1
|
Zhang J, Li SP, Li QQ, Zhang YT, Dong GH, Canchola A, Zeng X, Chou WC. Development of a Physiologically Based Pharmacokinetic (PBPK) Model for F-53B in Pregnant Mice and Its Extrapolation to Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18928-18939. [PMID: 39394996 PMCID: PMC11500426 DOI: 10.1021/acs.est.4c05405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Chlorinated polyfluorinated ether sulfonic acid (F-53B), a commonly utilized alternative for perfluorooctane sulfonate, was detected in pregnant women and cord blood recently. However, the lack of detailed toxicokinetic information poses a significant challenge in assessing the human risk assessment for F-53B exposure. Our study aimed to develop a physiologically based pharmacokinetic (PBPK) model for pregnant mice, based on toxicokinetic experiments, and extrapolating it to humans. Pregnant mice were administered 80 μg/kg F-53B orally and intravenously on gestational day 13. F-53B concentrations in biological samples were analyzed via ultraperformance liquid chromatography-mass spectrometry. Results showed the highest F-53B accumulation in the brain, followed by the placenta, amniotic fluid, and liver in fetal mice. These toxicokinetic data were applied to F-53B PBPK model development and evaluation, and Monte Carlo simulations were used to characterize the variability and uncertainty in the human population. Most of the predictive values were within a 2-fold range of experimental data (>72%) and had a coefficient of determination (R2) greater than 0.68. The developed mouse model was then extrapolated to the human and evaluated with human biomonitoring data. Our study provides an important step toward improving the understanding of toxicokinetics of F-53B and enhancing the quantitative risk assessments in sensitive populations, particularly in pregnant women and fetuses.
Collapse
Affiliation(s)
- Jing Zhang
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen-Pan Li
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Acacia
Lab for Implementation Science, Institute for Global Health, Dermatology Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yun-Ting Zhang
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Alexa Canchola
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| | - Xiaowen Zeng
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Chen X, Xu D, Xiao Y, Zuo M, Zhou J, Sun X, Shan G, Zhu L. Multimedia and Full-Life-Cycle Monitoring Discloses the Dynamic Accumulation Rules of PFAS and Underestimated Foliar Uptake in Wheat near a Fluorochemical Industrial Park. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18088-18097. [PMID: 39292548 DOI: 10.1021/acs.est.4c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The escalating concern of perfluoroalkyl and polyfluoroalkyl substances (PFAS), particularly at contaminated sites, has prompted extensive investigations. In this study, samples of multimedia including air, rhizosphere soil, and tissues of wheat at various growing stages were collected near a mega fluorochemical industrial park in China. Perfluorooctanoic acid (PFOA) was predominant in both air and soil with a strong correlation, highlighting air deposition as an important source in the terrestrial system. PFAS concentrations in wheat decreased in the stem and ear but increased in the leaves as wheat matured. Specifically, perfluorobutanoic acid (PFBA) dominated in the aboveground tissues in the full-life-cycle, except that PFOA surpassed and became predominant in leaves during the filling and maturing stages, hinting at an airborne source. For all PFAS, both bioaccumulation factors and translocation factors (TFs) were inversely correlated with the carbon chain length during the full-life-cycle. The obtained TF values were considerably higher than those obtained from ambient sites reported previously, further suggesting an unneglectable foliar uptake from air, which was estimated to be 25% for PFOA. Moreover, spray irrigation remarkably enhanced the absorption of PFAS in wheat via foliar uptake relative to flood irrigation. The estimated daily intake of PFBA via wheat consumption and air inhalation was 0.50 μg/kg/day for local residents, at least one magnitude higher than the corresponding threshold, suggesting an alarmingly high exposure risk.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Dashan Xu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
- Sinochem Environment Holding Co., Ltd., Beijing 100071, PR China
| | - Yuehan Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Mingjiang Zuo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, Shaanxi 712100, PR China
| | - Xiao Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
3
|
Shen N, Tang J, Chen J, Sheng C, Han T, He X, Liu C, Han C, Li X. Occurrence and prevalence of per- and polyfluoroalkyl substances in the sediment pore water of mariculture sites: Novel findings of PFASs from the Bohai and Yellow Seas using a newly established analytical method. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134256. [PMID: 38640673 DOI: 10.1016/j.jhazmat.2024.134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
A new method for the determination of 26 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in marine sediment pore water was developed using online solid phase extraction coupled with liquid chromatography-tandem mass spectrometry. The proposed method requires only about 1 mL of pore water samples. Satisfactory recoveries of most target PFASs (83.55-125.30 %) were achieved, with good precision (RSD of 1.09-16.53 %), linearity (R2 ≥ 0.990), and sensitivity (MDLs: 0.05 ng/L-5.00 ng/L for most PFASs). Subsequently, the method was applied to determine PFASs in the sediment pore water of five mariculture bays in the Bohai and Yellow Seas of China for the first time. Fifteen PFASs were detected with total concentrations ranging from 150.23 ng/L to 1838.48 ng/L (mean = 636.80 ng/L). The ∑PFASs and PFOA concentrations in sediment pore water were remarkably higher than those in surface seawater (tens of ng/L), indicating that the potential toxic effect of PFASs on benthic organisms may be underestimated. PFPeA was mainly distributed in pore water, and the partition of PFHpA (50.99 %) and PFOA (49.01 %) was almost equal in the solid and liquid phases. The proportions of all other PFASs partitioned in marine sediments were significantly higher than those in pore water.
Collapse
Affiliation(s)
- Nan Shen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiale Tang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Cancan Sheng
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tongzhu Han
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Chenguang Liu
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
4
|
Iannone A, Carriera F, Passarella S, Fratianni A, Avino P. There's Something in What We Eat: An Overview on the Extraction Techniques and Chromatographic Analysis for PFAS Identification in Agri-Food Products. Foods 2024; 13:1085. [PMID: 38611389 PMCID: PMC11011820 DOI: 10.3390/foods13071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Per- and polyfluorinated alkyl substances (PFASs) are a group of anthropogenic chemicals used in a range of industrial processes and consumer products. Recently, their ubiquitous presence in the environment as well as their toxicological effects in humans have gained relevant attention. Although the occurrence of PFASs is widely investigated in scientific community, the standardization of analytical method for all matrices still remains an important issue. In this review, we discussed extraction and detection methods in depth to evaluate the best procedures of PFAS identification in terms of analytical parameters (e.g., limits of detection (LODs), limits of quantification (LOQs), recoveries). Extraction approaches based on liquid-liquid extraction (LLE), alkaline digestion, and solid phase extraction (SPE), followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analysis are the main analytical methods applied in the literature. The results showed detectable recoveries of PFOA and PFOS in meat, milk, vegetables, eggs products (90.6-101.2% and of 89.2-98.4%), and fish (96-108%). Furthermore, the low LOD and LOQ values obtained for meat (0.00592-0.01907 ng g-1; 0.050 ng g-1), milk (0.003-0.009 ng g-1; 0.010-0.027 ng g-1), fruit (0.002-0.009 ng g-1; 0.006-0.024 ng g-1), and fish (0.00369-0.017.33 ng g-1; 0.05 ng g-1) also confirmed the effectiveness of the recent quick, easy, cheap, effective, rugged, and safe method (QuEChERS) for simple, speedy, and sensitive ultra-trace PFAS analysis.
Collapse
Affiliation(s)
- Alessia Iannone
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Fabiana Carriera
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Sergio Passarella
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Alessandra Fratianni
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Pasquale Avino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
- Institute of Atmospheric Pollution Research, Division of Rome, c/o Ministry of Environment and Energy Security, Via Cristoforo Colombo 44, IT-00147 Rome, Italy
| |
Collapse
|
5
|
Dong F, Zhang H, Sheng N, Hu J, Dai J, Pan Y. Nationwide distribution of perfluoroalkyl ether carboxylic acids in Chinese diets: An emerging concern. ENVIRONMENT INTERNATIONAL 2024; 186:108648. [PMID: 38615540 DOI: 10.1016/j.envint.2024.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
With the phase-out of perfluorooctanoic acid (PFOA) and its replacement by perfluoroalkyl ether carboxylic acids (PFECAs), there is a potential for increased exposure to various new PFECAs among the general population in China. While there are existing studies on dietary exposure to legacy perfluoroalkyl and polyfluoroalkyl substances (PFASs), research on dietary exposure to PFECAs, especially among the general Chinese populace, remains scarce. In the present study, we investigated the distribution of PFECAs in dietary sources from 33 cities across five major regions in China, along with the associated dietary intake. Analysis indicated that aquatic animal samples contained higher concentrations of legacy PFASs compared to those from terrestrial animals and plants. In contrast, PFECAs were found in higher concentrations in plant and terrestrial animal samples. Notably, hexafluoropropylene oxide dimer (HFPO-DA) was identified as the dominant compound in vegetables, cereals, pork, and mutton across the five regions, suggesting widespread dietary exposure. PFECAs constituted the majority of PFAS intake (57 %), with the estimated daily intake (EDI) of HFPO-DA ranging from 2.33 to 3.96 ng/kg bw/day, which corresponds to 0.78-1.32 times the reference dose (RfD) (3.0 ng/kg bw/day) set by the United States Environmental Protection Agency. Given the ubiquity of HFPO-DA and many other PFECAs in the nationwide diet of China, there is an urgent need for further research into these chemicals to establish relevant safety benchmarks or consumption advisory values for the diet.
Collapse
Affiliation(s)
- Fengfeng Dong
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianglin Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Yuan W, Song S, Lu Y, Shi Y, Yang S, Wu Q, Wu Y, Jia D, Sun J. Legacy and alternative per-and polyfluoroalkyl substances (PFASs) in the Bohai Bay Rim: Occurrence, partitioning behavior, risk assessment, and emission scenario analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168837. [PMID: 38040376 DOI: 10.1016/j.scitotenv.2023.168837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
The use of alternative per- and polyfluoroalkyl substances (PFASs) has been practiced because of the restrictions on legacy PFASs. However, knowledge gaps exist on the ecological risks of alternatives and relationships between restrictions and emissions. This study systematically analyzed the occurrence characteristics, water-sediment partitioning behaviors, ecological risks, and emissions of legacy and alternative PFASs in the Bohai Bay Rim (BBR). The mean concentration of total PFASs was 46.105 ng/L in surface water and 6.125 ng/g dry weight (dw) in sediments. As an alternative for perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimer acid (GenX) had a concentration second only to PFOA in surface water. In sediments, perfluorobutyric acid (PFBA) and GenX were the two predominant contaminants. In the water-sediment partitioning system, GenX, 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (F-53B), and 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (8:2 Cl-PFESA) tended to be enriched towards sediments. The species sensitivity distribution (SSD) models revealed the low ecological risks of PFASs and their alternatives in the BBR. Moreover, predicted no-effected concentrations (PNECs) indicated that short-chain alternatives like PFBA and perfluorobutane sulfonate (PFBS) were safer for aquatic ecosystems, while caution should be exercised when using GenX and F-53B. Due to the incremental replacement of PFOA by GenX, cumulative emissions of 1317.96 kg PFOA and 667.22 kg GenX were estimated during 2004-2022, in which PFOA emissions were reduced by 59.2 % due to restrictions implemented since 2016. If more stringent restrictions are implemented from 2023 to 2030, PFOA emissions will further decrease by 85.0 %, but GenX emissions will increase by an additional 21.3 %. Simultaneously, GenX concentrations in surface water are forecasted to surge by 2.02 to 2.45 times in 2023. This study deepens the understanding of PFAS alternatives and assists authorities in developing policies to administer PFAS alternatives.
Collapse
Affiliation(s)
- Wang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Yonglong Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Wu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanqi Wu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dai Jia
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China; College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China
| |
Collapse
|
7
|
Li J, Liang E, Xu X, Xu N. Occurrence, mass loading, and post-control temporal trend of legacy perfluoroalkyl substances (PFASs) in the middle and lower Yangtze River. MARINE POLLUTION BULLETIN 2024; 199:115966. [PMID: 38150975 DOI: 10.1016/j.marpolbul.2023.115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Present study focused on per- and polyfluoroalkyl substances (PFASs) occurrence in dry and wet seasons in the middle and lower Yangtze River (YZR) and changing temporal trends after years of control. Results revealed that perfluorooctanoic acid (PFOA) was 75 % of total PFAS concentrations (∑11PFASs). ∑11PFASs were ranged 0.20-28.49 ng/L and 1.17-112.84 μg/kg in water and sediment. The logKoc of perfluoroalkyl carboxylic acids was positive with the carbon chain length (p < 0.05, r2 = 0.78). A meta-analysis of results from 16 peer-reviewed publications about PFASs in the YZR showed that fluorochemical industries strongly influenced the high PFAS levels in the detected scenes. PFOA was still the primary pollutant. Individual PFAS in the lower reach was higher than those in the middle reach. The mass loading of PFASs imported into the sea was 10.80 t/y. This study will help develop effective approaches for controlling emerging pollutants in the YZR.
Collapse
Affiliation(s)
- Jie Li
- Environment Research Institute, Shandong University, Qingdao 266237, China; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xuming Xu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
8
|
Chen X, Lv Z, Yang Y, Yang R, Shan G, Zhu L. Screening Novel Per- and Polyfluoroalkyl Substances in Human Blood Based on Nontarget Analysis and Underestimated Potential Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:150-159. [PMID: 38153813 DOI: 10.1021/acs.est.3c06675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Nontarget analysis has gained prominence in screening novel perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the environment, yet remaining limited in human biological matrices. In this study, 155 whole blood samples were collected from the general population in Shijiazhuang City, China. By nontarget analysis, 31 legacy and novel PFASs were assigned with the confidence level of 3 or above. For the first time, 11 PFASs were identified in human blood, including C1 and C3 perfluoroalkyl sulfonic acids (PFSAs), C4 ether PFSA, C8 ether perfluoroalkyl carboxylic acid (ether PFCA), C4-5 unsaturated perfluoroalkyl alcohols, C9-10 carboxylic acid-perfluoroalkyl sulfonamides (CA-PFSMs), and C1 perfluoroalkyl sulfonamide. It is surprising that the targeted PFASs were the highest in the suburban population which was impacted by industrial emission, while the novel PFASs identified by nontarget analysis, such as C1 PFSA and C9-11 CA-PFSMs, were the highest in the rural population who often drank contaminated groundwater. Combining the toxicity prediction results of the bioaccumulation potential, lethality to rats, and binding affinity to target proteins, C3 PFSA, C4 and C7 ether PFSAs, and C9-11 CA-PFSMs exhibit great health risks. These findings emphasize the necessity of broadening nontarget analysis in assessing the PFAS exposure risks, particularly in rural populations.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zixuan Lv
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
9
|
Dong F, Pan Y, Zhang J, Hu J, Luo Y, Tang J, Dai J, Sheng N. Comprehensive Assessment of Exposure Pathways for Perfluoroalkyl Ether Carboxylic Acids (PFECAs) in Residents Near a Fluorochemical Industrial Park: The Unanticipated Role of Cereal Consumption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19442-19452. [PMID: 37931148 DOI: 10.1021/acs.est.3c06910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
With the replacement of perfluorooctanoic acid (PFOA) with perfluorinated ether carboxylic acids (PFECAs), residents living near fluorochemical industrial parks (FIPs) are exposed to various novel PFECAs. Despite expectations of low accumulation, short-chain PFECAs, such as perfluoro-2-methoxyacetic acid (PFMOAA), previously displayed a considerably high body burden, although the main exposure routes and health risks remain uncertain. Here, we explored the distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in diverse environmental media surrounding a FIP in Shandong Province, China. PFECAs were found at elevated concentrations in all tested matrices, including vegetables, cereals, air, and dust. Among residents, 99.3% of the ∑36PFAS exposure, with a 43.9% contribution from PFECAs, was due to gastrointestinal uptake. Dermal and respiratory exposures were negligible at 0.1 and 0.6%, respectively. The estimated daily intake (EDI) of PFMOAA reached 114.0 ng/kg body weight (bw)/day, ranking first among all detected PFECAs. Cereals emerged as the dominant contributor to PFMOAA body burden, representing over 80% of the overall EDI. The median EDI of hexafluoropropylene oxide dimer acid (HFPO-DA) was 17.9 ng/kg bw/day, markedly higher than the USEPA reference doses (3.0 ng/kg bw/day). The absence of established threshold values for other PFECAs constrains a comprehensive risk assessment.
Collapse
Affiliation(s)
- Fengfeng Dong
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jian Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China
| | - Jianglin Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
10
|
He A, Li J, Li Z, Lu Y, Liang Y, Zhou Z, Man Z, Lv J, Wang Y, Jiang G. Novel Insights into the Adverse Health Effects of per- and Polyfluoroalkyl Substances on the Kidney via Human Urine Metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16244-16254. [PMID: 37851943 DOI: 10.1021/acs.est.3c06480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) receive significant research attention due to their potential adverse effects on human health. Evidence shows that the kidney is one of the target organs of PFAS. In occupational exposure scenarios, high PFAS concentrations may adversely affect kidney metabolism, but whether this effect is reflected in the small metabolic molecules contained in urine remains unknown. In this study, 72 matched serum and urine samples from occupational workers of a fluorochemical manufactory as well as 153 urine samples from local residents were collected, and 23 PFAS levels were quantified. The concentrations of Σ23PFAS in the serum and urine samples of workers were 5.43 ± 1.02 μg/mL and 201 ± 46.9 ng/mL, respectively, while the Σ23PFAS concentration in the urine of the residents was 6.18 ± 0.76 ng/mL. For workers, high levels of urinary PFAS were strongly correlated with levels in serum (r = 0.57-0.93), indicating that urinary PFAS can be a good indicator for serum PFAS levels. Further, a urine nontargeted metabolomics study was conducted. The results of association models, including Bayesian kernel machine regression, demonstrated positive correlations between urinary PFAS levels and key small kidney molecules. A total of eight potential biomarkers associated with PFAS exposure were identified, and all of them showed significant positive correlations with markers of kidney function. These findings provide the first evidence that urine can serve as a matrix to indicate the adverse health effects of high levels of exposure to PFAS on the kidneys.
Collapse
Affiliation(s)
- Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yao Lu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhuo Man
- SCIEX China, Beijing 100015, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Tewfik EL, Noisel N, Verner MA. Biomonitoring equivalents for perfluorooctanoic acid (PFOA) for the interpretation of biomonitoring data. ENVIRONMENT INTERNATIONAL 2023; 179:108170. [PMID: 37657409 DOI: 10.1016/j.envint.2023.108170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is detected in the blood of virtually all biomonitoring study participants. Assessing health risks associated with blood PFOA levels is challenging because exposure guidance values (EGVs) are typically expressed in terms of external dose. Biomonitoring equivalents (BEs) consistent with EGVs could facilitate health-based interpretations. OBJECTIVE To i) derive BEs for serum/plasma PFOA corresponding to non-cancer EGVs of the U.S. Environmental Protection Agency (U.S. EPA), the Agency for Toxic Substances and Disease Registry (ATSDR) and Health Canada, and ii) compare with PFOA concentrations from national biomonitoring surveys. METHODS Starting from EGV points of departure, we employed pharmacokinetic data/models and uncertainty factors. Points of departure in pregnant rodents (U.S. EPA 2016, ATSDR) were converted into fetus and pup serum concentrations using an animal gestation/lactation pharmacokinetic model, and equivalent human fetus and child concentrations were converted into BEs in maternal serum using a human gestation/lactation model. The point of departure in adult rodents (Health Canada) was converted into a BE using experimental data. For epidemiology-based EGVs (U.S. EPA 2023, draft), BEs were directly based on epidemiological data or derived using a human gestation/lactation pharmacokinetic model. BEs were compared with Canadian/U.S. biomonitoring data. RESULTS Non-cancer BEs (ng/mL) were 684 (Health Canada, 2018) or ranged from 15 to 29 (U.S. EPA, 2016), 6-10 (ATSDR, 2021) and 0.2-0.8 (U.S. EPA, 2023, draft). Ninety-fifth percentiles of serum levels from the 2018-2019 Canadian Health Measures Survey (CHMS) and the 2017-2018 National Health and Nutrition Examination Survey (NHANES) were slightly below the BE for ATSDR, and geometric means were above the non-cancer BEs for the U.S. EPA (2023, draft). CONCLUSION Non-cancer BEs spanned three orders of magnitude. The lowest BEs were for EGVs based on developmental endpoints in epidemiological studies. Concentrations in Canadian/U.S. national surveys were higher than or close to BEs for the most recent non-cancer EGVs.
Collapse
Affiliation(s)
- Ernest-Louli Tewfik
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada
| | - Nolwenn Noisel
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada.
| |
Collapse
|
12
|
Zhou Y, Lin X, Xing Y, Zhang X, Lee HK, Huang Z. Per- and Polyfluoroalkyl Substances in Personal Hygiene Products: The Implications for Human Exposure and Emission to the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8484-8495. [PMID: 37262408 DOI: 10.1021/acs.est.2c08912] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been related to reproductive toxicity in humans, but their occurrence in some specific personal hygiene products, i.e., sanitary pads, panty liners, tampons, paper diapers, menstrual cups, and bactericidal liquids, has not been extensively studied. This work investigated 31 representative PFAS in six categories of such personal hygiene products (n = 91). Perfluorinated carboxylic acids were the primary PFAS found in the samples, accounting for over 85% of the total concentrations of PFAS. Paper diapers contained the highest sum of PFAS concentrations (64.6 ng/g) followed by sanitary pads (52.3 ng/g) and menstrual cups (21.1 ng/g). The estimated exposure doses of perfluorooctanoic acid through dermal absorption from the use of menstrual cups and paper diapers for infants (adults) were 0.77 and 2.1 (1.2) ng/kg-bw/day, which contributed more than normal dust ingestion. The estimated emission of paper diapers and sanitary pads into the environment was 2.58 and 322 kg/year with an assumed leaching rate of 100%. The potential exposure of PFAS through the use of personal hygiene products observed in this work suggests a previously unreported exposure pathway of these chemicals to humans.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Xia Lin
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Yudong Xing
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Xin Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhenzhen Huang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
13
|
Deng Y, Wang F, Liu L, Chen D, Guo Y, Li Z. High density polyethylene (HDPE) and thermoplastic polyurethane (TPU) wristbands as personal passive samplers monitoring per- and polyfluoroalkyl substances (PFASs) exposure to postgraduate students. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130652. [PMID: 36603420 DOI: 10.1016/j.jhazmat.2022.130652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) present adverse effects for human health, which result in strong needs for reliable tools monitoring personal exposure to PFASs. This study manufactured two wristbands of high density polyethylene (HDPE) and thermoplastic polyurethane (TPU), and used the wristbands to monitor PFASs personal exposure. The analytical method was developed to measure 32 PFASs in the paired HDPE and TPU wristbands worn by 60 postgraduates. Twenty-nine of 32 PFASs were detected and hexafluoropropylene oxide dimer acid (HFPO-DA) was predominant individual PFASs with median concentrations of 337 and 554 pg/g for HDPE and TPU wristbands respectively. The gender and grade of students had moderate effects on PFASs distribution in the wristbands. Higher PFASs levels were determined in the two wristbands worn by the male students compared to the females, and the greatest PFASs concentration was observed in the wristbands worn by the first-year postgraduates, follow by second- and third-year postgraduates. Additionally, significant correlations between paired HDPE and TPU wristbands were observed for perfluorobutanoic acid (PFBA), perfluorohexane sulfonic acid (PFHxS), perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonic acid (PFOS), and HFPO-DA. These results suggest that HDPE and TPU wristbands can be used as effective tools for monitoring personal PFAS exposure.
Collapse
Affiliation(s)
- Yun Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Liangying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhe Li
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
14
|
Feng X, Yi S, Shan G, Chen X, Yang Y, Yang L, Jia Y, Zhu Y, Zhu L. Occurrence of perfluoroalkyl substances in the environment compartments near a mega fluorochemical industry: Implication of specific behaviors and emission estimation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130473. [PMID: 36455325 DOI: 10.1016/j.jhazmat.2022.130473] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
With the stringent restrictions on long-chain per- and polyfluoroalkyl substances (PFASs), ether-PFASs are being widely used as alternatives. We estimated that the mega fluorochemical industrial park (FIP) in Shandong, China, had emitted a maximum of 5040 kg and 1026 kg of hexafluoropropylene oxides (HFPOs), and 7560 kg and 1890 kg of perfluorooctanoic acid (PFOA) to water and air during 2021. In the surface water, groundwater, outdoor dust, soil, tree leaf and bark collected in the vicinity of the FIP, PFOA was predominant, followed by HFPOs. The much higher percentage of HFPO dimer acid (HFPO-DA) in groundwater than in surface water verified that this compound was more mobile in porous media. The strong correlations between the main PFASs in outdoor dust and surface soil suggested that the soil PFASs were mainly derived from air deposition, particularly for HFPO trimer acid (HFPO-TA), which has a stronger binding affinity with particles than PFOA. High percentage of the hydroxylated product of 6:2 polyfluorinated ether sulfonic acid was observed in groundwater, implying reductive dechlorination might occur in groundwater. Strong correlations between PFASs in outdoor dust and those in tree leaf and bark magnified that tree could serve as a sampler to effectively monitor airborne PFASs. This study provides the first line of information about the discharge, transport, and fate of novel ether-PFASs in the multiple environmental media near a point source.
Collapse
Affiliation(s)
- Xuemin Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR) of the People's Republic of China, Tianjin 300192, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
15
|
Liu D, Tang B, Nie S, Zhao N, He L, Cui J, Mao W, Jin H. Distribution of per- and poly-fluoroalkyl substances and their precursors in human blood. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129908. [PMID: 36115093 DOI: 10.1016/j.jhazmat.2022.129908] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Many studies have examined per- and poly-fluoroalkyl substances (PFASs) in human blood. However, the distribution of PFASs in human blood remains not well known, especially for perfluorooctane sulfonate (PFOS) precursors. In this study, human blood samples (n = 162) were collected from general Chinese population, and then the isomer-specific partitioning of PFASs between human plasma and red blood cells (RBCs) were investigated. Perfluorooctanoate (PFOA) and PFOS were consistently the predominant PFASs in both human plasma and RBCs. In human blood, among C4-C7 perfluoroalkyl carboxylates (PFCAs), the calculated mean mass fraction in plasma (Fp) values increased from 0.76 to 0.82 with the increasing chain length. C7-C13 PFCAs exhibited a trend of gradually decreasing mean Fp with chain length. Among PFAS precursors, 6:2 fluorotelomer phosphate diester had the highest mean Fp value (0.87 ± 0.11). Calculated Fp values of N-methyl perfluorooctanesulfonamide (N-MeFOSA) and N-ethyl perfluorooctanesulfonamide (N-EtFOSA) were 0.66 ± 0.13 and 0.70 ± 0.12, respectively. Individual branched isomers consistently had greater Fp values than their corresponding linear isomers for PFOA, PFHxS, and perfluoroctane sulfonamide. To our knowledge, this study first reports the distribution of N-MeFOSA and N-EtFOSA in human blood, contributing to the better understanding of the occurrence and fate of PFASs in humans.
Collapse
Affiliation(s)
- Daxi Liu
- College of Environmental Science and Technology, Hebei University of Science & Technology, Shijiazhuang, Hebei 050018, PR China
| | - Bo Tang
- College of Environmental Science and Technology, Hebei University of Science & Technology, Shijiazhuang, Hebei 050018, PR China
| | - Saisai Nie
- College of Environmental Science and Technology, Hebei University of Science & Technology, Shijiazhuang, Hebei 050018, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Li He
- College of Environmental Science and Technology, Hebei University of Science & Technology, Shijiazhuang, Hebei 050018, PR China
| | - Jiansheng Cui
- College of Environmental Science and Technology, Hebei University of Science & Technology, Shijiazhuang, Hebei 050018, PR China.
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
16
|
Xie MY, Sun XF, Wu CC, Huang GL, Wang P, Lin ZY, Liu YW, Liu LY, Zeng EY. Glioma is associated with exposure to legacy and alternative per- and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129819. [PMID: 36084455 DOI: 10.1016/j.jhazmat.2022.129819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Data on the occurrences of legacy and alternative per- and polyfluoroalkyl substances (PFASs) in glioma are scarce. It remains unclear if PFASs exposure is related to the prevalence of glioma. A total of 137 glioma and 40 non-glioma brain tissue samples from patients recruited from the Nanfang Hospital, South China were analyzed for 17 PFAS compounds. Perfluorohexanoic acid, perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorooctane sulfonamide (FOSA), and 6:2 chlorinated polyfluorinated ether sulfonate were frequently detected (> 60 %) in glioma. The total concentrations (range; median) of 17 PFASs in glioma (0.20-140; 3.1 ng g-1) were slightly higher than those in non-glioma (0.35-32; 2.2 ng g-1), but without statistical significance. The PFAS concentrations in males were statistically higher (p < 0.05) than those in females. Elevated glioma grades were associated with higher concentrations of PFOA, PFOS, and FOSA. Positive correlations were observed between PFAS concentrations (especially for PFOA) and Ki-67 or P53 expression, pathological molecular markers of glioma. Our findings suggested that exposure to PFASs might increase the probability to develop glioma. This is the first case study demonstrating associations between PFASs exposure and brain cancer. More evidences and potential pathogenic mechanisms warranted further investigations.
Collapse
Affiliation(s)
- Meng-Yi Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiang-Fei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Guang-Long Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Nanfang Glioma Center, Guangzhou 510515, Guangdong, China
| | - Po Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhi-Ying Lin
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Ya-Wei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Xia X, Zheng Y, Tang X, Zhao N, Wang B, Lin H, Lin Y. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances in Cord Blood Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17061-17069. [PMID: 36343112 DOI: 10.1021/acs.est.2c04820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) can penetrate the placental barrier and reach embryos through cord blood, probably causing adverse birth outcomes. Therefore, novel PFASs identification in cord blood and their relationships with birth outcomes are essential to evaluate prenatal exposure risk of PFASs. Herein, 16 legacy and 12 novel PFASs were identified in 326 cord blood samples collected from pregnant women in Jinan, Shandong, China. The presence of perfluoropolyether carboxylic acids, hydrogen-substituted polyfluoroetherpropane sulfate, and 3:3 chlorinated polyfluoroalkyl ether alcohol in cord blood was reported for the first time. Two extensive OECD (Organization for Economic Co-operation and Development)-defined PFASs named fipronil sulfone and 2-chloro-6-(trifluoromethyl)pyridine-3-ol were also identified. Quantification results showed that the emerging and OECD-defined PFASs separately accounted for 9.4 and 9.7% of the total quantified PFASs, while the legacy PFOA, PFOS, and PFHxS were still the most abundant PFASs with median concentrations of 2.12, 0.58, and 0.37 ng/mL, respectively. Several PFASs (C9-C12 PFCAs, C6-C8 PFSAs, and 6:2 Cl-PFESA) showed significantly higher levels for older maternities than younger ones. PFHxS levels were positively associated with birth weight and ponderal index (p < 0.05). The results provide comprehensive information on the presence and exposure risks of several novel PFASs during the early life stage.
Collapse
Affiliation(s)
- Xiaowen Xia
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao266071, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao266071, China
| | - Huan Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| |
Collapse
|
18
|
Liu Y, Shi Q, Liu X, Wang L, He Y, Tang J. Perfluorooctane sulfonate (PFOS) enhanced polystyrene particles uptake by human colon adenocarcinoma Caco-2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157640. [PMID: 35907536 DOI: 10.1016/j.scitotenv.2022.157640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
As microplastics and nanoplastics (MNPs) are widely distributed in the environment and can be transferred to human body through food chain, their potential impact on human health is of great concern. Perfluorooctane sulfonate (PFOS) is persistent, bioaccumulative and can be adsorbed by MNPs. However, there are few studies on the combined human health effects of MNPs with PFOS. In this study, the effects of polystyrene (PS) particles and PFOS on human colon adenocarcinoma cell Caco-2 were investigated in vitro to explore the combined toxicity from cellular level, and the toxic mechanism was further illustrated. Results showed that the presence of PFOS significantly increased the cell uptake of PS nanoparticles by >30 %, which is related to variations of the surface properties of PS particles, including the decrease of hydration kinetic diameter, the rise of surface potential and the adsorption of hydrophobic PFOS molecules. The toxic effect of PFOS was weakened in the presence of PS particles under low PFOS concentration (10 μg/mL), which is because the bioavailability of PFOS was reduced after adsorption. PS particles with small particle size (20 nm) showed higher cell uptake and ROS production, while PS particles with large particle size (1 μm) led to higher lipid oxidation degree and related membrane damage as well as mitochondrial stress. This study provides the first evaluation of combined toxicity of MNPs and PFOS on human intestinal cells, in order to support the risk assessment of combined pollution of MNPs and PFOS on human health.
Collapse
Affiliation(s)
- Yaxuan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qingying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
19
|
Yang L, Chen X, Zhu L, Wang Y, Shan G. Analysis of Specific Perfluorohexane Sulfonate Isomers by Liquid Chromatography-Tandem Mass Spectrometry: Method Development and Application in Source Apportionment. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8704754. [PMID: 36248053 PMCID: PMC9553683 DOI: 10.1155/2022/8704754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Characterization of perfluorohexane sulfonate (PFHxS) isomers, a chemical proposed for listing under the Stockholm Convention, is important to elucidate its environmental behaviors and sources. Optimized chromatographic separation coupled with monitoring of the characteristic fragments enabled the identification of four mono-substituted and two di-substituted branched PFHxS isomers. The transitions of molecular ions m/z 399 to the fragments m/z 80 (n-), m/z 169 (iso-), m/z 319 (1m-), m/z 80 (2m-), and m/z 180 (3m-) were selected for quantifying the mono-substituted isomers. Method accuracy of the established LC-MS/MS was verified by comparing the results of technical products with those determined by 19F-nuclear magnetic resonance (NMR). The developed method was then used to quantify the isomeric compositions of PFHxS in the perfluorooctane sulfonate (PFOS) industrial products which contained PFHxS as an impurity, as well as in several kinds of water samples, with the limits of detection for all isomers in the range of 4 to 30 pg/L. For the first time, a liquid chromatography-tandem mass spectrometry method was established to separate and quantify the PFHxS isomers. The isomeric profiling of water samples suggested that PFHxS in the waters was mainly due to the direct contamination of PFHxS rather than from PFOS contamination.
Collapse
Affiliation(s)
- Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yixin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
20
|
Lin H, Liu Z, Yang H, Lu L, Chen R, Zhang X, Zhong Y, Zhang H. Per- and Polyfluoroalkyl Substances (PFASs) Impair Lipid Metabolism in Rana nigromaculata: A Field Investigation and Laboratory Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13222-13232. [PMID: 36044002 DOI: 10.1021/acs.est.2c03452] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous environmental pollutants, causing environmental threats and public health concerns, but information regarding PFAS hepatotoxicity remains elusive. We investigated the effects of PFASs on lipid metabolism in black-spotted frogs through a combined field and laboratory study. In a fluorochemical industrial area, PFASs seriously accumulate in frog tissues. PFAS levels in frog liver tissues are positively related to the hepatosomatic index along with triglyceride (TG) and cholesterol (TC) contents. In the laboratory, frogs were exposed to 1 and 10 μg/L PFASs, respectively (including PFOA, PFOS, and 6:2 Cl-PFESA). At 10 μg/L, PFASs change the hepatic fatty acid composition and significantly increase the hepatic TG content by 1.33 to 1.87 times. PFASs induce cross-talk accumulation of TG, TC, and their metabolites between the liver and serum. PFASs can bind to LXRα and PPARα proteins, further upregulate downstream lipogenesis-related gene expression, and downregulate lipolysis-related gene expression. Furthermore, lipid accumulation induced by PFASs is alleviated by PPARα and LXRα antagonists, suggesting the vital role of PPARα and LXRα in PFAS-induced lipid metabolism disorders. This work first reveals the disruption of PFASs on hepatic lipid homeostasis and provides novel insights into the occurrence and environmental risk of PFASs in amphibians.
Collapse
Affiliation(s)
- Huikang Lin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China
| | - Hongmei Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Runtao Chen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaofang Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|