1
|
Kumar A, Akoumeh R, Ramanathan A, Park J, Thippanna V, Patil D, Zhu Y, Ravichandran D, Thummalapalli SV, Sobczak MT, Chambers LB, Theobald TG, Yu C, Sui C, Yang L, Ponnamma D, Hassan MK, Al-Ejji M, Yang S, Song K. Biomimetic 3D Prototyping of Hierarchically Porous Multilayered Membranes for Enhanced Oil-Water Filtration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8285-8298. [PMID: 39846822 PMCID: PMC11803563 DOI: 10.1021/acsami.4c18528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
This study introduces a biomimetic approach to 3D printing multilayered hierarchical porous membranes (MHMs) using Direct Ink Writing (DIW) technology. Fabricated through a fast layer-by-layer printing process with varying concentrations of pore-forming agents, the produced MHMs mimic the hierarchical pore structure and filtration capabilities of natural soil systems. As a result, the 3D-printed MHMs achieved an impressive oil rejection rate of 99.02% and demonstrated exceptional reusability, maintaining a flux recovery ratio of 99.48% even after hours of continuous filtration. Moreover, the 3D-printed MHMs exhibit superior hierarchical porous architecture and mechanical integrity compared to traditional flat sheet single-layered membranes. This study presents a significant advancement for scalable 3D printing of customized multilayer membranes with tailored porosity and high-performance filtration properties. The simplicity, versatility, and cost-effectiveness of the presented manufacturing method offer a pathway for advanced design and on-demand membrane production.
Collapse
Affiliation(s)
- Abhishek
Saji Kumar
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85281, United States
| | - Rayane Akoumeh
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Arunachalam Ramanathan
- Mechanical
Engineering, College of Engineering, University
of Georgia, 302 E. Campus Rd, Athens, Georgia 30602, United
States
| | - JaeWoo Park
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85281, United States
| | - Varunkumar Thippanna
- Mechanical
Engineering, College of Engineering, University
of Georgia, 302 E. Campus Rd, Athens, Georgia 30602, United
States
| | - Dhanush Patil
- Mechanical
Engineering, College of Engineering, University
of Georgia, 302 E. Campus Rd, Athens, Georgia 30602, United
States
| | - Yuxiang Zhu
- School
of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools
of Engineering, Arizona State University
(ASU), Mesa, Arizona 85212, United States
| | - Dharneedar Ravichandran
- Department
of Mechanical Engineering, University of
California, Berkeley, California 94720, United States
| | - Sri Vaishnavi Thummalapalli
- Mechanical
Engineering, College of Engineering, University
of Georgia, 302 E. Campus Rd, Athens, Georgia 30602, United
States
| | - M. Taylor Sobczak
- Mechanical
Engineering, College of Engineering, University
of Georgia, 302 E. Campus Rd, Athens, Georgia 30602, United
States
| | - Lindsay Bick Chambers
- Mechanical
Engineering, College of Engineering, University
of Georgia, 302 E. Campus Rd, Athens, Georgia 30602, United
States
| | - Taylor G. Theobald
- Mechanical
Engineering, College of Engineering, University
of Georgia, 302 E. Campus Rd, Athens, Georgia 30602, United
States
| | - Churan Yu
- Mechanical
Engineering, College of Engineering, University
of Georgia, 302 E. Campus Rd, Athens, Georgia 30602, United
States
| | - Chao Sui
- Mechanical
Engineering, College of Engineering, University
of Georgia, 302 E. Campus Rd, Athens, Georgia 30602, United
States
| | - Libin Yang
- Mechanical
Engineering, College of Engineering, University
of Georgia, 302 E. Campus Rd, Athens, Georgia 30602, United
States
| | | | - Mohammad K. Hassan
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Maryam Al-Ejji
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sui Yang
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85281, United States
- Center for
Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Kenan Song
- Associate
Professor of Mechanical Engineering, College of Engineering, University of Georgia (UGA), 302 E. Campus Rd., Athens 30602, United States
- Adjunct
professor at the School of Manufacturing Systems and Networks (MSN),
Ira A. Fulton Schools of Engineering, Arizona
State University (ASU), Mesa, Arizona 85212, United States
| |
Collapse
|
2
|
Song D, Wang L, Sun W, Zhang Y, Xie B, Zhao Y, Wang W, Wang P, Ma J, Cheng W. Tourmaline triggered biofilm transformation: Boosting ultrafiltration efficiency and fouling resistance. WATER RESEARCH 2024; 264:122212. [PMID: 39126743 DOI: 10.1016/j.watres.2024.122212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Ultralow pressure filtration system, which integrates the dual functionalities of biofilm degradation and membrane filtration, has gained significant attention in water treatment due to its superior contaminant removal efficiency. However, it is a challenge to mitigate membrane biofouling while maintaining the high activity of biofilm. This study presents a novel ceramic-based ultrafiltration membrane functionalized with tourmaline nanoparticles to address this challenge. The incorporation of tourmaline nanoparticles enables the release of nutrient elements and the generation of an electric field, which enhances the biofilm activity on the membrane surface and simultaneously alleviates intrapore biofouling. The tourmaline-modified ceramic membrane (TCM) demonstrated a significant antifouling effect, with a substantial increase in water flux by 60 %. Additionally, the TCM achieved high removal efficiencies for contaminants (48.78 % in TOC, 22.28 % in UV254, and 24.42 % in TN) after 30 days of continuous operation. The fouling resistance by various constituents in natural water was individually analyzed using model compounds. The TCM with improved electronegativity and hydrophilicity exhibited superior resistance to irreversible fouling through increased electrostatic repulsion and reduced adhesion to foulants. Comprehensive characterizations and analyses, including interfacial interaction energies, redox reaction processes, and biofilm evolutions, demonstrated that the TCM can release nutrient elements to facilitate the development of functional microbial community within the biofilm, and generate reactive oxygen species (ROS) on the membrane surface to the degrade contaminants and mitigate membrane biofouling. The electric field generated by tourmaline nanoparticles can promote electron transfer in the Fe(III)/Fe(II) cycle, ensuring a stable and sustainable generation of ROS and bactericidal negative ions. These synergistic functions enhance contaminant removal and reduce irreversible fouling of the TCM. This study provides fundamental insights into the role of tourmaline-modified surfaces in enhancing membrane filtration performance and fouling resistance, inspiring the development of high-performance, anti-fouling membranes.
Collapse
Affiliation(s)
- Dan Song
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lu Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Weikai Sun
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingjie Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Ying Zhao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Tu J, Li C, Yang J, Brennan C, Zhu B. New discovery of the coalescence kinetics of sesame oil droplets under a high internal phase: A highly efficient oil extraction technique. Food Chem 2024; 444:138527. [PMID: 38309080 DOI: 10.1016/j.foodchem.2024.138527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Traditional pressing is of low efficiency (< 80 %). A highly efficient sesame oil extraction technique was discovered via micro-hydration of sesame paste (φ = ∼ 75 %) and then agitation with a yield of ∼ 95 %. However, the extraction mechanism is still unknown. To uncover this, microscopic imaging was used, and it found that agitation progressively increased the droplet size of micro-hydrated paste (φ = 74.5 %) from an initial size of < 4 μm. As agitated for 20 min, almost 85 % (v/v) of oil was over 20 μm, which was linearly and positively correlated (R2 > 0.96) with oil yield. Increase in droplet size was due to droplet compression, film rupture, and droplet coalescence. The coalescence frequency based on agitation time followed an exponent curve (R2 > 0.97). This coalescence might be related to the decreased water relaxation time and increased paste viscosity. This study, for the first time, found the oil droplet coalescence in hydrated sesame paste (φ = 74.5 %) during agitation, thereby successfully extracting oil at room temperature. The findings of this work can be a starting point for research on micro-hydration extraction for oil-containing materials from a packing density of oil droplets point view.
Collapse
Affiliation(s)
- Juncai Tu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Cungang Li
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Charles Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Xiong Y, Peng K, Zhao Z, Yang D, Huang X, Zeng H. Sources, colloidal characteristics, and separation technologies for highly hazardous waste nanoemulsions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172347. [PMID: 38614332 DOI: 10.1016/j.scitotenv.2024.172347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Nanoemulsions play a crucial role in various industries. However, their application often results in hazardous waste, posing significant risks to human health and the environment. Effective management and separation of waste nanoemulsions requires special attention and effort. This review provides a comprehensive understanding of waste nanoemulsions, covering their sources, characteristics, and suitable treatment technologies, intending to mitigate their environmental impact. This study examines the evolution of nanoemulsions from beneficial products to hazardous wastes, provides an overview of the production processes, fate, and hazards of waste nanoemulsions, and highlights the critical characteristics that affect their stability. The latest advancements in separating waste nanoemulsions for recovering oil and reusable water resources are also presented, providing a comprehensive comparison and evaluation of the current treatment techniques. This review addresses the significant challenges in nanoemulsion treatment, provides insights into future research directions, and offers valuable implications for the development of more effective strategies to mitigate the hazards associated with waste nanoemulsions.
Collapse
Affiliation(s)
- Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
5
|
Wang M, Huang T, Shan M, Sun M, Liu S, Tang H. Zwitterionic Tröger's Base Microfiltration Membrane Prepared via Vapor-Induced Phase Separation with Improved Demulsification and Antifouling Performance. Molecules 2024; 29:1001. [PMID: 38474513 DOI: 10.3390/molecules29051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The fouling of separation membranes has consistently been a primary factor contributing to the decline in membrane performance. Enhancing the surface hydrophilicity of the membrane proves to be an effective strategy in mitigating membrane fouling in water treatment processes. Zwitterionic polymers (containing an equimolar number of homogeneously distributed anionic and cationic groups on the polymer chains) have been used extensively as one of the best antifouling materials for surface modification. The conventional application of zwitterionic compounds as surface modifiers is intricate and inefficient, adding complexity and length to the membrane preparation process, particularly on an industrial scale. To overcome these limitations, zwitterionic polymer, directly used as a main material, is an effective method. In this work, a novel zwitterionic polymer (TB)-zwitterionic Tröger's base (ZTB)-was synthesized by quaternizing Tröger's base (TB) with 1,3-propane sultone. The obtained ZTB is blended with TB to fabricate microfiltration (MF) membranes via the vapor-induced phase separation (VIPS) process, offering a strategic solution for separating emulsified oily wastewater. Atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle, and zeta potential measurements were employed to characterize the surface of ZTB/TB blended membranes, assessing surface morphology, charge, and hydrophilic/hydrophobic properties. The impact of varying ZTB levels on membrane surface morphology, hydrophilicity, water flux, and rejection were investigated. The results showed that an increase in ZTB content improved hydrophilicity and surface roughness, consequently enhancing water permeability. Due to the attraction of water vapor, the enrichment of zwitterionic segments was enriched, and a stable hydration layer was formed on the membrane surface. The hydration layer formed by zwitterions endowed the membrane with good antifouling properties. The proposed mechanism elucidates the membrane's proficiency in demulsification and the reduction in irreversible fouling through the synergistic regulation of surface charge and hydrophilicity, facilitated by electrostatic repulsion and the formation of a hydration layer. The ZTB/TB blended membranes demonstrated superior efficiency in oil-water separation, achieving a maximum flux of 1897.63 LMH bar-1 and an oil rejection rate as high as 99% in the oil-water emulsion separation process. This study reveals the migration behavior of the zwitterionic polymer in the membrane during the VIPS process. It enhances our comprehension of the antifouling mechanism of zwitterionic membranes and provides guidance for designing novel materials for antifouling membranes.
Collapse
Affiliation(s)
- Meng Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tingting Huang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Meng Shan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Mei Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Shasha Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Hai Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
6
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Qiu Z, Chu C, Wang K, Shen J, Zhu X, Kamran MA, Chen B. Sequential anodic oxidation and cathodic electro-Fenton in the Janus electrified membrane for reagent-free degradation of pollutants. WATER RESEARCH 2023; 246:120674. [PMID: 37857008 DOI: 10.1016/j.watres.2023.120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Electrified membrane technologies have recently demonstrated high potential in tackling water pollution, yet their practical applications are challenged by relying on large precursor doses. Here, we developed a Janus porous membrane (JPEM) with synergic direct oxidation by Magnéli phase Ti4O7 anode and electro-Fenton reactions by CuFe2O4 cathode. Organic pollutants were first directly oxidized on the Ti4O7 anode, where the extracted electrons from pollutants were transported to the cathode for electro-Fenton production of hydroxyl radical (·OH). The cathodic ·OH further enhanced the mineralization of organic pollutant degradation intermediates. With the sequential anodic and cathodic oxidation processes, the reagent-free JPEM showed competitive performance in rapid degradation (removal rate of 0.417 mg L-1 s-1) and mineralization (68.7 % decrease in TOC) of sulfamethoxazole. The JPEM system displayed general performance to remove phenol, carbamazepine, and perfluorooctanoic acid. The JPEM runs solely on electricity and oxygen that is comparable to that of PEM relies on large precursor doses and, therefore, operation friendly and environmental sustainability. The high pollutant removal and mineralization achieved by rational design of the reaction processes sheds light on a new approach for constructing an efficient electrified membrane.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jianjian Shen
- Dqchance. Science and Technology co Ltd, Hangzhou 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Muhammad Aqeel Kamran
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Zhejiang 311400, China.
| |
Collapse
|
8
|
Cheng X, Li T, Yan L, Jiao Y, Zhang Y, Wang K, Cheng Z, Ma J, Shao L. Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation. SCIENCE ADVANCES 2023; 9:eadh8195. [PMID: 37611103 PMCID: PMC10446487 DOI: 10.1126/sciadv.adh8195] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Although membrane technology has attracted considerable attention for oily wastewater treatment, the plastic waste generated from discarded membranes presents an immediate challenge for achieving eco-friendly separation. We designed on-demand biodegradable superhydrophilic membranes composed of polylactic acid nanofibers in conjunction with polyethylene oxide hydrogels using electrospinning technology for ultrafast purification of oily water. Our results showed that the use of the polyethylene oxide hydrogels increased the number of hydrogen bonds formed between the membrane surface and water molecules by 357.6%. This converted hydrophobic membranes into superhydrophilic ones, which prevented membrane fouling and accelerated emulsion penetration through the membranes. The oil-in-water emulsion permeance of our newly designed nanofiber membranes increased by 61.9 times (2.1 × 104 liters per square meter per hour per bar) with separation efficiency >99.6%, which was superior to state-of-the-art membranes. Moreover, the formation of hydrogen bonds was found to accelerate polylactic acid biodegradation into lactic acid by over 30%, offering a promising approach for waste membrane treatment.
Collapse
Affiliation(s)
- Xiquan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co. Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai 264209, P.R. China
| | - Tongyu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Linlin Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yang Jiao
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Yingjie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co. Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai 264209, P.R. China
| | - Kai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
9
|
Zhang B, Peng Y, Yao Y, Hong X, Wu Y. Constructing a composite microfiltration carbon membrane by TiO 2 and Fe 2O 3 for efficient separation of oil-water emulsions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92027-92041. [PMID: 37480529 DOI: 10.1007/s11356-023-28728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Membrane-based separation technology has attracted enormous attention for oil/water emulsion treatment. Here, composite microfiltration carbon membranes (MCMs) were prepared from the precursor of phenolic resin doping with TiO2 and Fe2O3 via the processes of stereotype and pyrolysis. The functional groups, thermal stability, porous structure, microstructure, morphology, and hydrophilicity of the membrane samples were analyzed by Fourier-transform infrared spectroscopy, thermogravimetric analysis, bubble pressure method, X-ray diffraction, scanning electron microscope, and water contact angle, respectively. The effect of dopant amount on the separation performance of MCMs was investigated. The results show that a mixed matrix system is constructed by TiO2 and Fe2O3 in MCMs, which is beneficial for further optimizing the pore size, porosity, and hydrophilicity of MCMs for oily wastewater treatment by varying the dopant amount. The maximum oil rejections are achieved at 98.9% and 99.6% for MCMs with a dopant content of TiO2 and Fe2O3 at 25%, respectively. In brief, this study offers an attractive strategy for improving the separation performance of MCMs for oily wastewater.
Collapse
Affiliation(s)
- Bing Zhang
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China.
| | - Yao Peng
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Yanhu Yao
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Xueqian Hong
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Yonghong Wu
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| |
Collapse
|
10
|
Ji X, Liang H, Hu S, Yang B, Xiao K, Yu G. Highly efficient decomplexation of chelated nickel and copper effluent through CuO-CeO 2-Co 3O 4 nanocatalyst loaded on ceramic membrane. CHEMOSPHERE 2023; 334:138981. [PMID: 37209848 DOI: 10.1016/j.chemosphere.2023.138981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
A novel CuO-CeO2-Co3O4 nanocatalyst loaded on Al2O3 ceramic composite membrane (CCM-S) was synthesized through spraying-calcination method, which can be beneficial to the engineering application of scattered granular catalyst. BET and FESEM-EDX testing revealed that CCM-S possessed a porous character with high BET surface area of 22.4 m2/g and flat modified surface with extremely fine particle aggregation. The CCM-S calcined above 500 °C presented excellent anti-dissolution effect due to the formation of crystals. XPS indicated that the composite nanocatalyst possessed the variable valence states, which were conducive to exert the catalytic effect of Fenton-like reaction. Subsequently, the effects of experimental parameters including fabricate method, calcination temperature, H2O2 dosage, initial pH value, and CCM-S amount were further investigated considering the removal efficiency of Ni(II)-complex and COD after decomplexation and precipitation (pH = 10.5) treatment within 90 min. Under the optimal reaction condition, the residual Ni(II)-complex and Cu(II)-complex concentration from actual wastewater was all lower than 0.18 mg/L and 0.27 mg/L, respectively; meanwhile, the removal efficiency of COD was all higher than 50% in the mixed electroless plating effluent. Besides, the CCM-S could still maintain high catalytic activity after a six-cycle test, and the removal efficiency was slightly declined from 99.82% to 88.11%. These outcomes indicated that CCM-S/H2O2 system was provided with a potential applicability on treatment of real chelated metal wastewater.
Collapse
Affiliation(s)
- Xianhua Ji
- Jiangsu Jingyuan Environmental Protection Co., Ltd, Nantong, 226000, PR China; School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Huiyu Liang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sukai Hu
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Bo Yang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Ke Xiao
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environmental Ecology, Beijing Normal University, Zhuhai, 519085, PR China.
| |
Collapse
|
11
|
Song S, Le-Clech P, Shen Y. Microscale fluid and particle dynamics in filtration processes in water treatment: A review. WATER RESEARCH 2023; 233:119746. [PMID: 36809713 DOI: 10.1016/j.watres.2023.119746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The complex filtration processes in water treatment, granular filtration and membrane filtration, often suffer from filter fouling, and the fundamental understanding of microscale fluid and particle dynamics is a key to improving filtration efficiency and stability. In this review, we identify and review several key topics in filtration processes: drag force, fluid velocity profile, intrinsic permeability and hydraulic tortuosity in microscale fluid dynamics, and particle straining, absorption, and accumulation in microscale particle dynamics. The paper also reviews several key experimental and computational techniques for investigating filtration processes at microscale considering their applicability and capability. Then, major findings in previous studies on these key topics are comprehensively reviewed in terms of microscale fluid and particle dynamics. Last, future research is discussed in terms of techniques, scopes and links. The review provides a comprehensive overview of microscale fluid and particle dynamics in filtration processes for water treatment and particle technology communities.
Collapse
Affiliation(s)
- Shuang Song
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Pierre Le-Clech
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yansong Shen
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Jin X, Li K, Wei Y, Shang Y, Xu L, Liu M, Xu L, Bai X, Shi X, Jin P, Song J, Wang XC. Polymer-flooding produced water treatment using an electro-hybrid ozonation-coagulation system with novel cathode membranes targeting alternating filtration and in situ self-cleaning. WATER RESEARCH 2023; 233:119749. [PMID: 36804336 DOI: 10.1016/j.watres.2023.119749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Polymer-flooding produced water is more difficult to treat for reinjection compared with normal produced water because of the presence of residual hydrolyzed polyacrylamide (HPAM). A novel cathode membrane integrated electro-hybrid ozonation-coagulation (CM-E-HOC) process was proposed for the treatment of polymer-flooding produced water. This process achieved in situ self-cleaning by generated microbubbles in the cathode membrane. The CM-E-HOC process achieved a higher suspended solid (SS), turbidity and PAM removal efficiency than the CM-EC process. The SS in the CM-E-HOC effluent was ≤ 20 mg/L SS, which met the reinjection requirements of Longdong, Changqing Oilfield, China (Q/SYCQ 08,011-2019) at different current densities (3, 5 and 10 mA/cm2). The CM-E-HOC process greatly mitigated both reversible and irreversible membrane fouling. Therefore, excellent flux recovery was obtained at different in situ self-cleaning intervals during the CM-E-HOC process. Furthermore, alternating filtration achieved continuous water production during the CM-E-HOC process. On one hand, the effective removal of aromatic protein-like substances and an increase in oxygen-containing functional groups were achieved due to the enhanced oxidation ability of the CM-E-HOC process, which decreased membrane fouling. On the other hand, the CM-E-HOC process showed improved coagulation performance because of the increased oxygen-containing functional groups and polymeric Fe species. Therefore, larger flocs with higher fractal dimensions were generated, and a looser and more porous cake layer was formed on the membrane surface during the CM-E-HOC process. Consequently, the CM-E-HOC process exhibited better in situ self-cleaning performance and lower filtration resistance than the CM-EC process.
Collapse
Affiliation(s)
- Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Keqian Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Yixiong Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yabo Shang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Lanzhou Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Mengwen Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Lu Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| | - Jina Song
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei Province, 056038, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| |
Collapse
|
13
|
Roy Chowdhury S, Haldar D. Effect of Symmetry and Increasing Hydrophobicity on the Self-Assembly and Function of Benzoylurea Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4855-4862. [PMID: 36966507 DOI: 10.1021/acs.langmuir.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel series of benzoylurea derivatives containing benzoic acid, m-dibenzoic acid, and benzene 1,3,5-tricarboxylic acid were designed with increasing hydrophobicity. The aggregation behavior of the derivatives was studied by several spectroscopic methods. The porous morphology of the resulting aggregates was examined by polar optical microscopy and field emission scanning electron microscopy. From X-ray single-crystal analysis, it is observed that N,N'-dicyclohexylurea containing compound 3 lost C3 symmetry and adopted a "bowl"-shaped conformation and self-assembles to form a supramolecular honeycomb-like framework that is stabilized by multiple intermolecular hydrogen bonds. However, compound 2 with C2 symmetry had a kink-like conformation and self-assembled to form a sheet-like structure. Discotic compound 3 coated paper, cloth, or glass surfaces, repealed water, and behaved like a self-cleaning material. Discotic compound 3 is also able to separate the oil and water from oil-water emulsion.
Collapse
Affiliation(s)
- Srayoshi Roy Chowdhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Debasish Haldar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
- Centre for Advanced Functional Materials, Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
14
|
Tomczak W, Gryta M. Long-Term Performance of Ultrafiltration Membranes: Corrosion Fouling Aspect. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041673. [PMID: 36837302 PMCID: PMC9959295 DOI: 10.3390/ma16041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 05/14/2023]
Abstract
The past decade has seen a rise in the importance of the ultrafiltration (UF) technique in the separation of various complex solutions. However, the fouling phenomenon is the main limitation to faster process development. To the best of the authors' knowledge, the present paper is the first to aim to identify the role of corrosion fouling in long-term UF. For this purpose, polyvinylidene fluoride (PVDF) and polyethersulfone (PES) membranes were used. The investigations were carried out with the use of both pilot-scale and laboratory-scale units. Results obtained in the present study have clearly demonstrated that the oil concentration has a significant impact on the process performance. Indeed, it has been noted that a reduction in oil concentration from 160 to 100 mg/L resulted in an increase in the PVDF membrane flux from 57 to 77 L/m2h. In addition, it has been shown that the feed temperature has a significant influence on the UF performance. Importantly, it has been shown that corrosion fouling is of vital importance in UF membranes. Indeed, corrosion products such as iron oxides contaminated the membrane surface leading to an irreversible decrease in the UF process performance. In addition, it has been found that repeating the chemical cleaning of the membrane units significantly reduced the intensity of the fouling phenomenon. However, the complete elimination of its effects was not achieved. Therefore, it has been indicated that cleaning agents recommended by membrane manufacturers do not remove corrosion products deposited on the membrane surface. Undoubtedly, the obtained results can be used in the design of UF units leading to the extension of membrane installation lifetime.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
- Correspondence:
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
15
|
Liu X, Zhou J, Xia Q, Li B, Gao Q, Zhao S, Khan A, Xu A, Li X. Modified birnessite MnO 2 as efficient Fenton-like catalysts through electron transfer process between the simultaneously surface-activated peroxymonosulfate and pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130178. [PMID: 36252404 DOI: 10.1016/j.jhazmat.2022.130178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The development of efficient and eco-friendly Mn-based hybrids for the degradation of biorefractory organic pollutants via peroxymonosulfate (PMS) activation is highly desired. In this study, a novel graphite nanosheet (GNs)-based Fe-Mn bimetallic oxide (Fe doped birnessite MnO2, FeMn/GNs) was synthesized under mild conditions. Compared with monometallic Fe or Mn oxide on GNs, FeMn/GNs exhibited a higher surface area, decreased Mn oxidation states, stronger interaction with GNs, and more active sites for PMS adsorption. Among different Fe/Mn ratios, Fe2Mn1/GNs showed the optimum performance for bisphenol A (BPA) degradation with the first-order rate constant of 0.22 min-1, which was about 8.5 and 12.9 times higher than that of Mn/GNs and Fe/GNs, respectively. Different from the pollutant-catalyst-PMS electron transfer mechanism for Mn/GNs, the direct two-electron transfer in FeMn/GNs+PMS system, was mainly processed between the simultaneously activated BPA and PMS. This was probably based on the double adsorption sites of Fe and Mn species on the same catalyst: PMS was adsorbed by Fe species through hydroxyl groups, while BPA was mainly coordinated with Mn species due to the layered structure and hydrophobicity of the Mn oxide. This study is expected to provide the rational design of efficient Mn-based hybrids for PMS activation.
Collapse
Affiliation(s)
- Xiuying Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Jiao Zhou
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Qianna Xia
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Bowen Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Qiaohui Gao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Shuaiqi Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Aimal Khan
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Aihua Xu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China; Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
16
|
Avornyo A, Thanigaivelan A, Krishnamoorthy R, Hassan SW, Banat F. Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater. MEMBRANES 2023; 13:176. [PMID: 36837679 PMCID: PMC9967170 DOI: 10.3390/membranes13020176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Although ultrafiltration is a reliable method for separating oily wastewater, the process is limited by problems of low flux and membrane fouling. In this study, for the first time, commercial TiO2/ZrO2 ceramic membranes modified with silver-functionalized copper oxide (Ag-CuO) nanoparticles are reported for the improved separation performance of emulsified oil. Ag-CuO nanoparticles were synthesized via hydrothermal technique and dip-coated onto commercial membranes at varying concentrations (0.1, 0.5, and 1.0 wt.%). The prepared membranes were further examined to understand the improvements in oil-water separation due to Ag-CuO coating. All modified ceramic membranes exhibited higher hydrophilicity and decreased porosity. Additionally, the permeate flux, oil rejection, and antifouling performance of the Ag-CuO-coated membranes were more significantly improved than the pristine commercial membrane. The 0.5 wt.% modified membrane exhibited a 30% higher water flux (303.63 L m-2 h-1) and better oil rejection efficiency (97.8%) for oil/water separation among the modified membranes. After several separation cycles, the 0.5 wt.% Ag-CuO-modified membranes showed a constant permeate flux with an excellent oil rejection of >95% compared with the unmodified membrane. Moreover, the corrosion resistance of the coated membrane against acid, alkali, actual seawater, and oily wastewater was remarkable. Thus, the Ag-CuO-modified ceramic membranes are promising for oil separation applications due to their high flux, enhanced oil rejection, better antifouling characteristics, and good stability.
Collapse
Affiliation(s)
- Amos Avornyo
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Arumugham Thanigaivelan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Shadi W. Hassan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
17
|
Mohanadas D, Nordin PMI, Rohani R, Dzulkharnien NSF, Mohammad AW, Mohamed Abdul P, Abu Bakar S. A Comparison between Various Polymeric Membranes for Oily Wastewater Treatment via Membrane Distillation Process. MEMBRANES 2022; 13:46. [PMID: 36676853 PMCID: PMC9864798 DOI: 10.3390/membranes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Oily wastewater (OW) is detrimental towards the environment and human health. The complex composition of OW needs an advanced treatment, such as membrane technology. Membrane distillation (MD) gives the highest rejection percentage of pollutants in wastewater, as the membrane only allows the vapor to pass its microporous membrane. However, the commercial membranes on the market are less efficient in treating OW, as they are prone to fouling. Thus, the best membrane must be identified to treat OW effectively. This study tested and compared the separation performance of different membranes, comparing the pressure-driven performance between the membrane filtration and MD. In this study, several ultrafiltration (UF) and nanofiltration (NF) membranes (NFS, NFX, XT, MT, GC and FILMTEC) were tested for their performance in treating OW (100 ppm). The XT and MT membranes (UF membrane) with contact angles of 70.4 ± 0.2° and 69.6 ± 0.26°, respectively, showed the best performance with high flux and oil removal rate. The two membranes were then tested for long-term performance for two hours with 5000 ppm oil concentration using membrane pressure-filtration and MD. The XT membrane displayed a better oil removal percentage of >99%. MD demonstrated a better removal percentage; the flux reduction was high, with average flux reduction of 82% compared to the membrane pressure-filtration method, which experienced a lower flux reduction of 25%. The hydrophilic MT and XT membranes have the tendency to overcome fouling in both methods. However, for the MD method, wetting occurred due to the feed penetrating the membrane pores, causing flux reduction. Therefore, it is important to identify the performance and characteristics of the prepared membrane, including the best membrane treatment method. To ensure that the MD membrane has good anti-fouling and anti-wetting properties, a simple and reliable membrane surface modification technique is required to be explored. The modified dual layer membrane with hydrophobic/hydrophilic properties is expected to produce effective separation in MD for future study.
Collapse
Affiliation(s)
- Dharshini Mohanadas
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Puteri Mimie Isma Nordin
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Nur Syafiqah Farhanah Dzulkharnien
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Peer Mohamed Abdul
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Perak, Malaysia
| |
Collapse
|
18
|
Bakhodaye Dehghanpour S, Parvizian F, Vatanpour V. The role of CuO/TS-1, ZnO/TS-1, and Fe2O3/TS-1 on the desalination performance and antifouling properties of thin-film nanocomposite reverse osmosis membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Ding J, Wang J, Luo X, Xu D, Liu Y, Li P, Li S, Wu R, Gao X, Liang H. A passive-active combined strategy for ultrafiltration membrane fouling control in continuous oily wastewater purification. WATER RESEARCH 2022; 226:119219. [PMID: 36242937 DOI: 10.1016/j.watres.2022.119219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Membrane-based technology has been confirmed as an effective way to treat emulsified oily wastewater, however, membrane fouling is still one of practical challenges in long-term operation. Herein, a novel passive-active combined strategy was proposed to control membrane fouling in continuous oily wastewater purification, where the δ-MnO2 decoration layer helped to reduce the total fouling ratio (passive strategy for fouling mitigation) and the catalytic cleaning effectively removed the irreversible oil fouling (active strategy for fouling removal). The functional membrane was prepared via in-situ modification, referred to as δ-MnO2@TA-PES. The morphology, crystalline phase, chemical structure and surface properties of the membranes were systematically characterized. Compared with PES, the δ-MnO2@TA-PES possessed superhydrophilicity, enhanced electronegativity and narrowed pore size. The δ-MnO2@TA-PES achieved high water permeation flux of 723.9 L·m - 2·h - 1·bar-1, excellent oil rejection with separation efficiency above 98.5% for various emulsions, and durable anti-oil-fouling performance with FRRb of 98.0%. Notably, the oil cake layer fouling on δ-MnO2@TA-PES was greatly alleviated owing to its enhanced surface properties. In addition, δ-MnO2@TA-PES showed high cleaning efficiency in the peroxymonosulfate (PMS) cleaning process, where the radical and nonradical pathways occurred simultaneously. And the active substances generated in the nonradical process (especially 1O2) were considered as the main contributor to the reduction of irreversible fouling. Overall, the novel strategy of fouling control ensured the efficient operation of ultrafiltration membranes for the continuous oily wastewater purification.
Collapse
Affiliation(s)
- Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yatao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shirong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Wu
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen, 518021, China
| | - Xinlei Gao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen, 518021, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
20
|
Zhao Y, Sun M, Zhao Y, Wang L, Lu D, Ma J. Electrified ceramic membrane actuates non-radical mediated peroxymonosulfate activation for highly efficient water decontamination. WATER RESEARCH 2022; 225:119140. [PMID: 36167000 DOI: 10.1016/j.watres.2022.119140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Electrified ceramic membranes (ECMs) achieve high water decontamination efficiency mainly through implementing in situ radical-mediated oxidation in membrane filtration, whereas ECMs leveraging non-radical pathways are rarely explored. Herein, we demonstrated a Janus ECM realizing ultra-efficient micropollutant (MP) removal via electro-activating peroxymonosulfate (PMS) in a fast, flow-through single-pass electro-filtration. The Janus ECM features two separate palladium (Pd) functionalized electrocatalytic reaction zones engineered on its two sides. We confirmed that the PMS/electro-filtration system induced non-radical pathways for MP degradation, including singlet oxygenation and mediating direct electron transfer (DET) from MP to PMS. Under the design of the ECM featuring dual electrocatalytic reaction zones in the ceramic membrane intrapores, the Janus ECM showed over one-fold increase in micropollutant removal rate as 94.5% and lower electric energy consumption as 1.78 Wh g-1 MP in the PMS electro-activation process, as compared with the conventional ECM assembly implementing only half-cell reaction. This finding manifested the Janus ECM configuration advantage for maximizing the PMS electro-activation efficiency via singlet oxygenation intensification and direct usage of cathode for DET mediation. The Janus ECM boosted the PMS electro-activation and water decontamination efficiency by enhancing the convective mass transfer and the spatial confinement effect. Our work demonstrated a high-efficiency PMS electro-activation method based on electro-filtration and maximized the non-radical mediated PMS oxidation for MP removal, expanding the ECM filtration strategies for water decontamination.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
21
|
Dong Y, Wu H, Yang F, Gray S. Cost and efficiency perspectives of ceramic membranes for water treatment. WATER RESEARCH 2022; 220:118629. [PMID: 35609431 DOI: 10.1016/j.watres.2022.118629] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
More robust ceramic membranes with tailorable structures and functions are increasingly employed for water treatment, particularly in some harsh applications for their ultra-long service lifespan due to their high mechanical, structural, chemical and thermal stability and anti-fouling properties. Decreasing cost and enhancing efficiency are two key but quite challenging application-oriented issues for broader and larger-scale engineering application of current ceramic membranes, and are required to make ceramic membranes a highly efficient and economic water treatment technique. In this review, we critically discuss these two significant concerns of both cost and efficiency for water treatment ceramic membranes, focusing on an overview of various advanced strategies and mechanism insights. A brief up-to-date discussion is first introduced about recent developments of ceramic membranes covering the major advances of novel membranes and applications. Then some promising strategies for decreasing the cost of ceramic membranes are discussed, including membrane material cost and processing cost. To fully address the issue of moderate efficiency with single separation function, valuable and considerable insights are provided into recent major progress and mechanism understandings in application with other unit processes, such as advanced oxidation and electrochemistry techniques, to significantly enhance treatment efficiency. Subsequently, a review of recent ceramic membrane applications emphasizing harsh operating environments is presented, such as oil-water separation, saline water, refractory organic and emerging contaminant wastewater treatment. Finally, engineering application, conclusions, and future perspectives of ceramic membrane for water treatment applications are critically discussed offering new insight based on understanding the issues of cost and efficiency.
Collapse
Affiliation(s)
- Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Hui Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Stephen Gray
- Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, Australia
| |
Collapse
|
22
|
Zhao Y, Zhao Y, Yu X, Kong D, Fan X, Wang R, Luo S, Lu D, Nan J, Ma J. Peracetic acid integrated catalytic ceramic membrane filtration for enhanced membrane fouling control: Performance evaluation and mechanism analysis. WATER RESEARCH 2022; 220:118710. [PMID: 35687976 DOI: 10.1016/j.watres.2022.118710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Endowing ceramic membrane (CM) catalytic reactivity can enhance membrane fouling control in the aid of in situ oxidation process. Peracetic acid (PAA) oxidant holds great prospect to integrate with CM for membrane fouling control, owing to the prominent advantages of high oxidation efficacy and easy activation. Herein, this study, for the first time, presented a PAA/CM catalytic filtration system achieving highly-efficient protein fouling alleviation. A FeOCl functionalized CM (FeOCl-CM) was synthesized, possessing high hydrophilicity, low surface roughness, and highly-efficient activation towards PAA oxidation. Using bovine serum albumin (BSA) as the model protein foulant, the PAA/FeOCl-CM catalytic filtration notably alleviated fouling occurring in both membrane pores and surface, and halved the flux reduction degree as compared with the conventional CM filtration. The PAA/FeOCl-CM catalytic oxidation allows quick and complete disintegration of BSA particles, via the breakage of the amide I and II bands and the ring opening of the aromatic amino acids (e.g., Tryptophan, Tyrosine). In-depth investigation revealed that the in situ generated •OH and 1O2 were the key reactive species towards BSA degradation during catalytic filtration, while the organic radical oxidation and the direct electron transfer pathway from BSA to PAA via FeOCl-CM played minor roles. Overall, our findings highlight a new PAA/CM catalytic filtration strategy for achieving highly-efficient membrane fouling control and provide an understanding of the integrated PAA catalytic oxidation - membrane filtration behaviors.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinru Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Runzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuangjiang Luo
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
23
|
Liu Y, Zhao Y, Jiang N, Cheng W, Lu D, Zhang T. Separate Reclamation of Oil and Surfactant from Oil-in-Water Emulsion with a CO 2-Responsive Material. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9651-9660. [PMID: 35724242 DOI: 10.1021/acs.est.1c08149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oil-in-water (O/W) emulsion is one type of oily wastewater produced by many industries. The treatment of and resource recovery from O/W emulsions are very challenging. Unlike bulk or floating oil, which can be successfully abstracted from wastewater by hydrophobic/oleophilic materials, the abstraction of emulsified oil is not easy because of its highly hydrophilic surface composed of dense surfactants. Separate reclamation of miscible oil and surfactant through a green approach is even more difficult. Here, we report that a CO2-responsive material can abstract emulsified oil and demulsify the oil droplets. Moreover, it can release the abstracted oil and surfactant separately. This material exhibited a very high adsorption capacity for emulsified oil (14 g g-1). Upon switching the surface wettability of the material under CO2 or synthetic flue gas sparging, coalesced oil was reclaimed while the surfactant was retained inside the pores. The hydrophobic character of the material was retrieved when CO2 was purged with nitrogen sparging or air heating. Then, the surfactant was reclaimed by elution with diluted alkali/ethanol. Oil and surfactant were thus separately reclaimed from the O/W emulsion. High rates of oil removal, oil recovery, and surfactant recovery were maintained during repeated adsorption/desorption operations. This work provides a potentially sustainable and green way for O/W emulsion treatment and resource recovery.
Collapse
Affiliation(s)
- Ya Liu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunfeng Zhao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Ning Jiang
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Cheng
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Zhang
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
24
|
Chen M, Heijman SGJ, Luiten-Olieman MWJ, Rietveld LC. Oil-in-water emulsion separation: Fouling of alumina membranes with and without a silicon carbide deposition in constant flux filtration mode. WATER RESEARCH 2022; 216:118267. [PMID: 35306459 DOI: 10.1016/j.watres.2022.118267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Ceramic membranes have drawn increasing attention in oily wastewater treatment as an alternative to their traditional polymeric counterparts, yet persistent membrane fouling is still one of the largest challenges. Particularly, little is known about ceramic membrane fouling by oil-in-water (O/W) emulsions in constant flux filtration modes. In this study, the effects of emulsion chemistry (surfactant concentration, pH, salinity and Ca2+) and operation parameters (permeate flux and filtration time) were comparatively evaluated for alumina and silicon carbide (SiC) deposited ceramic membranes, with different physicochemical surface properties. The original membranes were made of 100% alumina, while the same membranes were also deposited with a SiC layer to change the surface charge and hydrophilicity. The SiC-deposited membrane showed a lower reversible and irreversible fouling when permeate flux was below 110 L m-2 h-1. In addition, it exhibited a higher permeance recovery after physical and chemical cleaning, as compared to the alumina membranes. Increasing sodium dodecyl sulfate (SDS) concentration in the feed decreased the fouling of both membranes, but to a higher extent in the alumina membranes. The fouling of both membranes could be reduced with increasing the pH of the emulsion due to the enhanced electrostatic repulsion between oil droplets and membrane surface. Because of the screening of surface charge in a high salinity solution (100 mM NaCl), only a small difference in irreversible fouling was observed for alumina and SiC-deposited membranes under these conditions. The presence of Ca2+ in the emulsion led to high irreversible fouling of both membranes, because of the compression of diffusion double layer and the interactions between Ca2+ and SDS. The low fouling tendency and/or high cleaning efficiency of the SiC-deposited membranes indicated their potential for oily wastewater treatment.
Collapse
Affiliation(s)
- Mingliang Chen
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.
| | - Sebastiaan G J Heijman
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Mieke W J Luiten-Olieman
- Inorganic Membranes, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Luuk C Rietveld
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
25
|
Li H, Raza A, Yuan S, AlMarzooqi F, Fang NX, Zhang T. Biomimetic on-chip filtration enabled by direct micro-3D printing on membrane. Sci Rep 2022; 12:8178. [PMID: 35581265 PMCID: PMC9114119 DOI: 10.1038/s41598-022-11738-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Membrane-on-chip is of growing interest in a wide variety of high-throughput environmental and water research. Advances in membrane technology continuously provide novel materials and multi-functional structures. Yet, the incorporation of membrane into microfluidic devices remains challenging, thus limiting its versatile utilization. Herein, via micro-stereolithography 3D printing, we propose and fabricate a "fish gill" structure-integrated on-chip membrane device, which has the self-sealing attribute at structure-membrane interface without extra assembling. As a demonstration, metallic micromesh and polymeric membrane can also be easily embedded in 3D printed on-chip device to achieve anti-fouling and anti-clogging functionality for wastewater filtration. As evidenced from in-situ visualization of structure-fluid-foulant interactions during filtration process, the proposed approach successfully adopts the fish feeding mechanism, being able to "ricochet" foulant particles or droplets through hydrodynamic manipulation. When benchmarked with two common wastewater treatment scenarios, such as plastic micro-particles and emulsified oil droplets, our biomimetic filtration devices exhibit 2 ~ 3 times longer durability for high-flux filtration than devices with commercial membrane. This proposed 3D printing-on-membrane approach, elegantly bridging the fields of microfluidics and membrane science, is instrumental to many other applications in energy, sensing, analytical chemistry and biomedical engineering.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Aikifa Raza
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Shaojun Yuan
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Faisal AlMarzooqi
- Department of Chemical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Nicholas X Fang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - TieJun Zhang
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
26
|
Huang Y, Liu H, Wang Y, Song G, Zhang L. Industrial application of ceramic ultrafiltration membrane in cold-rolling emulsion wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Li X, Lan H, Zhang G, Tan X, Liu H. Systematic Design of a Flow-Through Titanium Electrode-Based Device with Strong Oil Droplet Rejection Property for Superior Oil-in-Water Emulsion Separation Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4151-4161. [PMID: 35266701 DOI: 10.1021/acs.est.1c07403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oily wastewater treatment has been restricted by the existence of stable oil-in-water (O/W) emulsions containing micrometer-sized oil droplets. However, the strong adhesion and stacking of emulsified oil droplets on the surface of current separation media cause serious fouling of the treatment unit and the rapid decline of treatment efficiency. Herein, a novel flow-through titanium (Ti) electrode-based filtration device with remarkable oil droplet rejection property was well designed for the continuously separating O/W emulsion. In contrast to the pristine Ti foam, the permeance of the TiO2 nanoarray-coated Ti foam (NATF) increased from 2538 to 4364 L m-2 h-1 bar-1 through gravity-driven flow. Further, more than ∼70% permeability can be maintained after 6 h of O/W emulsion filtration using the current device, the value of which was markedly higher than that of conventional oil/water separation filters (less than 5%). According to the results of wettability test, the super-oil-repellent surface endowed by this nanoarray structure primarily avoided the formation of a compact oil fouling layer. When the voltage was applied, accompanied by the electrophoresis effect, redistribution of surfactant molecules on the surface of oil droplets induced by an electric field made them readily captured by the microbubbles continuously generated from the electrode, thereby rapidly migrating these bubble-adhered oil droplets far from the filtration medium.
Collapse
Affiliation(s)
- Xi Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Tan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Baig U, Waheed A, Abussaud B, Aljundi IH. A Simple Approach to Fabricate Composite Ceramic Membranes Decorated with Functionalized Carbide-Derived Carbon for Oily Wastewater Treatment. MEMBRANES 2022; 12:membranes12040394. [PMID: 35448363 PMCID: PMC9027112 DOI: 10.3390/membranes12040394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022]
Abstract
Membrane-based oil−water separation has shown huge potential as a remedy to challenge oily wastewater with ease and low energy consumption compared to conventional purification techniques. A set of new composite ceramic membranes was fabricated to separate surfactant-stabilized oil/water (O/W) emulsion. Carbide-derived carbon (CDC) was functionalized by 3-aminopropyltriethoxy silane (APTES) and subsequently deposited on a ceramic alumina support and impregnated with piperazine as an additional amine. The APTES functionalized CDC-loaded membrane was then crosslinked using terephthalyol chloride (TPC). Different loadings of functionalized CDC (50 mg, 100 mg and 200 mg) were employed on the ceramic support resulting in three versions of ceramic membranes (M-50, M-100 and M-200). The fabricated membranes were thoroughly characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Attenuated total teflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Energy dispersive x-ray spectroscopy (EDX) and elemental mapping. The highest permeate flux of 76.05 LMH (L m−2 h−1) at 1 bar using 67.5 ppm oil-in-water emulsion (as feed) was achieved by the M-50 membrane, while an oil separation efficiency of >99% was achieved by using the M-200 membrane. The tested emulsions and their respective permeates were also characterized by optical microscopy to validate the O/W separation performance of the best membrane (M-100). The effect of feed concentration and pressure on permeate flux and oil−water separation efficiency was also studied. A long-term stability test revealed that the M-100 membrane retained its performance for 720 min of continuous operation with a minor decrease in permeate flux, but the O/W separation efficiency remained intact.
Collapse
Affiliation(s)
- Umair Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (U.B.); (A.W.)
| | - Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (U.B.); (A.W.)
| | - Basim Abussaud
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Isam H. Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (U.B.); (A.W.)
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Correspondence: ; Tel.: +9-66-138-602-210
| |
Collapse
|
29
|
Wu H, Sun C, Huang Y, Zheng X, Zhao M, Gray S, Dong Y. Treatment of oily wastewaters by highly porous whisker-constructed ceramic membranes: Separation performance and fouling models. WATER RESEARCH 2022; 211:118042. [PMID: 35032875 DOI: 10.1016/j.watres.2022.118042] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/26/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Efficient treatment of challenging oily emulsion wastewater can alleviate water pollution to provide more chances for water reuse and resource recovery. Despite their promising application potential, conventional porous ceramic membranes have challenging bottleneck issues such as high cost and insufficient permeance. This study presents a new strategy for highly efficient treatment of not only synthetic but real oily emulsions via unexpensive whisker-constructed ceramic membranes, exhibiting exceptional permeance and less energy input. Compared with common ceramic membranes, such lower-cost mullite membranes with a novel whisker-constructed structure show higher porosity and water permeance, and better surface oleophobicity in water. Treatment performance such as permeate flux and oil rejection was explored for the oily emulsions with different properties under key operating parameters. Furthermore, classical Hermia models were used to reveal membrane fouling mechanism to well understand the microscopic interactions between emulsion droplets and membrane interface. Even for real acidic oily wastewater, such membranes also exhibit high permeance and less energy consumption, outperforming most state-of-the-art ceramic membranes. This work provides a new structure concept of highly permeably whisker-constructed porous ceramic membranes that can efficiently enable more water separation applications.
Collapse
Affiliation(s)
- Hui Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chunyi Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuzhu Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Stephen Gray
- Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, Australia
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
30
|
Baig N, Salhi B, Sajid M, Aljundi IH. Recent Progress in Microfiltration/Ultrafiltration Membranes for Separation of Oil and Water Emulsions. CHEM REC 2022; 22:e202100320. [PMID: 35189025 DOI: 10.1002/tcr.202100320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/08/2022] [Indexed: 01/18/2023]
Abstract
Oily wastewater has become one of the leading causes of environmental pollution. A massive quantity of oily wastewater is released from industries, oil spills, and routine activities, endangering the ecosystem's sustainability. Due to the enormous negative impact, researchers put strenuous efforts into developing a sustainable solution to treat oily wastewater. Microfiltration/ultrafiltration membranes are considered an efficient solution to treat oily wastewater due to their low cost, small footprint, facile operation, and high separation efficiencies. However, membranes severely fouled during the separation process due to oil's adsorption and cake layer formation, which shortens the membranes' life. This review has critically discussed the microfiltration/ultrafiltration membrane synthesizing methods and their emulsion's separation performance. In the end, key challenges and their possible solutions are highlighted to provide future direction to synthesize next-generation membranes.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Billel Salhi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.,Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
31
|
Song S, Rong L, Dong K, Liu X, Le-Clech P, Shen Y. Pore-scale numerical study of intrinsic permeability for fluid flow through asymmetric ceramic microfiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Study on Treatment of Low Concentration Oily Wastewater Using Alumina Ceramic Membranes. CRYSTALS 2022. [DOI: 10.3390/cryst12020127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, alumina ceramic plate microfiltration membranes (ACMs) were used for the treatment of oily wastewater with different concentrations. The permeate oil concentration of the system was basically less than 5 mg·L−1, and the oil rejection rate was up to 97.6%. The effects of raw oil concentration on permeation flux and oil rejection rate of oily wastewater were studied. The results showed that with the increase of raw oil concentration, the oil rejection rate increased slightly due to the existence of oil film on the surface of filtered ACMs. Moreover, the existence of oil film had little effect on the flux change of ceramic membranes. The results showed that the permeability of ACMs mainly depended on their own oleophobic properties. In this system, physical cleaning technology is used to remove oil droplets and particles blocked in membrane pores. The results showed that physical cleaning could significantly recover the permeation flux as well as improve the oil rejection rate. On this basis, a system is proposed as a potential technique for oily wastewater treatment.
Collapse
|
33
|
Han Q, Gao P, Liang L, Chen K, Dong A, Liu Z, Han X, Fu Q, Hou G. Unraveling the Surface Hydroxyl Network on In 2O 3 Nanoparticles with High-Field Ultrafast Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2021; 93:16769-16778. [PMID: 34878248 DOI: 10.1021/acs.analchem.1c02759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroxyl groups are among the major active surface sites over metal oxides. However, their spectroscopic characterizations have been challenging due to limited resolutions, especially on hydroxyl-rich surfaces where strong hydroxyl networks are present. Here, using nanostructured In2O3 as an example, we show significantly enhanced discrimination of the surface hydroxyl groups, owing to the high-resolution 1H NMR spectra performed at a high magnetic field (18.8 T) and a fast magic angle spinning (MAS) of up to 60 kHz. A total of nine kinds of hydroxyl groups were distinguished and their assignments (μ1, μ2, and μ3) were further identified with the assistance of 17O NMR. The spatial distribution of these hydroxyl groups was further explored via two-dimensional (2D) 1H-1H homonuclear correlation experiments with which the complex surface hydroxyl network was unraveled at the atomic level. Moreover, the quantitative analysis of these hydroxyl groups with such high resolution enables further investigations into the physicochemical property and catalytic performance characterizations (in CO2 reduction) of these hydroxyl groups. This work provides insightful understanding on the surface structure/property of the In2O3 nanoparticles and, importantly, may prompt general applications of high-field ultrafast MAS NMR techniques in the study of hydroxyl-rich surfaces on other metal oxide materials.
Collapse
Affiliation(s)
- Qiao Han
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Aiyi Dong
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,Department of Physics, College of Science, Dalian Maritime University, Dalian 116026, China
| | - Zhengmao Liu
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuwen Han
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
34
|
Qi T, Chen X, Shi W, Wang T, Qiu M, Da X, Wen J, Fan Y. Fouling behavior of nanoporous ceramic membranes in the filtration of oligosaccharides at different temperatures. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Chen M, Heijman SGJ, Rietveld LC. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. MEMBRANES 2021; 11:888. [PMID: 34832117 PMCID: PMC8625480 DOI: 10.3390/membranes11110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.
Collapse
Affiliation(s)
- Mingliang Chen
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; (S.G.J.H.); (L.C.R.)
| | | | | |
Collapse
|
36
|
A nonionic polymer-brush-grafted PVDF membrane to analyse fouling during the filtration of oil/water emulsions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Lin B, Heijman SG, Shang R, Rietveld LC. Integration of oxalic acid chelation and Fenton process for synergistic relaxation-oxidation of persistent gel-like fouling of ceramic nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Zhao J, Huang Y, Wang G, Qiao Y, Chen Z, Zhang A, Park CB. Fabrication of outstanding thermal-insulating, mechanical robust and superhydrophobic PP/CNT/sorbitol derivative nanocomposite foams for efficient oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126295. [PMID: 34111752 DOI: 10.1016/j.jhazmat.2021.126295] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Water pollution caused by industrial oily wastewater, is world-widely concerned by both scientific and practical researches, owing to its catastrophic destruction to natural environment, which highlights the urgency of producing green and advanced separation materials. Herein, a novel approach was proposed to fabricate oil-absorbing and oil/water-separating microcellular polypropylene (PP)/carbon nanotubes (CNTs)/sorbitol nanocomposites using a simple, green, and facile microcellular foaming technology. Owning to the effectively modified crystallization via introducing CNTs/sorbitol derivatives, the ultralight and highly-reticulated PP microcellular foam was prepared with an open-cell content of 99.4% and an expansion ratio of 50, which facilitated the creation of nano-porous structures on cell walls. Hence, the as-prepared PP nanocomposite foam presented pronounced absorption capacity of 40 g/g for applied oils with recovery efficiency of 97.2%, superior thermal-insulating and mechanical performance. Furthermore, the as-achieved unique hierarchical porous structures of the PP/CNT/sorbitol foam contributed to the outstanding oil/water separation capability, separation efficiency of up-to 97.6%, ascribed to its superhydrophobicity, capillary penetration action, high porosity and open-cell content. Therefore, this work provided new insight into the feasibility of advantageous, high-efficiency, environmentally friendly, and profitable PP-based foams as oil absorbents, which, to the best of our knowledge, outperform conventional polymer absorbents in treatment of oily wastewater.
Collapse
Affiliation(s)
- Jinchuan Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China; Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China; Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada.
| | - Yongna Qiao
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zuolong Chen
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Aimin Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
39
|
|
40
|
Abstract
In this study, a red clay/nano-activated carbon membrane was investigated for the removal of oil from industrial wastewater. The sintering temperature was minimized using CaF2 powder as a binder. The fabricated membrane was characterized by its mechanical properties, average pore size, and hydrophilicity. A contact angle of 67.3° and membrane spore size of 95.46 nm were obtained. The prepared membrane was tested by a cross-flow filtration process using an oil-water emulsion, and showed a promising permeate flux and oil rejection results. During the separation of oil from water, the flux increased from 191.38 to 284.99 L/m2 on increasing the applied pressure from 3 to 6 bar. In addition, high water permeability was obtained for the fabricated membrane at low operating pressure. However, the membrane flux decreased from 490.28 to 367.32 L/m2·h due to oil deposition on the membrane surface; regardless, the maximum oil rejection was 99.96% at an oil concentration of 80 NTU and a pressure of 5 bar. The fabricated membrane was negatively charged, as were the oil droplets, thereby facilitating membrane purification through backwashing. The obtained ceramic membrane functioned well as a hydrophilic membrane and showed potential for use in oil wastewater treatment.
Collapse
|
41
|
Diethylenetriaminepentaacetic acid-functionalized multi-walled carbon nanotubes/titanium oxide-PVDF nanofiber membrane for effective separation of oil/water emulsion. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117926] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Barati N, Husein MM, Azaiez J. Modifying ceramic membranes with in situ grown iron oxide nanoparticles and their use for oily water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Zhao Y, Sun M, Wang X, Wang C, Lu D, Ma W, Kube SA, Ma J, Elimelech M. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat Commun 2020; 11:6228. [PMID: 33277500 PMCID: PMC7718259 DOI: 10.1038/s41467-020-20071-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023] Open
Abstract
The importance of singlet oxygen (1O2) in the environmental and biomedical fields has motivated research for effective 1O2 production. Electrocatalytic processes hold great potential for highly-automated and scalable 1O2 synthesis, but they are energy- and chemical-intensive. Herein, we present a Janus electrocatalytic membrane realizing ultra-efficient 1O2 production (6.9 mmol per m3 of permeate) and very low energy consumption (13.3 Wh per m3 of permeate) via a fast, flow-through electro-filtration process without the addition of chemical precursors. We confirm that a superoxide-mediated chain reaction, initiated by electrocatalytic oxygen reduction on the cathodic membrane side and subsequently terminated by H2O2 oxidation on the anodic membrane side, is crucial for 1O2 generation. We further demonstrate that the high 1O2 production efficiency is mainly attributable to the enhanced mass and charge transfer imparted by nano- and micro-confinement effects within the porous membrane structure. Our findings highlight a new electro-filtration strategy and an innovative reactive membrane design for synthesizing 1O2 for a broad range of potential applications including environmental remediation.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Meng Sun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA.
| | - Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Chi Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
- School of Environment, Northeast Normal University, Changchun, 130024, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wen Ma
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Sebastian A Kube
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA.
| |
Collapse
|
44
|
Tummons E, Han Q, Tanudjaja HJ, Hejase CA, Chew JW, Tarabara VV. Membrane fouling by emulsified oil: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116919] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
High-flux robust ceramic membranes functionally decorated with nano-catalyst for emerging micro-pollutant removal from water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118281] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
|
47
|
Bolto B, Zhang J, Wu X, Xie Z. A Review on Current Development of Membranes for Oil Removal from Wastewaters. MEMBRANES 2020; 10:membranes10040065. [PMID: 32272650 PMCID: PMC7231389 DOI: 10.3390/membranes10040065] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 12/04/2022]
Abstract
The current situation with the problems associated with the removal of oil from wastewaters by membranes is being explored. Many types of membranes have been investigated—organic polymers, inorganic or ceramic species and hybrids of the two. Polymeric membranes can be designed to facilitate the passage of oil, but the more successful approach is with hydrophilic types that encourage the passage of water. Ceramic membranes have an advantage here as they are less often irreversibly fouled and give a higher recovery of oil, with a lower flux decline. Furthermore, they can be cleaned up by a simple heating procedure. More attention should be given to understanding the mechanism of fouling so that operating conditions can be optimised to further reduce fouling and further decrease the flux decline, as well as assisting in the design of antifouling membranes. Another obstacle to ceramic membrane use is the high cost of manufacture. Cheaper starting materials such as clays have been surveyed.
Collapse
Affiliation(s)
- Brian Bolto
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia; (B.B.); (X.W.)
| | - Jianhua Zhang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
| | - Xing Wu
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia; (B.B.); (X.W.)
| | - Zongli Xie
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia; (B.B.); (X.W.)
- Correspondence:
| |
Collapse
|
48
|
Paiman SH, Rahman MA, Uchikoshi T, Md Nordin NAH, Alias NH, Abdullah N, Abas KH, Othman MHD, Jaafar J, Ismail AF. In situ growth of α-Fe2O3 on Al2O3/YSZ hollow fiber membrane for oily wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Zhao Y, Lu D, Xu C, Zhong J, Chen M, Xu S, Cao Y, Zhao Q, Yang M, Ma J. Synergistic oxidation - filtration process analysis of catalytic CuFe 2O 4 - Tailored ceramic membrane filtration via peroxymonosulfate activation for humic acid treatment. WATER RESEARCH 2020; 171:115387. [PMID: 31877477 DOI: 10.1016/j.watres.2019.115387] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 05/09/2023]
Abstract
This work synthesized catalytic CuFe2O4 tailored ceramic membrane (CuFeCM), and systematically investigated the intercorrelated oxidation - filtration mechanism of peroxymonosulfate (PMS)/CuFeCM catalytic filtration for treating humic acid (HA). PMS/CuFeCM filtration exhibited enhanced HA removal efficiency while reduced the irreversible fouling resistance as compared with the conventional CM filtration. Results from HA characterizations showed that PMS/CuFeCM catalytic filtration oxidized HA into conjugated structures of smaller molecular weight. The unsaturated bonds further caused the re-agglomeration of HA, hence enhancing the size exclusion of CuFeCM. Meanwhile, oxidized HA particles with changing physicochemical properties reduced the total attractive interaction energy between CuFeCM and HA, mainly attributed to the reduced acid-base interaction energy according to the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. The changing of HA properties and HA-CuFeCM physicochemical interactions rendered more re-agglomerated HA particles retained above membrane with less attachment, which induced decreasing irreversible fouling resistance and facilitated easier external fouling removal by hydraulic cleaning. Overall, the PMS/CuFeCM configuration demonstrated in this study could provide a new insight into the synergistic oxidation - filtration interaction mechanism of hybrid catalytic ceramic membrane filtration process.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chengbiao Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinying Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mansheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shu Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ying Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mo Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
50
|
Gu Q, Ng TCA, Zhang L, Lyu Z, Zhang Z, Ng HY, Wang J. Interfacial diffusion assisted chemical deposition (ID-CD) for confined surface modification of alumina microfiltration membranes toward high-flux and anti-fouling. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|