1
|
Miao Z, Li S, Song X, Ren F, Jin H. Discovery of perfluoroalkyl sulfonyl quaternary ammonium substances in the environment and their environmental behaviors. WATER RESEARCH 2024; 263:122189. [PMID: 39096813 DOI: 10.1016/j.watres.2024.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
A variety of per- and polyfluoroalkyl substances (PFASs) have been released into the environment via wastewater treatment plant (WWTP) effluent, with current target and nontarget analytical methods typically focusing on negatively ionized PFASs while largely overlooking positively ionized ones. In this study, five cationic PFASs, perfluoroalkyl sulfonyl quaternary ammonium substances (PFAQASs), were first identified in surface water impacted by the WWTP effluent, applying a metabolomics-based nontarget analysis method. Environmental behaviors of identified novel PFAQASs were further investigated. In surface water, sediment, and fish (Coilia mystus) samples collected from the Yangtze River, 8:3 PFAQA was consistently the predominant PFAQASs, with the mean concentrations of 90 ng/L (< LOD-558 ng/L), 92 ng/g dw (< LOD-421 ng/g dw), and 2.3 ng/g ww (< LOD-4.6 ng/g ww), respectively. This study highlights the necessity to discover other cationic PFASs in the environment. Among PFAQASs, 8:4 PFAQA (4.2, range 3.4 - 4.6) had the highest mean sediment-water partitioning coefficient (log Koc), followed by 8:3 PFAQA (3.9, 2.8 - 4.5) and 6:3 PFAQA (3.7, 3.3 - 4.1). The log Koc of PFAQASs showed a general increase trend with the increasing carbon chain length. Mean bioaccumulation factor (BAF) values of PFAQASs calculated in the collected fish from the Yangtze River ranged from 1.9 ± 0.32 (4:3 PFAQA) to 2.9 ± 0.34 (8:4 PFAQA). The mean BAF values of PFAQASs generally increased with the carbon chain length. Further studies are warranted to elucidate the environmental fate, potential toxicity, and human exposure implications for these identified novel PFASs.
Collapse
Affiliation(s)
- Zhijia Miao
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Shuoyang Li
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Xueqiang Song
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| |
Collapse
|
2
|
Lohmann R, Abass K, Bonefeld-Jørgensen EC, Bossi R, Dietz R, Ferguson S, Fernie KJ, Grandjean P, Herzke D, Houde M, Lemire M, Letcher RJ, Muir D, De Silva AO, Ostertag SK, Rand AA, Søndergaard J, Sonne C, Sunderland EM, Vorkamp K, Wilson S, Weihe P. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176274. [PMID: 39304148 DOI: 10.1016/j.scitotenv.2024.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Collapse
Affiliation(s)
- Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA.
| | - Khaled Abass
- University of Sharjah, College of Health Sciences, Department of Environmental Health Sciences, The United Arab Emirates; University of Oulu, Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, Finland
| | - Eva Cecilie Bonefeld-Jørgensen
- Aarhus University, Center for Arctic Health and Molecular Epidemiology, Department of Public Health, DK-8000 Aarhus C, Denmark; University of Greenland, Greenland Center for Health Research, GL-3905 Nuuk, Greenland
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Steve Ferguson
- Fisheries and Oceans Canada, Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Philippe Grandjean
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA; University of Southern Denmark, Department of Public Health, DK-5230 Odense, Denmark
| | - Dorte Herzke
- The Norwegian Institute of Public Health, Division of Climate and Environmental Health, P.O.Box 222, Skøyen 0213, Oslo, Norway; Norwegian Institute for Air Research, Hjalmar Johansen gt 14 9006 Tromsø, Norway
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Lemire
- Université Laval, Centre de recherche du CHU de Québec, Département de médecine sociale et préventive & Institut de biologie intégrative et des systèmes, 1030 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Carleton University, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Sonja K Ostertag
- University of Waterloo, School of Public Health, 200 University Ave W, Waterloo, Ontario, Canada
| | - Amy A Rand
- Carleton University, Department of Chemistry, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elsie M Sunderland
- Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Pal Weihe
- The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands.
| |
Collapse
|
3
|
Cioni L, Nikiforov V, Benskin JP, Coêlho ACM, Dudášová S, Lauria MZ, Lechtenfeld OJ, Plassmann MM, Reemtsma T, Sandanger TM, Herzke D. Combining Advanced Analytical Methodologies to Uncover Suspect PFAS and Fluorinated Pharmaceutical Contributions to Extractable Organic Fluorine in Human Serum (Tromsø Study). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12943-12953. [PMID: 38985529 PMCID: PMC11271008 DOI: 10.1021/acs.est.4c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
A growing number of studies have reported that routinely monitored per- and polyfluoroalkyl substances (PFAS) are not sufficient to explain the extractable organic fluorine (EOF) measured in human blood. In this study, we address this gap by screening pooled human serum collected over 3 decades (1986-2015) in Tromsø (Norway) for >5000 PFAS and >300 fluorinated pharmaceuticals. We combined multiple analytical techniques (direct infusion Fourier transform ion cyclotron resonance mass spectrometry, liquid chromatography-Orbitrap-high-resolution mass spectrometry, and total oxidizable precursors assay) in a three-step suspect screening process which aimed at unequivocal suspect identification. This approach uncovered the presence of one PFAS and eight fluorinated pharmaceuticals (including some metabolites) in human serum. While the PFAS suspect only accounted for 2-4% of the EOF, fluorinated pharmaceuticals accounted for 0-63% of the EOF, and their contribution increased in recent years. Although fluorinated pharmaceuticals often contain only 1-3 fluorine atoms, our results indicate that they can contribute significantly to the EOF. Indeed, the contribution from fluorinated pharmaceuticals allowed us to close the organofluorine mass balance in pooled serum from 2015, indicating a good understanding of organofluorine compounds in humans. However, a portion of the EOF in human serum from 1986 and 2007 still remained unexplained.
Collapse
Affiliation(s)
- Lara Cioni
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT—the Arctic
University of Norway, Tromsø NO-9037, Norway
| | | | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Silvia Dudášová
- Helmholtz
Centre for Environmental Research—UFZ, Leipzig DE-04103, Germany
| | - Melanie Z. Lauria
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Merle M. Plassmann
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | - Thorsten Reemtsma
- Helmholtz
Centre for Environmental Research—UFZ, Leipzig DE-04103, Germany
| | - Torkjel M. Sandanger
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT—the Arctic
University of Norway, Tromsø NO-9037, Norway
| | - Dorte Herzke
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Norwegian
Institute for Public Health, Oslo NO-0213, Norway
| |
Collapse
|
4
|
Idjaton BIT, Togola A, Ghestem JP, Kastler L, Bristeau S, Ronteltap M, Colombano S, Devau N, Lions J, van Hullebusch ED. Determination of organic fluorinated compounds content in complex samples through combustion ion chromatography methods: a way to define a "Total Per- and Polyfluoroalkyl Substances (PFAS)" parameter? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172589. [PMID: 38657803 DOI: 10.1016/j.scitotenv.2024.172589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Emerging contaminants are a growing concern for scientists and public authorities. The group of per-polyfluoroalkyl substances (PFAS), known as 'forever chemicals', in complex environmental liquid and solid matrices was analysed in this study. The development of global analytical methods based on combustion ion chromatography (CIC) is expected to provide accurate picture of the overall PFAS contamination level via the determination of extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF). The obtained results may be put into perspective with other methods such as targeted analyses (LC-MS/MS). The impact of pH, the presence of dissolved organic carbon and suspended particles on AOF measurements were explored. The effectiveness of the washing step to remove adsorbed inorganic fluorine (IF) has been proven for samples containing up to 8 mgF.L-1. CIC-based methods showed good repeatability and reproducibility for the complex matrices studied. Environmental applications of these methods have been tested. AOF and EOF analyses could explain between 1 % and 23 % and 0.1 % to 2 % of total organic fluorine (TOF), respectively. The sum of PFAS compounds expressed as fluorine could explain from 0.2 % to 11 % and from 0.003 % to 5 % for AOF and EOF, respectively. These results also suggest that some fluorinated compounds are not adsorbed or extractable and/or lost by volatilisation during the application of AOF and EOF analytical procedure. These findings highlight that AOF and EOF are not entirely efficient as proxy to assess "total PFAS" for assessing environmental contamination by PFAS. However, these methods could still be applied to gain a better understanding of the sources and fate of PFAS in the environment.
Collapse
Affiliation(s)
- Babatoundé I T Idjaton
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France; Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Anne Togola
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France.
| | - Jean Philippe Ghestem
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Laura Kastler
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Sébastien Bristeau
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Mariska Ronteltap
- Delfland Water Authority, Phoenixstraat 32, the Netherlands; TU Delft, Water Management Department, Stevinweg 1, Delft, the Netherlands
| | - Stéfan Colombano
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Nicolas Devau
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Julie Lions
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| |
Collapse
|
5
|
Fischer FC, Ludtke S, Thackray C, Pickard HM, Haque F, Dassuncao C, Endo S, Schaider L, Sunderland EM. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to Serum Proteins: Implications for Toxicokinetics in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1055-1063. [PMID: 38166384 PMCID: PMC11149785 DOI: 10.1021/acs.est.3c07415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse class of highly persistent anthropogenic chemicals that are detectable in the serum of most humans. PFAS exposure has been associated with many adverse effects on human health including immunotoxicity, increased risk of certain cancers, and metabolic disruption. PFAS binding to the most abundant blood serum proteins (human serum albumin [HSA] and globulins) is thought to affect transport to active sites, toxicity, and elimination half-lives. However, few studies have investigated the competitive binding of PFAS to these proteins in human serum. Here, we use C18 solid-phase microextraction fibers to measure HSA-water and globulin-water distribution coefficients (DHSA/w, Dglob/w) for PFAS with carbon chains containing 4 to 13 perfluorinated carbons (ηpfc = 4-13) and several functional head-groups. PFAS with ηpfc < 7 were highly bound to HSA relative to globulins, whereas PFAS with ηpfc ≥ 7 showed a greater propensity for binding to globulins. Experimentally measured DHSA/w and Dglob/w and concentrations of serum proteins successfully predicted the variability in PFAS binding in human serum. We estimated that the unbound fraction of serum PFAS varied by up to a factor of 2.5 among individuals participating in the 2017-2018 U.S. National Health and Nutrition Examination Survey. These results suggest that serum HSA and globulins are important covariates for epidemiological studies aimed at understanding the effects of PFAS exposure.
Collapse
Affiliation(s)
- Fabian Christoph Fischer
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sophia Ludtke
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Colin Thackray
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Faiz Haque
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Clifton Dassuncao
- Eastern Research Group, Inc. (ERG), Arlington, Virginia 22201, United States
| | - Satoshi Endo
- National Institute for Environmental Studies (NIES), Health and Environmental Risk Division, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Laurel Schaider
- Silent Spring Institute, Newton, Massachusetts 02460, United States
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|