1
|
Kastury F, Besedin J, Betts AR, Asamoah R, Herde C, Netherway P, Tully J, Scheckel KG, Juhasz AL. Arsenic, cadmium, lead, antimony bioaccessibility and relative bioavailability in legacy gold mining waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133948. [PMID: 38493633 PMCID: PMC11097331 DOI: 10.1016/j.jhazmat.2024.133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Bioaccessibility and relative bioavailability of As, Cd, Pb and Sb was investigated in 30 legacy gold mining wastes (calcine sands, grey battery sands, tailings) from Victorian goldfields (Australia). Pseudo-total As concentration in 29 samples was 1.45-148-fold higher than the residential soil guidance value (100 mg/kg) while Cd and Pb concentrations in calcine sands were up to 2.4-fold and 30.1-fold higher than the corresponding guidance value (Cd: 20 mg/kg and Pb: 300 mg/kg). Five calcine sands exhibited elevated Sb (31.9-5983 mg/kg), although an Australian soil guidance value is currently unavailable. Arsenic bioaccessibility (n = 30) and relative bioavailability (RBA; n = 8) ranged from 6.10-77.6% and 10.3-52.9% respectively. Samples containing > 50% arsenopyrite/scorodite showed low As bioaccessibility (<20.0%) and RBA (<15.0%). Co-contaminant RBA was assessed in 4 calcine sands; Pb RBA ranged from 73.7-119% with high Pb RBA associated with organic and mineral sorbed Pb and, lower Pb RBA observed in samples containing plumbojarosite. In contrast, Cd RBA ranged from 55.0-67.0%, while Sb RBA was < 5%. This study highlights the importance of using multiple lines of evidence during exposure assessment and provides valuable baseline data for co-contaminants associated with legacy gold mining activities.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, STEM, University of South Australia, SA, Australia.
| | - Julie Besedin
- Future Industries Institute, STEM, University of South Australia, SA, Australia; School of Science, STEM, RMIT University, Victoria, Australia
| | - Aaron R Betts
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Cincinnati, OH, USA
| | - Richmond Asamoah
- Future Industries Institute, STEM, University of South Australia, SA, Australia
| | - Carina Herde
- South Australian Health and Medical Research Institute, Adelaide 5086, Australia
| | - Pacian Netherway
- EPA Science, Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria 3085, Australia
| | - Jennifer Tully
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Water Infrastructure Division, Cincinnati, OH, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Cincinnati, OH, USA
| | - Albert L Juhasz
- Future Industries Institute, STEM, University of South Australia, SA, Australia
| |
Collapse
|
2
|
Alankarage D, Betts A, Scheckel KG, Herde C, Cavallaro M, Juhasz AL. Remediation options to reduce bioaccessible and bioavailable lead and arsenic at a smelter impacted site - consideration of treatment efficacy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122881. [PMID: 37935301 PMCID: PMC10843775 DOI: 10.1016/j.envpol.2023.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
In this study, smelter contaminated soil was treated with various soil amendments (ferric sulfate [Fe2(SO4)3], triple superphosphate [TSP] and biochar) to determine their efficacy in immobilizing soil lead (Pb) and arsenic (As). In soils incubated with ferric sulfate (0.6M), gastric phase Pb bioaccessibility was reduced from 1939 ± 17 mg kg-1 to 245 ± 4.7 mg kg-1, while intestinal phase bioaccessibility was reduced from 194 ± 25 mg kg-1 to 11.9 ± 3.5 mg kg-1, driven by the formation of plumbojarosite. In TSP treated soils, there were minor reductions in gastric phase Pb bioaccessibility (to 1631 ± 14 mg kg-1) at the highest TSP concentration (6000 mg kg-1) although greater reductions were observed in the intestinal phase, with bioaccessibility reduced to 9.3 ± 2.2 mg kg-1. Speciation analysis showed that this was primarily driven by the formation of chloropyromorphite in the intestinal phase following Pb and phosphate solubilization in the low pH gastric fluid. At the highest concentration (10% w/w), biochar treated soils showed negligible decreases in Pb bioaccessibility in both gastric and intestinal phases. Validation of bioaccessibility outcomes using an in vivo mouse assay led to similar results, with treatment effect ratios (TER) of 0.20 ± 0.01, 0.76 ± 0.11 and 1.03 ± 0.10 for ferric sulfate (0.6M), TSP (6000 mg kg-1) and biochar (10% w/w) treatments. Results of in vitro and in vivo assays showed that only ferric sulfate treatments were able to significantly reduce As bioaccessibility and bioavailability with TER at the highest application of 0.06 ± 0.00 and 0.14 ± 0.04 respectively. This study highlights the potential application of ferric sulfate treatment for the immobilization of Pb and As in co-contaminated soils.
Collapse
Affiliation(s)
- Dileepa Alankarage
- Future Industries Institute, STEM, University of South Australia, SA, Australia.
| | - Aaron Betts
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Carina Herde
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, 5086, Australia
| | - Michelle Cavallaro
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, 5086, Australia
| | - Albert L Juhasz
- Future Industries Institute, STEM, University of South Australia, SA, Australia
| |
Collapse
|
3
|
Sowers TD, Blackmon MD, Betts AR, Jerden ML, Scheckel KG, Bradham KD. Potassium jarosite seeding of soils decreases lead and arsenic bioaccessibility: A path toward concomitant remediation. Proc Natl Acad Sci U S A 2023; 120:e2311564120. [PMID: 38048468 PMCID: PMC10723135 DOI: 10.1073/pnas.2311564120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
Soils are common sources of metal(loid) contaminant exposure globally. Lead (Pb) and arsenic (As) are of paramount concern due to detrimental neurological and carcinogenic health effects, respectively. Pb and/or As contaminated soils require remediation, typically leading to excavation, a costly and environmentally damaging practice of removing soil to a central location (e.g., hazardous landfill) that may not be a viable option in low-income countries. Chemical remediation techniques may allow for in situ conversion of soil contaminants to phases that are not easily mobilized upon ingestion; however, effective chemical remediation options are limited. Here, we have successfully tested a soil remediation technology using potted soils that relies on converting soil Pb and As into jarosite-group minerals, such as plumbojarosite (PLJ) and beudantite, possessing exceptionally low bioaccessibility [i.e., solubility at gastric pH conditions (pH 1.5 to 3)]. Across all experiments conducted, all new treatment methods successfully promoted PLJ and/or beudantite conversion, resulting in a proportional decrease in Pb and As bioaccessibility. Increasing temperature resulted in increased conversion to jarosite-group minerals, but addition of potassium (K) jarosite was most critical to Pb and As bioaccessibility decreases. Our methods of K-jarosite treatment yielded <10% Pb and As bioaccessibility compared to unamended soil values of approximately 70% and 60%, respectively. The proposed treatment is a rare dual remediation option that effectively treats soil Pb and As such that potential exposure is considerably reduced. Research presented here lays the foundation for ongoing field application.
Collapse
Affiliation(s)
- Tyler D. Sowers
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Durham, NC27711
| | - Matthew D. Blackmon
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Durham, NC27711
| | - Aaron R. Betts
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH45268
| | | | - Kirk G. Scheckel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH45268
| | - Karen D. Bradham
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Durham, NC27711
| |
Collapse
|
4
|
Huang X, Chang M, Han L, Li J, Li SW, Li HB. Variation of lead bioaccessibility in soil reference materials: Intra- and inter-laboratory assessments. CHEMOSPHERE 2023; 312:137293. [PMID: 36403811 DOI: 10.1016/j.chemosphere.2022.137293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Standard reference materials (SRMs) have been commonly used to perform quality assurance and quality control (QA/QC) in soil total metal concentration analyses or bioaccessibility assessment. In this study, 10 experimenters from 4 laboratories determined bioaccessibility of lead (Pb) in 4 widely-used SRMs (NIST 2710a, NIST 2587, BGS 102, and GBW 07405). Based on the gastric phase (GP) of the unified BARGE bioaccessibility method (UBM) and the Solubility Bioavailability Research Consortium procedure (SBRC), Pb bioaccessibility in SRMs was compared within and between laboratories to assess their intra-laboratory repeatability and inter-laboratory reproducibility. Lead bioaccessibility was 14.1 ± 2.44%-101 ± 2.48% in the 4 SRMs. The values were in vivo validated based on a mouse model in previous studies (R2 = 0.97-0.98), suggesting the reliability of Pb bioaccessibility data. Strong correlations were observed for Pb bioaccessibility among 7 experimenters (R2 = 0.94-0.99) at the Nanjing University (NJU) laboratory and similar strong correlations were also found between each two of the 4 laboratories (R2 = 0.94-0.98), illustrating consistency in intra- and inter-laboratory performance. The intra-laboratory repeatability and inter-laboratory reproducibility were generally acceptable with relative standard deviations (RSDs) of Pb bioaccessibility being ≤10% within laboratory and ≤20% between laboratories, except in a soil with low bioaccessible Pb (BSG 102). Our study suggested that measurements of Pb bioaccessibility in SRMs based on the two in vivo validated methods were repeatable and reproducible within and between laboratories, further verified their reliability being used as QA/QC samples during Pb bioaccessibility assessment.
Collapse
Affiliation(s)
- Xiaoyue Huang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Minghui Chang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lei Han
- Jinan Environmental Research Institute (Jinan Yellow River Basin Ecological Protection Promotion Center), Jinan, 250102, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250399, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Mayer MM, Basta NT, Scheckel KG. Using phosphate amendments to reduce bioaccessible Pb in contaminated soils: A meta-analysis. FRONTIERS IN SOIL SCIENCE 2022; 2:1-14. [PMID: 36733849 PMCID: PMC9890325 DOI: 10.3389/fsoil.2022.1028328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Measuring the reduction of in vitro bioaccessible (IVBA) Pb from the addition of phosphate amendments has been researched for more than 20 years. A range of effects have been observed from increases in IVBA Pb to almost 100% reduction. This study determined the mean change in IVBA Pb as a fraction of total Pb (AC) and relative to the IVBA Pb of the control soil (RC) with a random effects meta-analysis. Forty-four studies that investigated the ability of inorganic phosphate amendments to reduce IVBA Pb were identified through 5 databases. These studies were split into 3 groups: primary, secondary, and EPA Method 1340 based on selection criteria, with the primary group being utilized for subgroup analysis and meta-regression. The mean AC was approximately -12% and mean RC was approximately -25% for the primary and secondary groups. For the EPA Method 1340 group, the mean AC was -5% and mean RC was -8%. The results of subgroup analysis identified the phosphorous amendment applied and contamination source as having a significant effect on the AC and RC. Soluble amendments reduce bioaccessible Pb more than insoluble amendments and phosphoric acid is more effective than other phosphate amendments. Urban Pb contamination associated with legacy Pb-paint and tetraethyl Pb from gasoline showed lower reductions than other sources such as shooting ranges and smelting operations. Meta-regression identified high IVBA Pb in the control, low incubated soil pH, and high total Pb with the greater reductions in AC and RC. In order to facilitate comparisons across future remediation research, a set of minimum reported data should be included in published studies and researchers should use standardized in vitro bioaccessibility methods developed for P-treated soils. Additionally, a shared data repository should be created for soil remediation research to enhance available soil property information and better identify unique materials.
Collapse
Affiliation(s)
- Manfred M. Mayer
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, United States
| | - Nicholas T. Basta
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, United States
| | - Kirk G. Scheckel
- U.S. Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Cincinnati, OH, United States
| |
Collapse
|
6
|
Haque E, Jing X, Bostick BC, Thorne PS. In vitro and in silico bioaccessibility of urban dusts contaminated by multiple legacy sources of lead (Pb). JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100178. [PMID: 36926421 PMCID: PMC10016194 DOI: 10.1016/j.hazadv.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lead contamination from gasoline, paint, pesticides, and smelting have unique chemical structures. Recent investigations into Pb speciation in urban soils and dusts from multiple sources have revealed emerging forms which differ from the initial sources. This results from reactions with soil constituents leading to transformation to new forms for which the bioaccessibilities remain uninvestigated. We investigated the in vitro and in silico bioaccessibility of these emerging forms in three physiologically relevant milieux: artificial lysosomal fluid (ALF), simulated epithelial lung fluid (SELF), and simulated gastric fluid (SGF). Species were validated using extended X-ray absorption fine structure spectroscopy. Results highlight diverse bioaccessibilities which are form and compartmentally-dependent. In ALF the bioaccessibility trend was humate-bound Pb (86%) > hydrocerussite (79%) > Fe oxide-bound Pb (47%) > galena (10%) > pyromorphite (4%) > Mn oxide-bound Pb (2%). Humate-bound Pb, hydrocerussite, Fe and Mn oxide-bound Pb were 100% bioaccessible in SGF while pyromorphite and galena were 26%, and 8%, respectively. Bioaccessibility in SELF was very low (< 1%) and significantly lower than ALF and SGF (p < 0.001). In silico bioaccessibilities modeled using equilibrium solubilities in extraction solutions were in good agreement with empirical measurements. These emerging forms of Pb have a wide range of bioaccessibilities that can influence their toxicity and impact on human health.
Collapse
Affiliation(s)
- Ezazul Haque
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| | | | - Peter S. Thorne
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| |
Collapse
|
7
|
Yin N, Han Z, Jia W, Fu Y, Ma J, Liu X, Cai X, Li Y, Chen X, Cui Y. Effect of vitamin C supplement on lead bioaccessibility in contaminated soils using multiple in vitro gastrointestinal assays: Mechanisms and health risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113968. [PMID: 35981483 DOI: 10.1016/j.ecoenv.2022.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Effects of vitamin C supplementation on the oral bioaccessibility of lead (Pb) present in contaminated soils were examined using a number of in vitro assays (PBET, SBRC, UBM and IVG). In the presence of vitamin C, an increase in Pb bioaccessibility was observed in the gastric phase by 1.3-fold (30.5%-85.5%) and in the intestinal phase by 3.1-fold (0.9%-58.9%). Lead mobilization was regulated by reductive dissolution of Fe(III) and sequestration of Pb on secondary Fe minerals. Sequential extraction by the Bureau Community of Reference (BCR) provided more evidence that reducible fraction and residual fraction were major contributor of gastric Pb bioaccessibility, as well as reduced fractions in intestinal Pb bioaccessibility. In addition, higher non-carcinogenic risks may occur based on target hazard quotient (THQ ≥ 1). For people exposed to Pb present in soil, the management of vitamin C supplements is of serious concern.
Collapse
Affiliation(s)
- Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zeliang Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenbin Jia
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China.
| | - Yaqi Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jingnan Ma
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Li
- Department of Agricultural, Forest and Food Sciences, University of Turin, Torino 10095, Italy
| | - Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
8
|
Burton ED, Lamb DT, Hamilton J, Miller G, Johnston SG, Karimian N. Remediation of Pb-contaminated soil using modified bauxite refinery residue. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129339. [PMID: 35709620 DOI: 10.1016/j.jhazmat.2022.129339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
This study examines amendment of Pb-contaminated soil with modified bauxite refinery residue (MBRR) to decrease soil Pb mobility and bioaccessibility. Amendment experiments were conducted using four soils contaminated with Pb from various sources, including smelting, shooting-range activities and Pb-based paint waste. Lead L3-edge X-ray absorption spectroscopy (XAS) indicated that Pb speciation in these soils was a mixture of Pb sorbed to Fe (hydr)oxide and clay minerals, along with Pb bound to organic matter. Amendment with MBRR decreased water-soluble Pb and/or Toxicity Characteristic Leachate Procedure (TCLP) Pb concentrations. Lead L3-edge XAS and X-ray diffraction (XRD) indicated that Pb retention by MBRR occurred via sorption to Fe- and Al-(hydr)oxides at low Pb loadings, in addition to formation of hydrocerussite (Pb3(CO3)2(OH)2) at high loadings. Soil amendment with MBRR had relatively little effect on gastric-phase Pb bioaccessibility; as quantified via the Solubility/Bioavailability Research Consortium, SBRC, in vitro assay. In contrast, amendment with MBRR caused substantial decreases in relative intestinal-phase Pb bioaccessibility (Rel-SBRC-I) due to increased Pb sorption by MBRR's Fe- and Al-hydr(oxide) minerals as simulated GI tract conditions shifted from the gastric- to the intestinal-phase. These decreases in Rel-SBRC-I point to the potential efficacy of using amendment with MBRR to decrease soil Pb bioavailability.
Collapse
Affiliation(s)
- Edward D Burton
- Faculty of Science & Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia.
| | - Dane T Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Graeme Miller
- Faculty of Science & Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia; Senversa Pty Ltd, Adelaide, SA 5000, Australia
| | - Scott G Johnston
- Faculty of Science & Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Niloofar Karimian
- Faculty of Science & Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia; CSIRO Mineral Resources, Clayton South, VIC 3169, Australia
| |
Collapse
|
9
|
Judy JD, Sarchapone J, Gravesen C, Hettiarachchi G, Buchanan C, LaMontagne D, Pachon J. Correlating soil nutrient test lead with bioaccessible lead in highly-contaminated soils receiving lead-immobilizing amendments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150658. [PMID: 34619196 DOI: 10.1016/j.scitotenv.2021.150658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is one of the most common metals exceeding human health risk guidelines for soil concentrations worldwide. Pb bioaccessibility is known to vary depending on soil physiochemical characteristics and, as a result, in vitro and in vivo tests exist that are used to estimate bioaccessible Pb in contaminated soils. Although in vitro tests such as the relative bioaccessibility leaching procedure (RBALP) present simpler and more cost-effective risk assessments than in vivo methods, soil tests such as Mehlich-3, Modified Morgan, and ammonium bicarbonate-diethylenetriamine pentaacetate (AB-DTPA) extractions are extremely routine and even more cost-effective. Currently, there are few comparisons examining the viability of common soil nutrient tests for assessing Pb bioaccessibility in soils from contaminated sites with extremely high total Pb concentrations or for sites that have received amendments, such as those containing compost, iron, and/or phosphorus, intended to immobilize Pb. Here, we examine the correlation between RBALP Pb and Pb as determined using three commonly utilized soil tests, Mehlich-3, Modified Morgan, and AB-DTPA, in archived samples from one Pb-contaminated site receiving compost amendment (Seattle, WA, USA) and one extremely Pb-contaminated site receiving mixtures of compost, P, and Fe (Joplin, MO, USA). At both the Seattle and Joplin sites separately, RBALP Pb was significantly correlated with all three soil nutrient test values, regardless of soil amendment. However, RBALP was only significantly correlated with Modified Morgan and total Pb when examining the Joplin and Seattle data together, likely resulting from different factors controlling Pb solubility at the two sites. These findings suggest that a diverse suite of relatively inexpensive and accessible soil nutrient test methods correlate with bioaccessible Pb at a specific site, regardless of whether Pb-immobilizing amendments have been used.
Collapse
Affiliation(s)
- Jonathan D Judy
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL 32611, USA.
| | - Jennifer Sarchapone
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL 32611, USA
| | - Caleb Gravesen
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL 32611, USA
| | - Ganga Hettiarachchi
- Kansas State University, Department of Agronomy, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, USA
| | - Caroline Buchanan
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL 32611, USA
| | - Derek LaMontagne
- University of Florida, Department of Chemistry, Gainesville, FL 32611, USA
| | - Julio Pachon
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Sowers TD, Bone SE, Noerpel MR, Blackmon MD, Karna RR, Scheckel KG, Juhasz AL, Diamond GL, Thomas DJ, Bradham KD. Plumbojarosite Remediation of Soil Affects Lead Speciation and Elemental Interactions in Soil and in Mice Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15950-15960. [PMID: 34806356 PMCID: PMC9606633 DOI: 10.1021/acs.est.1c06067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lead (Pb) contamination of soils is of global concern due to the devastating impacts of Pb exposure in children. Because early-life exposure to Pb has long-lasting health effects, reducing exposure in children is a critical public health goal that has intensified research on the conversion of soil Pb to low bioavailability phases. Recently, plumbojarosite (PLJ) conversion of highly available soil Pb was found to decrease Pb relative bioavailability (RBA <10%). However, there is sparse information concerning interactions between Pb and other elements when contaminated soil, pre- and post-remediation, is ingested and moves through the gastrointestinal tract (GIT). Addressing this may inform drivers of effective chemical remediation strategies. Here, we utilize bulk and micro-focused Pb X-ray absorption spectroscopy to probe elemental interactions and Pb speciation in mouse diet, cecum, and feces samples following ingestion of contaminated soils pre- and post-PLJ treatment. RBA of treated soils was less than 1% with PLJ phases transiting the GIT with little absorption. In contrast, Pb associated with organics was predominantly found in the cecum. These results are consistent with transit of insoluble PLJ to feces following ingestion. The expanded understanding of Pb interactions during GIT transit complements our knowledge of elemental interactions with Pb that occur at higher levels of biological organization.
Collapse
Affiliation(s)
- Tyler D Sowers
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Sharon E Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R Noerpel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Matthew D Blackmon
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Ranju R Karna
- Bennett Aerospace, Inc., Engineer Research and Development Center, USACE, Vicksburg, Mississippi 39183, United States
| | - Kirk G Scheckel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Gary L Diamond
- SRC, Inc., North Syracuse, New York 13212, United States
| | - David J Thomas
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Karen D Bradham
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
11
|
Griggs JL, Thomas DJ, Fry R, Bradham KD. Improving the predictive value of bioaccessibility assays and their use to provide mechanistic insights into bioavailability for toxic metals/metalloids - A research prospectus. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:307-324. [PMID: 34092204 PMCID: PMC8390437 DOI: 10.1080/10937404.2021.1934764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Widespread contamination of soil, dust, and food with toxic metal(loid)s pose a significant public health concern. Only a portion of orally ingested metal(loid) contaminants are bioavailable, which is defined as the fraction of ingested metal(loid)s absorbed across the gastrointestinal barrier and into systemic circulation. Bioaccessibility tools are a class of in vitro assays used as a surrogate to estimate risk of oral exposure and bioavailability. Although development and use of bioaccessibility tools have contributed to our understanding of the factors influencing oral bioavailability of metal(loid)s, some of these assays may lack data that support their use in decisions concerning adverse health risks and soil remediation. This review discusses the factors known to influence bioaccessibility of metal(loid) contaminants and evaluates experimental approaches and key findings of SW-846 Test Method 1340, Unified BARGE Method, Simulated Human Intestinal Microbial Ecosystem, Solubility Bioaccessibility Research Consortium assay, In Vitro Gastrointestinal model, TNO-Gastrointestinal Model, and Dutch National Institute for Public Health and the Environment bioaccessibility models which are used to assess oral absolute bioavailability and relative bioavailability in solid matrices. The aim of this review was to identify emerging knowledge gaps and research needs with an emphasis on research required to evaluate these models on (1) standardization of assay techniques and methodology, and (2) use of common criteria for assessing the performance of bioaccessibility models.
Collapse
Affiliation(s)
- Jennifer L. Griggs
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - David J. Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709 USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Karen D. Bradham
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modelling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709 USA
| |
Collapse
|
12
|
Bolan S, Seshadri B, Keely S, Kunhikrishnan A, Bruce J, Grainge I, Talley NJ, Naidu R. Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability. Sci Rep 2021; 11:14675. [PMID: 34282255 PMCID: PMC8289861 DOI: 10.1038/s41598-021-94174-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, the intestinal permeability of metal(loid)s (MLs) such as arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) was examined, as influenced by gut microbes and chelating agents using an in vitro gastrointestinal/Caco-2 cell intestinal epithelium model. The results showed that in the presence of gut microbes or chelating agents, there was a significant decrease in the permeability of MLs (As-7.5%, Cd-6.3%, Pb-7.9% and Hg-8.2%) as measured by apparent permeability coefficient value (Papp), with differences in ML retention and complexation amongst the chelants and the gut microbes. The decrease in ML permeability varied amongst the MLs. Chelating agents reduce intestinal absorption of MLs by forming complexes thereby making them less permeable. In the case of gut bacteria, the decrease in the intestinal permeability of MLs may be associated to a direct protection of the intestinal barrier against the MLs or indirect intestinal ML sequestration by the gut bacteria through adsorption on bacterial surface. Thus, both gut microbes and chelating agents can be used to decrease the intestinal permeability of MLs, thereby mitigating their toxicity.
Collapse
Affiliation(s)
- Shiv Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Simon Keely
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Anitha Kunhikrishnan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Jessica Bruce
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas J Talley
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
13
|
Bolan S, Seshadri B, Grainge I, Talley NJ, Naidu R. Gut microbes modulate bioaccessibility of lead in soil. CHEMOSPHERE 2021; 270:128657. [PMID: 33127103 DOI: 10.1016/j.chemosphere.2020.128657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 05/06/2023]
Abstract
Metabolic uptake of lead (Pb) is controlled by its bioaccessibility. Most studies have examined bioaccessibility of Pb in the absence of gut microbes, which play an important role in the metabolic uptake of nutrients and metal(loid)s in intestine. In this study, we examined the effect of three gut microbes, from various locations in the gut, on the bioaccessibility of soil ingested Pb. The gut microbes include Lactobacillus acidophilus, Lactobacillus rhamnosus and Escherichia coli. Lead toxicity to these three microbes was also examined at various pH values. Bioaccessibility of Pb was measured using gastric and intestinal extractions. Both Pb spiked and Pb-contaminated shooting range field soils were used to measure Pb bioaccessibility in the presence and absence of gut microbes. The results indicated that Pb toxicity to gut microbes, as measured by LD50 value, decreased with increasing pH, and was higher for Lactobacillus species. Gut microbes decreased the bioaccessible Pb; the effect was more pronounced at low pH, mimicking gastric conditions than in conditions closer to the intestine. Lead adsorption by these microbes increased at the higher pH tested, and E. coli adsorbed higher amounts of Pb than did the Lactobacillus species. The effect of gut microbes on reducing Pb bioaccessibility may be attributed to microbially-induced immobilization of Pb through adsorption, precipitation, and complexation reactions. The study demonstrates that bioaccessibility and subsequently bioavailability of metal(loid)s can be modulated by gut microbes, and it is important to undertake bioaccessibility measurements in the presence of gut microbes.
Collapse
Affiliation(s)
- Shiv Bolan
- Global Centre for Environmental Remediation, University of Newcastle, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, NSW, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, University of Newcastle, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, NSW, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - Nicholas J Talley
- Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, NSW, Australia.
| |
Collapse
|
14
|
Sun L, Ng JC, Tang W, Zhang H, Zhao Y, Shu L. Assessment of human health risk due to lead in urban park soils using in vitro methods. CHEMOSPHERE 2021; 269:128714. [PMID: 33127111 DOI: 10.1016/j.chemosphere.2020.128714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Beijing parks always have a large flow of local residents and tourists, and the soil Pb could threaten human health by incidental ingestion. Soil samples from eleven parks in Beijing were collected to assess the human health risk associated with Pb. Lead bioaccessibility in these parks ranged from 3.2 ± 0.4% to 12.1 ± 0.5% in the physiologically based extraction test (PBET) gastric phase and increased when approaching the city center. The chemical forms and soil properties (Fe, organic matter, and grain size) were important factors affecting the soil Pb bioaccessibility. The geo-accumulation index of Beihai Park (BH, near the city center) reached 1.3 ± 0.1 indicating moderate contamination. Lead health risk to children in BH should be of concern though its hazard quotient was below one. Results obtained from the Diffusive Gradients in Thin-films (DGT)-induced fluxes in the soils (DIFS) model showed that Pb-release in some parks farther from the city center was a "partially sustained case" (Rdiff < R < 0.95) indicating that soil particles could partially replenish effective Pb to the soil solution. A relatively higher desorption rate constant (k1) and shorter characteristic response time (Tc) were also found in these parks, indicating non-negligible release risk. Soil Pb based on the PBET method and DIFS model could provide a reliable reference to park managers for the health risk management of Pb pollution.
Collapse
Affiliation(s)
- Liu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Brisbane, QLD, 4102, Australia
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Shu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Liao Q, He L, Tu G, Yang Z, Yang W, Tang J, Cao W, Wang H. Simultaneous immobilization of Pb, Cd and As in soil by hybrid iron-, sulfate- and phosphate-based bio-nanocomposite: Effectiveness, long-term stability and bioavailablity/bioaccessibility evaluation. CHEMOSPHERE 2021; 266:128960. [PMID: 33223209 DOI: 10.1016/j.chemosphere.2020.128960] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Here, the bio-nanocomposite (n-HFP + n-HFS)@An was developed to simultaneously immobilize Pb, Cd and As in the severely contaminated soil. The immobilization rates of diethylenetriaminepentaacetic acid (DTPA)/decarbonate-extracted bioavailable Pb, Cd and As were 59.87%, 31.28% and 62.30%, and the immobilization rates of their water-soluble forms were 63.12%, 60.02% and 89.39%, respectively. Moreover, the ten-year acid rain simulated leaching assay showed that the maximum cumulative release contents of Pb, Cd and As in the treated soil samples were decreased by 2.94, 2.46 and 40.60 times, comparing to the un-treated ones. Additionally, the results of SBRC (Solubility Bioaccessibility Research Consortium) revealed that the bioaccessible rates of the three metals in intestinal phase were lower than in gastric phase, and both of them decreased with increasing the immobilization time. The gastric bioaccessibility of Pb, Cd and As had a higher correlation with the contents of water-soluble forms, while the intestinal bioaccessibility was more strongly positively associated with the bioavailable forms.
Collapse
Affiliation(s)
- Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Lixu He
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Guangyuan Tu
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Weichun Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China; Water Pollution Control Technology Key Lab of Hunan Province, 410083, Changsha, China
| | - Jiaqi Tang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Wei Cao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Haiying Wang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China; Water Pollution Control Technology Key Lab of Hunan Province, 410083, Changsha, China.
| |
Collapse
|
16
|
Abstract
AbstractThe passivation effects of blast furnace slag, fly ash, corncob biochar, and phosphate fertilizer in Pb-contaminated soil was evaluated against the soil pH, available Pb content, Pb fractions, and bioactivity coefficient. Blast furnace slag and fly ash could increase soil pH, while corncob biochar and phosphate fertilizers lowered soil pH. The available Pb content in the blast furnace slag and phosphate fertilizer treatment groups was significantly lower than in other treatments. Also, blast furnace slag and phosphate fertilizer could significantly convert nonresidual Pb into residual Pb. Combined with the environmental impact after application and cost of the material, it is recommended that blast furnace slag can be used as a passivation agent for low-concentration Pb-contaminated soil.
Collapse
|
17
|
Fioroto AM, Albuquerque LGR, Carvalho AAC, Oliveira AP, Rodrigues F, Oliveira PV. Hydroponic growth test of maize sprouts to evaluate As, Cd, Cr and Pb translocation from mineral fertilizer and As and Cr speciation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114216. [PMID: 32155546 DOI: 10.1016/j.envpol.2020.114216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/09/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
The present study proposes a maize sprouts hydroponic growth model to evaluate the As, Cd, Cr and Pb translocation from multinutrient fertilizer and to do speciation of As and Cr in this fertilizer and As in parts of plant in order to predict their phytoavailability. X-ray absorption near edge structure (XANES) was employed to speciate As and Cr directly on fertilizer solid sample. Arsenate (AsV) and a solid solution of FeCrO3 were the major species identified in the samples. The sprouts were hydroponically cultivated in water, fertilizer slurry and fertilizer extract media. Concentrations of As, Cd and Pb measured on leaves of maize sprouts ranged from 0.061 to 0.31 mg kg-1, whereas Cr was not translocated to the aerial parts of sprouts. High performance liquid chromatographic with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) analysis was used to determine As speciation in maize sprouts, as well as in the fertilizer extracts and slurries. Arsenate was the only species identified in the initial fertilizer extract and this information is in agreement with the XANES results. However, the reduction of arsenate to arsenite was observed in extracts and slurries collected after sprout growth, probably due to the action of exudates secreted by plant roots. Arsenite was the predominant species identified in sprouts, the high phosphate concentration in the medium may have contributed to reduce arsenate phytoavailability.
Collapse
Affiliation(s)
- Alexandre M Fioroto
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Luiza G R Albuquerque
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Alexandrina A C Carvalho
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Aline P Oliveira
- Universidade Federal de São Paulo, Ciências Exatas e da Terra, Diadema, SP, Brazil
| | - Fabio Rodrigues
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Pedro V Oliveira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Fan J, Zhao L, Kan J, Qiu H, Xu X, Cao X. Uptake of vegetable and soft drink affected transformation and bioaccessibility of lead in gastrointestinal track exposed to lead-contaminated soil particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110411. [PMID: 32151869 DOI: 10.1016/j.ecoenv.2020.110411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/18/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Accidental ingestion of Pb-contaminated soil particles by direct hand-to-mouth activity or by swallowing airborne dust particles is important pathway of human exposure to Pb. Appropriate evaluation of Pb risk to human is important in determining whether the soil needs remediation or not, however, there is paucity of data about the dietary influences on Pb bioaccessibility (Pb-BA) and transformation in humans. This study chose two typical foods, spinach and cola, representing vegetable and soft drink, respectively, and investigated their effects on Pb species in gastrointestinal tract using the physiologically based extraction test. Results showed that ingestion of spinach and cola decreased the Pb-BA by 52%-94% in the gastric phase and by 38%-95% in the intestinal phase, respectively. The reduction of Pb-BA by spinach was attributed to the precipitation of Pb with phosphorus in spinach and the sorption of Pb by the generated hydrolysate and un-hydrolysate from spinach in gastrointestinal tract. Cola decreased Pb-BA mainly via formation of insoluble Pb phosphates precipitates. Analysis of X-ray diffraction and MINTEQ modeling demonstrated that the dissolved Pb was transformed to precipitated or sorbed Pb with intake of cola or spinach. Our findings suggest that dietary habit greatly influence the speciation and subsequent Pb-BA in the gastrointestinal tract, which should be incorporated into human health risk assessment of Pb-contaminated soil.
Collapse
Affiliation(s)
- Jin Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China.
| | - Junhong Kan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
19
|
Jiang Y, Yuan L, Lin Q, Ma S, Yu Y. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133902. [PMID: 31470322 DOI: 10.1016/j.scitotenv.2019.133902] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants. Because of their toxicity and persistence, some PBDEs were restricted under the Stockholm Convention in 2009. Since then, many studies have been carried out on PBDEs in China and in many other countries. In the present review, the occurrences and contamination of PBDEs in air, water, sediment, soil, biota and daily food, human blood, hair, and other human tissues in China are comprehensively reviewed and described. The human exposure pathways and associated health risks of PBDEs are summarized. The data showed no obvious differences between North and South China, but concentrations from West China were generally lower than in East China, which can be mainly attributed to the production and widespread use of PBDEs in eastern regions. High levels of PBDEs were generally observed in the PBDE production facilities (e.g., Jiangsu Province and Shandong Province, East China) and e-waste recycling sites (Taizhou City, Zhejiang Province, East China, and Guiyu City and Qingyuan City, both located in Guangdong Province, South China) and large cities, whereas low levels were detected in rural and less-developed areas, especially in remote regions such as the Tibetan Plateau. Deca-BDE is generally the major congener. Existing problems for PBDE investigations in China are revealed, and further studies are also discussed and anticipated. In particular, non-invasive matrices such as hair should be more thoroughly studied; more accurate estimations of human exposure and health risks should be performed, such as adding bioaccessibility or bioavailability to human exposure assessments; and the degradation products and metabolites of PBDEs in human bodies should receive more attention. More investigations should be carried out to evaluate the quantitative relationships between internal and external exposure so as to provide a scientific basis for ensuring human health.
Collapse
Affiliation(s)
- Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Longmiao Yuan
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Qinhao Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shentao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
20
|
Kastury F, Placitu S, Boland J, Karna RR, Scheckel KG, Smith E, Juhasz AL. Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil: Uncertainty associated with predicting Pb immobilization efficacy using in vitro assays. ENVIRONMENT INTERNATIONAL 2019; 131:104967. [PMID: 31284111 PMCID: PMC7393514 DOI: 10.1016/j.envint.2019.104967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 05/09/2023]
Abstract
In this study, an in vitro in vivo correlation (IVIVC) between Pb in vitro bioaccessibility (IVBA) and relative bioavailability (RBA) was explored to determine whether the efficacy of Pb immobilization in phosphate amended soils could be predicted using an in vitro approach. Mining/smelting impacted soil from Broken Hill, Australia (582-3536 mg/kg of Pb in the <250 μm soil particle fraction) was amended with Phosphoric Acid (PA), Mono Ammonium Phosphate (MAP) or Triple Super Phosphate (TSP) at Pb:P molar ratios of 1:1-1:5. Pb speciation in pre- and post-treated soil was assessed using X-ray Absorption Spectroscopy (XAS), Pb IVBA was measured using the Solubility Bioaccessibility Research Consortium (SBRC) assay (gastric and intestinal phases), and Pb RBA was determined in mice using blood Pb concentration as the bioavailability endpoint. XAS analysis revealed a 3.75-6.00 fold increase in the weighted % of Pb phosphates in soil containing >1000 mg/kg Pb while treatment effect ratios of 0.89-0.99 (SBRC-G), 0.09-0.71 (SBRC-I) and 0.27-0.80 (RBA) were observed in PA amended soil (Pb:P = 1:5). Although significant (p < 0.05) correlation were obtained between Pb RBA and IVBA (%) determined using SBRC-G (r = 0.64) and SBRC-I (r = 0.67), the strengths of the relationships were weak (r2 = 0.41-0.45). This research highlights the complexities associated with the prediction of Pb RBA in phosphate amended soil.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, University of South Australia, Australia.
| | | | - John Boland
- School of Information Technology and Mathematical Sciences, University of South Australia, Australia
| | - Ranju R Karna
- Oak Ridge Institute for Science and Education, National Risk Management Research Laboratory-Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Euan Smith
- Future Industries Institute, University of South Australia, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Australia
| |
Collapse
|
21
|
Kastury F, Smith E, Doelsch E, Lombi E, Donnelley M, Cmielewski PL, Parsons DW, Scheckel KG, Paterson D, de Jonge MD, Herde C, Juhasz AL. In Vitro, in Vivo, and Spectroscopic Assessment of Lead Exposure Reduction via Ingestion and Inhalation Pathways Using Phosphate and Iron Amendments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10329-10341. [PMID: 31356748 PMCID: PMC7436645 DOI: 10.1021/acs.est.9b02448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study compared lead (Pb) immobilization efficacies in mining/smelting impacted soil using phosphate and iron amendments via ingestion and inhalation pathways using in vitro and in vivo assays, in conjunction with investigating the dynamics of dust particles in the lungs and gastro-intestinal tract via X-ray fluorescence (XRF) microscopy. Phosphate amendments [phosphoric acid (PA), hydroxyapatite, monoammonium phosphate (MAP), triple super phosphate (TSP), and bone meal biochar] and hematite were applied at a molar ratio of Pb:Fe/P = 1:5. Pb phosphate formation was investigated in the soil/post-in vitro bioaccessibility (IVBA) residuals and in mouse lung via extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structures (XANES) spectroscopy, respectively. EXAFS analysis revealed that anglesite was the dominant phase in the ingestible (<250 μm) and inhalable (<10 μm) particle fractions. Pb IVBA was significantly reduced (p < 0.05) by phosphate amendments in the <250 μm fraction (solubility bioaccessibility research consortium assay) and by PA, MAP, and TSP in the <10 μm fraction (inhalation-ingestion bioaccessibility assay). A 21.1% reduction in Pb RBA (<250 μm fraction) and 56.4% reduction in blood Pb concentration (<10 μm fraction) were observed via the ingestion and inhalation pathways, respectively. XRF microscopy detected Pb in the stomach within 4 h, presumably via mucociliary clearance.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| | - Euan Smith
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| | - Emmanuel Doelsch
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| | - Martin Donnelley
- Women’s and Children’s Hospital, Adelaide 5006, Australia
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia
| | - Patricia L. Cmielewski
- Women’s and Children’s Hospital, Adelaide 5006, Australia
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia
| | - David W. Parsons
- Women’s and Children’s Hospital, Adelaide 5006, Australia
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia
| | - Kirk G. Scheckel
- United States Environmental Protection Agency, Cincinnati 45224, United States
| | | | | | - Carina Herde
- South Australian Health and Medical Research Institute, Adelaide 5086, Australia
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| |
Collapse
|
22
|
Zhu X, Li MY, Chen XQ, Wang JY, Li LZ, Tu C, Luo YM, Li HB, Ma LQ. As, Cd, and Pb relative bioavailability in contaminated soils: Coupling mouse bioassay with UBM assay. ENVIRONMENT INTERNATIONAL 2019; 130:104875. [PMID: 31200159 DOI: 10.1016/j.envint.2019.05.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The robustness of in vitro bioaccessibility assays to predict oral relative bioavailability (RBA) of multiple metals in contaminated soils requires validation using additional soil samples. In this study, 11 contaminated soils from mining/smelting areas were analyzed for As-, Cd-, and Pb-RBA using a mouse bioassay and metal bioaccessibility via the UBM gastric phase assay. Metal-RBA varied considerably among soils, with As-RBA (2.5-23%, mean 12%) being generally lower than Cd-and Pb-RBA (3.4-88 and 3.3-59%, mean 42 and 28%), due to higher proportions of As in the residual fractions. Metal-RBA generally decreased with increasing metal concentrations probably due to reduced labile metal fractions. In addition, strong negative correlations were observed between total Fe with As-, Cd-, and Pb-RBA (R2 = 0.46-0.77), suggesting the role of Fe in controlling metal-RBA in soils. Like RBA, metal bioaccessibility by the UBM assay also varied among samples. However, strong in vivo-in vitro correlations (IVIVCs) were observed between metal-RBA and bioaccessibility (R2 = 0.52-0.81). Further, there were little differences when As-, Cd-, and Pb-IVIVCs established using soils from this study and soils pooled from literature were compared, suggesting the robustness of the UBM assay to predict metal-RBA in contaminated soils.
Collapse
Affiliation(s)
- Xia Zhu
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiao-Qiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jue-Yang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lian-Zhen Li
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chen Tu
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yong-Ming Luo
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Plunkett SA, Wijayawardena MAA, Naidu R, Siemering GS, Tomaszewski EJ, Ginder-Vogel M, Soldat DJ. Use of Routine Soil Tests to Estimate Pb Bioaccessibility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12556-12562. [PMID: 30351030 DOI: 10.1021/acs.est.8b02633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Soil lead (Pb) hazard level is contingent on bioavailability, but existing assays that estimate Pb bioavailability for human health risks are too expensive or otherwise inaccessible to many people that are impacted by Pb-contaminated soil. This study investigated the use of routine soil nutrient tests to estimate soil-Pb bioaccessibility as a surrogate measure of Pb bioavailability. A silt loam soil was spiked to a target concentration of 2000 mg Pb kg-1 with Pb(NO3)2 and amended with H3PO4 (varying P-to-Pb molar ratios) and KCl (Cl-to-P molar ratio of 2:5) to generate soils with similar total Pb concentrations but a range of Pb bioavailability (and bioaccessibility). Soils were extracted using Mehlich 3, Mehlich 1, Bray P1, Olsen, and micronutrient (DTPA) methods, and the results were compared to U.S. Environmental Protection Agency method 1340 data as well as to extended X-ray absorption fine structure (EXAFS) spectroscopy. The Mehlich 3 and method 1340 treatment effect ratios were well-correlated ( r2 = 0.88, p ≤ 0.05), whereas Bray P1, DTPA, and Olsen results were more reflective of EXAFS data. Preliminary animal-feeding trials suggest that the Mehlich 3 is as effective as method 1340 at predicting the impact of P treatment on Pb relative bioavailability; however, both methods over-estimated the Pb hazard to mice in P-amended soil. Other routine soil tests that have heightened sensitivity to P amendment (e.g., Bray P1) may be promising candidates for Pb bioaccessibility assessment.
Collapse
Affiliation(s)
- Shannon A Plunkett
- Department of Soil Science , University of Wisconsin , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - M A Ayanka Wijayawardena
- Global Centre for Environmental Remediation , University of Newcastle , ATC Building , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRE CARE) , Mawson Lakes , SA 5095 , Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation , University of Newcastle , ATC Building , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRE CARE) , Mawson Lakes , SA 5095 , Australia
| | - Geoffrey S Siemering
- Department of Soil Science , University of Wisconsin , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - Elizabeth J Tomaszewski
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program , University of Wisconsin , 660 North Park Street , Madison , Wisconsin 53706 , United States
| | - Matthew Ginder-Vogel
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program , University of Wisconsin , 660 North Park Street , Madison , Wisconsin 53706 , United States
| | - Douglas J Soldat
- Department of Soil Science , University of Wisconsin , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| |
Collapse
|
24
|
Wan D, Zhang N, Chen W, Cai P, Zheng L, Huang Q. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32130-32139. [PMID: 30218340 DOI: 10.1007/s11356-018-3173-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The bioavailability and potential uptake of heavy metals by crops is fundamentally influenced by the forms of metals in soils. Organic matter plays an important role in controlling the transformation of heavy metal fractionations in soils. However, long-term effects of organic matter on heavy metal speciation remains highly uncertain. In this study, rice straw was introduced to a subtropical Pb-contaminated soil for 2-year period so as to clarify the redistribution of Pb fractions and their correlations with soil properties. By combining sequential extraction and X-ray absorption fine structure spectroscopy, we find that lead is predominantly presented in Fe oxide-bound, surface adsorbed, and residual fractions in the soil. The incorporation of rice straw can effectively reduce the labile species of Pb by promoting the binding of Pb to iron oxides. Furthermore, aging leads to the transfer of considerable amounts of Pb to the association with Fe oxides and this transformation is enhanced by the presence of organic matter. Organic matter input and soil aging tend to shift Pb to amorphous Fe oxides than crystalline Fe oxides. The correlation analysis shows that Fe oxide fractions play vital roles in controlling the forms of Pb in soil. This study presents the first result regarding the long-term effect of organic matter on the redistribution of Pb in naturally polluted soil, which is useful for understanding the fate of Pb and developing remediation strategies for Pb-polluted soils.
Collapse
Affiliation(s)
- Dan Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nichen Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Fioroto AM, Albuquerque LGR, Kelmer GAR, Silva DG, Couto RAA, Oliveira PV. Analytical Capabilities of the Community Bureau of Reference Protocol to Estimate the Mobility of Nutrients and Toxic Elements from Mineral Fertilizer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6255-6261. [PMID: 29863864 DOI: 10.1021/acs.jafc.8b00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The sequential extraction procedure of the Community Bureau of Reference (BCR) was applied to investigate the mobility of potentially toxic elements (As, Cd, Cr, and Pb) and nutrients (P, Ca, Mg, Cu, Fe, Mn, and Zn) in a multinutrient mineral fertilizer based on phosphate rocks supplemented with 10% (w w-1) micronutrient mixture (raw material used as a micronutrient source). For both samples, As and Cd were more mobile, whereas Cr remained in the solid residue. A higher mobility of Pb was observed in the micronutrient mixture; however, the high concentration of P (8.3% w w-1) in the fertilizer could have decreased Pb mobility as a result of Pb3(PO4)2 formation. The nutrients had great mobility, except Fe, which remained almost totally in the residual fraction in both samples. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy analyses of solid residues showed that the ways in which elements were distributed in the sample particles could affect their mobility.
Collapse
Affiliation(s)
- Alexandre M Fioroto
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , CEP 05508-000 , São Paulo , SP , Brazil
| | - Luiza G R Albuquerque
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , CEP 05508-000 , São Paulo , SP , Brazil
| | - Gislayne A R Kelmer
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , CEP 05508-000 , São Paulo , SP , Brazil
| | - Delmarcio G Silva
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , CEP 05508-000 , São Paulo , SP , Brazil
| | - Ricardo A A Couto
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , CEP 05508-000 , São Paulo , SP , Brazil
| | - Pedro V Oliveira
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , CEP 05508-000 , São Paulo , SP , Brazil
| |
Collapse
|
26
|
Karna RR, Noerpel MR, Luxton TP, Scheckel KG. Point of zero charge: Role in pyromorphite formation and bioaccessibility of lead and arsenic in phosphate amended soils. SOIL SYSTEMS 2018; 2:22. [PMID: 30714024 DOI: 10.3390/soilsystems2020022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soluble lead (Pb) can be immobilized in pure systems as pyromorphite by adding sources of phosphorus (P), but uncertainties still remain in natural systems. Knowledge of PZC is important to predict the ionization of functional groups and their interaction with metal species in solution. This study utilized the Pb- and As-contaminated soils to determine the combined effect of pH with respect to PZC and different rates of P-application on pyromorphite formation, and Pb and arsenic (As) bioaccessibility as impacted by speciation changes. Solution chemistry analysis along with synchrotron-based Pb- and As-speciation, and bioaccessibility treatment effect ratios (TERs) were conducted. Results indicated no significant effect of PZC on pyromorphite formation in P-amended soils; however, the TERPb appeared significantly lower at pH>pHPZC and higher at pH<pHPZC (α = 0.05). In contrast, the TERAs was significantly higher at pH>pHPZC, compared to the other two treatments, for the tested soils. The lack of conversion of soil Pb to pyromorphite may be attributed to presence of stable minerals limiting soluble-Pb availability and high organic matter content of the tested soils.
Collapse
Affiliation(s)
- Ranju R Karna
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Matthew R Noerpel
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Todd P Luxton
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| |
Collapse
|
27
|
Li SW, Liu X, Sun HJ, Li MY, Zhao D, Luo J, Li HB, Ma LQ. Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:256-263. [PMID: 28654790 DOI: 10.1016/j.jhazmat.2017.06.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Hand-to-mouth activity is an important pathway for children's exposure to contaminated soils, which is often co-contaminated by Pb and As in mining and smelting sites. To reduce soil Pb risk to humans by oral exposure, phosphate amendments have been used to reduce Pb relative bioavailability (RBA), but its efficiency has not been investigated using validated in vitro assays nor its influence on As-RBA. Here, 5 contaminated soils (A-E) were amended with 0.5% phosphoric acid (PA) to study its effect on Pb- and As- RBA using a newly-developed mouse kidney model and bioaccessibility using 4 in vitro assays including UBM, SBRC, IVG, and PBET. Based on the mouse kidney model, Pb-RBA in PA-amended soils decreased from 14.2-62.5% to 10.1-29.8%. In contrast, As-RBA decreased from 26.5% to 15.9% in soil B but increased from 27.5 to 41.2% in soil D, with changes being insignificant in 3 other soils (35.8-58.8 to 28.1-61.1%). When assessing Pb bioaccessibility in PA-amended soils, decreased bioaccessibility were found using PBET and SBRC. For As, its bioaccessibility increased in PA-amended soils, inconsistent with in vivo data. Our results shed light on the importance of method selection to assess risk in Pb- and As-contaminated soils amended with phosphate.
Collapse
Affiliation(s)
- Shi-Wei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|