1
|
Lakey PSJ, Shiraiwa M. Kinetic multilayer models for surface chemistry in indoor environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39526590 DOI: 10.1039/d4em00549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Multiphase interactions and chemical reactions at indoor surfaces are of particular importance due to their impact on air quality in indoor environments with high surface to volume ratios. Kinetic multilayer models are a powerful tool to simulate various gas-surface interactions including partitioning, diffusion and multiphase chemistry of indoor compounds by treating mass transport and chemical reactions in a number of model layers in the gas and condensed phases with a flux-based approach. We have developed a series of kinetic multilayer models that have been applied to describe multiphase chemistry and interactions indoors. They include the K2-SURF model treating the reversible adsorption of volatile organic compounds on surfaces, the KM-BL model treating diffusion through an indoor surface boundary layer, the KM-FILM model treating organic film formation by multi-layer adsorption and film growth by absorption of indoor compounds, and the KM-SUB-Skin-Clothing model treating reactions of ozone with skin lipids in skin and clothing. We also developed the effective mass accommodation coefficient that can treat surface partitioning by effectively taking into account kinetic limitations of bulk diffusion. In this study we provide detailed instructions and code annotations of these models for the model user. Example sensitivity simulations that investigate the impact of input parameters are presented to help with familiarization to the codes. The user can adapt the codes as required to model experimental and indoor field campaign measurements, can use the codes to gain insights into important reactions and processes, and can extrapolate to new conditions that may not be accessible by measurements.
Collapse
Affiliation(s)
- Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, CA92697, USA.
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA92697, USA.
| |
Collapse
|
2
|
Crilley LR, Ditto JC, Lao M, Zhou Z, Abbatt JPD, Chan AWH, VandenBoer TC. Commercial kitchen operations produce a diverse range of gas-phase reactive nitrogen species. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39484695 DOI: 10.1039/d4em00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Gas-phase reactive nitrogen species (Nr) are important drivers of indoor air quality. Cooking and cleaning are significant direct sources indoors, whose emissions will vary depending on activity and materials used. Commercial kitchens experience regular high volumes of both cooking and cleaning, making them ideal study locations for exploring emission factors from these sources. Here, we present a total Nr (tNr) budget and contributions of key species NO, NO2, acidic Nr (primarily HONO) and basic Nr (primarily NH3) using novel instrumentation in a commercial kitchen over a two-week period. In general, highest tNr was observed in the morning and driven compositionally by NO, indicative of cooking events in the kitchen. The observed HONO and basic Nr levels were unexpectedly stable throughout the day, despite the dynamic and high air change rate in the kitchen. After summing the measured NOx, HONO and Nr,base fractions, there was on average 5 ppbv of Nr unaccounted for, expected to be dominated by neutral Nr species. Using co-located measurements from a proton transfer reaction mass spectrometer (PTR-MS), we propose the identities for these major Nr species from cooking and cleaning that contributed to Nr,base and the neutral fraction of tNr. When focused specifically on cooking events in the kitchen, a vast array of N-containing species was observed by the PTR-MS. Reproducibly, oxygenated N-containing class ions (C1-12H3-24O1-4N1-3), consistent with the known formulae of amides, were observed during meat cooking and may be good cooking tracers. During cleaning, an unexpectedly high level of chloramines was observed, with monochloramine dominating the profile, as emitted directly from HOCl based cleaners or through surface reactions with reduced-N species. For many species within the tNr budget, including HONO, acetonitrile and basic Nr species, we observed stable levels day and night despite the high air change rate during the day (>27 h-1). The stable levels for these species point to large surface reservoirs which act as a significant indoor source, that will be transported outdoors with ventilation.
Collapse
Affiliation(s)
| | - Jenna C Ditto
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Department of Chemistry, University of Toronto, Canada
| | - Melodie Lao
- Department of Chemistry, York University, Canada.
| | - Zilin Zhou
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | | | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Department of Chemistry, University of Toronto, Canada
| | | |
Collapse
|
3
|
Pan Z, Wu S, Zhu Q, Liu F, Liang Y, Pei C, Jiang H, Zhang Y, Lai S. Evaluation of laboratory and environmental exposure systems for protein modification upon gas pollutants and environmental factors. J Environ Sci (China) 2024; 143:213-223. [PMID: 38644018 DOI: 10.1016/j.jes.2023.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 04/23/2024]
Abstract
Chemical modifications of proteins induced by ambient ozone (O3) and nitrogen oxides (NOx) are of public health concerns due to their potential to trigger respiratory diseases. The laboratory and environmental exposure systems have been widely used to investigate their relevant mechanism in the atmosphere. Using bovine serum albumin (BSA) as a model protein, we evaluated the two systems and aimed to reduce the uncertainties of both the reactants and products in the corresponding kinetic study. In the laboratory simulation system, the generated gaseous pollutants showed negligible losses. Ten layers of BSA were coated on the flow tube with protein extraction recovery of 87.4%. For environmental exposure experiment, quartz fiber filter was selected as the upper filter with low gaseous O3 (8.0%) and NO2 (1.7%) losses, and cellulose acetate filter was appropriate for the lower filter with protein extraction efficiency of 95.2%. The protein degradation process was observed without the exposure to atmospheric oxidants and contributed to the loss of protein monomer mass fractions, while environmental factors (e.g., molecular oxygen and ultraviolet) may cause greater protein monomer losses. Based on the evaluation, the study exemplarily applied the two systems to protein modification and both showed that O3 promotes the protein oligomerization and nitration, while increased temperature can accelerate the oligomerization and increased relative humidity can inhibit the nitration in the environmental exposure samples. The developed laboratory and environmental systems are suitable for studying protein modifications formed under different atmospheric conditions. A combination of the two will further reveal the actual mechanism of protein modifications.
Collapse
Affiliation(s)
- Zhiwei Pan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shiyi Wu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qiaoze Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fobang Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongjian Liang
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China
| | - Chenglei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China
| | - Haoyu Jiang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, and Joint Laboratory of the Guangdong-Hong Kong-Macao Greater Bay Area for the Environment, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Xu S, Zhou X, Xu S, Zhang Y, Shi Y, Cong X, Xu Q, Tian Y, Jiang Y, Guo H, Zhao J, Sun F, Peng H. Molecularly specific detection towards trace nitrogen dioxide by utilizing Schottky-junction-based Gas Sensor. Nat Commun 2024; 15:5991. [PMID: 39013900 PMCID: PMC11252297 DOI: 10.1038/s41467-024-50443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Trace NO2 detection is essential for the production and life, where the sensing strategy is appropriate for rapid detection but lacks molecular specificity. This investigation proposes a sensing mechanism dominated by surface-scattering to achieve the molecularly-specific detection. Two-dimensional Bi2O2Se is firstly fabricated into a Schottky-junction-based gas-sensor. Applied with an alternating excitation, the sensor simultaneously outputs multiple response signals (i.e., resistance, reactance, and the impedance angle). Their response times are shorter than 200 s at room temperature. In NO2 sensing, these responses present the detection limit in ppt range and the sensitivity is up to 16.8 %·ppb-1. This NO2 sensitivity presents orders of magnitude higher than those of the common gases within the exhaled breath. The impedance angle is involved in the principle component analysis together with the other two sensing signals. Twelve kinds of typical gases containing NO2 are acquired with molecular characteristics. The change in dipole moment of the target molecule adsorbed is demonstrated to correlate with the impedance angle via surface scattering. The proposed mechanism is confirmed to output ultra-sensitive sensing responses with the molecular characteristic.
Collapse
Affiliation(s)
- Shipu Xu
- Songshan Lake Materials Laboratory, Dongguan, PR China.
- School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, PR China.
| | - Xuehan Zhou
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, PR China
| | - Shidang Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, PR China
| | - Yan Zhang
- School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Yiwen Shi
- School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xuzhong Cong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, PR China
| | - Qijia Xu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, PR China
| | - Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, PR China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, PR China
| | - Hanjie Guo
- Songshan Lake Materials Laboratory, Dongguan, PR China
| | - Jinkui Zhao
- Songshan Lake Materials Laboratory, Dongguan, PR China
- The Institute of Physics, Chinese Academy of Sciences, Beijing, PR China
| | - Fengqiang Sun
- School of Chemistry, South China Normal University, Guangzhou, PR China.
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, PR China.
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, PR China.
| |
Collapse
|
5
|
Deng H, Qiu J, Zhang R, Xu J, Qu Y, Wang J, Liu Y, Gligorovski S. Ozone Chemistry on Greasy Glass Surfaces Affects the Levels of Volatile Organic Compounds in Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8393-8403. [PMID: 38691770 DOI: 10.1021/acs.est.3c08196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The chemistry of ozone (O3) on indoor surfaces leads to secondary pollution, aggravating the air quality in indoor environments. Here, we assess the heterogeneous chemistry of gaseous O3 with glass plates after being 1 month in two different kitchens where Chinese and Western styles of cooking were applied, respectively. The uptake coefficients of O3 on the authentic glass plates were measured in the dark and under UV light irradiation typical for indoor environments (320 nm < λ < 400 nm) at different relative humidities. The gas-phase product compounds formed upon reactions of O3 with the glass plates were evaluated in real time by a proton-transfer-reaction quadrupole-interface time-of-flight mass spectrometer. We observed typical aldehydes formed by the O3 reactions with the unsaturated fatty acid constituents of cooking oils. The formation of decanal, 6-methyl-5-hepten-2-one (6-MHO), and 4-oxopentanal (4-OPA) was also observed. The employed dynamic mass balance model shows that the estimated mixing ratios of hexanal, octanal, nonanal, decanal, undecanal, 6-MHO, and 4-OPA due to O3 chemistry with authentic grime-coated kitchen glass surfaces are higher in the kitchen where Chinese food was cooked compared to that where Western food was cooked. These results show that O3 chemistry on greasy glass surfaces leads to enhanced VOC levels in indoor environments.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Qiu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Runqi Zhang
- Department of Materials Environmental Engineering, Shanxi Polytechnic College, Shanxi 237016, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuekun Qu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jixuan Wang
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
6
|
Liu C, Liang L, Xu W, Ma Q. A review of indoor nitrous acid (HONO) pollution: Measurement techniques, pollution characteristics, sources, and sinks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171100. [PMID: 38387565 DOI: 10.1016/j.scitotenv.2024.171100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Indoor air quality is of major concern for human health and well-being. Nitrous acid (HONO) is an emerging indoor pollutant, and its indoor mixing ratios are usually higher than outdoor levels, ranging from a few to tens of parts per billion (ppb). HONO exhibits adverse effects to human health due to its respiratory toxicity and mutagenicity. Additionally, HONO can easily undergo photodissociation by ultraviolet light to produce hydroxyl radicals (OH•), which in turn trigger a series of further photochemical oxidation reactions of primary or secondary pollutants. The accumulation of indoor HONO can be attributed to both direct emissions from combustion sources, such as cooking, and secondary formation resulting from enhanced heterogeneous reactions of NOx on indoor surfaces. During the day, the primary sink of indoor HONO is photolysis to OH• and NO. Moreover, adsorption and/or reaction on indoor surfaces, and diffusion to the outside atmosphere contribute to HONO loss both during the day and at night. The level of indoor HONO is also affected by human occupancy, which can influence household factors such as temperature, humidity, light irradiation, and indoor surfaces. This comprehensive review article summarized the research progress on indoor HONO pollution based on indoor air measurements, laboratory studies, and model simulations. The environmental and health effects were highlighted, measurement techniques were summarized, pollution levels, sources and sinks, and household influencing factors were discussed, and the prospects in the future were proposed.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Linlin Liang
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Wanyun Xu
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Li X, Tian S, Zu K, Xie S, Dong H, Wang H, Chen S, Li Y, Lu K, Zhang Y. Revisiting the Ultraviolet Absorption Cross Section of Gaseous Nitrous Acid (HONO): New Insights for Atmospheric HONO Budget. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4247-4256. [PMID: 38373403 DOI: 10.1021/acs.est.3c08339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Nitrous acid (HONO) is an important source of hydroxyl radicals (OH) in the atmosphere. Precise determination of the absolute ultraviolet (UV) absorption cross section of gaseous HONO lays the basis for the accurate measurement of its concentration by optical methods and the estimation of HONO loss rate through photolysis. In this study, we performed a series of laboratory and field intercomparison experiments for HONO measurement between striping coil-liquid waveguide capillary cell (SC-LWCC) photometry and incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Specified HONO concentrations prepared by an ultrapure standard HONO source were utilized for laboratory intercomparisons. Results show a consistent ∼22% negative bias in measurements of the IBBCEAS compared with a SC-LWCC photometer. It is confirmed that the discrepancies occurring between these techniques are associated with the overestimation of the absolute UV absorption cross sections through careful analysis of possible uncertainties. We quantified the absorption cross section of gaseous HONO (360-390 nm) utilizing a custom-built IBBCEAS instrument, and the results were found to be 22-34% lower than the previously published absorption cross sections widely used in HONO concentration retrieval and atmospheric chemical transport models (CTMs). This suggests that the HONO concentrations retrieved by optical methods based on absolute absorption cross sections may have been underestimated by over 20%. Plus, the daytime loss rate and unidentified sources of HONO may also have evidently been overestimated in pre-existing studies. In summary, our findings underscore the significance of revisiting the absolute absorption cross section of HONO and the re-evaluation of the previously reported HONO budgets.
Collapse
Affiliation(s)
- Xuan Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shasha Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kexin Zu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuyang Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huabin Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Chen D, Zhou L, Liu S, Lian C, Wang W, Liu H, Li C, Liu Y, Luo L, Xiao K, Chen Y, Qiu Y, Tan Q, Ge M, Yang F. Primary sources of HONO vary during the daytime: Insights based on a field campaign. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166605. [PMID: 37640078 DOI: 10.1016/j.scitotenv.2023.166605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Nitrous acid (HONO) is an established precursor of hydroxyl (OH) radical and has significant impacts on the formation of PM2.5 and O3. Despite extensive research on HONO observation in recent years, knowledge regarding its sources and sinks in urban areas remains inadequate. In this study, we monitored the atmospheric concentrations of HONO and related pollutants, including gaseous nitric acid and particulate nitrate, simultaneously at a supersite in downtown Chengdu, a megacity in southwestern China during spring, when was chosen due to its tolerance for both PM2.5 and O3 pollution. Furthermore, we employed the random forest model to fill the missing data of HONO, which exhibited good predictive performance (R2 = 0.96, RMSE = 0.36 ppbv). During this campaign, the average mixing ratio of HONO was measured to be 1.0 ± 0.7 ppbv. Notably, during periods of high O3 and PM2.5 concentrations, the mixing ratio of HONO was >50 % higher compared to the clean period. We developed a comprehensive parameterization scheme for the HONO budget, and it performed well in simulating diurnal variations of HONO. Based on the HONO budget analysis, we identified different mechanisms that dominate HONO formation at different times of the day. Vehicle emissions and NO2 heterogeneous conversions were found to be the primary sources of HONO during nighttime (21.0 %, 30.2 %, respectively, from 18:00 to 7:00 the next day). In the morning (7:00-12:00), NO2 heterogeneous conversions and the reaction of NO with OH became the main sources (35.0 %, 32.2 %, respectively). However, in the afternoon (12:00-18:00), the heterogeneous photolysis of HNO3 on PM2.5 was identified as the most substantial source of HONO (contributing 52.5 %). This study highlights the significant variations in primary HONO sources throughout the day.
Collapse
Affiliation(s)
- Dongyang Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China.
| | - Song Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hefan Liu
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Chunyuan Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Yuelin Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Lan Luo
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Kuang Xiao
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Yong Chen
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Yang Qiu
- Department of Industrial Engineering, The Pittsburgh Institute, Sichuan University, Chengdu 610065, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| |
Collapse
|
9
|
Zhang P, Wang Y, Chen T, Yu Y, Ma Q, Liu C, Li H, Chu B, He H. Insight into the Mechanism and Kinetics of the Heterogeneous Reaction between SO 2 and NO 2 on Diesel Black Carbon under Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17718-17726. [PMID: 36919346 DOI: 10.1021/acs.est.2c09674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The heterogeneous oxidation of SO2 by NO2 has been extensively proposed as an important pathway of sulfate production during haze events in China. However, the kinetics and mechanism of oxidation of SO2 by NO2 on the surface of complex particles remain poorly understood. Here, we systematically explore the mechanism and kinetics of the reaction between SO2 and NO2 on diesel black carbon (DBC) under light irradiation. The experimental results prove that DBC photochemistry can not only significantly promote the heterogeneous reduction of NO2 to produce HONO via transferring photoinduced electrons but also indirectly promote OH radical formation. These reduction products of NO2 as well as NO2 itself greatly promote the heterogeneous oxidation of SO2 on DBC. NO2 oxidation, HONO oxidation, and the surface photo-oxidation process are proven to be three major surface oxidation pathways of SO2. The kinetics results indicate that the surface photooxidation pathway accounts for the majority of the total SO2 uptake (∼63%), followed by the HONO oxidation pathway (∼27%) and direct oxidation by NO2 (∼10%). This work highlights the significant synergistic roles of DBC, NO2, and light irradiation in enhancing the atmospheric oxidation capacity and promoting the heterogeneous formation of sulfate.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | - Hao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
10
|
Lakey PSJ, Cummings BE, Waring MS, Morrison GC, Shiraiwa M. Effective mass accommodation for partitioning of organic compounds into surface films with different viscosities. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1464-1478. [PMID: 37560969 DOI: 10.1039/d3em00213f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Indoor surfaces can act as reservoirs and reaction media influencing the concentrations and type of species that people are exposed to indoors. Mass accommodation and partitioning are impacted by the phase state and viscosity of indoor surface films. We developed the kinetic multi-layer model KM-FILM to simulate organic film formation and growth, but it is computationally expensive to couple such comprehensive models with indoor air box models. Recently, a novel effective mass accommodation coefficient (αeff) was introduced for efficient and effective treatments of gas-particle partitioning. In this study, we extended this approach to a film geometry with αeff as a function of penetration depth into the film, partitioning coefficient, bulk diffusivity, and condensed-phase reaction rate constant. Comparisons between KM-FILM and the αeff method show excellent agreement under most conditions, but with deviations before the establishment of quasi-equilibrium within the penetration depth. We found that the deposition velocity of species and overall film growth are impacted by bulk diffusivity in highly viscous films (Db ∼<10-15 cm2 s-1). Reactions that lead to non-volatile products can increase film thicknesses significantly, with the extent of film growth being dependent on the gas-phase concentration, rate coefficient, partitioning coefficient and diffusivity. Amorphous semisolid films with Db > ∼10-17-10-19 cm2 s-1 can be efficient SVOC reservoirs for compounds with higher partitioning coefficients as they can be released back to the gas phase over extended periods of time, while glassy solid films would not be able to act as reservoirs as gas-film partitioning is impeded.
Collapse
Affiliation(s)
- Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - Bryan E Cummings
- Department of Civil, Architectural and Environmental Engineering, Drexel University, PA 19104, USA
| | - Michael S Waring
- Department of Civil, Architectural and Environmental Engineering, Drexel University, PA 19104, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Liu J, Li B, Deng H, Yang Y, Song W, Wang X, Luo Y, Francisco JS, Li L, Gligorovski S. Resolving the Formation Mechanism of HONO via Ammonia-Promoted Photosensitized Conversion of Monomeric NO 2 on Urban Glass Surfaces. J Am Chem Soc 2023; 145:11488-11493. [PMID: 37196053 DOI: 10.1021/jacs.3c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Understanding the formation processes of nitrous acid (HONO) is crucial due to its role as a primary source of hydroxyl radicals (OH) in the urban atmosphere and its involvement in haze events. In this study, we propose a new pathway for HONO formation via the UVA-light-promoted photosensitized conversion of nitrogen dioxide (NO2) in the presence of ammonia (NH3) and polycyclic aromatic hydrocarbons (PAHs, common compounds in urban grime). This new mechanism differs from the traditional mechanism, as it does not require the formation of the NO2 dimer. Instead, the enhanced electronic interaction between the UVA-light excited triplet state of PAHs and NO2-H2O/NO2-NH3-H2O significantly reduces the energy barrier and facilitates the exothermic formation of HONO from monomeric NO2. Furthermore, the performed experiments confirmed our theoretical findings and revealed that the synergistic effect from light-excited PAHs and NH3 boosts the HONO formation with determined HONO fluxes of 3.6 × 1010 molecules cm-2 s-1 at 60% relative humidity (RH) higher than any previously reported HONO fluxes. Intriguingly, light-induced NO2 to HONO conversion yield on authentic urban grime in presence of NH3 is unprecedented 130% at 60% RH due to the role of NH3 acting as a hydrogen carrier, facilitating the transfer of hydrogen from H2O to NO2. These results show that NH3-assisted UVA-light-induced NO2 to HONO conversion on urban surfaces can be a dominant source of HONO in the metropolitan area.
Collapse
Affiliation(s)
- Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bai Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
- Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
12
|
Fan L, Shen Z, Wang Z, Li J, Lyu J. Effect of photothermal conversion on ozone uptake over deposited mineral dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162047. [PMID: 36754318 DOI: 10.1016/j.scitotenv.2023.162047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The deposited dust provides a large surface for heterogeneous ozone uptake reactions in urban regions. Prior studies have barely considered the effect of the photothermal conversion of deposited dust and underlying surface on ozone uptake. In this study, Fe2O3, TiO2, α-Al2O3, and SiO2 were selected as model mineral dusts (MDs) to evaluate the photothermal effect. With an irradiation intensity of 100 mW/cm2, the uptake coefficients of ozone by Fe2O3, TiO2, α-Al2O3, and SiO2 were 2.4, 30, 2.72, and 2.83 times higher than those in a dark condition. For SiO2 and α-Al2O3, the increase in the uptake coefficient was due to the temperature increase induced by photothermal conversion. For Fe2O3 and TiO2, photoelectric and photothermal conversion simultaneously participated in ozone uptake reactions. At 70 °C, the contribution of thermal catalysis to ozone uptake over Fe2O3 and TiO2 was approximately 55.4 % and 55.0 %, respectively. The temperature increase induced by photothermal conversion also promoted MDs' activity for ozone uptake after removing the light source (after sunset). This work proves that the ozone uptake induced by the photothermal effect of deposited MDs and the underlying surface was the primary ozone elimination pathway in urban atmospheres.
Collapse
Affiliation(s)
- Lu Fan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhizhang Shen
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ji Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, Jiangsu 215009, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinze Lyu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, Jiangsu 215009, China.
| |
Collapse
|
13
|
Ding X, Huang C, Liu W, Ma D, Lou S, Li Q, Chen J, Yang H, Xue C, Cheng Y, Su H. Direct Observation of HONO Emissions from Real-World Residential Natural Gas Heating in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4751-4762. [PMID: 36919886 DOI: 10.1021/acs.est.2c09386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Atmospheric nitrous acid (HONO) is an important precursor of atmospheric hydroxyl radicals. Vehicle emissions and heterogeneous reactions have been identified as major sources of urban HONO. Here, we report on HONO emissions from residential natural gas (RNG) for water and space heating in urban areas based on in situ measurements. The observed HONO emission factors (EFs) of RNG heating vary between 6.03 and 608 mg·m-3 NG, which are highly dependent on the thermal load. The highest HONO EFs are observed at a high thermal load via the thermal NO homogeneous reaction. The average HONO EFs of RNG water heating in winter are 1.8 times higher than that in summer due to the increased thermal load caused by the lower inlet water temperatures in winter. The power-based HONO EFs of the traditional RNG heaters are 1085 times and 1.7 times higher than those of gasoline and diesel vehicles that meet the latest emission standards, respectively. It is estimated that the HONO emissions from RNG heaters in a typical Chinese city are gradually close to emissions from on-road vehicles when temperatures decline. These findings highlight that RNG heating is a non-negligible source of urban HONO emissions in China. With the continuous acceleration of coal-to-gas projects and the continuous tightening of NOx emission standards for vehicle exhaust, HONO emissions from RNG heaters will become more prominent in urban areas. Hence, it is urgently needed to upgrade traditional RNG heaters with efficient emission reduction technologies such as frequency-converted blowers, secondary condensers, and low-NOx combustors.
Collapse
Affiliation(s)
- Xiang Ding
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wenyang Liu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dongxiang Ma
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Jun Chen
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huinan Yang
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaoyang Xue
- Laboratoire de Physique et Chimie del'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, Orléans, Cedex 245071, France
| | - Yafang Cheng
- Minerva Research Group, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Hang Su
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
14
|
Xu J, Deng H, Wang Y, Li P, Zeng J, Pang H, Xu X, Li X, Yang Y, Gligorovski S. Heterogeneous chemistry of ozone with floor cleaning agent: Implications of secondary VOCs in the indoor environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160867. [PMID: 36521626 DOI: 10.1016/j.scitotenv.2022.160867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Human daily activities such as cooking, and cleaning can affect the indoor air quality by releasing primary emitted volatile organic compounds (VOCs), as well as by the secondary product compounds formed through reactions with ozone (O3) and hydroxyl radicals (OH). However, our knowledge about the formation processes of the secondary VOCs is still incomplete. We performed real-time measurements of primary VOCs released by commercial floor-cleaning detergent and the secondary product compounds formed by heterogeneous reaction of O3 with the constituents of the cleaning agent by use of high-resolution mass spectrometry. We measured the uptake coefficients of O3 on the cleaning detergent at different relative humidities in dark and under different light intensities (320 nm < λ < 400 nm) relevant for the indoor environment. On the basis of the detected compounds we developed tentative reaction mechanisms describing the formation of the secondary VOCs. Intriguingly, under light irradiation the formation of valeraldehyde was observed based on the photosensitized chemistry of acetophenone which is a constituent of the cleaning agent. Finally, we modeled the observed mixing ratios of three aldehydes, glyoxal, methylglyoxal, and 4-oxopentanal with respect to real-life indoor environment. The results suggest that secondary VOCs initiated by ozone chemistry can additionally impact the indoor air pollution.
Collapse
Affiliation(s)
- Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric, Environment, Jinan University, Guangzhou 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric, Environment, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China.
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
15
|
Xu X, Pang H, Liu C, Wang K, Loisel G, Li L, Gligorovski S, Li X. Real-time measurements of product compounds formed through the reaction of ozone with breath exhaled VOCs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2237-2248. [PMID: 36472140 DOI: 10.1039/d2em00339b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human presence can affect indoor air quality because of secondary organic compounds formed upon reactions between gaseous oxidant species, e.g., ozone (O3), hydroxyl radicals (OH), and chemical compounds from skin, exhaled breath, hair and clothes. We assess the gas-phase product compounds generated by reactions of gaseous O3 with volatile organic compounds (VOCs) from exhaled human breath by real time analysis using a high-resolution quadrupole-orbitrap mass spectrometer (HRMS) coupled to a secondary electrospray ionization (SESI) source. Based on the product compounds identified we propose a reaction mechanism initiated by O3 oxidation of the most common breath constituents, isoprene, α-terpinene and ammonia (NH3). The reaction of O3 with isoprene and α-terpinene generates ketones and aldehydes such as 3,4-dihydroxy-2-butanone, methyl vinyl ketone, 3-carbonyl butyraldehyde, formaldehyde and toxic compounds such as 3-methyl furan. Formation of compounds with reduced nitrogen containing functional groups such as amines, imines and imides is highly plausible through NH3 initiated cleavage of the C-O bond. The detected gas-phase product compounds suggest that human breath can additionally affect indoor air quality through the formation of harmful secondary products and future epidemiological studies should evaluate the potential health effects of these compounds.
Collapse
Affiliation(s)
- Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Chao Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| |
Collapse
|
16
|
Deng H, Xu X, Wang K, Xu J, Loisel G, Wang Y, Pang H, Li P, Mai Z, Yan S, Li X, Gligorovski S. The Effect of Human Occupancy on Indoor Air Quality through Real-Time Measurements of Key Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15377-15388. [PMID: 36279129 DOI: 10.1021/acs.est.2c04609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The primarily emitted compounds by human presence, e.g., skin and volatile organic compounds (VOCs) in breath, can react with typical indoor air oxidants, ozone (O3), and hydroxyl radicals (OH), leading to secondary organic compounds. Nevertheless, our understanding about the formation processes of the compounds through reactions of indoor air oxidants with primary emitted pollutants is still incomplete. In this study we performed real-time measurements of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), O3, and VOCs to investigate the contribution of human presence and human activity, e.g., mopping the floor, to secondary organic compounds. During human occupancy a significant increase was observed of 1-butene, isoprene, and d-limonene exhaled by the four adults in the room and an increase of methyl vinyl ketone/methacrolein, methylglyoxal, and 3-methylfuran, formed as secondary compounds through reactions of OH radicals with isoprene. Intriguingly, the level of some compounds (e.g., m/z 126, 6-methyl-5-hepten-2-one, m/z 152, dihydrocarvone, and m/z 194, geranyl acetone) formed through reactions of O3 with the primary compounds was higher in the presence of four adults than during the period of mopping the floor with commercial detergent. These results indicate that human presence can additionally degrade the indoor air quality.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Zebin Mai
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Shichao Yan
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou510640, China
| |
Collapse
|
17
|
Bottorff B, Wang C, Reidy E, Rosales C, Farmer DK, Vance ME, Abbatt JPD, Stevens P. Comparison of Simultaneous Measurements of Indoor Nitrous Acid: Implications for the Spatial Distribution of Indoor HONO Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13573-13583. [PMID: 36137564 PMCID: PMC9535926 DOI: 10.1021/acs.est.2c02196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Despite its importance as a radical precursor and a hazardous pollutant, the chemistry of nitrous acid (HONO) in the indoor environment is not fully understood. We present results from a comparison of HONO measurements from a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) and a laser photofragmentation/laser-induced fluorescence (LP/LIF) instrument during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign. Experiments during HOMEChem simulated typical household activities and provided a dynamic range of HONO mixing ratios. The instruments measured HONO at different locations in a house featuring a typical air change rate (ACR) (0.5 h-1) and an enhanced mixing rate (∼8 h-1). Despite the distance between the instruments, measurements from the two instruments agreed to within their respective uncertainties (slope = 0.85, R2 = 0.92), indicating that the lifetime of HONO is long enough for it to be quickly distributed indoors, although spatial gradients occurred during ventilation periods. This suggests that emissions of HONO from any source can mix throughout the house and can contribute to OH radical production in sunlit regions, enhancing the oxidative capacity indoors. Measurement discrepancies were likely due to interferences with the LP/LIF instrument as well as calibration uncertainties associated with both instruments.
Collapse
Affiliation(s)
- Brandon Bottorff
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Chen Wang
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School
of Environment Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Emily Reidy
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Colleen Rosales
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Air
Quality Research Center, University of California
Davis, Davis, California 95616, United States
| | - Delphine K. Farmer
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | | | - Philip
S. Stevens
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
18
|
Deng H, Lakey PSJ, Wang Y, Li P, Xu J, Pang H, Liu J, Xu X, Li X, Wang X, Zhang Y, Shiraiwa M, Gligorovski S. Daytime SO 2 chemistry on ubiquitous urban surfaces as a source of organic sulfur compounds in ambient air. SCIENCE ADVANCES 2022; 8:eabq6830. [PMID: 36170374 PMCID: PMC9519037 DOI: 10.1126/sciadv.abq6830] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/10/2022] [Indexed: 05/11/2023]
Abstract
The reactions of sulfur dioxide (SO2) with surface-bound compounds on atmospheric aerosols lead to the formation of organic sulfur (OS) compounds, thereby affecting the air quality and climate. Here, we show that the heterogeneous reaction of SO2 with authentic urban grime under near-ultraviolet sunlight irradiation leads to a large suite of various organic compounds including OS released in the gas phase. Calculations indicate that at the core area of Guangzhou, building surface uptake of SO2 is 15 times larger than uptake of SO2 on aerosol surfaces, yielding ~20 ng m-3 of OS that represents an important fraction of the observed OS compounds (60 to 200 ng m-3) in ambient aerosols of Chinese megacities. This chemical pathway occurring during daytime can contribute to the observed fraction of OS compounds in aerosols and improve the understanding of haze formation and urban air pollution.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pascale S. J. Lakey
- Department of Chemistry, University of California, Irvine, Irvine, CA 92687-2025, USA
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yuzhong Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, CA 92687-2025, USA
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
19
|
Liu J, Deng H, Zhang R, Song W, Li X, Luo Y, Wang X, Gligorovski S. Physical and chemical characterization of urban grime: An impact on the NO 2 uptake coefficients and N-containing product compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155973. [PMID: 35588848 DOI: 10.1016/j.scitotenv.2022.155973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Urban grime represents an important environmental surface for heterogeneous reactions in urban environment. Here, we assess the physical and chemical properties of urban grime collected during six consecutive months in downtown of Guangzhou, China. There is a significant variation of the uptake coefficients of NO2 on the urban grime as a function of the relative humidity (RH). In absence of water molecules (0% RH), the light-induced uptake coefficients of NO2 on urban grime samples collected during six months are very similar in order of ≈10-6. At 80% RH, depending on the sampling month the light-induced uptake coefficient of NO2 can reach one order of magnitude higher values (1.5 × 10-5, at 80% RH) compared to those uptakes at 0% RH. In presence of 80% RH, there are strong correlations between the measured NO2 uptakes and the concentrations of the water soluble carbon, soluble anions, polycyclic aromatic hydrocarbons and n-alkanes depicted in the urban grime. These correlations, demonstrate that surface adsorbed water on urban grime play an important role for the uptakes of NO2. The heterogeneous conversion of NO2 on two-month old urban grime under sunlight irradiation (68 W m-2, 300 nm < λ < 400 nm) at 60% RH leads to the formation of unprecedented HONO surface flux of 4.7 × 1010 molecules cm-2 s-1 which is higher than all previously observed HONO fluxes, thereby affecting the oxidation capacity of the urban atmosphere. During the heterogeneous chemistry of NO2 with urban grime, the unsaturated and N-containing organic compounds are released in the gas phase which can affect the air quality in the urban environment.
Collapse
Affiliation(s)
- Jiangping Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Runqi Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
20
|
Tang X, Benowitz N, Gundel L, Hang B, Havel CM, Hoh E, Jacob Iii P, Mao JH, Martins-Green M, Matt GE, Quintana PJE, Russell ML, Sarker A, Schick SF, Snijders AM, Destaillats H. Thirdhand Exposures to Tobacco-Specific Nitrosamines through Inhalation, Dust Ingestion, Dermal Uptake, and Epidermal Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12506-12516. [PMID: 35900278 PMCID: PMC11439435 DOI: 10.1021/acs.est.2c02559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tobacco-specific nitrosamines (TSNAs) are emitted during smoking and form indoors by nitrosation of nicotine. Two of them, N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are human carcinogens with No Significant Risk Levels (NSRLs) of 500 and 14 ng day-1, respectively. Another TSNA, 4-(methylnitrosamino)-4-(3-pyridyl) butanal (NNA), shows genotoxic and mutagenic activity in vitro. Here, we present additional evidence of genotoxicity of NNA, an assessment of TSNA dermal uptake, and predicted exposure risks through different pathways. Dermal uptake was investigated by evaluating the penetration of NNK and nicotine through mice skin. Comparable mouse urine metabolite profiles suggested that both compounds were absorbed and metabolized via similar mechanisms. We then investigated the effects of skin constituents on the reaction of adsorbed nicotine with nitrous acid (epidermal chemistry). Higher TSNA concentrations were formed on cellulose and cotton substrates that were precoated with human skin oils and sweat compared to clean substrates. These results were combined with reported air, dust, and surface concentrations to assess NNK intake. Five different exposure pathways exceeded the NSRL under realistic scenarios, including inhalation, dust ingestion, direct dermal contact, gas-to-skin deposition, and epidermal nitrosation of nicotine. These results illustrate potential long-term health risks for nonsmokers in homes contaminated with thirdhand tobacco smoke.
Collapse
Affiliation(s)
- Xiaochen Tang
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Neal Benowitz
- Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Lara Gundel
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bo Hang
- Bioengineering & Biomedical Sciences Department, Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher M Havel
- Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Peyton Jacob Iii
- Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Jian-Hua Mao
- Bioengineering & Biomedical Sciences Department, Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Manuela Martins-Green
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92506, United States
| | - Georg E Matt
- Department of Psychology, San Diego State University, San Diego, California 92182, United States
| | - Penelope J E Quintana
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Marion L Russell
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Altaf Sarker
- Bioengineering & Biomedical Sciences Department, Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Suzaynn F Schick
- Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Antoine M Snijders
- Bioengineering & Biomedical Sciences Department, Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hugo Destaillats
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Pandit S, Grassian VH. Gas-Phase Nitrous Acid (HONO) Is Controlled by Surface Interactions of Adsorbed Nitrite (NO 2-) on Common Indoor Material Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12045-12054. [PMID: 36001734 PMCID: PMC9454260 DOI: 10.1021/acs.est.2c02042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Nitrous acid (HONO) is a household pollutant exhibiting adverse health effects and a major source of indoor OH radicals under a variety of lighting conditions. The present study focuses on gas-phase HONO and condensed-phase nitrite and nitrate formation on indoor surface thin films following heterogeneous hydrolysis of NO2, in the presence and absence of light, and nitrate (NO3-) photochemistry. These thin films are composed of common building materials including zeolite, kaolinite, painted walls, and cement. Gas-phase HONO is measured using an incoherent broadband cavity-enhanced ultraviolet absorption spectrometer (IBBCEAS), whereby condensed-phase products, adsorbed nitrite and nitrate, are quantified using ion chromatography. All of the surface materials used in this study can store nitrogen oxides as nitrate, but only thin films of zeolite and cement can act as condensed-phase nitrite reservoirs. For both the photo-enhanced heterogeneous hydrolysis of NO2 and nitrate photochemistry, the amount of HONO produced depends on the material surface. For zeolite and cement, little HONO is produced, whereas HONO is the major product from kaolinite and painted wall surfaces. An important result of this study is that surface interactions of adsorbed nitrite are key to HONO formation, and the stronger the interaction of nitrite with the surface, the less gas-phase HONO produced.
Collapse
|
22
|
Li P, Pang H, Wang Y, Deng H, Liu J, Loisel G, Jin B, Li X, Vione D, Gligorovski S. Inorganic Ions Enhance the Number of Product Compounds through Heterogeneous Processing of Gaseous NO 2 on an Aqueous Layer of Acetosyringone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5398-5408. [PMID: 35420794 DOI: 10.1021/acs.est.1c08283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols represent important pollutants that can participate in the formation of secondary organic aerosols (SOAs) through chemical reactions with atmospheric oxidants. In this study, we determine the influence of ionic strength, pH, and temperature on the heterogeneous reaction of NO2 with an aqueous film consisting of acetosyringone (ACS), as a proxy for methoxyphenols. The uptake coefficient of NO2 (50 ppb) on ACS (1 × 10-5 mol L-1) is γ = (9.3 ± 0.09) × 10-8 at pH 5, and increases by one order of magnitude to γ = (8.6 ± 0.5) × 10-7 at pH 11. The lifetime of ACS due to its reaction with NO2 is largely affected by the presence of nitrate ions and sulfate ions encountered in aqueous aerosols. The analysis performed by membrane inlet single-photon ionization-time-of-flight mass spectrometry (MI-SPI-TOFMS) reveals an increase in the number of product compounds and a change of their chemical composition upon addition of nitrate ions and sulfate ions to the aqueous thin layer consisting of ACS. These outcomes indicate that inorganic ions can play an important role during the heterogeneous oxidation processes in aqueous aerosol particles.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, Torino 10125, Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
23
|
Lin D, Tong S, Zhang W, Li W, Li F, Jia C, Zhang G, Chen M, Zhang X, Wang Z, Ge M, He X. Formation mechanisms of nitrous acid (HONO) during the haze and non-haze periods in Beijing, China. J Environ Sci (China) 2022; 114:343-353. [PMID: 35459497 DOI: 10.1016/j.jes.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
As an important precursor of hydroxyl radical (OH), nitrous acid (HONO) plays a significant role in atmospheric chemistry. Here, an observation of HONO and relevant air pollutants in an urban site of Beijing from 14 to 28 April, 2017 was performed. Two distinct peaks of HONO concentrations occurred during the observation. In contrast, the concentration of particulate matter in the first period (period Ⅰ) was significantly higher than that in the second period (period Ⅱ). Comparing to HONO sources in the two periods, we found that the direct vehicle emission was an essential source of the ambient HONO during both periods at night, especially in period Ⅱ. The heterogeneous reaction of NO2 was the dominant source in period Ⅰ, while the homogeneous reaction of NO with OH was more critical source at night in period Ⅱ. In the daytime, the heterogeneous reaction of NO2 was a significant source and was confirmed by the good correlation coefficients (R2) between the unknown sources (Punknown) with NO2, PM2.5, NO2 × PM2.5 in period Ⅰ. Moreover, when solar radiation and OH radicals were considered to explore unknown sources in the daytime, the enhanced correlation of Punknown with photolysis rate of NO2 and OH ( [Formula: see text] × OH) were 0.93 in period Ⅰ, 0.95 in period Ⅱ. These excellent correlation coefficients suggested that the unknown sources released HONO highly related to the solar radiation and the variation of OH radicals.
Collapse
Affiliation(s)
- Deng Lin
- Key Laboratory of Oasis Ecology, College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
| | - Wenqian Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Weiran Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangjie Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China
| | - Chenhui Jia
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of CMA, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Meifang Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry and Material Science, Anhui Normal University, Wuhu 241000, China
| | - Xinran Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang He
- Key Laboratory of Oasis Ecology, College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
24
|
Kalalian C, Depoorter A, Abis L, Perrier S, George C. Indoor heterogeneous photochemistry of molds and their contribution to HONO formation. INDOOR AIR 2022; 32:e12971. [PMID: 34866244 DOI: 10.1111/ina.12971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
To better understand the impact of molds on indoor air quality, we studied the photochemistry of microbial films made by Aspergillus niger species, a common indoor mold. Specifically, we investigated their implication in the conversion of adsorbed nitrate anions into gaseous nitrous acid (HONO) and nitrogen oxides (NOx ), as well as the related VOC emissions under different indoor conditions, using a high-resolution proton transfer reaction-time of flight-mass spectrometer (PTR-TOF-MS) and a long path absorption photometer (LOPAP). The different mold preparations were characterized by the means of direct injection into an Orbitrap high-resolution mass spectrometer with a heated electrospray ionization (ESI-Orbitrap-MS). The formation of a wide range of VOCs, having emission profiles sensitive to the types of films (either doped by potassium nitrate or not), cultivation time, UV-light irradiation, potassium nitrate concentration and relative humidity was observed. The formation of nitrous acid from these films was also determined and found to be dependent on light and relative humidity. Finally, the reaction paths for the NOx and HONO production are proposed. This work helps to better understand the implication of microbial surfaces as a new indoor source for HONO emission.
Collapse
Affiliation(s)
- Carmen Kalalian
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Univ. Lyon, Villeurbanne, France
| | - Antoine Depoorter
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Univ. Lyon, Villeurbanne, France
| | - Letizia Abis
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Univ. Lyon, Villeurbanne, France
| | - Sébastien Perrier
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Univ. Lyon, Villeurbanne, France
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Univ. Lyon, Villeurbanne, France
| |
Collapse
|
25
|
Lakey PSJ, Eichler CMA, Wang C, Little JC, Shiraiwa M. Kinetic multi-layer model of film formation, growth, and chemistry (KM-FILM): Boundary layer processes, multi-layer adsorption, bulk diffusion, and heterogeneous reactions. INDOOR AIR 2021; 31:2070-2083. [PMID: 33991124 DOI: 10.1111/ina.12854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Large surface area-to-volume ratios indoors cause heterogeneous interactions to be especially important. Semi-volatile organic compounds can deposit on impermeable indoor surfaces forming thin organic films. We developed a new model to simulate the initial film formation by treating gas-phase diffusion and turbulence through a surface boundary layer and multi-layer reversible adsorption on rough surfaces, as well as subsequent film growth by resolving bulk diffusion and chemical reactions in a film. The model was applied with consistent parameters to reproduce twenty-one sets of film formation measurements due to multi-layer adsorption of multiple phthalates onto different indoor-relevant surfaces, showing that the films should initially be patchy with the formation of pyramid-like structures on the surface. Sensitivity tests showed that highly turbulent conditions can lead to the film growing by more than a factor of two compared to low turbulence conditions. If surface films adopt an ultra-viscous state with bulk diffusion coefficients of less than 10-18 cm2 s-1 , a significant decrease in film growth is expected. The presence of chemical reactions in the film has the potential to increase the rate of film growth by nearly a factor of two.
Collapse
Affiliation(s)
| | - Clara M A Eichler
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunyi Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
26
|
Lyu X, Huo Y, Yang J, Yao D, Li K, Lu H, Zeren Y, Guo H. Real-time molecular characterization of air pollutants in a Hong Kong residence: Implication of indoor source emissions and heterogeneous chemistry. INDOOR AIR 2021; 31:1340-1352. [PMID: 33772878 DOI: 10.1111/ina.12826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Due to the high health risks associated with indoor air pollutants and long-term exposure, indoor air quality has received increasing attention. In this study, we put emphasis on the molecular composition, source emissions, and chemical aging of air pollutants in a residence with designed activities mimicking ordinary Hong Kong homes. More than 150 air pollutants were detected at molecular level, 87 of which were quantified at a time resolution of not less than 1 hour. The indoor-to-outdoor ratios were higher than 1 for most of the primary air pollutants, due to emissions of indoor activities and indoor backgrounds (especially for aldehydes). In contrast, many secondary air pollutants exhibited higher concentrations in outdoor air. Painting ranked first in aldehyde emissions, which also caused great enhancement of aromatics. Incense burning had the highest emissions of particle-phase organics, with vanillic acid and syringic acid as markers. The other noteworthy fingerprints enabled by online measurements included linoleic acid, cholesterol, and oleic acid for cooking, 2,5-dimethylfuran, stigmasterol, iso-/anteiso-alkanes, and fructose isomers for smoking, C28 -C34 even n-alkanes for candle burning, and monoterpenes for the use of air freshener, cleaning agents, and camphor oil. We showed clear evidence of chemical aging of cooking emissions, giving a hint of indoor heterogeneous chemistry. This study highlights the value of organic molecules measured at high time resolutions in enhancing our knowledge on indoor air quality.
Collapse
Affiliation(s)
- Xiaopu Lyu
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yunxi Huo
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jin Yang
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Dawen Yao
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kaimin Li
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Haoxian Lu
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yangzong Zeren
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
27
|
Du W, Wang J, Zhang S, Fu N, Yang F, Wang G, Wang Z, Mao K, Shen G, Qi M, Liu S, Wu C, Chen Y. Impacts of Chinese spring festival on household PM 2.5 pollution and blood pressure of rural residents. INDOOR AIR 2021; 31:1072-1083. [PMID: 33569809 DOI: 10.1111/ina.12795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Household air pollution (HAP) from residential combustion considerably affects human health in rural China. Large-scale population migration and rural lifestyle changes during the Spring Festival are supposed to change the household air pollution and health risks; however, limited field study has determined its impacts on HAP and short-term health outcomes. METHODS A field study was conducted in rural areas of Southern China before and during the Spring Festival to explore the associations between HAP and blood pressure considering different factors such as cooking fuel, heating fuel, and smoking. Stationary real-time PM2.5 monitors were used to measure PM2.5 concentrations of the kitchen, living room, and yard of 156 randomly selected households. Personal exposure to PM2.5 was calculated based on the results of stationary samplers and corresponding time local residents spent in different microenvironments, and one adult resident was recruited of each family for the blood pressure measurement. RESULTS Both personal exposure to PM2.5 and blood pressures of local residents increased during Spring Festival compared to the days before the holiday. Based on generalized linear model coupled with dominance analysis approach, it was found that personal PM2.5 exposure was positively associated with the factors of population size and the types of cooking and heating fuels with the relative contributions of approximately 82%, and systolic blood pressure (SBP, 100-120 mmHg as normal range for adults) was positively and significantly associated with personal PM2.5 exposures with the relative contribution of 11%. CONCLUSION The findings in this study demonstrated that Spring Festival can give rise to increase of HAP and hypertension risks, also related to tremendous solid fuel use, suggesting further policy making on promoting cleaner energy in rural areas and more attention on large population migration during national holidays.
Collapse
Affiliation(s)
- Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Jinze Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Shanshan Zhang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Nan Fu
- School of Energy and Power Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Fengqin Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, Shanghai, China
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Guofeng Shen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Meng Qi
- School of Public and International Affairs, Virginia Tech, Blacksburg, VA, USA
| | - Shijie Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Can Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Yuanchen Chen
- College of Environment, Research Centre of Environmental Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
28
|
Deng H, Liu J, Wang Y, Song W, Wang X, Li X, Vione D, Gligorovski S. Effect of Inorganic Salts on N-Containing Organic Compounds Formed by Heterogeneous Reaction of NO 2 with Oleic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7831-7840. [PMID: 34086442 DOI: 10.1021/acs.est.1c01043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fatty acids are ubiquitous constituents of grime on urban and indoor surfaces and they represent important surfactants on organic aerosol particles in the atmosphere. Here, we assess the heterogeneous processing of NO2 on films consisting of pure oleic acid (OA) or a mixture of OA and representative salts for urban grime and aerosol particles, namely Na2SO4 and NaNO3. The uptake coefficients of NO2 on OA under light irradiation (300 nm < λ < 400 nm) decreased with increasing relative humidity (RH), from (1.4 ± 0.1) × 10-6 at 0% RH to (7.1 ± 1.6) × 10-7 at 90% RH. The uptake process of NO2 on OA gives HONO as a reaction product, and the highest HONO production was observed upon the heterogeneous reaction of NO2 with OA in the presence of nitrate (NO3-) ions. The formation of gaseous nitroaromatic compounds was also enhanced in the presence of NO3- ions upon light-induced heterogeneous processing of NO2 with OA, as revealed by membrane inlet single-photon ionization time-of-flight mass spectrometry (MI-SPI-TOFMS). These results suggest that inorganic salts can affect the heterogeneous conversion of gaseous NO2 on fatty acids and enhance the formation of HONO and other N-containing organic compounds in the atmosphere.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Science, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Science, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Science, Guangzhou 510640, China
| |
Collapse
|
29
|
O'Brien RE, Li Y, Kiland KJ, Katz EF, Or VW, Legaard E, Walhout EQ, Thrasher C, Grassian VH, DeCarlo PF, Bertram AK, Shiraiwa M. Emerging investigator series: chemical and physical properties of organic mixtures on indoor surfaces during HOMEChem. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:559-568. [PMID: 33870396 DOI: 10.1039/d1em00060h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic films on indoor surfaces serve as a medium for reactions and for partitioning of semi-volatile organic compounds and thus play an important role in indoor chemistry. However, the chemical and physical properties of these films are poorly characterized. Here, we investigate the chemical composition of an organic film collected during the HOMEChem campaign, over three cumulative weeks in the kitchen, using both Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) and offline Aerosol Mass Spectrometry (AMS). We also characterize the viscosity of this film using a model based on molecular formulas as well as poke-flow measurements. We find that the film contains organic material similar to cooking organic aerosol (COA) measured during the campaign using on-line AMS. However, the average molecular formula observed using FT-ICR MS is ∼C50H90O11, which is larger and more oxidized than fresh COA. Solvent extracted film material is a low viscous semisolid, with a measured viscosity <104 Pa s. This is much lower than the viscosity model predicts, which is parametrized with atmospherically relevant organic molecules, but sensitivity tests demonstrate that including unsaturation can explain the differences. The presence of unsaturation is supported by reactions of film material with ozone. In contrast to the solvent extract, manually removed material appears to be highly viscous, highlighting the need for continued work understanding both viscosity measurements as well as parameterizations for modeled viscosity of indoor organic films.
Collapse
Affiliation(s)
- Rachel E O'Brien
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA.
| | - Ying Li
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Kristian J Kiland
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Erin F Katz
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | - Victor W Or
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Emily Legaard
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA.
| | - Emma Q Walhout
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA.
| | - Corey Thrasher
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA.
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA and Scripps Institution of Oceanography and Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|