1
|
Zeng L, Yang S, Chen Q, Fu W, Wu M, Oleszczuk P, Pan B, Xing B. The critical role of electron donating rate of pyrogenic carbon in mediating the degradation of phenols in the aquatic environment. WATER RESEARCH 2024; 265:122217. [PMID: 39128335 DOI: 10.1016/j.watres.2024.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Phenols are the widely detected contaminants in the aquatic environment. Pyrogenic carbon (PyC) can mediate phenols degradation, but the specific properties of PyC or phenols influencing this reaction remain unknown. The present study investigated the kinetic process and mechanism of removal of various phenols by different PyC in aqueous phase system. To avoid the impact of the accumulated degradation byproducts on the overall reaction, we conducted a short-term experiment, quantified adsorption and degradation, and obtained reaction rate constants using a two-compartment first-order kinetics model. The adsorption rate constants (ka) of phenols by PyC were 10-220 times higher than degradation rate constants (kd), and they were positively correlated. Interestingly, no correlation was found between kd and common PyC properties, including functional groups, electron transfer capacities, and surface properties. Phenols were primarily attacked by •OH in the adsorbed phase. But neither the instantly trapped •OH, nor the accumulated •OH could explain phenol degradation. Chemical redox titration revealed that the electron transfer parameters, such as the electron donating rate constant (kED) of PyC, correlated well with kd (r>0.87, P < 0.05) of phenols. Analysis of 13 phenols showed that Egap and ELUMO negatively correlated with their kd, confirming the importance of the electronic properties of phenols to their degradation kinetics. This study highlights the importance of PyC electron transfer kinetics parameters for phenols degradation and manipulation of PyC electron transfer rate may accelerate organic pollutant removal, which contributes to a deeper understanding of the environmental behavior and application of PyC systems.
Collapse
Affiliation(s)
- Liang Zeng
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China
| | - Sizhe Yang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China
| | - Quan Chen
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China.
| | - Wang Fu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China
| | - Min Wu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, PR China
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
2
|
Abenza M, Labad F, Gibert O, de Pablo J, Pérez S, Vázquez-Suñé E, Teixidó M. Sustainable urban water management: Evaluating two pilot-scale advanced decentralized treatment systems for removal of organic contaminants of emerging concern in reclaimed groundwater. CHEMOSPHERE 2024; 366:143568. [PMID: 39426753 DOI: 10.1016/j.chemosphere.2024.143568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The rapid growth of population and the effects of climate change have placed unprecedented pressure on urban water supplies and pollution control. Consequently, it is essential to explore new local water resources in water-strained areas. To this end, this work focuses on evaluating pollutant removal effectiveness of decentralized treatment systems for groundwater reclamation. Two pilot-scale treatment trains, Treatment Line 1 (L1) and Treatment Line 2 (L2), which use membrane-free (with granulated activated carbon as the main process) or membrane-based (with reverse osmosis as the primary technology), were compared for their effectiveness in reducing concentrations of organic contaminants of emerging concern (CECs). Additionally, the effect of sodium hypochlorite addition for biofilm control on the contaminant removal performance was also examined. Results from the analysis of nearly 120 trace organic compounds (only 21 were detected in the raw water) showed that L2 significantly overperformed L1. Furthermore, the addition of a pre-chlorination step did not improve the removal performance. Regarding trace organic compounds, L1 without pre-chlorination averaged an overall good removal performance (94 ± 12%). However, Irbesartan, gemfibrozil and gabapentin showed moderate removals (50-90%) and Valsartan was poorly removed (<50%). After pre-chlorinating L1, the overall removal performance decreased (86 ± 20%). Nearly one third of the target contaminants showed moderate removal (50-90%), with Irbesartan and Valsartan exhibiting poor attenuations (<50%), highlighting that negatively-charged compounds were challenging to eliminate. In contrast, L2 exhibited very high removals (>99%) on all studied trace organic contaminants regardless of pre-chlorination. Our study also identified several indicator compounds to monitor CEC removal. Finally, considering the trade-offs between cost and final water use (non-potable), L1-based schemes with intermittent pre-chlorination could be the preferred implementation option. The results of this work will offer valuable insights into decentralized treatment systems, assisting decision-makers in choosing suitable approaches for sustainable urban water management.
Collapse
Affiliation(s)
- Misael Abenza
- Department of Chemical Engineering and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, Av. Eduard Maristany 10-14, 08930, Barcelona, Spain.
| | - Francesc Labad
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), c/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Oriol Gibert
- Department of Chemical Engineering and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, Av. Eduard Maristany 10-14, 08930, Barcelona, Spain
| | - Joan de Pablo
- Department of Chemical Engineering and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, Av. Eduard Maristany 10-14, 08930, Barcelona, Spain
| | - Sandra Pérez
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), c/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - E Vázquez-Suñé
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), c/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Marc Teixidó
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), c/ Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
3
|
Arabzadeh Nosratabad N, Yan Q, Cai Z, Wan C. Exploring nanomaterial-modified biochar for environmental remediation applications. Heliyon 2024; 10:e37123. [PMID: 39315228 PMCID: PMC11417198 DOI: 10.1016/j.heliyon.2024.e37123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Environmental pollution, particularly from heavy metals and toxic elements, poses a significant threat to both human health and ecological systems. While various remediation technologies exist, there is an urgent need for cost-effective and sustainable solutions. Biochar, a carbon-rich product derived from the pyrolysis of organic matter, has emerged as a promising material for environmental remediation. However, its pristine form has limitations, such as low adsorption capacities, a relatively narrow range of pH adaptability which can limit its effectiveness in diverse environmental conditions, and a tendency to lose adsorption capacity rapidly in the presence of competing ions or organic matters. This review aims to explore the burgeoning field of nanomaterial-modified biochar, which seeks to overcome the limitations of pristine biochar. By incorporating nanomaterials, the adsorptive and reactive properties of biochar can be significantly enhanced. Such modifications, especially biochar supported with metal nanoparticles (biochar-MNPs), have shown promise in various applications, including the removal of heavy metals, organic contaminants, and other inorganic pollutants from aqueous environments, soil, and air. This review provides a comprehensive overview of the synthesis techniques, characterization methods, and applications of biochar-MNPs, as well as discusses their underlying mechanisms for contaminant removal. It also offers insights into the advantages and challenges of using nanomaterial-modified biochar for environmental remediation and suggests directions for future research.
Collapse
Affiliation(s)
- Neda Arabzadeh Nosratabad
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Qiangu Yan
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Zhiyong Cai
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Lian F, Xing B. From Bulk to Nano: Formation, Features, and Functions of Nano-Black Carbon in Biogeochemical Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15910-15925. [PMID: 39189123 DOI: 10.1021/acs.est.4c07027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Globally increasing wildfires and widespread applications of biochar have led to a growing amount of black carbon (BC) entering terrestrial ecosystems. The significance of BC in carbon sequestration, environmental remediation, and the agricultural industry has long been recognized. However, the formation, features, and environmental functions of nanosized BC, which is one of the most active fractions in the BC continuum during global climate change, are poorly understood. This review highlights the formation, surface reactivity (sorption, redox, and heteroaggregation), biotic, and abiotic transformations of nano-BC, and its major differences compared to other fractions of BC and engineered carbon nanomaterials. Potential applications of nano-BC including suspending agent, soil amendment, and nanofertilizer are elucidated based on its unique properties and functions. Future studies are suggested to develop more reliable detection techniques to provide multidimensional information on nano-BC in environmental samples, explore the critical role of nano-BC in promoting soil and planetary health from a one health perspective, and extend the multifield applications of nano-BC with a lower environmental footprint but higher efficiency.
Collapse
Affiliation(s)
- Fei Lian
- Institute of Pollution Control and Environmental Health, and School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Tong H, Xiong J. Effect of carbaryl contamination on bioretention system nitrogen removal performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56227-56235. [PMID: 39259329 DOI: 10.1007/s11356-024-34919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Stormwater runoff is the main source of carbaryl in natural waters; bioretention cells can effectively retain and remove carbaryl from stormwater runoff. However, the accumulation of carbaryl in the bioretention cell impacts its stormwater purification ability, especially nitrogen removal performance. To investigate the mechanisms behind the influence of carbaryl in stormwater runoff on the nitrogen removal performance of bioretention cells, the purification of carbaryl in bioretention facilities was compared under four carbaryl concentrations (0, 0.5, 1.0, and 2.0 mg/L); the effects of carbaryl input on nitrogen removal and the microbial community structure inside the filler were analyzed. After entering the bioretention cell, carbaryl was mainly adsorbed within the filler at a depth of 10-30 cm, and the desorption-adsorption process continued during subsequent rainfall. Carbaryl input negatively affected the denitrification performance of the bioretention cell. The removal rate of nitrate nitrogen (NO3--N) decreased by 61.13-100.09%, and that of total nitrogen (TN) was reduced by 24.82-38.95%. Carbaryl accumulation reduced the abundance and diversity of microorganisms in the bioretention cell. The relative abundance of some denitrifying bacteria genera (Terrimonas, Bdellovibrio, Aquabacterium, Ohtaekwangia, Sphingomonas, and SWB02) also decreased, which was the main reason for the decrease in the nitrogen removal performance.
Collapse
Affiliation(s)
- Hao Tong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, P.R. China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, P.R. China.
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
| |
Collapse
|
6
|
Alam M, Sitter JD, Vannucci AK, Webster JP, Matiasek SJ, Alpers CN, Baalousha M. Environmentally persistent free radicals and other paramagnetic species in wildland-urban interface fire ashes. CHEMOSPHERE 2024; 363:142950. [PMID: 39069099 DOI: 10.1016/j.chemosphere.2024.142950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Wildland-urban interface (WUI) fires consume fuels, such as vegetation and structural materials, leaving behind ash composed primarily of pyrogenic carbon and metal oxides. However, there is currently limited understanding of the role of WUI fire ash from different sources as a source of paramagnetic species such as environmentally persistent free radicals (EPFRs) and transition metals in the environment. Electron paramagnetic resonance (EPR) was used to detect and quantify paramagnetic species, including organic persistent free radicals and transition metal spins, in fifty-three fire ash and soil samples collected following the North Complex Fire and the Sonoma-Lake-Napa Unit (LNU) Lightning Complex Fire, California, 2020. High concentrations of organic EPFRs (e.g., 1.4 × 1014 to 1.9 × 1017 spins g-1) were detected in the studied WUI fire ash along with other paramagnetic species such as iron and manganese oxides, as well as Fe3+ and Mn2+ ions. The mean concentrations of EPFRs in various ash types decreased following the order: vegetation ash (1.1 × 1017 ± 1.1 × 1017 spins g-1) > structural ash (1.6 × 1016 ± 3.7 × 1016 spins g-1) > vehicle ash (6.4 × 1015 ± 8.6 × 1015 spins g-1) > soil (3.2 × 1015 ± 3.7 × 1015 spins g-1). The mean concentrations of EPFRs decreased with increased combustion completeness indicated by ash color; black (1.1 × 1017 ± 1.1 × 1017 spins g-1) > white (2.5 × 1016 ± 4.4 × 1016 spins g-1) > gray (1.8 × 1016 ± 2.4 × 1016 spins g-1). In contrast, the relative amounts of reduced Mn2+ ions increased with increased combustion completeness. Thus, WUI fire ash is an important global source of EPFRs and reduced metal species (e.g., Mn2+). Further research is needed to underpin the formation, transformation, and environmental and human health impacts of these paramagnetic species in light of the projected increased frequency, size, and severity of WUI fires.
Collapse
Affiliation(s)
- Mahbub Alam
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - James D Sitter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Aaron K Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Jackson P Webster
- Department of Civil Engineering, California State University Chico, 400 W 1st St, Chico, CA, 95929, United States
| | - Sandrine J Matiasek
- Department of Earth and Environmental Sciences, California State University Chico, 400 W 1st St, Chico, CA, 95929, United States
| | - Charles N Alpers
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Sacramento, CA, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
7
|
Fu K, Liu X, Zhang X, Zhou S, Zhu N, Pei Y, Luo J. Utilizing cost-effective pyrocarbon for highly efficient gold retrieval from e-waste leachate. Nat Commun 2024; 15:6137. [PMID: 39033214 PMCID: PMC11271467 DOI: 10.1038/s41467-024-50595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Addressing burdens of electronic waste (E-waste) leachate while achieving sustainable and selective recovery of noble metals, such as gold, is highly demanded due to its limited supply and escalating prices. Here we demonstrate an environmentally-benign and practical approach for gold recovery from E-waste leachate using alginate-derived pyrocarbon sorbent. The sorbent demonstrates potent gold recovery performance compared to most previously reported advanced sorbents, showcasing high recovery capacity of 2829.7 mg g-1, high efficiency (>99.5%), remarkable selectivity (Kd ~ 3.1 × 108 mL g-1), and robust anti-interference capabilities within environmentally relevant contexts. The aromatic structures of pyrocarbon serve as crucial electrons sources, enabling a hydroxylation process that simultaneously generates electrons and phenolic hydroxyls for the reduction of gold ions. Our investigations further uncover a "stepwise" nucleation mechanism, in which gold ions are reduced as intermediate gold-chlorine clusters, facilitating rapid reduction process by lowering energy barriers from 1.08 to -21.84 eV. Technoeconomic analysis demonstrates its economic viability with an input-output ratio as high as 1370%. Our protocol obviates the necessity for organic reagents whilst obtaining 23.96 karats gold product from real-world central processing units (CPUs) leachates. This work introduces a green sorption technique for gold recovery, emphasizing its role in promoting a circular economy and environmental sustainability.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Nanwen Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Pei
- Department of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Khan AU, Porta GM, Riva M, Guadagnini A. In-silico mechanistic analysis of adsorption of Iodinated Contrast Media agents on graphene surface. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116506. [PMID: 38875817 DOI: 10.1016/j.ecoenv.2024.116506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
The study aims at assessing the potential of graphene-based adsorbents to reduce environmental impacts of Iodinated Contrast Media Agents (ICMs). We analyze an extensive collection of ICMs. A modeling approach resting on molecular docking and Density Functional Theory simulations is employed to examine the adsorption process at the molecular level. The study also relies on a Quantitative Structure-Activity Relationship (QSAR) modeling framework to correlate molecular properties with the adsorption energy (Ead) of ICMs, thus enabling identification of the key mechanisms underpinning adsorption and of the key factors contributing to it. A collection of distinct QSAR-based models is developed upon relying on Multiple Linear Regression and a standard genetic algorithm method. Having at our disposal multiple models enables us to take into account the uncertainty associated with model formulation. Maximum Likelihood and formal model identification/discrimination criteria (such as Bayesian and/or information theoretic criteria) are then employed to complement the traditional QSAR modeling phase. This has the advantage of (a) providing a rigorous ranking of the alternative models included in the selected set and (b) quantifying the relative degree of likelihood of each of these models through a weight or posterior probability. The resulting workflow of analysis enables one to seamlessly embed DFT and QSAR studies within a theoretical framework of analysis that explicitly takes into account model and parameter uncertainty. Our results suggest that graphene-based surfaces constitute a promising adsorbent for ICMs removal, π-π stacking being the primary mechanism behind ICM adsorption. Furthermore, our findings offer valuable insights into the potential of graphene-based adsorbent materials for effectively removing ICMs from water systems. They contribute to ascertain the significance of various factors (such as, e.g., the distribution of atomic van der Waals volumes, overall molecular complexity, the presence and arrangement of Iodine atoms, and the presence of polar functional groups) on the adsorption process.
Collapse
Affiliation(s)
- Ashfeen Ubaid Khan
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano 20133, Italy; TAUW GmbH, Michaelkirchstraße 17-18, Berlin 10179, Germany
| | - Giovanni Michele Porta
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano 20133, Italy
| | - Monica Riva
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano 20133, Italy
| | - Alberto Guadagnini
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano 20133, Italy.
| |
Collapse
|
9
|
Manickavasagam G, He C, Lin KYA, Saaid M, Oh WD. Recent advances in catalyst design, performance, and challenges of metal-heteroatom-co-doped biochar as peroxymonosulfate activator for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 252:118919. [PMID: 38631468 DOI: 10.1016/j.envres.2024.118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.
Collapse
Affiliation(s)
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
10
|
Yan X, An J, He W, Zhou Q. Environmental factors influencing the soil-air partitioning of semi-volatile petroleum hydrocarbons: Laboratory measurements and optimization model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171953. [PMID: 38537825 DOI: 10.1016/j.scitotenv.2024.171953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The soil-air partition coefficient (KSA) values are commonly utilized to examine the fate of organic contaminants in soils; however, their measurement has been lacking for semi-volatile petroleum hydrocarbons within soil contaminated by crude oil. This research utilized a solid-phase fugacity meter to determine the KSA values of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) under crucial environmental conditions. The results showed a notable increase in KSA values with the extent of crude oil contamination in soil. Specifically, in the 3 % crude oil treatment, the KSA values for n-alkanes and PAHs increased by 1.16 and 0.66 times, respectively, compared to the 1 % crude oil treatment. However, the KSA values decreased with changes in temperature, water content, and particle size within the specified experimental range. Among these factors, temperature played a significant role. The KSA values for n-alkanes and PAHs decreased by 0.27-0.89 and 0.61-0.83 times, respectively, with a temperature increase from 5 °C to 35 °C. Moreover, the research identified that the molecular weight of n-alkanes and PAHs contributed to variations in KSA values under identical environmental factors. With an increase in temperature from 5 °C to 35 °C, the range of n-alkanes present in the air phase expanded from C11 to C34, and PAHs showed elevated levels of acenaphthene (ACE) and benzo (b) fluoranthene (BbFA). Furthermore, heightened water content and particle size were observed to facilitate the volatilization of low molecular weight petroleum hydrocarbons. The effect of environmental variables on soil-air partitioning was evaluated using the Box-Behnken design (BBD) model, resulting in the attainment of the lowest log KSA values. These results illustrate that soil-air partitioning is a complex process influenced by various factors. In conclusion, this study improves our comprehension and predictive capabilities concerning the behavior and fate of n-alkanes and PAHs within soil-air systems.
Collapse
Affiliation(s)
- Xiuxiu Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110142, China.
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
11
|
Sørmo E, Lade CBM, Zhang J, Asimakopoulos AG, Åsli GW, Hubert M, Goranov AI, Arp HPH, Cornelissen G. Stabilization of PFAS-contaminated soil with sewage sludge- and wood-based biochar sorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170971. [PMID: 38408660 DOI: 10.1016/j.scitotenv.2024.170971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Sustainable and effective remediation technologies for the treatment of soil contaminated with per- and polyfluoroalkyl substances (PFAS) are greatly needed. This study investigated the effects of waste-based biochars on the leaching of PFAS from a sandy soil with a low total organic carbon content (TOC) of 0.57 ± 0.04 % impacted by PFAS from aqueous film forming foam (AFFF) dispersed at a former fire-fighting facility. Six different biochars (pyrolyzed at 700-900 °C) were tested, made from clean wood chips (CWC), waste timber (WT), activated waste timber (aWT), two digested sewage sludges (DSS-1 and DSS-2) and de-watered raw sewage sludge (DWSS). Up-flow column percolation tests (15 days and 16 pore volume replacements) with 1 % biochar indicated that the dominant congener in the soil, perfluorooctane sulphonic acid (PFOS) was retained best by the aWT biochar with a 99.9 % reduction in the leachate concentration, followed by sludge-based DWSS (98.9 %) and DSS-2 and DSS-1 (97.8 % and 91.6 %, respectively). The non-activated wood-based biochars (CWC and WT) on the other hand, reduced leaching by <42.4 %. Extrapolating this to field conditions, 90 % leaching of PFOS would occur after 15 y for unamended soil, and after 1200 y and 12,000 y, respectively, for soil amended with 1 % DWSS-amended and aWT biochar. The high effectiveness of aWT and the three sludge-based biochars in reducing PFAS leaching from the soil was attributed largely to high porosity in a pore size range (>1.5 nm) that can accommodate the large PFAS molecules (>1.02-2.20 nm) combined with a high affinity to the biochar matrix. Other factors like anionic exchange capacity could play a contributing role. Sorbent effectiveness was better for long-chain than for short-chain PFAS, due to weaker, apolar interactions between the biochar and the latter's shorter hydrophobic CF2-tails. The findings were the first to demonstrate that locally sourced activated wood-waste biochars and non-activated sewage sludge biochars could be suitable sorbents for the ex situ stabilization and in situ remediation of PFAS-contaminated soil, bringing this technology one step closer to full-scale field testing.
Collapse
Affiliation(s)
- Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Clara Benedikte Mader Lade
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | | | - Geir Wold Åsli
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway
| | - Michel Hubert
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway
| | - Aleksandar I Goranov
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway.
| |
Collapse
|
12
|
Zhang P, Sun M, Zhou C, He CS, Liu Y, Zhang H, Xiong Z, Liu W, Zhou P, Lai B. Origins of Selective Oxidation in Carbon-Based Nonradical Oxidation Processes toward Organic Pollutants: Quantitative Structure-Activity Relationships (QSARs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4781-4791. [PMID: 38410972 DOI: 10.1021/acs.est.3c06252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Metal-free carbon material-mediated nonradical oxidation processes (C-NOPs) have emerged as a research hotspot due to their excellent performance in selectively eliminating organic pollutants in aqueous environments. However, the selective oxidation mechanisms of C-NOPs remain obscure due to the diversity of organic pollutants and nonradical active species. Herein, quantitative structure-activity relationship (QSAR) models were employed to unveil the origins of C-NOP selectivity toward organic pollutants in different oxidant systems. QSAR analysis based on adsorption and oxidation descriptors revealed that C-NOP selectivity depends on the oxidation potentials of organic pollutants rather than on adsorption interactions. However, the dominance of electronic effects in selective oxidation decreases with increasing structural complexity of organic pollutants. Moreover, the oxidation threshold solely depends on the inherent electronic nature of organic pollutants and not on the reactivity of nonradical active species. Notably, the accuracy of substituent descriptors (Hammett constants) and theoretical descriptors (e.g., highest occupied molecular orbital energy, ionization potential, and single-electron oxidation potential) is significantly influenced by the complexity and molecular state of organic pollutants. Overall, the study findings reveal the origins of organic pollutant-oriented selective oxidation and provide insight into the application of descriptors in QSAR analysis.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Minglu Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
E Z, Liang J, Li P, Qiang S, Fan Q. A review on photocatalytic attribution and process of pyrolytic biochar in environment. WATER RESEARCH 2024; 251:120994. [PMID: 38277825 DOI: 10.1016/j.watres.2023.120994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Biochar has attracted significant attention due to its excellent environmental benefits and extensive applications. Recently, a consensus has been accepted that biochar can act as a photocatalyst and trigger effective photocatalytic reactions in the environment, which is important to energy conversion and the cycle of elements. However, its photocatalytic processes and the corresponding environmental impacts need to receive more and due attention. In this review, we provide a comprehensive summary of the underlying correlations among the pyrolytic evolution of biomass, the structure characteristic of biochar, and the resultant photocatalytic performance. Moreover, the photocatalytic processes and the influence of environmental factors were elaborately investigated on biochar. Finally, future tendencies and challenges in the photocatalysis of biochar have been prospected in the environmental field. This review has offered innovative insights into the photocatalytic essential of biochar and highly enhanced the understanding of its environmental impact.
Collapse
Affiliation(s)
- Zhengyang E
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Lanzhou, Gansu 730000, China
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Lanzhou, Gansu 730000, China
| | - Shirong Qiang
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Lanzhou, Gansu 730000, China.
| |
Collapse
|
14
|
Dong Q, LeFevre GH, Mattes TE. Black Carbon Impacts on Paraburkholderia xenovorans Strain LB400 Cell Enrichment and Activity: Implications toward Lower-Chlorinated Polychlorinated Biphenyls Biodegradation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3895-3907. [PMID: 38356175 PMCID: PMC10902836 DOI: 10.1021/acs.est.3c09183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Volatilization of lower-chlorinated polychlorinated biphenyls (LC-PCBs) from sediment poses health threats to nearby communities and ecosystems. Biodegradation combined with black carbon (BC) materials is an emerging bioaugmentation approach to remove PCBs from sediment, but development of aerobic biofilms on BC for long-term, sustained LC-PCBs remediation is poorly understood. This work aimed to characterize the cell enrichment and activity of biphenyl- and benzoate-grown Paraburkholderia xenovorans strain LB400 on various BCs. Biphenyl dioxygenase gene (bphA) abundance on four BC types demonstrated corn kernel biochar hosted at least 4 orders of magnitude more attached cells per gram than other feedstocks, and microscopic imaging revealed the attached live cell fraction was >1.5× more on corn kernel biochar than GAC. BC characteristics (i.e., sorption potential, pore size, pH) appear to contribute to cell attachment differences. Reverse transcription qPCR indicated that BC feedstocks significantly influenced bphA expression in attached cells. The bphA transcript-per-gene ratio of attached cells was >10-fold more than suspended cells, confirmed by transcriptomics. RNA-seq also demonstrated significant upregulation of biphenyl and benzoate degradation pathways on attached cells, as well as revealing biofilm formation potential/cell-cell communication pathways. These novel findings demonstrate aerobic PCB-degrading cell abundance and activity could be tuned by adjusting BC feedstocks/attributes to improve LC-PCBs biodegradation potential.
Collapse
Affiliation(s)
- Qin Dong
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Timothy E. Mattes
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
15
|
Gui Y, Guo S, Lv Y, Li H, Zhang J, Li J. Coactivation of Hydrogen Peroxide Using Pyrogenic Carbon and Magnetite for Sustainable Oxidation of Organic Pollutants. ACS OMEGA 2024; 9:6595-6605. [PMID: 38371804 PMCID: PMC10870288 DOI: 10.1021/acsomega.3c07525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
Pyrogenic carbon and magnetite (Fe3O4) were mixed together for the activation of hydrogen peroxide (H2O2), aiming to enhance the oxidation of refractory pollutants in a sustainable way. The experimental results indicated that the straw-derived carbon obtained by pyrolysis at 500-800 °C was efficient on coactivation of H2O2, and the most efficient one was that prepared at 700 °C (C700) featured with abundant defects. Specifically, the reaction rate constant (kobs) for removal of an antibiotic ciprofloxacin in the coactivation system (C700/Fe3O4/H2O2) is 12.5 times that in the magnetite-catalyzed system (Fe3O4/H2O2). The faster pollutant oxidation is attributed to the sustainable production of •OH in the coactivation process, in which the carbon facilitated decomposition of H2O2 and regeneration of Fe(II). Besides the enhanced H2O2 utilization in the coactivation process, the leaching of iron was controlled within the concentration limit in drinking water (0.3 mg·L-1) set by the World Health Organization.
Collapse
Affiliation(s)
- Yao Gui
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Sen Guo
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Ying Lv
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Huiming Li
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Junhuan Zhang
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Jianfa Li
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| |
Collapse
|
16
|
Sun R, Babalol S, Ni R, Dolatabad AA, Cao J, Xiao F. Efficient and fast remediation of soil contaminated by per- and polyfluoroalkyl substances (PFAS) by high-frequency heating. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132660. [PMID: 37898088 DOI: 10.1016/j.jhazmat.2023.132660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023]
Abstract
This study presents a novel thermal technology (high-frequency heating, HFH) for the decontamination of soil containing per- and polyfluoroalkyl substances (PFAS) and aqueous film-forming foams (AFFFs). Ultra-fast degradation of short-chain PFAS, long-chain homologs, precursors, legacy PFAS, emerging PFAS was achieved in a matter of minutes. The concentrations of PFAS and the soil type had a negligible impact on degradation efficiency, possibly due to the ultra-fast degradation rate overwhelming potential differences. Under the current HFH experiment setup, we achieved near-complete degradation (e.g., >99.9%) after 1 min for perfluoroalkyl carboxylic acids and perfluoroalkyl ether carboxylic acids and 2 min for perfluoroalkanesulfonic acids. Polyfluoroalkyl precursors in AFFFs were found to degrade completely within 1 min of HFH; no residual cationic, zwitterionic, anionic, or non-ionic intermediate products were detected following the treatment. The gaseous byproducts were considered. Most of gaseous organofluorine products of PFAS at low-and-moderate temperatures disappeared when temperatures reached 890 °C, which is in the temperature zone of HFH. For the first time, we demonstrated minimal loss of PFAS in water during the boiling process, indicating a low risk of PFAS entering the atmosphere with the water vapor. The findings highlight HFH its potential as a promising remediation tool for PFAS-contaminated soils.
Collapse
Affiliation(s)
- Runze Sun
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Samuel Babalol
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Ruichong Ni
- Department of Petroleum Engineering, University of North Dakota, 243 Centennial Drive Stop 8155, Grand Forks, ND 58202, USA
| | - Alireza Arhami Dolatabad
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Jiefei Cao
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Feng Xiao
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
17
|
Zhang Z, Wang S, Brown TN, Sangion A, Arnot JA, Li L. Modeling sorption of environmental organic chemicals from water to soils. WATER RESEARCH X 2024; 22:100219. [PMID: 38596456 PMCID: PMC11002749 DOI: 10.1016/j.wroa.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Reliable estimation of chemical sorption from water to solid phases is an essential prerequisite for reasonable assessments of chemical hazards and risks. However, current fate and exposure models mostly rely on algorithms that lack the capability to quantify chemical sorption resulting from interactions with multiple soil constituents, including amorphous organic matter, carbonaceous organic matter, and mineral matter. Here, we introduce a novel, generic approach that explicitly combines the gravimetric composition of various solid constituents and poly-parameter linear free energy relationships to calculate the solid-water sorption coefficient (Kd) for non-ionizable or predominantly neutral organic chemicals with diverse properties in a neutral environment. Our approach demonstrates an overall statistical uncertainty of approximately 0.9 log units associated with predictions for different types of soil. By applying this approach to estimate the sorption of 70 diverse chemicals from water to two types of soils, we uncover that different chemicals predominantly exhibit sorption onto different soil constituents. Moreover, we provide mechanistic insights into the limitation of relying solely on organic carbon normalized sorption coefficient (KOC) in chemical hazard assessment, as the measured KOC can vary significantly across different soil types, and therefore, a universal cut-off threshold may not be appropriate. This research highlights the importance of considering chemical properties and multiple solid constituents in sorption modeling and offers a valuable theoretical approach for improved chemical hazard and exposure assessments.
Collapse
Affiliation(s)
- Zhizhen Zhang
- School of Public Health, University of Nevada, 1664, N. Virginia Street, Reno, NV 89557-274, United States
| | - Shenghong Wang
- School of Public Health, University of Nevada, 1664, N. Virginia Street, Reno, NV 89557-274, United States
| | - Trevor N. Brown
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
| | | | - Jon A. Arnot
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Li Li
- School of Public Health, University of Nevada, 1664, N. Virginia Street, Reno, NV 89557-274, United States
| |
Collapse
|
18
|
Zhao J, Zhang Y, Chu G. Reactivity of aged biochars to the degradation of adsorbed p-nitrophenol: Role of intensity and species of persistent free radicals. CHEMOSPHERE 2023; 344:140362. [PMID: 37797894 DOI: 10.1016/j.chemosphere.2023.140362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Persistent free radicals (PFRs) in biochar have been found to the transformation of organic contaminants in environment. However, there remains insufficient comprehension on the relationship of biochar aging with interfacial reactivity of PFRs to the degradation of phenolic compound in geochemical process. Herein, we studied both sorption and degradation of p-nitrophenol (PNP) on fresh and aged biochars via H2O2 aging under anoxic condition. With increasing aging extent, the enhancive proportion of O-centered radicals was observed progressively as indicated by increased g factors. The aging of PS350 annihilated the presence of PFRs in aged biochars of low-temperature, weakening PFR intensity. But, the aging of PS650 supplied more O-centered radicals for aged biochars of high-temperature, enhancing PFR intensity. This caused the decreased degradation on 5%PS350 and 15%PS350 (37.7-79.6% decline), whereas the increased degradation on 5%PS650 and 15%PS650 (33.3-55.8% increase). At similar intensity and species of PFRs, more adsorbed amount on fresh and aged biochars produced more degradation of PNP. Nevertheless, when PFR intensity of PS650 was much lower than that of PS350, despite high sorption capacity of PS650, the degradation amount of PS350 and PS650 was comparable. The results indicated that the reactivity of C-centered radicals of PS650 was stronger than that of O-centered radicals of PS350 in anoxic system. Overall, the interfacial reactivity of biochars was simultaneously regulated by the sorption capacity of biochars and intensity and species of PFRs. This work provides a deep perspective to the impact of biochar aging on the interfacial reactivity of PRFs to phenolic compound, which will be beneficial to accurately predict the fate of organic contaminant in carbon-rich environment.
Collapse
Affiliation(s)
- Jing Zhao
- Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Yu Zhang
- Faculty of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Gang Chu
- Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Faculty of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
19
|
Wang D, Ma J, Zhang J, Strathmann TJ. Carbocatalysts for Enhancing Permanganate Oxidation of Sulfisoxazole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18473-18482. [PMID: 36727553 DOI: 10.1021/acs.est.2c08141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Permanganate (Mn(VII)) is extensively applied in water purification due to its stability and ease of handling, but it is a mild oxidant for trace organic contaminants (TrOCs). Hence, there is significant interest in strategies for enhancing reaction kinetics, especially in combination with efficient and economical carbocatalysts. This study compared the performance of four carbocatalysts (graphite, graphene oxide (GO), reduced-GO (rGO), and nitrogen-doped rGO (N-rGO)) in accelerating sulfisoxazole (SSX) oxidation by Mn(VII) and found that GO exhibited the greatest catalytic performance. Besides, the Mn(VII)/GO system shows desirable capacities to remove a broad spectrum of TrOCs. We proposed that the degradation of SSX in Mn(VII)-GO suspensions follows two routes: (i) direct oxidation of SSX by Mn species [both Mn(VII) and in situ formed MnO2(s)] and (ii) a carbocatalyst route, where GO acts as an electron mediator, accepting electrons from SSX and transferring them to Mn(VII). We developed a mathematical model to show the contribution of each parallel pathway and found one-electron transfer is primarily responsible for accelerating SSX removal in the Mn(VII)/GO system. Findings in this study showed that GO provides a simple and effective strategy for enhancing the reactivity of Mn(VII) and provided mechanistic insights into the GO-catalyzed redox reaction between SSX and Mn(VII).
Collapse
Affiliation(s)
- Dingxiang Wang
- School of Environment, Harbin Institute of Technology, Harbin150090, P.R. China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin150090, P.R. China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin150090, P.R. China
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado80401, United States
| |
Collapse
|
20
|
Kozłowski M, Igwegbe CA, Tarczyńska A, Białowiec A. Revealing the Adverse Impact of Additive Carbon Material on Microorganisms and Its Implications for Biogas Yields: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7250. [PMID: 38067995 PMCID: PMC10707503 DOI: 10.3390/ma16237250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 09/16/2024]
Abstract
Biochar could be a brilliant additive supporting the anaerobic fermentation process. However, it should be taken into account that in some cases it could also be harmful to microorganisms responsible for biogas production. The negative impact of carbon materials could be a result of an overdose of biochar, high biochar pH, increased arsenic mobility in the methane fermentation solution caused by the carbon material, and low porosity of some carbon materials for microorganisms. Moreover, when biochar is affected by an anaerobic digest solution, it could reduce the biodiversity of microorganisms. The purpose of the article is not to reject the idea of biochar additives to increase the efficiency of biogas production, but to draw attention to the properties and ways of adding these materials that could reduce biogas production. These findings have practical relevance for organizations seeking to implement such systems in industrial or local-scale biogas plants and provide valuable insights for future research. Needless to say, this study will also support the implementation of biogas technologies and waste management in implementing the idea of a circular economy, further emphasizing the significance of the research.
Collapse
Affiliation(s)
- Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Agata Tarczyńska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| |
Collapse
|
21
|
Chu G, Wang W, Dou Y, Sun K, Qin W, Wang Z, Si Y. Enhanced microbial degradation mediated by pyrogenic carbon toward p-nitrophenol: Role of carbon structures and iron minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165797. [PMID: 37506896 DOI: 10.1016/j.scitotenv.2023.165797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Pyrogenic carbon (PC) including black carbons and engineered carbons can mediate the extracellular electron transfer to facilitate the biogeochemical reaction with organic pollutants. Yet, the role of carbon structures and iron minerals on PC-mediated microbial degradation is still lacking of understanding. Herein, we studied the electrochemical properties of PCs produced from varied feedstock with regards to the mediated degradation of p-nitrophenol (PNP) by Shewanella putrefaciens CN32 in anoxic system. Mediated degradation by PCs was enhanced by facilitating extracellular electron transfer through oxygenated group and graphitic structure. Graphitic crystallites improved the electron-accepting capacity (as suggested by ID/IG and EAC) and diminished the electrochemical impedance (as suggested by Rct), contributing to PNP degradation under the anoxic system. Furthermore, more interfacial adsorption was conducive to the mediated reduction by the graphitic structure on PCs of high-temperature. In the presence of iron minerals, both hematite and goethite significantly facilitated PC-mediated degradation, which could be ascribed to the enhancement of the electron-donating capacity of microorganism and the accumulation of the reductive-state PCs by the interaction with generated Fe(II). This work paves a feasible way to the technical design on the remediation of phenolic contaminants by PC-mediated microbial degradation in environment.
Collapse
Affiliation(s)
- Gang Chu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.
| | - Wangmin Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yang Dou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Wenxiu Qin
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhen Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
22
|
Wei C, Tao S, Zhu D. New Mechanism via Dichlorocarbene Intermediate for Activated Carbon-Mediated Reductive Dechlorination of Carbon Tetrachloride by Sulfide in Aqueous Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15223-15231. [PMID: 37771096 DOI: 10.1021/acs.est.3c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Although activated carbon (AC) is widely used as an adsorbent and barrier for contaminated sediment remediation, little attention has been paid to its mediation effects on reductive dechlorination of chlorinated solvents by commonly presenting sulfide. Here, we reported that highly porous, graphitized AC (250 mg L-1) suspended in deoxygenated aqueous solutions could increase the pseudo-first-order rate constant of sulfide-induced dechlorination of carbon tetrachloride (CCl4) by more than 1 order of magnitude. Carbon disulfide (CS2) was the only main product, with no production of chloroform or dichloromethane. The minimum promotion of CCl4 reduction observed with electro-conductive but nonporous graphite and a microporous but electro-insulative resin (XAD-4) indicates that graphitic carbons and micropores both play key roles in AC-mediated dechlorination of CCl4 by sulfide. The detection of dichlorocarbene (:CCl2) by free radical trapping experiments combined with the high suitability of the Langmuir-Hinshelwood model led us to propose a new mediation mechanism: CCl4 molecules adsorbed within the deep regions of AC micropores formed by graphitic carbons accept two electrons transferred from sulfide to form :CCl2, which is impeded from hydrolysis and hydrogenolysis by the hydrophobic micropore and further reacts with sulfide to generate CS2. Consistently, the production of :CCl2 was very low when AC was replaced with graphite or XAD-4. The proposed mechanism was further validated by the enhanced mediation effects of another two carbonaceous materials (template-synthesized mesoporous carbon and covalent triazine-based framework) that are electro-conductive and have well-developed micropore structures. These findings highlight the importance of pore properties of carbonaceous materials as mediators or catalysts for reductive dechlorination reactions and shed light on the development of coupled adsorption-reaction systems for remediation.
Collapse
Affiliation(s)
- Chenhui Wei
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Shu Tao
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Qiu Y, Li Z, Zhang T, Zhang P. Predicting aqueous sorption of organic pollutants on microplastics with machine learning. WATER RESEARCH 2023; 244:120503. [PMID: 37639990 DOI: 10.1016/j.watres.2023.120503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) are ubiquitously distributed in freshwater systems and they can determine the environmental fate of organic pollutants (OPs) via sorption interaction. However, the diverse physicochemical properties of MPs and the wide range of OP species make a deeper understanding of sorption mechanisms challenging. Traditional isotherm-based sorption models are limited in their universality since they normally only consider the nature and characteristics of either sorbents or sorbates individually. Therefore, only specific equilibrium concentrations or specific sorption isotherms can be used to predict sorption. To systematically evaluate and predict OP sorption under the influence of both MPs and OPs properties, we collected 475 sorption data from peer-reviewed publications and developed a poly-parameter-linear-free-energy-relationship-embedded machine learning method to analyze the collected sorption datasets. Models of different algorithms were compared, and the genetic algorithm and support vector machine hybrid model displayed the best prediction performance (R2 of 0.93 and root-mean-square-error of 0.07). Finally, comparison results of three feature importance analysis tools (forward step wise method, Shapley method, and global sensitivity analysis) showed that chemical properties of MPs, excess molar refraction, and hydrogen-bonding interaction of OPs contribute the most to sorption, reflecting the dominant sorption mechanisms of hydrophobic partitioning, hydrogen bond formation, and π-π interaction, respectively. This study presents a novel sorbate-sorbent-based ML model with a wide applicability to expand our capacity in understanding the complicated process and mechanism of OP sorption on MPs.
Collapse
Affiliation(s)
- Ye Qiu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR
| | - Zhejun Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR.
| |
Collapse
|
24
|
Yang K, Abu-Reesh IM, He Z. Removal of disinfection byproducts through integrated adsorption and reductive degradation in a membrane-less electrochemical system. WATER RESEARCH 2023; 244:120519. [PMID: 37657316 DOI: 10.1016/j.watres.2023.120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Proper control/removal of disinfection byproducts (DBPs) is important to drinking water safety and human health. In this study, a membrane-less electrochemical system was developed and investigated to remove DPBs through integrated adsorption and reduction by granular activated carbon (GAC)-based cathode. Representative DPBs including trihalomethanes and haloacetonitriles at drinking water concentrations were used for removal experiments. The proposed system achieved >70% removal of most DBPs in a batch mode. The comparison with control tests under either open circuit or hydrolysis demonstrated the advantages of electrochemical treatment, which not only realized higher DPBs removal but also extended GAC cathode lifetime. Such advantages were further demonstrated with continuous treatment. High dechlorination and debromination efficiencies were obtained in both batch (82.2 and 94.3%) and continuous (79.3 and 87.6%) reactors. DBPs removal was mainly contributed by the electrochemical reduction and adsorption by the GAC-based cathode, while anode showed little oxidizing effect on DBPs and halide ions. Dehalogenated products of chloroform and dichloroacetonitrile were identified with toxicity reduction. The energy consumption of the continuously operated system was estimated to be 0.28 to 0.16 kWh m-3. The proposed system has potential applications for wastewater reuse or further purification of drinking water.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
25
|
Ren J, Huang H, Zhang Z, Xu X, Zhao L, Qiu H, Cao X. Enhanced microbial reduction of Cr(VI) in soil with biochar acting as an electron shuttle: Crucial role of redox-active moieties. CHEMOSPHERE 2023; 328:138601. [PMID: 37028729 DOI: 10.1016/j.chemosphere.2023.138601] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Biochar has been proven to participate in the biotic reduction of hexavalent chromium (Cr(VI)) in environment since its involvement may accelerate the extracellular electron transfer (EET). However, roles of the redox-active moieties and the conjugated carbon structure of biochar in this EET process remain unclear. In this study, 350 °C and 700 °C were selected to produce biochar with more O-containing moieties (BC350) or more developed conjugated structures (BC700), and their performances in the microbial reduction of soil Cr(VI) were investigated. Our results showed that BC350 presented a 241% increase of Cr(VI) microbial reduction after 7-day incubation, much higher than that of BC700 (39%), suggesting that O-containing moieties might play more important roles in accelerating the EET process. Biochar, especially BC350 could serve as an electron donor for microbial anaerobic respiration, but its contribution (73.2%) as an electron shuttle for EET was dominant to the enhanced Cr(VI) reduction. The positive correlation between electron exchange capacities (EECs) of pristine and modified biochars and the corresponding maximum reduction rates of Cr(VI) evidenced the crucial role of redox-active moieties in electron shuttling. Moreover, EPR analysis suggested the nonnegligible contribution of semiquinone radicals in biochars to the accelerated EET process. This study demonstrates the crucial role of redox-active moieties, i.e., O-containing moieties in mediating the EET process during the microbial reduction of Cr(VI) in soil. Findings obtained will advance the current understanding of biochar as an electron shuttle participating in the biogeochemical processes of Cr(VI).
Collapse
Affiliation(s)
- Jia Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huang Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
26
|
Hung CM, Cheng JW, Chen CW, Huang CP, Dong CD. Pyrolysis processes affecting polycyclic aromatic hydrocarbon profile of pineapple leaf biochar exemplified by atmosphere/temperature and heteroatom doping. BIORESOURCE TECHNOLOGY 2023; 379:129047. [PMID: 37059342 DOI: 10.1016/j.biortech.2023.129047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
The content of polycyclic aromatic hydrocarbons in pineapple leaf biochar was examined as a function of pyrolysis atmosphere (CO2 or N2), pyrolysis temperature (300-900 °C), and heteroatom (N, B, O, P, NP, or NS) doping. Without doping, the polycyclic aromatic hydrocarbon production was maximal (1332 ± 27 ng/g) in CO2 at 300 °C and minimal (157 ± 2 ng/g) in N2 at 700 °C. The main components naphthalene and acenaphthylene accounted for about 91% of the total polycyclic aromatic hydrocarbon in the biochar prepared under CO2 at 300 °C. Under the maximal polycyclic aromatic hydrocarbon production conditions (CO2, 300 °C), doping decreased the total hydrocarbon content by 49% (N), 61% (B), 73% (O), 92% (P), 93% (NB), and 96% (NS). The results shed new light on the management of polycyclic aromatic hydrocarbons in BC production by controlling the pyrolysis atmosphere and temperature in addition to heteroatom doping. Results significantly contributed to the development of circular bioeconomy.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Jia-Wei Cheng
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
27
|
Hung CM, Chen CW, Huang CP, Dong CD. Effects of pyrolysis conditions and heteroatom modification on the polycyclic aromatic hydrocarbons profile of biochar prepared from sorghum distillery residues. BIORESOURCE TECHNOLOGY 2023:129295. [PMID: 37311529 DOI: 10.1016/j.biortech.2023.129295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
The formation of 2- to 6-ring polycyclic aromatic hydrocarbons (PAHs) in sorghum distillery residue-derived biochar (SDRBC) was evaluated under different thermochemical pyrolysis conditions of carbonization atmosphere (N2 or CO2), temperature (300-900 °C) and doping with nonmetallic elements, i.e., N, B, O, P, N + B, and N + S. The results indicated that without surface modification, PAHs formation was 944 ± 74 ng g-1, the highest level, and 181 ± 16 ng g-1, the lowest level, at 300 °C in N2 and CO2 atmosphere, respectively. Boron doping of SDRBC significantly reduced the PAHs content (by 97%) under N2 at 300 °C. Results demonstrated that boron modified SDRBC exhibited the highest degree of PAH reduction. Combined pyrolysis temperature and atmosphere in addition to heteroatom doping is a robust and viable strategy for efficient suppression of PAHs formation and high-value utilization of pyrolysis products of low carbon footprint.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
28
|
Cao H, Pavitt AS, Hudson JM, Tratnyek PG, Xu W. Electron exchange capacity of pyrogenic dissolved organic matter (pyDOM): complementarity of square-wave voltammetry in DMSO and mediated chronoamperometry in water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:767-780. [PMID: 36891820 DOI: 10.1039/d3em00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pyrogenic dissolved organic matter (pyDOM) is derived from black carbon, which is important in the global carbon cycle and other biogeochemical redox processes. The electron-exchange capacity (EEC) of pyDOM has been characterized in water using mediated chronoamperometry (MCA), which gives precise results under specific operational conditions, but the broader significance of these EECs is less clear. In this study, we described a novel but complementary electrochemical approach to quantify EECs of pyDOM without mediation using square-wave voltammetry (SWV) in dimethyl sulfoxide (DMSO). Using both the SWV and MCA methods, we determined EECs for 10 pyDOMs, 6 natural organic matter (NOM) samples, and 2 model quinones. The two methods gave similar EECs for model quinones, but SWV gave larger EECs than MCA for NOM and pyDOM (by several-fold and 1-2 orders of magnitude, respectively). The differences in the EECs obtained by SWV and MCA likely are due to multiple factors, including the potential range of electrons sampled, kinetics of electron transfer from (macro)molecular structures, and coupling of electron and proton transfer steps. Comparison of the results obtained by these two methods should provide new insights into important environmental processes such as carbon-cycling, wildfire recovery, and contaminant mitigation using carbon-based amendments.
Collapse
Affiliation(s)
- Han Cao
- Department of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, USA.
| | - Ania S Pavitt
- OHSU/PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Jeffrey M Hudson
- OHSU/PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Paul G Tratnyek
- OHSU/PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Wenqing Xu
- Department of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, USA.
| |
Collapse
|
29
|
Aumeier BM, Georgi A, Saeidi N, Sigmund G. Is sorption technology fit for the removal of persistent and mobile organic contaminants from water? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163343. [PMID: 37030383 DOI: 10.1016/j.scitotenv.2023.163343] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Persistent, Mobile, and Toxic (PMT) and very persistent and very mobile (vPvM) substances are a growing threat to water security and safety. Many of these substances are distinctively different from other more traditional contaminants in terms of their charge, polarity, and aromaticity. This results in distinctively different sorption affinities towards traditional sorbents such as activated carbon. Additionally, an increasing awareness on the environmental impact and carbon footprint of sorption technologies puts some of the more energy-intensive practices in water treatment into question. Commonly used approaches may thus need to be readjusted to become fit for purpose to remove some of the more challenging PMT and vPvM substances, including for example short chained per- and polyfluoroalkyl substances (PFAS). We here critically review the interactions that drive sorption of organic compounds to activated carbon and related sorbent materials and identify opportunities and limitations of tailoring activated carbon for PMT and vPvM removal. Other less traditional sorbent materials, including ion exchange resins, modified cyclodextrins, zeolites and metal-organic frameworks are then discussed for potential alternative or complementary use in water treatment scenarios. Sorbent regeneration approaches are evaluated in terms of their potential, considering reusability, potential for on-site regeneration, and potential for local production. In this context, we also discuss the benefits of coupling sorption to destructive technologies or to other separation technologies. Finally, we sketch out possible future trends in the evolution of sorption technologies for PMT and vPvM removal from water.
Collapse
Affiliation(s)
- Benedikt M Aumeier
- RWTH Aachen University, Institute of Environmental Engineering, Mies-van-der-Rohe-Strasse 1, 52074 Aachen, Germany.
| | - Anett Georgi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Navid Saeidi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
30
|
Wu M, Teng X, Liang X, Zhang Y, Huang Z, Yin Y. Supporting nanoscale zero-valent iron onto shrimp shell-derived N-doped biochar to boost its reactivity and electron utilization for selenite sequestration. CHEMOSPHERE 2023; 319:137979. [PMID: 36736475 DOI: 10.1016/j.chemosphere.2023.137979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has been widely used in the reductive removal of contaminants from water, yet it still fights against the inherent passive cover and the raise of medium pH. In this study, nZVI was supported onto a nitrogen-doped biochar (NBC) that was prepared by pyrolyzing shrimp shell for efficiently sequestrating aqueous selenite (Se(IV)). The resultant composite (NBC-nZVI) revealed a higher reactivity and electron utilization efficiency (EUE) than the bare nZVI in Se(IV) sequestration because of the positive charge, the buffering effect and the good conductivity of NBC. The kinetic rate and EUE of NBC-nZVI were increased by 143.4% and 15.3% compared to the bare nZVI, respectively, at initial pH of 3.0. The high removal capacity of 605.4 mg g-1 for NBC-nZVI was obtained at Se(IV) concentration of 1000 mg L-1, initial pH of 3.0, NBC-nZVI dosage of 1.0 g L-1 and contact time of 12 h. Moreover, NBC-nZVI exhibited a strong tolerance to solution pHs and coexisting compounds (e.g., humic acid) and could reduce the Se(IV) concentration from 5.0 mg L-1 to below the limit of drinking water (50 μg L-1) in real-world samples. This work exemplified a utilization of shrimp shell-derived NBC to simultaneously enhance the reactivity and EUE of nZVI for reductively removing contaminants.
Collapse
Affiliation(s)
- Mingyu Wu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xin Teng
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China.
| | - Yanjun Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
31
|
Chen R, Liu Y, Weng J, Huang H, Gao X, Wang Z, Liu J. Microporous melamine-formaldehyde networks loaded on rice husks for dynamic removal of organic micropollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121200. [PMID: 36736815 DOI: 10.1016/j.envpol.2023.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The alteration of agricultural wastes into novel adsorbents can stimulate their scalability in realistic application, showing great economic and environmental advantages. Here, we proposed a strategy to engineer rice husk (RH) with microporous melamine-formaldehyde networks (MFNs) resins and the utilization for dynamic removal of organic micropollutants rapidly and efficiently. was pre-treated to acquire attractive surface and unique hierarchical porosity, endowing with surface functionalization and essential filtering properties. MFNs can be uniformly generated in-situ on the fully exposed cellulose backbones of the pre-treated RH. MFNs granules functionalized RH (RH@MFNs) exhibited high removal efficiencies over 90% within 30 min for the adsorption of hazardous organic compounds (e.g., phenolic and antibiotic micropollutants) in static tests. Experiment results and density functional theory (DFT) simulation revealed that the synergy of hydrogen bonding, π-πinteraction, and micropore preservation dominates the adsorption. Further dynamic adsorption experiments showed that the removal efficiency and equilibrium removal capacity towards bisphenol A by RH@MFNs packed bed up-flow column were 2.6 and 67 times higher than that of raw RH, respectively. The column adsorption fits well with the Thomas model and bed depth service time (BDST) kinetic model. The inherent macropores inside RH and the roughness caused by the spiky structures and mesopores outside RH, as well as the accumulated MFNs granules, can lead to local turbulence of water flow around RH@MFNs, enabling fast and efficient adsorption. This sustainable and cost-effective preparation of RH-based adsorbents sheds light on the rational design of biomass waste adsorbents for realistic wastewater.
Collapse
Affiliation(s)
- Rongqing Chen
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunjia Liu
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jinlan Weng
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Hua Huang
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaoying Gao
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhipeng Wang
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jian Liu
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
32
|
Hou Z, An X, Zhu K, Tang Q, Lan H, Liu H, Qu J. Revealing the Pore Size-Dependent Sorption Mechanism of Toluene and Cetane in Porous Carbon by Nuclear Magnetic Resonance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5003-5012. [PMID: 36931868 DOI: 10.1021/acs.est.2c07086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The adsorption of contaminants by porous carbon has been extensively studied by conventional isotherm and kinetic methods. However, the co-adsorption behavior and sorption sites of multiple contaminants in different-sized pores remain unclear. Herein, the nuclear magnetic resonance (NMR) approach is performed to investigate the adsorption mechanism of toluene and cetane in the confined space of carbon at the molecular level. The ring current effect induces the variation in the NMR chemical shifts of in-pore adsorbed toluene and cetane, realizing the identification of pore-dependent adsorption sites for contaminant removal. Cetane has a slower adsorption kinetic but a higher binding energy than toluene, which could squeeze toluene from micropores to larger pores with increasing adsorption quantity. This leads to a stronger competitive adsorption effect in small micropores than in mesopores. Accordingly, hierarchical porous carbons are determined to be the most effective adsorbents for the adsorption of coexisting contaminants. This study not only provides an effective NMR method to reveal the adsorption mechanism in the confined space of porous carbon at the molecular level but also offers new insights into the pore size-dependent adsorption of activated carbon for petroleum contaminant treatment.
Collapse
Affiliation(s)
- Zhiang Hou
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kai Zhu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qingwen Tang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Balda M, Mackenzie K, Woszidlo S, Uhlig H, Möllmer J, Kopinke FD, Schüürmann G, Georgi A. Bottom-Up Synthesis of De-Functionalized and Dispersible Carbon Spheres as Colloidal Adsorbent. Int J Mol Sci 2023; 24:ijms24043831. [PMID: 36835241 PMCID: PMC9964220 DOI: 10.3390/ijms24043831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Recent innovative adsorption technologies for water purification rely on micrometer-sized activated carbon (AC) for ultrafast adsorption or in situ remediation. In this study, the bottom-up synthesis of tailored activated carbon spheres (aCS) from sucrose as renewable feedstock is demonstrated. The synthesis is based on a hydrothermal carbonization step followed by a targeted thermal activation of the raw material. This preserves its excellent colloid properties, i.e., narrow particle size distribution around 1 µm, ideal spherical shape and excellent aqueous dispersibility. We investigated the ageing of the freshly synthesized, highly de-functionalized AC surface in air and aqueous media under conditions relevant to the practice. A slow but significant ageing due to hydrolysis and oxidation reactions was observed for all carbon samples, leading to an increase of the oxygen contents with storage time. In this study, a tailored aCS product was generated within a single pyrolysis step with 3 vol.-% H2O in N2 in order to obtain the desired pore diameters and surface properties. Adsorption characteristics, including sorption isotherms and kinetics, were investigated with monochlorobenzene (MCB) and perfluorooctanoic acid (PFOA) as adsorbates. The product showed high sorption affinities up to log (KD/[L/kg]) of 7.3 ± 0.1 for MCB and 6.2 ± 0.1 for PFOA, respectively.
Collapse
Affiliation(s)
- Maria Balda
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Katrin Mackenzie
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Silke Woszidlo
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Hans Uhlig
- Institut für Nichtklassische Chemie e.V.—INC, 04318 Leipzig, Germany
| | - Jens Möllmer
- Institut für Nichtklassische Chemie e.V.—INC, 04318 Leipzig, Germany
| | - Frank-Dieter Kopinke
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, 09599 Freiberg, Germany
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Anett Georgi
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
- Correspondence:
| |
Collapse
|
34
|
Zhu M, Liu Y, Xu J, He Y. Compound-specific stable isotope analysis for characterization of the transformation of γ-HCH induced by biochar. CHEMOSPHERE 2023; 314:137729. [PMID: 36603676 DOI: 10.1016/j.chemosphere.2022.137729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The role of biochar as the redox catalyst in the removal of reductive pollutants from soil and water system has been extensively studied recently, but there is still a lack of qualitative description of its specific mechanisms in redox processes. In this study, the mechanism of biochar in the transformation process of γ-HCH under anoxic condition was revealed by the compound-specific isotope analysis. The concentration and carbon isotopic composition (δ13C) of γ-HCH were detected in the treatments with different initial concentrations of γ-HCH and biochar materials with different redox properties and varied doses. The surface functional groups and electrochemical properties of biochar before and after the reaction were also characterized. The addition amount of biochar could affect the reduction of γ-HCH concentration, which were 59.1%, 34.6% and 22.4% in treatments with the addition of 5%, 1% and 0.2% biochar, respectively. Meanwhile, the δ13C value of γ-HCH also increased from -26.6 ± 0.2‰ to -23.8 ± 0.2‰ with the addition amount of biochar, especially in the treatment with 5% biochar. As evidenced by X-ray diffraction analysis and electrochemical analysis, biochar promoted the adsorption and transformation of γ-HCH simultaneously, and the oxygen-containing functional groups on the surface of biochar played an important role in the redox process. The isotopic fractionation value (εC) of γ-HCH transformation by biochar was first reported as -3.4 ± 0.4‰. The results will enable the quantitative description of the transformation degree of organic pollutants induced by biochar, and provide a new approach for evaluating the in-situ remediation effects of biochar in a complex environment.
Collapse
Affiliation(s)
- Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| | - Yaqing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
35
|
Wang Y, Wu B, Zheng X, Chen B, Chu C. Assessing the quantum yield spectrum of photochemically produced reactive intermediates from black carbon of various sources and properties. WATER RESEARCH 2023; 229:119450. [PMID: 36495853 DOI: 10.1016/j.watres.2022.119450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Black carbon (BC) is ubiquitous in sunlit waters and atomosphere. Recent studies revealed that under sunlight irradiation BC is photoactive on producing photochemically produced reactive intermediates (PPRIs), a group of key species in accelerating earth's surface biogeochemical processes and pollutant dynamics. Nevertheless, reported PPRIs productions from BC exhibit large inconsistency and the intrinsic capacities of BC in producing PPRIs remain poorly characterized. This work provided a wavelength-dependent quantum yields (QYs) assessment of four environmentally-relevant PPRIs (excited triplet state BC (3BC*), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (·OH)) from various BC. The QYs of all investigated PPRIs exhibit high dependence on incident light wavelength. For instance, the QYs of 1O2 dramatically decreased from 4.4% to 0.4% with light wavelength increasing from 375 to 490 nm and decreased to 0 above 490 nm. Suprisingly, PPRIs QYs only varied by 2.0-2.5-fold among BC prepared from different biomasses (i.e., pine needle, shell, straw, and wood), while the pyrolysis temperature and size of BC demonstrate higher impacts on the PPRIs QYs by up to 30.3- and 7.1-fold variations, respectively. Analyses on the physicochemical properties of BC demonstrate that QYs of 3BC* and 1O2 were linked to the optical properties of BC, while the QYs of H2O2 and ·OH were determined by multiple factors including the surface redox characteristics. Further, PPRIs productions from BC follow similar paths and efficiencies compared to those from natural organic matter. The revealed QYs of BC-derived PPRIs establish a key basis for evaluating PPRIs-mediated element cycles and pollutant transformation in natural waters, which are becoming increasingly important in the context of higher BC input from more frequent wildfires and artificial sources.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Dong M, He L, Jiang M, Zhu Y, Wang J, Gustave W, Wang S, Deng Y, Zhang X, Wang Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1679. [PMID: 36767042 PMCID: PMC9914318 DOI: 10.3390/ijerph20031679] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water contaminated with emerging pollutants has become a serious environmental issue globally. Biochar is a porous and carbon-rich material produced from biomass pyrolysis and has the potential to be used as an integrated adsorptive material. Many studies have shown that biochar is capable to adsorb emerging pollutants from aquatic systems and could be used to solve the water pollution problem. Here, we provided a dual perspective on removing emerging pollutants from aquatic systems using biochar and analyzed the emerging pollutant removal efficiency from the aspects of biochar types, pollutant types and coexistence with heavy metals, as well as the associated mechanisms. The potential risks and future research directions of biochar utilization are also presented. This review aims to assist researchers interested in using biochar for emerging pollutants remediation in aquatic systems and facilitate research on emerging pollutants removal, thereby reducing their environmental risk.
Collapse
Affiliation(s)
- Mingying Dong
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lizhi He
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, China
| | - Mengyuan Jiang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau 4912, Bahamas
| | - Shuo Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Deng
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
37
|
Chen X, Gao X, Yu P, Spanu L, Hinojosa J, Zhang S, Long M, Alvarez PJJ, Masiello CA. Rapid Simulation of Decade-Scale Charcoal Aging in Soil: Changes in Physicochemical Properties and Their Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:128-138. [PMID: 36525597 DOI: 10.1021/acs.est.2c04751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In situ aging can change biochar properties, influencing their ecosystem benefits or risks over time. However, there is a lack of field verification of laboratory methods that attempt simulation of long-term natural aging of biochar. We exploited a decade-scale natural charcoal (a proxy for biochar) aging event to determine which lab-aging methods best mimicked field aging. We oxidized charcoal by ultraviolet A radiation (UVA), H2O2, or monochloramine (NH2Cl), and compared it to 10-year field-aged charcoal. We considered seven selected charcoal properties related to surface chemistry and organic matter release, and found that oxidation with 30% H2O2 most representatively simulated 10-year field aging for six out of seven properties. UVA aging failed to approximate oxidation levels while showing a distinctive dissolved organic carbon (DOC) release pattern. NH2Cl-aged charcoal was the most different, showing an increased persistent free radical (PFR) concentration and lower hydrophilicity. All lab oxidation techniques overpredicted polycyclic aromatic hydrocarbon release. The O/C ratio was well-correlated with DOC release, PFR concentration, surface charge, and charcoal pH, indicating the possibility to accurately predict biochar aging with a reduced suite of physicochemical properties. Overall, our rapid and verified lab-aging methods facilitate research toward derisking and enhancing long-term benefits of biochar application.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas 77005, United States
- Carbon Hub, Rice University, Houston, Texas 77005, United States
| | - Xiaodong Gao
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas 77005, United States
- Carbon Hub, Rice University, Houston, Texas 77005, United States
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Leonardo Spanu
- Shell International Exploration & Production Inc., Houston, Texas 77082, United States
| | - Jessica Hinojosa
- Shell International Exploration & Production Inc., Houston, Texas 77082, United States
| | - Shuqi Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Caroline A Masiello
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas 77005, United States
- Carbon Hub, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
38
|
Tang H, Chen M, Wu P, Faheem M, Feng Q, Lee X, Wang S, Wang B. Engineered biochar effects on soil physicochemical properties and biota communities: A critical review. CHEMOSPHERE 2023; 311:137025. [PMID: 36374784 DOI: 10.1016/j.chemosphere.2022.137025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/16/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Biochar can be effectively used in soil amendment, environmental remediation as well as carbon sequestration. However, some inherent characteristics of pristine biochars (PBCs) may limit their environmental applications. To improve the physicochemical properties of PBCs and their effects on soil amendment and pollution remediation, appropriate modification methods are needed. Engineered biochars (EBCs) inevitably have a series of effects on soil physicochemical properties and soil biota after being applied to the soil. Currently, most studies focus on the effects of PBCs on soil physicochemical properties and their amendment and remediation effects, while relatively limited studies are available on the impacts of EBCs on soil properties and biota communities. Due to the differences of biochars modified by various methods on soil physicochemical properties and biota communities, the impact mechanisms are different. For a better understanding of the recent advances in the effects of EBCs on soil physicochemical properties and biota communities, a systematic review is highly needed. In this review, the development of EBCs is firstly introduced, and the effects of EBCs on soil physicochemical properties and biota communities are then systematically explored. Finally, the suggestions and perspectives for future research on EBCs are put forward.
Collapse
Affiliation(s)
- Hui Tang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Muhammad Faheem
- Department of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
39
|
King JF, Mitch WA. Electrochemical Reduction of Halogenated Alkanes and Alkenes Using Activated Carbon-Based Cathodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17965-17976. [PMID: 36459429 DOI: 10.1021/acs.est.2c05608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Granular activated carbon (GAC) is used to sorb a broad range of halogenated contaminant classes, but spent GAC disposal is costly. Taking advantage of GAC's conductivity, this study evaluated the conversion of the GAC to cathodes for electrochemical reductive dehalogenation of 15 halogenated alkanes and alkenes exhibiting a diversity of structures (type of halogen, number of halogens, functional groups) and including contaminants of practical importance (e.g., trichloroethylene). Alkane degradation rates increased with the number of halogens and in the order: chlorine < bromine < iodine. Quantitative structure-activity relationships (QSARs) correlating experimental first-order degradation rate constants for alkanes with molecular descriptors associated with an outer-sphere one-electron transfer calculated using density functional theory indicated that correlations with molecular descriptors improved in the order: aqueous phase reduction potentials (E0,aq) < energy of the substrate's lowest unoccupied molecular orbital (ELUMO) < Marcus theory activation free energies (ΔG‡) ∼ gas-phase standard reduction free energies (ΔG0,gas). Chlorinated alkene degradation rates increased with decreasing number of chlorines, and QSAR correlations were opposite those of alkanes, indicating a different reaction mechanism. Degradation timescales ranged from 1 min to 3 h with halides as predominant products. These results suggest that the electrochemical reduction of halogenated alkanes and alkenes can be used to regenerate spent GAC.
Collapse
Affiliation(s)
- Jacob F King
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, Palo Alto, California94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, Palo Alto, California94305, United States
| |
Collapse
|
40
|
Li Z, Jorn R, Samonte PRV, Mao J, Sivey JD, Pignatello JJ, Xu W. Surface-catalyzed hydrolysis by pyrogenic carbonaceous matter and model polymers: An experimental and computational study on functional group and pore characteristics. APPLIED CATALYSIS. B, ENVIRONMENTAL 2022; 319:121877. [PMID: 37846345 PMCID: PMC10578355 DOI: 10.1016/j.apcatb.2022.121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
We employed a polymer network to understand what properties of pyrogenic carbonaceous matter (PCM; e.g., activated carbon) confer its reactivity, which we hereinafter referred to as PCM-like polymers (PLP). This approach allows us to delineate the role of functional groups and micropore characteristics using 2,4,6-trinitrotoluene (TNT) as a model contaminant. Six PLP were synthesized via cross-coupling chemistry with specific functionality (-OH, -NH2, -N(CH3)2, or -N ( CH 3 ) 3 + ) and pore characteristics (mesopore, micropore). Results suggest that PCM functionality catalyzed the reaction by: (1) serving as a weak base (-OH, -NH2) to attack TNT, or (2) accumulating OH- near PCM surfaces (-N ( CH 3 ) 3 + ). Additionally, TNT hydrolysis rates, pH and co-ion effects, and products were monitored. Microporous PLP accelerated TNT decay compared to its mesoporous counterpart, as further supported by molecular dynamics modeling results. We also demonstrated that quaternary ammonium-modified activated carbon enhanced TNT hydrolysis. These findings have broad implications for pollutant abatement and catalyst design.
Collapse
Affiliation(s)
- Zhao Li
- Department of Civil and Environmental Engineering, Villanova University, Villanova, PA 19085, USA
| | - Ryan Jorn
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Pamela Rose V. Samonte
- Department of Civil and Environmental Engineering, Villanova University, Villanova, PA 19085, USA
| | - Jingdong Mao
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - John D. Sivey
- Department of Chemistry, Towson University, Towson, MD 21252, USA
| | - Joseph J. Pignatello
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06511, USA
| | - Wenqing Xu
- Department of Civil and Environmental Engineering, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
41
|
Dorner M, Lokesh S, Yang Y, Behrens S. Biochar-mediated abiotic and biotic degradation of halogenated organic contaminants - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158381. [PMID: 36055499 DOI: 10.1016/j.scitotenv.2022.158381] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Prevailing global increases in population, urbanization, and agricultural production are causing increased pressures on water resources, especially as the use of chemicals in agriculture, industry, and medicine provide new challenges for water treatment and reuse. Organohalogen compounds are persistent contaminants that often evade current wastewater treatment technologies, resulting in their accumulation in the environment and posing a serious threat to ecosystem health. Recent advances in understanding pyrogenic carbons as electron shuttling and storing materials have exposed their potential for enhancing the dehalogenation and overall degradation of organohalide contaminants in soil, sediment, surface water, and wastewater systems. Biochar is a porous carbonaceous material produced during the thermochemical decomposition of biomass feedstock in the presence of little or no oxygen (pyrolysis). Interest in biochar for application towards environmental remediation is largely based on its three distinct benefits: I) carbon sequestration to offset greenhouse gas emissions, II) adsorption of (in-) organic contaminants and nutrients, and III) a strong electron exchange capacity. Due to the innate complexity of biochar materials, several electron transfer mechanisms exist by which biochar may mediate contaminant degradation. These electron transfer pathways include electron-accepting and donating cycles through redox-active functional groups and direct electron transfer via conductive carbon matrices. These mechanisms are responsible for biochar's participation in multiple redox-driven biogeochemical transformations with proven consequences for effective organohalogen remediation. This literature review summarizes the current knowledge on the mechanisms and processes through which biochar can directly or indirectly mediate the transformation of organohalogen compounds under various environmental conditions. Perspectives and research directions for future application of biochars for targeted remediation strategies are also discussed.
Collapse
Affiliation(s)
- Mariah Dorner
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Srinidhi Lokesh
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
42
|
Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, Fu Y, He C, Muhoza B, Brahushi F, Bolan N, Jiang X, Ok YS, Rinklebe J, Schaeffer A, Zhu YG, Tiedje JM, Xing B. Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16546-16566. [PMID: 36301703 PMCID: PMC9730858 DOI: 10.1021/acs.est.2c02976] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 05/06/2023]
Abstract
The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field. Plant-microbe interactions further promote the efficacy of phytoremediation, with plant growth-promoting bacteria (PGPB) often used to assist the remediation of organic pollutants. However, the efficiency of microbe-assisted phytoremediation can be impeded by (i) high concentrations of secondary toxins, (ii) the absence of a suitable sink for these toxins, (iii) nutrient limitations, (iv) the lack of continued release of microbial inocula, and (v) the lack of shelter or porous habitats for planktonic organisms. In this regard, biochar affords unparalleled positive attributes that make it a suitable bacterial carrier and soil health enhancer. We propose that several barriers can be overcome by integrating plants, PGPB, and biochar for the remediation of organic pollutants in soil. Here, we explore the mechanisms by which biochar and PGPB can assist plants in the remediation of organic pollutants in soils, and thereby improve soil health. We analyze the cost-effectiveness, feasibility, life cycle, and practicality of this integration for sustainable restoration and management of soil.
Collapse
Affiliation(s)
- Leilei Xiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
| | - Marc Redmile-Gordon
- Department
of Environmental Horticulture, Royal Horticultural
Society, Wisley, Surrey GU23 6QB, U.K.
| | - Scott X. Chang
- Department
of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yuhao Fu
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Zhejiang University, Hangzhou 310058, China
| | - Bertrand Muhoza
- College
of Food Science, Northeast Agricultural
University, Harbin, Heilongjiang 150030, China
| | - Ferdi Brahushi
- Department
of Agroenvironment and Ecology, Agricultural
University of Tirana, Tirana 1029, Albania
| | - Nanthi Bolan
- School of
Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Xin Jiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sik Ok
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic
of Korea
| | - Jörg Rinklebe
- Department
of Soil and Groundwater Management, Bergische
Universität, 42285 Wuppertal, Germany
| | - Andreas Schaeffer
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
- School
of the Environment, State Key Laboratory of Pollution Control and
Resource Reuse, Nanjing University, 210023 Nanjing, China
- Key
Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Chongqing University, 400045 Chongqing, China
| | - Yong-guan Zhu
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Key
Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State
Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| | - James M. Tiedje
- Center
for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
43
|
Yang S, Yin Q, Lian J, Li G, Wei Y, Zhu Q. Porous Surface-Induced Growth of HCl-Doped PANi Flexible Electrode for High Performance Zn-Ion Batteries with Convertible Storage Sites. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Hou J, Pugazhendhi A, Sindhu R, Vinayak V, Thanh NC, Brindhadevi K, Lan Chi NT, Yuan D. An assessment of biochar as a potential amendment to enhance plant nutrient uptake. ENVIRONMENTAL RESEARCH 2022; 214:113909. [PMID: 35850292 DOI: 10.1016/j.envres.2022.113909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In a desperate attempt to find organic alternatives to synthetic fertilizers, agricultural scientists are increasingly using biochar as a soil amendment. Using chemical fertilizers results in enormous financial burdens and chronic health problems for plants and soils. Global concerns have also increased over the prolonged consumption of foods grown with artificial fertilizers and growth promotors. This adversely affects the environment and the welfare of humans, animals, and other living organisms. This way, organic biofertilizers have established a sustainable farming system. In such a context, biochar is gaining much attention among scientists as it may improve the overall performance of plants; in particular, crops have been optimistically cultivated with the addition of various sources. Field experiments have been conducted with multiple plant-based biochars and animal manure-based biochar. Plants receive different essential nutrients from biochar due to their physicochemical properties. Despite extensive research on biochar's effects on plant growth, yield, and development, it is still unknown how biochar promotes such benefits. Plant performance is affected by many factors in response to biochar amendment, but biochar's effect on nutrient uptake is not widely investigated. We attempted this review by examining how biochar affects nutrient uptake in various crop plants based on its amendment, nutrient composition, and physicochemical and biological properties. A greater understanding and optimization of biochar-plant nutrient interactions will be possible due to this study.
Collapse
Affiliation(s)
- Jinbo Hou
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691505, Kerala, India
| | - Vandana Vinayak
- Diatom Nano Engineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh, 470003, India
| | - Nguyen Chi Thanh
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 70000, Viet Nam
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Deyi Yuan
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
45
|
Farghly MF, Elsagheer MA, Jghef MM, Taha AE, Abd El-Hack ME, Jaremko M, El-Tarabily KA, Shabaan M. Consequences of supplementing duck's diet with charcoal on carcass criteria, meat quality, nutritional composition, and bacterial load. Poult Sci 2022; 102:102275. [PMID: 36427400 PMCID: PMC9700026 DOI: 10.1016/j.psj.2022.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
The influence of charcoal as feed additives on carcass and meat characteristics was studied in 144 four weeks old Muller ducks. The experimental ducklings were assigned to six groups of 24 birds (Eight per replicates each). The dietary treatments contained 0, 0.5, 1.0, 1.5, 2.0, and 2.5% charcoal for G1 (C), G2 (L1), G3 (L2), G4 (L3), G5 (L4) and G6 (L5), respectively. All experimental birds were raised under similar environmental and managerial conditions. Results indicated that charcoal did not affect most carcass traits significantly except for dressing percentage was higher (P < 0.05) in 1.5 and 2 % charcoal included ducks diets compared to control ducks. Charcoal supplementation significantly affected duck meat tenderness, juiciness and water holding capacity. Moreover, charcoal altered (P < 0.05) meat components such as crude protein, calcium components, desirable fatty acids, nutritional value and some bacterial counts. Thiobarbituric acid reactive substances reduced in birds fed charcoal at 1.5, 2, and 2.5%, with significant variation among treatments. No significant differences in the number of Escherichia coli and Staphylococcus aureus were detected among the ducks fed with charcoal and the control group. It could be concluded that charcoal could be included in ducks' diets at 1.5 and 2% with beneficial effects on carcass parameters.
Collapse
Affiliation(s)
- Mohamed F.A. Farghly
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Egypt
| | - Mohamed A. Elsagheer
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt
| | - Muthana M. Jghef
- Department of Radiology, College of Medical Technology, Al-Kitab University, Kirkuk, 36001, Iraq
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | | | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates,Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates,Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia,Corresponding author:
| | - Mahmoud Shabaan
- Department of Poultry Production, Faculty of Agriculture, New Valley University, Egypt
| |
Collapse
|
46
|
Adsorption characteristics and mechanisms of Cd 2+ from aqueous solution by biochar derived from corn stover. Sci Rep 2022; 12:17714. [PMID: 36271027 PMCID: PMC9587245 DOI: 10.1038/s41598-022-22714-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023] Open
Abstract
Corn stover could be pyrolysed to prepare biochar for removing pollutants in water and realizing the resource utilization of biomass. The aims of the present study were to investigate the optimal preparation and adsorption conditions of biochar and to reveal the adsorption characteristics and mechanisms of Cd2+ in water by biochar. For this purpose, with Cd2+ as the target pollutant, the pyrolysis conditions involved in the pyrolysis temperature, retention time, and heating rate were evaluated and optimized. Additionally, the characteristics, mechanisms and optimal adsorption conditions of Cd2+ by biochar were determined. A series of characterization techniques was employed, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and specific surface area analysis (SBET). The optimum pyrolysis parameters were a pyrolysis temperature of 700 °C, a retention time of 2.5 h, and a heating rate of 5 °C/min. Acid/base modification did not improve the adsorption capacity of biochar. The Langmuir and the Elovich model were the most suitable isotherm and kinetic models for equilibrium data, respectively. The maximum adsorption capacity fitted by Langmuir model was 13.4 mg/g. Furthermore, mineral precipitation and π electron interactions were shown to be the main adsorption mechanisms of Cd2+. The optimum adsorption conditions for Cd2+ in water were a CaCl2 electrolyte solution of 0.01 mol/L, a pH level of 6.7, and a biochar dosage of 0.4 g. Our results indicated that corn stover biochar was an appropriate approach for improving the status of water with Cd2+ contamination in the short term and for promoting a new perspective for the rational utilization of corn stover and the low-cost pollution control of heavy metals in water.
Collapse
|
47
|
Maletić S, Isakovski MK, Sigmund G, Hofmann T, Hüffer T, Beljin J, Rončević S. Comparing biochar and hydrochar for reducing the risk of organic contaminants in polluted river sediments used for growing energy crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157122. [PMID: 35787901 DOI: 10.1016/j.scitotenv.2022.157122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In Europe alone, >200 million m3 of river sediments are dredged each year, part of which are contaminated to such an extent that they have to be landfilled. This study compares the use of biochar and hydrochar for the remediation of sediment contaminated with pentachlorobenzene, hexachlorobenzene, lindane, trifluralin, alachlor, simazine, and atrazine with the motivation to make sediments contaminated by such priority substances usable as arable land for growing energy crops. Biochar and hydrochar originating from Miscanthus giganteus and Beta vulgaris shreds were compared for their potential to reduce contaminant associated risk in sediments. Specifically, by investigating the effects of sorbent amendment rate (1, 5, and 10 %) and incubation time (14, 30, and 180 d) on contaminant bioaccessibility, toxicity to the bacteria Vibrio fischeri, as well as toxicity and plant uptake in Zea mays. Biochar reduced contaminant bioaccessibility up to five times more than hydrochar. The bioaccessibility of contaminants decreased up to sevenfold with increasing incubation time, indicating that the performance of carbonaceous sorbents may be underestimated in short-term lab experiments. Biochar reduced contaminants toxicity to Vibrio fischeri, whereas hydrochar was itself toxic to the bacteria. Toxicity to Zea mays was determined by contaminant bioaccessibility but also sorbent feedstock with cellulose rich Beta vulgaris based sorbents exhibiting toxic effects. The plant uptake of all contaminants decreased after sorbent amendment.
Collapse
Affiliation(s)
- Snežana Maletić
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| | | | - Gabriel Sigmund
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Thorsten Hüffer
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jelena Beljin
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| | - Srđan Rončević
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| |
Collapse
|
48
|
Hilber I, Blum F, Schmidt HP, Bucheli TD. Current analytical methods to quantify PAHs in activated carbon and vegetable carbon (E153) are not fit for purpose. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119599. [PMID: 35690223 DOI: 10.1016/j.envpol.2022.119599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Pyrogenic carbonaceous materials (PCM) are increasingly used in a wide variety of consumer products, ranging from medicine, personal care products, food and feed additives, as well as drinking water purification. Depending on the product category and corresponding legislation, several terms are commonly used for PCM, such as Carbo activatus, C. medicinalis, vegetable carbon (E153), (activated) charcoal, (activated) biochar, or activated carbon. All PCM contain polycyclic aromatic hydrocarbons (PAHs) co-produced during pyrolysis. However, the actual PAH-content of PCM may range from negligibly low to alarmingly high depending on pyrolysis conditions and, if any, subsequent activation. Because of their health risk, PAHs need to be determined in many such PCM containing products, and concentrations are regulated by respective legally binding documents. Several such documents even specify the analytical method to be used. In this paper, we first argue that based on existing literature, currently legally binding methods to quantify PAHs in such products might not be fit for purpose. Secondly, we exemplarily determined PAH concentrations with a method previously optimized for biochar in a selection of 15 PCM or PCM-containing commercial products, illustrating that concentrations up to 30 mg kg-1 can be found. Consumer safety is of concern according to Swiss norms for drinking water and EU regulations for food additives for some of the investigated samples. In fact, some products would not have been allowed to be put on the market, if regulations with fit for purpose analytical methods existed. As PAHs were detected in considerable concentrations when extracted with toluene for 36 h, the authors suggest a corresponding adaption of existing methods and harmonization of the legislation.
Collapse
Affiliation(s)
- Isabel Hilber
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland; Ithaka Institute for Carbon Strategies, 1974 Arbaz, Switzerland
| | - Franziska Blum
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | | | - Thomas D Bucheli
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland.
| |
Collapse
|
49
|
Liu X, Zhang J, Gbadegesin LA, He Y. Modelling approaches for linking the residual concentrations of antibiotics in soil with antibiotic properties and land-use types in the largest urban agglomerations in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156141. [PMID: 35609696 DOI: 10.1016/j.scitotenv.2022.156141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Persistently high concentrations of antibiotics have been reported in soils worldwide due to the intensive use of veterinary antibiotics, and continuous adsorption and transport of various antibiotics in soils occur, posing a significant threat to the environment and human health. This study systematically reviews the spatial distribution and ecological risk of four commonly detected antibiotic residues in soil in China, including sulphonamides (SAs), fluoroquinolones (FQs), tetracyclines (TCs) and macrolides (MLs), using various models, such as redundancy analysis (RDA), principal coordinate analysis (PCoA) and structural equation modelling (SEM). Antibiotic residual concentration data were obtained from relevant repositories and the literature. The results suggest a high level of antibiotic pollution and ecological risk in the largest urban agglomerations (LUAs), including Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Guangdong-Hong Kong-Macao Greater Bay Area (GBA), with a 100% detection rate. SAs, FQs, TCs and MLs were the dominant antibiotic residues in soils, mainly attributed to manure fertilization and wastewater reuse in agriculture. These antibiotic concentrations ranged from 10-3 to 103 μg kg-1, and their ecological risk varied significantly across different regions of China, with SAs posing the most serious ecological risk to the soil environment (p < 0.05). These models established a significant association (p < 0.05) between the physicochemical properties of antibiotics and land-use type (LUT) with antibiotic residues in soil. The structure of the antibiotic exerted the greatest influence on antibiotic residues, followed by the LUT, while regional differences had the weakest effect.
Collapse
Affiliation(s)
- Xinyu Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianqiang Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Lanre Anthony Gbadegesin
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
50
|
Ding L, Wang Y, Tong L, Liu N, Wang C, Hu Q. N-doped biochar-catalyzed dechlorination of carbon tetrachloride in sulfide-containing aqueous solutions: Performances, mechanisms and pathways. WATER RESEARCH 2022; 223:119006. [PMID: 36027765 DOI: 10.1016/j.watres.2022.119006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen-doped biochar (N-BC) has been widely concerned in the field of environmental protection. This study verified the alfalfa-based N-BC pyrolyzed at different temperatures is able to catalyze carbon tetrachloride (CT) dechlorination in sulfide-containing aqueous solutions under normal environmental pH range (6.3 ∼ 8.3) effectively, with Cl-, trichloromethane (CF), CS2 and HCO3- as predominated products. Higher pyrolysis temperature resulted in larger specific surface area, more pores and better catalytic capacity. The N-BC had a good tolerance to water matrix in catalyzing CT dechlorination by sulfide, while the higher pH value or higher dosage of sulfide or N-BC was beneficial to catalytic CT dechlorination. The generation of CS2 was the major CT dechlorination pathway, attributing to the SN2 nucleophilic substitution by newborn C-SS- structure generating from the interaction between pyridine-N and sulfide. Besides, generation of CF via hydrogenolysis process was the minor CT dechlorination pathway, owing to the enhanced electron transfer by pyrrole-N, graphitic-N and quinones on surface of N-BC. It was the first time that N-BC was found to be effective in catalyzing the hydrogenolysis process of CT dechlorination. This study emphasized the importance of N-BC in restoring chlorinated hydrocarbons polluted aquatic environment containing sulfide, such as sediments.
Collapse
Affiliation(s)
- Longzhen Ding
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Yuhan Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Lizhi Tong
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong Province 510655, China
| | - Na Liu
- Institute of Groundwater and Earth Science, Jinan University, Guangzhou, Guangdong Province 510632, China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China; Innovation Center of Southern University of Science and Technology, Beijing 100083, China.
| |
Collapse
|