOURCE TECHNOLOGY 2023; 385:129342. [PMID: 37348569 DOI: 10.1016/j.biortech.2023.129342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
The management of dairy processing wastewater (DPW) must address water pollution while delivering renewable energy and recovering resources. A high-rate anaerobic membrane bioreactor (AnMBR) was investigated for treating DPW, and the system was evaluated in terms of elemental flow, nutrient recovery, energy balance, and reduction of CO2 emission. The AnMBR system was superior in terms of both methanogenic performance and efficiency of bioenergy recovery in the DPW treatment, with a high net energy potential of 51.4-53.2 kWh/m3. The theoretical economic values of the digestate (13.8 $/m3) and permeate (4.1 $/m3) were assessed according to nutrient transformation and price of mineral fertilizer. The total CO2 emission equivalent in the AnMBR was 44.7 kg CO2-eq/m3, with a significant reduction of 54.1 kg CO2-eq/m3 compared to the conventional process. The application of the AnMBR in the DPW treatment is a promising approach for the development of carbon neutrality and a circular economy.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qian Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
8
|
Li R, Fan X, Jiang Y, Wang R, Guo R, Zhang Y, Fu S. From anaerobic digestion to single cell protein synthesis: A promising route beyond biogas utilization. WATER RESEARCH 2023; 243:120417. [PMID: 37517149 DOI: 10.1016/j.watres.2023.120417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The accumulation of a large amount of organic solid waste and the lack of sufficient protein supply worldwide are two major challenges caused by rapid population growth. Anaerobic digestion is the main force of organic waste treatment, and the high-value utilization of its products (biogas and digestate) has been widely concerned. These products can be used as nutrients and energy sources for microorganisms such as microalgae, yeast, methane-oxidizing bacteria(MOB), and hydrogen-oxidizing bacteria(HOB) to produce single cell protein(SCP), which contributes to the achievement of sustainable development goals. This new model of energy conversion can construct a bioeconomic cycle from waste to nutritional products, which treats waste without additional carbon emissions and can harvest high-value biomass. Techno-economic analysis shows that the SCP from biogas and digestate has higher profit than biogas electricity generation, and its production cost is lower than the SCP using special raw materials as the substrate. In this review, the case of SCP-rich microorganisms using anaerobic digestion products for growth was investigated. Some of the challenges faced by the process and the latest developments were analyzed, and their potential economic and environmental value was verified.
Collapse
Affiliation(s)
- Rui Li
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - XiaoLei Fan
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - YuFeng Jiang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - RuoNan Wang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - RongBo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - ShanFei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| |
Collapse
|
9
|
Dai J, Zheng M, He Y, Zhou Y, Wang M, Chen B. Real-time response counterattack strategy of tolerant microalgae Chlorella vulgaris MBFJNU-1 in original swine wastewater and free ammonia. BIORESOURCE TECHNOLOGY 2023; 377:128945. [PMID: 36958682 DOI: 10.1016/j.biortech.2023.128945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
This work was the first time to systematically clarify the potential tolerance mechanism of an indigenous Chlorella vulgaris MBFJNU-1 towards the free ammonia (FA) during the original swine wastewater (OSW) treatment by transcriptome analysis using C. vulgaris UETX395 as the control group. The obtained results showed that C. vulgaris MBFJNU-1 was found to be more resistant to the high levels of FA (115 mg/L) and OSW in comparison to C. vulgaris UETX395 (38 mg/L). Moreover, the transcriptomic results stated that some key pathways from arginine biosynthesis, electron generation and transmission, ATP synthesis in chloroplasts, and glutathione synthesis of C. vulgaris MBFJNU-1 were greatly related with the OSW and FA. Additionally, C. vulgaris MBFJNU-1 in OSW and FA performed similar results in the common differentially expressed genes from these mentioned pathways. Overall, these obtained results deliver essential details in microalgal biotechnology to treat swine wastewater and high free ammonia wastewater.
Collapse
Affiliation(s)
- Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
10
|
Xu H, Tang Z, Yang D, Dai X, Chen H. Enhanced growth and auto-flocculation of Scenedesmus quadricauda in anaerobic digestate using high light intensity and nanosilica: A biomineralization-inspired strategy. WATER RESEARCH 2023; 235:119893. [PMID: 36989808 DOI: 10.1016/j.watres.2023.119893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Coupling municipal anaerobic digestate (MAD) treatments with microalgal cultivation can concomitantly achieve nutrient removal and microalgal bioenergy production. However, the high cost caused by dilution water and microalgal harvesting is a great challenge. In this study, Scenedesmus quadricauda was screened as the most appropriate algae strain due to its potential for growth and auto-flocculation, and the MAD diluted 5-fold with WWTP effluent was demonstrated as an ideal medium for S. quadricauda growth. Moreover, inspired by naturally generated silica shells of diatoms, a low-cost and biomimetic auto-flocculation strategy that combined high light intensity induction and microalgal silicification was proposed to accelerate the auto-flocculation process. Compared with low light intensity groups, this strategy imparted diatom-like features to S. quadricauda cells, and contributed to 3.07-fold higher auto-flocculation efficiency within 30 min. It was attributed to the fact that the high light intensity of 150 μmol·m - 2·s - 1 stimulated the extracellular polymeric substances (EPS) secretion and induced the variation in property and composition of EPS, especially the protein secondary structures, which allowed silica nanoparticles to spontaneously attach onto S. quadricauda cells in the presence of viscous EPS. Furthermore, this strategy significantly increased microalgal biomass yield to a dry weight of 1.37 g·L - 1, accompanied by 93.78%, 96.39% and 91.36% removals of NH4+-N, TP, and COD, respectively. The productivity of valuable by-products, including lipid, carbohydrate, protein, and pigment, reached 56.30, 101.35, 30.39 and 11.28 mg·L - 1·d - 1, respectively. Overall, this study supplies a novel approach for low-cost microalgal bioenergy production from MAD and energy-efficient microalgae harvest by auto-flocculation.
Collapse
Affiliation(s)
- Haolian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhenzhen Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hongbin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Kusmayadi A, Huang CY, Kit Leong Y, Lu PH, Yen HW, Lee DJ, Chang JS. Integration of microalgae cultivation and anaerobic co-digestion with dairy wastewater to enhance bioenergy and biochemicals production. BIORESOURCE TECHNOLOGY 2023; 376:128858. [PMID: 36907225 DOI: 10.1016/j.biortech.2023.128858] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
A sequential anaerobic digestion and phycoremediation process was employed to recover nutrients and remove pollutants from dairy wastewater (DW), while simultaneously producing biomethane and biochemicals. Anaerobic digestion of 100% DW achieved a methane content and production rate of 53.7% and 0.17 L/L/d, respectively. This was accompanied by the removal of 65.5% chemical oxygen demand (COD), 86% total solid (TS), and 92.8% volatile fatty acids (VFAs). The anaerobic digestate was then used to grow Chlorella sorokiniana SU-1. Using 25% diluted digestate as the medium, SU-1 could reach 4.64 g/L biomass concentration, with total nitrogen (TN), total phosphorus (TP) and COD removal efficiencies of 77.6%, 87.1% and 70.4%, respectively. The obtained microalgal biomass (contained 38.5% carbohydrates, 24.9% proteins, 8.8% lipids) was used to co-digest with DW, resulting in good methane production performance. Co-digestion with 25% (w/v) algal biomass obtained a higher CH4 content (65.2%) and production rate (0.16 L/L/d) than other ratios.
Collapse
Affiliation(s)
- Adi Kusmayadi
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Chi-Yu Huang
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Po-Han Lu
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
12
|
Han M, Zhang C, Ho SH. Immobilized microalgal system: An achievable idea for upgrading current microalgal wastewater treatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 14:100227. [PMID: 36560958 PMCID: PMC9763361 DOI: 10.1016/j.ese.2022.100227] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/26/2023]
Abstract
Efficient wastewater treatment accompanied by sustainable "nutrients/pollutants waste-wastewater-resources/energy nexus" management is acting as a prominent and urgent global issue since severe pollution has occurred increasingly. Diverting wastes from wastewater into the value-added microalgal-biomass stream is a promising goal using biological wastewater treatment technologies. This review proposed an idea of upgrading the current microalgal wastewater treatment by using immobilized microalgal system. Firstly, a systematic analysis of microalgal immobilization technology is displayed through an in-depth discussion on why using immobilized microalgae for wastewater treatment. Subsequently, the main technical approaches employed for microalgal immobilization and pollutant removal mechanisms by immobilized microalgae are summarized. Furthermore, from high-tech technologies to promote large-scale production and application potentials in diverse wastewater and bioreactors to downstream applications lead upgradation closer, the feasibility of upgrading existing microalgal wastewater treatment into immobilized microalgal systems is thoroughly discussed. Eventually, several research directions are proposed toward the future immobilized microalgal system for microalgal wastewater treatment upgrading. Together, it appears that using immobilization for further upgrading the microalgae-based wastewater treatment can be recognized as an achievable alternative to make microalgal wastewater treatment more realistic. The information and perspectives provided in this review also offer a feasible reference for upgrading conventional microalgae-based wastewater treatment.
Collapse
|
13
|
Glover CJ, McDonnell A, Rollins KS, Hiibel SR, Cornejo PK. Assessing the environmental impact of resource recovery from dairy manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117150. [PMID: 36603269 DOI: 10.1016/j.jenvman.2022.117150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Manure management is a major contributor to environmental impacts from large-scale dairy production. In this study, technologies for recovering energy, nutrients, and water from dairy manure were evaluated using life cycle assessment (LCA) and compared to conventional practices on California dairy farms. Six scenarios were evaluated: conventional manure management practices, anaerobic digestion (AD) for biogas recovery, and four scenarios for nutrients, energy, and water integrated recovery, called NEWIR. The NEWIR system consists of hydrothermal carbonization (HTC) for energy recovery via hydrochar, algae cultivation in the HTC aqueous product for nutrient recovery and production of protein-rich cattle feed, and water recovery from algae pond effluent via membrane distillation. Four NEWIR scenarios were evaluated, each with a different species of algae. Based on the results of the LCA, AD improves GHG emissions relative to conventional practices by 82%, but has similar eutrophication impacts, posing similar concerns for nutrient management as current practices. Results for the NEWIR system are highly dependent on the algae species used. Three of the four species evaluated (Chlamydomonas reinhardtii, Chlorella vulgaris, and Scenedesmus obliquus) improve GHG emissions by 420-500 kg CO2-eq. per functional unit, while net water consumption is increased by approximately 75% over AD and conventional practices Spirulina maxima requires more water and chemical inputs for cultivation than the other species, resulting in higher water use (21 times higher than baseline), though GHG emissions are still reduced by 85 kg CO2-eq. per functional unit relative to conventional practices. All NEWIR scenarios improve eutrophication impacts relative to AD and conventional practices by 16-46% for marine eutrophication and 18-99% for freshwater eutrophication, depending on the algae species used. The results suggest integrated resource recovery through NEWIR is a promising treatment method for manure to mitigate GHG emissions and improve nutrient management on large-scale farms. In addition, carbon and nutrient trading policies are discussed in relation to resource recovery technologies and their potential to incentivize producers to recover products from dairy manure.
Collapse
Affiliation(s)
- Callan J Glover
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV, USA.
| | - Alyssa McDonnell
- Department of Agricultural and Resource Economics, University of Connecticut, Storrs, CT, USA.
| | - Kimberly S Rollins
- Department of Agricultural and Resource Economics, University of Connecticut, Storrs, CT, USA.
| | - Sage R Hiibel
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV, USA.
| | - Pablo K Cornejo
- Civil Engineering Department, California State University, Chico, Chico, CA, USA.
| |
Collapse
|
14
|
Liu Z, Cui D, Liu Y, Wang H, Yang L, Chen H, Qiu G, Xiong Z, Shao P, Luo X. Enhanced ammonia nitrogen removal from actual rare earth element tailings (REEs) wastewater by microalgae-bacteria symbiosis system (MBS): Ratio optimization of microalgae to bacteria and mechanism analysis. BIORESOURCE TECHNOLOGY 2023; 367:128304. [PMID: 36370947 DOI: 10.1016/j.biortech.2022.128304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microalgae-bacteria symbiosis system (MBS) appear to be a promising way for treating the rare earth elements (REEs) wastewater due to the natural symbiotic interactions between microalgae and bacteria. Herein, we investigated the effect of different inoculation ratios of microalgae and bacteria including 3:1 (MB_1), 1:1 (MB_2) and 1:3 (MB_3) on NH4+-N removal from REEs wastewater and analyzed the corresponding biological mechanism. The NH4+-N removal rate with MB_3 reached 17.69 ± 0.45 mg NH4+-N/L d-1, which was 2.58 times higher than that in single microalgae system. The results were further verified in continuous feeding photobioreactors and kept stable for 100 days. Metagenomic analysis revealed that the abundance of genes related to microalgae assimilation increased by 14 %-50 % in answer to photosynthesis and NH4+-N absorption, while that related to nitrification apparently dropped, indicating that MBS was a sustainable method capable of enhancing NH4+-N removal from REEs wastewater.
Collapse
Affiliation(s)
- Zhuochao Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Yuanqi Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Haiyu Wang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | | | - Genping Qiu
- ECO-ADVANCE CO., LED, Jiangxi 341000, PR China
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
15
|
Palafox-Sola MF, Yebra-Montes C, Orozco-Nunnelly DA, Carrillo-Nieves D, González-López ME, Gradilla-Hernández MS. Modeling growth kinetics and community interactions in microalgal cultures for bioremediation of anaerobically digested swine wastewater. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. FERMENTATION 2022. [DOI: 10.3390/fermentation8120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recycling bioresources is the only way to sustainably meet a growing world population’s food and energy needs. One of the ways to do so is by using agro-industry wastewater to cultivate microalgae. While the industrial production of microalgae requires large volumes of water, existing agro-industry processes generate large volumes of wastewater with eutrophicating nutrients and organic carbon that must be removed before recycling the water back into the environment. Coupling these two processes can benefit the flourishing microalgal industry, which requires water, and the agro-industry, which could gain extra revenue by converting a waste stream into a bioproduct. Microalgal biomass can be used to produce energy, nutritional biomass, and specialty products. However, there are challenges to establishing stable and circular processes, from microalgae selection and adaptation to pretreating and reclaiming energy from residues. This review discusses the potential of agro-industry residues for microalgal production, with a particular interest in the composition and the use of important primary (raw) and secondary (digestate) effluents generated in large volumes: sugarcane vinasse, palm oil mill effluent, cassava processing waster, abattoir wastewater, dairy processing wastewater, and aquaculture wastewater. It also overviews recent examples of microalgae production in residues and aspects of process integration and possible products, avoiding xenobiotics and heavy metal recycling. As virtually all agro-industries have boilers emitting CO2 that microalgae can use, and many industries could benefit from anaerobic digestion to reclaim energy from the effluents before microalgal cultivation, the use of gaseous effluents is also discussed in the text.
Collapse
|
17
|
Tan XB, Zhang YL, Zhao XC, Yang LB, Yangwang SC, Zou Y, Lu JM. Anaerobic digestates grown oleaginous microalgae for pollutants removal and lipids production. CHEMOSPHERE 2022; 308:136177. [PMID: 36037939 DOI: 10.1016/j.chemosphere.2022.136177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/26/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestates were potential mediums for cultivating oleaginous microalgae, but their various components brought uncertainties for aglal growth and lipids production. In this study, three microalgae strains were tested to grow on four typical anaerobic digestates. The results showed that anaerobic food wastewater was an optimal medium for C. pyrenoidosa and S. obliquus culture (N. oleoabundanst cannot survive), achieving the highest biomass (2.15-2.32 g L-1) and lipids production (20.6-32.5 mg L-1·d-1). In contrast, three microalgae strains could grow suboptimally in anaerobic municipal (0.79-0.95 g L-1) and toilet (0.92-1.40 g L-1) wastewater, but showed poor performances in anaerobic swine wastewater. The growth of microalgae removed 40.9-63.4% of TOC, 83.7-96.3% of NH4+-N and 70.3-89.4% of TP in the three ADs. In addition, it was unfortunately found that the lipids content and saturation degree in fatty acids significantly decreased in ADs with sufficient nutrients. It suggests that some measures should be taken to balance biomass, lipids production and quality for cultivating microalgae in anaerobic digestates.
Collapse
Affiliation(s)
- Xiao-Bo Tan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China.
| | - Ya-Lei Zhang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xian-Chao Zhao
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Li-Bin Yang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shun-Cheng Yangwang
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Yue Zou
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Jue-Ming Lu
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| |
Collapse
|
18
|
Simultaneous nutrients removal and bio-compounds production by cultivating Chlorella sorokiniana SU-1 with unsterilized anaerobic digestate of dairy wastewater. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Advanced treatment of food processing effluent by indigenous microalgae-bacteria consortia: Population dynamics and enhanced nitrogen uptake. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Zhao Z, Yang H, Feng Z, Huo Y, Fu L, Zhou D. Role of naphthaleneacetic acid in the degradation of bisphenol A and wastewater treatment by microalgae: Enhancement and signaling. CHEMOSPHERE 2022; 307:135829. [PMID: 35948092 DOI: 10.1016/j.chemosphere.2022.135829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Coupling microalgae cultivation with wastewater treatment is a promising environmentally sustainable development strategy. However, toxics such as Bisphenol A (BPA) in wastewater damage microalgae cells and reduces bioresources production. Phytohormone regulation has the potential to solve this issue. However, phytohormone research is still in its infancy. In this work, 0.2 μM naphthyl acetic acid (NAA) significantly enhanced Chlorella vulgaris BPA detoxification by 127.3% and Chlorella biomass production by 46.4%. NAA helps Chlorella convert bisphenol A into small non-toxic intermediates by enhancing the expression of associated enzymes. Simultaneously, NAA promoted carbon fixation and photosynthetic metabolism. Activation of the mitogen-activated protein kinase (MAPK) pathway strengthened the downstream antioxidant system while improving photosynthesis and intracellular starch and lipid synthesis. Carbohydrates, pigment, and lipid production was significantly enhanced by 20.0%, 46.9%, and 21.8%, respectively. A new insight is provided into how phytohormones may increase microalgae in wastewater's bioresource transformation and toxicity resistance.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Huiwen Yang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhixuan Feng
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yang Huo
- College of Physics, Northeast Normal University, Changchun, 130117, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
21
|
Oliveira CYB, Jacob A, Nader C, Oliveira CDL, Matos ÂP, Araújo ES, Shabnam N, Ashok B, Gálvez AO. An overview on microalgae as renewable resources for meeting sustainable development goals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115897. [PMID: 35947909 DOI: 10.1016/j.jenvman.2022.115897] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 05/27/2023]
Abstract
The increased demands and dependence on depleted oil reserves, accompanied by global warming and climate change have driven the world to explore and develop new strategies for global sustainable development. Among sustainable biomass sources, microalgae represent a promising alternative to fossil fuel and can contribute to the achievement of important Sustainable Development Goals (SDGs). This article has reviewed the various applications of microalgal biomass that includes (i) the use in aquaculture and its sustainability; (ii) commercial value and emerging extraction strategies of carotenoids; (iii) biofuels from microalgae and their application in internal combustion engines; (iv) the use and reuse of water in microalgae cultivation; and (v) microalgae biotechnology as a key factor to assist SDGs. The future prospects and challenges on the microalgae circular bio economy, issues with regard to the scale-up and water demand in microalgae cultivation are also highlighted.
Collapse
Affiliation(s)
- Carlos Yure B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil.
| | - Ashwin Jacob
- School of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | - Camila Nader
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cicero Diogo L Oliveira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Ângelo P Matos
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Evando S Araújo
- Grupo de Pesquisa em Aplicações de Eletrofiação e Nanotecnologia (GPEA-Nano), Universidade Federal do Vale do São Francisco, Juazeiro, Brazil
| | - Nisha Shabnam
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Czech Republic
| | - Bragadeshwaran Ashok
- Division of Thermal and Automotive, Vellore Institute of Technology, Vellore, India
| | - Alfredo O Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
22
|
Mahmoud RH, Wang Z, He Z. Production of algal biomass on electrochemically recovered nutrients from anaerobic digestion centrate. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Zhou Y, He Y, Zhou Z, Xiao X, Wang M, Chen B. A newly isolated microalga Chlamydomonas sp. YC to efficiently remove ammonium nitrogen of rare earth elements wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115284. [PMID: 35584596 DOI: 10.1016/j.jenvman.2022.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to establish a practical approach to remove ammonium nitrogen of rare earth elements (REEs) wastewater by an indigenous photoautotrophic microalga. Firstly, a new microalgal strain was successfully isolated from REEs wastewater and identified as Chlamydomonas sp. (named Chlamydomonas sp. YC). The obtained results showed that microalga could completely remove the NH4+-N of 10% REEs wastewater after 10 days of cultivation; however, the highest NH4+-N removal rate was attained by microalga to treat undiluted REEs wastewater. Then, three cultivation modes including batch, semi-continuous and continuous cultivation methods were developed to evaluate the ability of NH4+-N removal rate by this microalga to treat diluted (10%) and undiluted REEs wastewater. It was found that, Chlamydomonas sp. YC exhibited superior performance towards NH4+-N removal rates (32.75-61.05 mg/(L·d)) by semi-continuous and continuous processes for the treatments of 10% and undiluted REEs wastewater in comparison to the results (19.50-30.38 mg/(L·d) by batch process. Interestingly, under the same treatment conditions, among the three cultivation modes, microalga exhibited the highest removal rates of NH4+-N in undiluted REEs wastewater by semi-continuous (61.05 mg/(L·d)) and continuous (57.10 mg/(L·d) processes. In term of the biochemical analysis, microalgal biomass obtained from the wastewater treatment had 35.40-44.40% carbohydrate and 4.97-6.03% lipid, which could be potential ingredients for sustainable biofuels production. And the highest carbohydrate and lipid productivities attained by Chlamydomonas sp. YC in the continuous mode were 226.36 mg/(L·d) and 32.98 mg/(L·d), respectively. Taken together, the established processes mediated with Chlamydomonas sp. YC via continuous cultivation was the great promising approaches to efficiently remove NH4+-N of REEs wastewater and produce valuable biomass for sustainable and renewable biofuels in a simultaneous manner.
Collapse
Affiliation(s)
- Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Zhihua Zhou
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Xuehua Xiao
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
24
|
Chen Z, Qiu S, Li M, Zhou D, Ge S. Instant Inhibition and Subsequent Self-Adaptation of Chlorella sp. Toward Free Ammonia Shock in Wastewater: Physiological and Genetic Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9641-9650. [PMID: 35737736 DOI: 10.1021/acs.est.1c08001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Free ammonia (FA) has been recently demonstrated as the primary stress factor suppressing microalgal activities in high-ammonium wastewater. However, its inhibition mechanism and microalgal self-adaptive regulations remain unknown. This study revealed an initial inhibition and subsequent self-adaptation of a wastewater-indigenous Chlorella sp. exposed to FA shock. Mutual physiological and transcriptome analysis indicated that genetic information processing, photosynthesis, and nutrient metabolism were the most influenced metabolic processes. Specifically, for the inhibition behavior, DNA damage was indicated by the significantly up-regulated related genes, leading to the activation of cell cycle checkpoints, programmed apoptosis, and suppressed microalgal growth; FA shock inhibited the photosynthetic activities including both light and dark reactions and photoprotection through non-photochemical quenching; ammonium uptake was also suppressed with the inhibited glutamine synthetase/glutamine α-oxoglutarate aminotransferase cycle and the inactivated glutamate dehydrogenase pathway. With respect to microalgal self-adaptation, DNA damage possibly enhanced overall cell viability through reprogramming the cell fate; recovered nutrient uptake provided substances for self-adaptation activities including amino acid biosynthesis, energy production and storage, and genetic information processing; elevated light reactions further promoted self-adaptation through photodamage repair, photoprotection, and antioxidant systems. These findings enrich our knowledge of microalgal molecular responses to FA shock, facilitating the development of engineering optimization strategies for the microalgal wastewater bioremediation system.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Di Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| |
Collapse
|
25
|
Chen Z, Xie Y, Qiu S, Li M, Yuan W, Ge S. Granular indigenous microalgal-bacterial consortium for wastewater treatment: Establishment strategy, functional microorganism, nutrient removal, and influencing factor. BIORESOURCE TECHNOLOGY 2022; 353:127130. [PMID: 35398536 DOI: 10.1016/j.biortech.2022.127130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Granular indigenous microalgal-bacterial consortium (G-IMBC) system integrates the advantages of the MBC and granular activated sludge technologies, also with superior microalgal wastewater adaptation capacity. In this review, the concept of IMBC was firstly described, followed by its establishment and acclimation strategies. Characteristics and advantages of G-IMBC system compared to other IMBC systems (i.e., attached and floc IMBC systems) were then introduced. Moreover, the involved functional microorganisms and their interactions, as well as nutrient removal mechanisms were systematically and critically reviewed. Finally, the influencing factors including wastewater characteristics and operation factors were discussed. This study aims to provide a comprehensive up-to-date summary of the G-IMBC system for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Yue Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Wenqi Yuan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
26
|
Wang C, Liu J, Xu X, Zhu L. Response of methanogenic granules enhanced by magnetite to ammonia stress. WATER RESEARCH 2022; 212:118123. [PMID: 35121418 DOI: 10.1016/j.watres.2022.118123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Excessive ammonia has an inhibitory effect on anaerobic granular sludge (AnGS) when treating industrial wastewater with high concentration of ammonia and organic matters. The addition of conductive materials has been widely reported to improve the AnGS activity, which has the potential to alleviate the ammonia inhibition. In this study, the addition of magnetite was carried out to enhance the activity of AnGS in UASB reactor, then the response of AnGS to different ammonia levels was investigated. Results showed that magnetite facilitated the enrichment of Methanosaeta and Clostridium sensu stricto 1. Under the ammonia stress (up to 5 g TAN/L), it was interesting that Methanosaeta was better retained (abundance of 45.8%), and the abundance of ammonia-resistant Clostridium sensu stricto 1 increased to 34.3% in presence of magnetite. RT-qPCR analysis revealed that Methanosaeta could maintain metabolically active for counteracting the ammonia inhibition along with the higher transcription of genes encoding for CO2-dependent pathway. The electron transport activity and ATP content of AnGS were 1.25-2.12 and 1.23-2.56 folds higher than those in the control group, respectively. In addition, the AnGS could maintain the stability of structure because Methanosaeta was the skeleton of AnGS. As a result, the analysis of enzyme activity showed that the overall methanogenic metabolism was more active, thus ensured the effective operation of UASB reactor. This study provided the scientific understanding about the role of magnetite to alleviate the ammonia inhibition, and had important implications for stable treatment and recycling of industrial wastewater.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jieyi Liu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China.
| |
Collapse
|
27
|
Kusmayadi A, Lu PH, Huang CY, Leong YK, Yen HW, Chang JS. Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass. CHEMOSPHERE 2022; 291:133057. [PMID: 34838828 DOI: 10.1016/j.chemosphere.2021.133057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Utilizing wastewaters as feedstock for microalgal cultivation has the dual benefits of water-saving and low nutrient costs, with simultaneous remediation of pollutants and generation of value-added biochemical products. This study employed two different strategies to treat raw dairy wastewaters with moderate and high chemical oxygen demand (COD) levels. For moderate-COD dairy wastewater, the wastewater was directly utilized as feedstock for algal cultivation, in which the effects of wastewater dilution ratios and algal inoculum sizes were investigated. The results show that the microalga strain used (Chlorella sorokiniana SU-1) was capable of obtaining a high biomass concentration of 3.2 ± 0.1 g/L, accompanied by 86.8 ± 6%, 94.6 ± 3%, and 80.7 ± 1%, removal of COD, total phosphorus (TP) and total nitrogen (TN), respectively. Meanwhile, the obtained microalgal biomass has lipids content of up to 12.0 ± 0.7% at a wastewater dilution ratio of 50% and an inoculum size of 2 g/L. For high-COD dairy wastewater, an integrated process of anaerobic digestion and microalgal phycoremediation was employed, and the effect of inoculum sizes was also studied. The inoculum size of 2 g/L gave highest biomass production of 4.25 ± 0.10 g/L with over 93.0 ± 2.0% removal of COD, TP, and TN. The harvested microalgal biomass has lipids and protein content of 12.5 ± 2.2% and 18.0 ± 2.2%, respectively. The present study demonstrated potential microalgal phycoremediation strategies for the efficient COD removal and nutrients recovery from dairy wastewater of different COD levels with simultaneous production of microalgal biomass which contains valuable components, such as protein and lipids.
Collapse
Affiliation(s)
- Adi Kusmayadi
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Po-Han Lu
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan
| | - Chi-Yu Huang
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan.
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
28
|
Melo JM, Ribeiro MR, Telles TS, Amaral HF, Andrade DS. Microalgae cultivation in wastewater from agricultural industries to benefit next generation of bioremediation: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22708-22720. [PMID: 34797540 DOI: 10.1007/s11356-021-17427-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to provide a bibliometric analysis and mapping of existing scientific papers, focusing on microalgae cultivation coupled with biomass production and bioremediation of wastewater from agricultural industries, including cassava, dairy, and coffee. Using the Web of Science (WoS) database for the period 1996-2021, a search was performed using a keyword strategy, aiming at segregating the papers in groups. For the first search step, the keywords "wastewater treatment", AND "microalgae", AND "cassava" OR "dairy" OR "coffee" were used, resulting in 59 papers. For the second step, the keywords "wastewater treatment" AND "biomass productivity" AND "microalgae" AND "economic viability" OR "environmental impacts" were used, which resulted in 34 articles. In these papers, keywords such as "carbon dioxide biofixation" and "removal of nutrients by the production of biomass by microalgae" followed by "environmental and economic impacts" were highlighted. Some of these papers presented an analysis of the economic feasibility of the process, which reveal the state-of-the-art setup required to make the cultivation of microalgae economically viable. Researches focusing on the efficiency of microalgae biomass harvesting are needed to improve the integration of microalgae production in industrial eco-parks using wastewater to achieve the global goal of bioremediation and clean alternatives for renewable energy generation.
Collapse
Affiliation(s)
- Jessica Muniz Melo
- Instituto de Desenvolvimento Rural do Paraná - IAPAR-EMATER, Rod Celso Garcia Cid, km 375, P. O. Box 1030, Londrina, Paraná, Zip Code 86047-902, Brazil
| | - Marina Ronchesel Ribeiro
- Instituto de Desenvolvimento Rural do Paraná - IAPAR-EMATER, Rod Celso Garcia Cid, km 375, P. O. Box 1030, Londrina, Paraná, Zip Code 86047-902, Brazil
| | - Tiago Santos Telles
- Instituto de Desenvolvimento Rural do Paraná - IAPAR-EMATER, Rod Celso Garcia Cid, km 375, P. O. Box 1030, Londrina, Paraná, Zip Code 86047-902, Brazil
| | | | - Diva Souza Andrade
- Instituto de Desenvolvimento Rural do Paraná - IAPAR-EMATER, Rod Celso Garcia Cid, km 375, P. O. Box 1030, Londrina, Paraná, Zip Code 86047-902, Brazil.
| |
Collapse
|
29
|
Geng Y, Cui D, Yang L, Xiong Z, Pavlostathis SG, Shao P, Zhang Y, Luo X, Luo S. Resourceful treatment of harsh high-nitrogen rare earth element tailings (REEs) wastewater by carbonate activated Chlorococcum sp. microalgae. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127000. [PMID: 34461547 DOI: 10.1016/j.jhazmat.2021.127000] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The discharge of rare earth element (REE) tailings wastewater results in serious ecological deterioration and health risk, due to high ammonia nitrogen, and strong acidity. The low C/N ratio makes it recalcitrant to biodegradation. Recently it has been shown that microalgal technology has a promising potential for the simultaneous harsh wastewater treatment and resource recovery. However, the low nitrogen removal rate and less biomass of microalgae restricted its development. In this work, Chlorococcum sp. was successfully isolated from the rare earth mine effluent. The microalgae was capable of enhancing nitrogen contaminants removal from REEs wastewater due to the carbonate addition, which simulated the activity increase of carbonic anhydrase (CA). The total inorganic nitrogen (TIN) removal rate reached 4.45 mg/L h-1, which compared to other microalgal species, the nitrogen removal rate and biomass yield were 7.8- and 4.9-fold higher, respectively. Notably, high lipid contents (mainly triglycerides, 43.85% of dry weight) and a high biomass yield were obtained. Meanwhile, the microalgae had an excellent settleability attributed to higher extracellular polymeric substance (EPS) formation, leading to easier resource harvest. These results were further confirmed in a continuous-flow photobioreactor with a stable operation for more than 30 days, indicating its potential for application.
Collapse
Affiliation(s)
- Yanni Geng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yakun Zhang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Shenglian Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
30
|
Maurya R, Zhu X, Valverde-Pérez B, Ravi Kiran B, General T, Sharma S, Kumar Sharma A, Thomsen M, Venkata Mohan S, Mohanty K, Angelidaki I. Advances in microalgal research for valorization of industrial wastewater. BIORESOURCE TECHNOLOGY 2022; 343:126128. [PMID: 34655786 DOI: 10.1016/j.biortech.2021.126128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
This review article focuses on recent updates on remediation of industrial wastewater (IWW) through microalgae cultivation. These include how adding additional supplements of nutrient to some specific IWWs lacking adequate nutrients improving the microalgae growth and remediation simultaneously. Various pretreatments strategy recently employed for IWWs treatment other than dealing with microalgae was discussed. Various nutrient-rich IWW could be utilized directly with additional dilution, supplement of nutrients and without any pretreatment. Recent advances in various approaches and new tools used for cultivation of microalgae on IWW such as two-step cultivation, pre-acclimatization, novel microalgal-bioelectrical systems, integrated catalytic intense pulse-light process, sequencing batch reactor, use of old stabilized algal-bacterial consortium, immobilized microalgae cells, microalgal bacterial membrane photobioreactor, low-intensity magnetic field, BIO_ALGAE simulation tool, etc. are discussed. In addition, biorefinery of microalgal biomass grown on IWW and its end-use applications are reviewed.
Collapse
Affiliation(s)
- Rahulkumar Maurya
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| | - Boda Ravi Kiran
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Thiyam General
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Suvigya Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Anil Kumar Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Marianne Thomsen
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Postbox 358 Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| |
Collapse
|
31
|
Gara-Ali M, Zili F, Hosni K, Ben Ouada H, Ben-Mahrez K. Lipophilic extracts of the thermophilic cyanobacterium Leptolyngbya sp. and chlorophyte Graesiella sp. and their potential use as food and anticancer agents. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Liu L, Cao L, Niu H, Wang J. Zinc Metal-Organic Framework Growing on the Surface of Fruit Peels and Its Photocatalytic Activity. ACS OMEGA 2021; 6:10187-10195. [PMID: 34056173 PMCID: PMC8153657 DOI: 10.1021/acsomega.1c00466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The development of water treatment materials using environmentally friendly natural biomasses as substitutes plays an increasingly important role in environmental protection. Zeolitic imidazolate framework-8 (ZIF-8) is often used for the catalytic degradation of dye wastewater, but due to its small particle size, its disadvantage of easy agglomeration prevents it from being fully functional. Herein, we report an efficient method for synthesizing biomasses/ZIF-8 using four different fruit peels as carriers. ZIF-8 nanoparticles are in-situ grown uniformly on their surface. The Brunauer-Emmett-Teller surface area of shaddock peel/ZIF-8 was found to be 752.15 m2g-1. After catalytic activity comparison, the loose shaddock peel/ZIF-8 showed the fastest and most significant degradation efficiency of 94% in methylene blue aqueous solution and could be used multiple times through a simple washing process.
Collapse
|