1
|
Xie Q, Zhang X, Wu Y. Space-use strategy drives fine-scale spatial variation of chlorinated paraffins in indo-pacific humpback dolphins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124559. [PMID: 39019312 DOI: 10.1016/j.envpol.2024.124559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Contaminant accumulation in organisms can be influenced by both biological traits and environmental conditions. However, delineating the main factors affecting contaminant burdens in organisms remains challenging. Here, we conducted an initial investigation into the impact of diet and habitat on the accumulation of short- (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in Indo-Pacific humpback dolphins (2003-2020, n = 128) from the Pearl River Estuary (PRE), a highly polluted estuary in China. The detected levels of SCCPs (5897 ± 3480 ng g-1 lw) and MCCPs (13,960 ± 8285 ng g-1 lw) in blubber samples of humpback dolphin are the highest among recorded values marine mammals. Both SCCPs and MCCPs exhibited biomagnification factor values exceeding 1, suggesting their biomagnification potential within the dolphins and their diet. Quantitative diet analysis using the dolphin fatty acid signatures revealed that humpback dolphins inhabiting the western PRE consumed a larger proportion of carnivorous fish than those from the eastern PRE. However, spatial analysis showed that humpback dolphins in the western PRE contained lower SCCP/MCCP concentrations than those from the eastern PRE. Based on these findings we suggest that, compared to diet differences, spatial variations of SCCPs/MCCPs in humpback dolphins may be predominantly influenced by their space-use strategies, as the eastern PRE is closer to the pollutant discharge source and transfer routes.
Collapse
Affiliation(s)
- Qiang Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| |
Collapse
|
2
|
Zhu C, Cao Z, Hu B, Li Z, Huang S, Han X, Luo X, Yuan H, Li L. Human bare and clothing-covered skin exposure to chlorinated paraffins for the general populations: Exposure pattern differential and significance of indirect dermal exposure via clothing-to-skin transport. ENVIRONMENT INTERNATIONAL 2024; 192:109068. [PMID: 39406162 DOI: 10.1016/j.envint.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
To investigate human exposure to short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) through dermal and oral intake via hand-to-mouth contact, wipes from the face, forearm, hand, and foot of 30 volunteers were sampled. The concentration of ∑SCCPs and ∑MCCPs ranged from 0.66 to 119 and 0.71 to 565 µg/m2, respectively. Hands exhibited significantly higher ∑CPs concentrations than other skin areas, indicating that direct contact with indoor surfaces contributed considerable CP levels on this bare skin area. Gender differences in CP levels were observed in wipes from all locations, except for the hands, possibly because of the significant variability in residuals on the hands. A significant positive relationship was found between CP levels on the hands and faces, and the CP ratios of the hands/faces were related to log KOA. Bare skin showed more significant variations in CP partitioning among related congeners and between genders than skin covered by clothing, as elucidated by the linear analysis of RSD and log KOA. Although concentrations on clothing-covered areas were relatively lower than on bare skin, the median estimated dermal absorption doses of ∑SCCPs and ∑MCCPs (152 and 737 ng/kg bw/day, respectively) for the entire body were approximately 1-2 orders of magnitude higher than those for oral ingestion (1.62 and 7.94 ng/kg bw/day, respectively), emphasizing indirect dermal uptake as a significant exposure pathway for humans.
Collapse
Affiliation(s)
- Chunyou Zhu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Beibei Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhi Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Simin Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xu Han
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haoran Yuan
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Liangzhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
3
|
Liang N, Cao R, Jiang N, Shi C, Guo Z, Gao Y, Zhang R, Zhang H, Chen J, Geng N. Occurrence and fate of atmospheric short/medium chain chlorinated paraffins: Size distribution and inhalation exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176507. [PMID: 39341256 DOI: 10.1016/j.scitotenv.2024.176507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Chlorinated paraffins (CPs) are intricate industrial compounds synthesized through alkane chlorination. Researches on the size distribution of short-chain (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in atmospheric particulate matter (PM) are limited. Here, we conducted a thorough investigation on the size-dependent distribution characteristics, deposition behavior in respiratory tract, and health risks associated with CPs in atmospheric PM. The concentration of SCCPs in atmospheric particulate matter (PM10) was much higher than MCCPs, with concentration ranges of 2.53-31.8 and 1.07-4.62 ng m-3, respectively. Concentrations of CPs increase with decreasing PM size, peaking at aerodynamic diameters (Dp) < 0.49 μm. Physicochemical properties influence the distribution of CP homologs in PM. Those with lower vapor pressure, higher octanol-air and octanol-water partition coefficients tended to accumulate in PM with larger geometric mean diameters. Most of the inhaled CPs in PM deposited in the upper airways, with a small amount in the trachea and alveolar regions. The estimated daily intakes values were highest when Dp < 0.49 μm. Particle size is an essential determinant for the deposition of inhaled CPs in PM and should be considered in health risk assessments.
Collapse
Affiliation(s)
- Naibing Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Jiang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Chengcheng Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhangpeng Guo
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruiqin Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
4
|
Choo G, Choi S, Lee IS, Oh JE. Nationwide monitoring of legacy and emerging persistent organic pollutants and polycyclic aromatic hydrocarbons along the Korean coast. MARINE POLLUTION BULLETIN 2024; 206:116764. [PMID: 39059220 DOI: 10.1016/j.marpolbul.2024.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 05/01/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Comprehensive studies simultaneously investigating the occurrence of chemicals of concern are limited. In this study, sediments and bivalves were collected from 24 locations along the Korean coast to evaluate the relative distribution, contamination characteristics, and ecological risks of legacy/emerging persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs). Our findings reveal that the concentrations of these contaminants were comparable to or lower than historical levels in the same Korean coast and other Asian countries. Notably, PAHs exhibited the highest distribution in sediments (84 %), whereas short-chain chlorinated paraffins (SCCPs) were dominant in bivalves (91 %). This study highlighted significant correlations in the sediment levels of each legacy pollutants, suggesting similar sources and geochemical behaviors. However, SCCPs displayed unique contamination patterns. Ecologically, PAHs and SCCPs presented low risks in sediments compared to Canadian Sediment Quality Guidelines, however 100 % and 33 % of bivalves, respectively, exceeded US EPA/Canadian Fish Tissue Guidelines.
Collapse
Affiliation(s)
- Gyojin Choo
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sol Choi
- Institute for Environment and Energy, Pusan National University, Busan 46083, Republic of Korea
| | - In-Seok Lee
- Marine Environment Research Division, National Institute of Fisheries Science, 216, Busan 46083, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan 46083, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Andvik C, Jourdain E, Borgen A, Lyche JL, Karoliussen R, Haug T, Borgå K. Intercorrelations of Chlorinated Paraffins, Dechloranes, and Legacy Persistent Organic Pollutants in 10 Species of Marine Mammals from Norway, in Light of Dietary Niche. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14797-14811. [PMID: 39120259 PMCID: PMC11339914 DOI: 10.1021/acs.est.4c02625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Short-, medium-, and long-chain chlorinated paraffins (CPs) (SCCPs, MCCPs, and LCCPs) and dechloranes are chemicals of emerging concern; however, little is known of their bioaccumulative potential compared to legacy contaminants in marine mammals. Here, we analyzed SCCPs, MCCPs, LCCPs, 7 dechloranes, 4 emerging brominated flame retardants, and 64 legacy contaminants, including polychlorinated biphenyls (PCBs), in the blubber of 46 individual marine mammals, representing 10 species, from Norway. Dietary niche was modeled based on stable isotopes of nitrogen and carbon in the skin/muscle to assess the contaminant accumulation in relation to diet. SCCPs and dechlorane-602 were strongly positively correlated with legacy contaminants and highest in killer (Orcinus orca) and sperm (Physeter macrocephalus) whales (median SCCPs: 160 ng/g lw; 230 ng/g lw and median dechlorane-602: 3.8 ng/g lw; 2.0 ng/g lw, respectively). In contrast, MCCPs and LCCPs were only weakly correlated to recalcitrant legacy contaminants and were highest in common minke whales (Balaenoptera acutorostrata; median MCCPs: 480 ng/g lw and LCCPs: 240 ng/g lw). The total contaminant load in all species was dominated by PCBs and legacy chlorinated pesticides (63-98%), and MCCPs dominated the total CP load (42-68%, except 11% in the long-finned pilot whale Globicephala melas). Surprisingly, we found no relation between contaminant concentrations and dietary niche, suggesting that other large species differences may be masking effects of diet such as lifespan or biotransformation and elimination capacities. CP and dechlorane concentrations were higher than in other marine mammals from the (sub)Arctic, and they were present in a killer whale neonate, indicating bioaccumulative properties and a potential for maternal transfer in these predominantly unregulated chemicals.
Collapse
Affiliation(s)
- Clare Andvik
- Department
of Biosciences, University of Oslo, Pb 1066 Blindern, Oslo NO-0316, Norway
| | - Eve Jourdain
- Department
of Biosciences, University of Oslo, Pb 1066 Blindern, Oslo NO-0316, Norway
- Norwegian
Orca Survey, Breivikveien 10, Andenes NO-8480, Norway
| | - Anders Borgen
- Department
of Environmental Chemistry, NILU: The Climate
and Environmental Research Institute, Pb 100, Kjeller NO-2027, Norway
| | - Jan Ludvig Lyche
- Department
of Food Safety and Infection Biology, Norwegian
University of Life Sciences, Pb 5003, Ås NO-1432, Norway
| | | | - Tore Haug
- Institute
of Marine Research, Fram Centre, Pb 6606 Stakkevollan, Tromsø NO-9296, Norway
| | - Katrine Borgå
- Department
of Biosciences, University of Oslo, Pb 1066 Blindern, Oslo NO-0316, Norway
| |
Collapse
|
6
|
Xie J, Zhang G, Guo J, Chen C, Wu Q, Luo M, Chen D, Peng X, He L, Li Y, Zhang Q, Li A, Lin T, Jiang G. Unveiling the Presence of Short- and Medium-Chain Chlorinated Paraffins in the Hadal Trenches of the Western Pacific Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39145972 DOI: 10.1021/acs.est.4c07255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
This study delves into the unexplored distribution and accumulation of chlorinated paraffins (CPs), pervasive industrial contaminants used as flame retardants and plasticizers, within the hadal trenches, some of Earth's most isolated marine ecosystems. Analysis of sediments from the Mussau (MS) and Mariana trench (MT) reveals notably high total CP concentrations (∑SCCPs + ∑MCCPs) of 10,963 and 14,554 ng g-1 dw, respectively, surpassing those in a reference site in the western Pacific abyssal plain (8533 ng g-1 dw). In contrast, the New Britain Trench (NBT) exhibits the lowest concentrations (2213-5880 ng g-1 dw), where CP distribution correlates with clay content, δ13C and δ15N values, but little with total organic carbon and depth. Additionally, amphipods from these trenches display varying CP levels, with MS amphipods reaching concerning concentrations (8681-16,138 ng g-1 lw), while amphipods in the MT-1 site show the lowest (4414-5010 ng g-1 lw). These bioaccumulation trends appear to be primarily influenced by feeding behaviors (δ13C) and trophic levels (δ15N). Utilizing biota-sediment accumulation factor values and principal component analysis, we discern that CPs in sediment may come from surface-derived particulate organic matters, while those in amphipods may come from the above carrion. Our findings elucidate the profound impacts of the emerging pollutants on the Earth's least explored marine ecosystems.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiehong Guo
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Chuchu Chen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Min Luo
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Duofu Chen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaotong Peng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Lisheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
7
|
Zhu C, Liu S, Cao Z, Hu B, Yang C, Luo X, Yuan H, Li L. Human dermal exposure to short- and medium-chain chlorinated paraffins: Effect of populations, activities, gender, and haze pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135169. [PMID: 39024769 DOI: 10.1016/j.jhazmat.2024.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Human dermal exposure to chlorinated paraffins (CPs) has not been well documented. Therefore, hand wipes were collected from four occupational populations to analyze short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) in order to estimate dermal uptake and oral ingestion via hand-to-mouth contact. The total CP levels (∑SCCPs and ∑MCCPs) in wipes ranged from 71.4 to 2310 µg/m2 in security guards, 37.6 to 333 µg/m2 in taxi drivers, 20.8 to 559 µg/m2 in office workers, and 20.9 to 932 µg/m2 in undergraduates, respectively. Security guards exhibited the highest levels of ∑SCCPs among four populations (p < 0.01). In undergraduates engaged in outdoor activities, C13 emerged as the most dominant SCCPs homologue group, followed by C12, C11, and C10. The levels of ∑SCCPs and ∑MCCPs in males in light haze pollution were significantly higher than that in heavy haze pollution (p < 0.05). The median estimated dermal absorption dose of SCCPs and MCCPs via hand was 22.2 and 104 ng (kg of bw)-1 day-1, respectively, approximately 1.5 times the oral ingestion [12.3 and 74.4 ng (kg of bw)-1 day-1], suggesting that hand contact is a significant exposure source to humans.
Collapse
Affiliation(s)
- Chunyou Zhu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shijun Liu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Beibei Hu
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou 511458, China.
| | - Chenyu Yang
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haoran Yuan
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Liangzhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
8
|
Li J, Wang Z, Zhang Y, Li Y, Feng L, Wang J, Zhang J, Zhou Z, Zhang Y, Chang X. Effects of environmentally relevant concentration of short-chain chlorinated paraffins on BV2 microglia activation and lipid metabolism, implicating altered neurogenesis. ENVIRONMENTAL RESEARCH 2024; 251:118602. [PMID: 38431072 DOI: 10.1016/j.envres.2024.118602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Short-chain chlorinated paraffins (SCCPs), a class of persistent organic pollutants, have been found to cause diverse organ and systemic toxicity. However, little is known about their neurotoxic effects. In this study, we exposed BV2, a mouse microglia cell line, to environmentally relevant concentration of SCCPs (1 μg/L, 10 μg/L, 100 μg/L) for 24 h to investigate their impacts on the nervous system. Our observations revealed that SCCPs induced the activation of BV2 microglia, as indicated by altered morphology, stimulated cell proliferation, enhanced phagocytic and migratory capabilities. Analysis at the mRNA level confirmed the activation status, with the downregulation of TMEM119 and Tgfbr1, and upregulation of Iba1 and CD11b. The upregulated expression of genes such as cenpe, mki67, Axl, APOE and LPL also validated alterations in cell functions. Moreover, BV2 microglia presented an M2 alternative phenotype upon SCCPs exposure, substantiated by the reduction of NF-κB, TNF-α, IL-1β, and the elevation of TGF-β. Additionally, SCCPs caused lipid metabolic changes in BV2 microglia, characterized by the upregulations of long-chain fatty acids and acylcarnitines, reflecting an enhancement of β-oxidation. This aligns with our findings of increased ATP production upon SCCPs exposure. Intriguingly, cell activation coincided with elevated levels of omega-3 polyunsaturated fatty acids. Furthermore, activated microglial medium remarkably altered the proliferation and differentiation of mouse neural stem cells. Collectively, exposure to environmentally relevant concentrations of SCCPs resulted in activation and lipid metabolic alterations in BV2 microglia, potentially impacting neurogenesis. These findings provide valuable insights for further research on the neurotoxic effect of SCCPs.
Collapse
Affiliation(s)
- Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Longfei Feng
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jinglin Wang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yunhui Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Zhou W, Bu D, Huang K, Zhang Q, Cui X, Dan Z, Yang Y, Fu Y, Yang Q, Teng Y, Fu J, Zhang A, Fu J, Jiang G. First comprehensive assessment of dietary chlorinated paraffins intake and exposure risk for the rural population of the Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172435. [PMID: 38615758 DOI: 10.1016/j.scitotenv.2024.172435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Knowledge regarding the occurrence of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) in foodstuffs and their dietary exposure risks for rural Tibetan residents remains largely unknown. Herein, we collected main foodstuffs (including highland barley, vegetables, Tibetan butter, mutton, and yak beef) across the rural Tibetan Plateau and characterized the CP profiles and concentrations. The highest SCCPs concentrations were detected in Tibetan butter (geometric mean (GM): 240.6 ng/g wet weight (ww)), followed by vegetables (59.4 ng/g ww), mutton (51.4 ng/g ww), highland barley (46.3 ng/g ww), and yak beef (31.7 ng/g ww). For MCCPs, the highest concentrations were also detected in Tibetan butter (319.5 ng/g ww), followed by mutton (181.9 ng/g ww), vegetables (127.0 ng/g ww), yak beef (71.2 ng/g ww), and highland barley (30.3 ng/g ww). The predominant congener profiles of SCCPs were C13Cl7-8 in mutton and yak beef, C10Cl7-8 in Tibetan butter, and C10-11Cl6-7 in highland barley and vegetables. The predominant congener profiles of MCCPs were C14Cl7-9 in all sample types. Combined with our previous results of free-range chicken eggs, the median estimated daily intakes (EDIs) of SCCPs and MCCPs via diet for Tibetan rural adults and children was estimated to be 728.8 and 1853.9 ng/kg bw/day and 2565.6 and 5952.8 ng/kg bw/day, respectively. In the worst scenario, MCCPs might induce potential health risks for rural Tibetan population. To our knowledge, this is the first systematic dietary exposure research of SCCPs and MCCPs in the remote rural areas.
Collapse
Affiliation(s)
- Wei Zhou
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Duo Bu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qiangying Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Zeng Dan
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yinzheng Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianyuan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Teng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Cui Q, Han D, Qin H, Li H, Liu Y, Guo W, Song M, Li J, Sun Y, Luo J, Xue J, Xu Y. Investigating the levels, spatial distribution, and trophic transfer patterns of short-chain chlorinated paraffins in the Southern Bohai Sea, China. WATER RESEARCH 2024; 253:121337. [PMID: 38387266 DOI: 10.1016/j.watres.2024.121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
The marine environment of the southern Bohai Sea is severely polluted by short-chain chlorinated paraffins (SCCPs). To improve understanding of how SCCPs occur and of how they migrate, are transformed, and transferred in this area, we collected seawater, sediment, and organism samples, and determined the SCCP contents using a new approach based on high-resolution mass spectrometry. The ΣSCCP concentrations in the seawater, sediment, and organism samples ranged from 57.5 to 1150.4 ng/L, 167.7-1105.9 ng/g (dry weight), and 11.4-583.0 ng/g (wet weight), respectively. Simulation of the spatial distribution of SCCPs using Kriging interpolation showed that SCCPs were markedly influenced by land-based pollution. Substantial quantities of SCCPs were transported to the marine environment via surface runoff from rivers that passed through areas of major SCCP production. Once discharged from such rivers into the Bohai Sea, these SCCPs were further dispersed under the influence of ocean currents. Furthermore, the logarithmic bioaccumulation factor that varied from 2.12 to 3.20 and the trophic magnification factor that reached 5.60 (r2 = 0.750, p < 0.01) suggest that organisms have the ability to accumulate and biomagnify SCCPs through the food chain, which could potentially present risks to both marine ecosystems and human health.
Collapse
Affiliation(s)
- Qingkui Cui
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Dianfeng Han
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Huawei Qin
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Huanjun Li
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China.
| | - Yongchun Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Wenjian Guo
- Shandong Provincial Eco-environment Monitoring Center, Jinan 250101, China
| | - Min Song
- School of Food, Shanghai Ocean University, Shanghai 200120, China
| | - Jiawei Li
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Yanqing Sun
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Jingjing Luo
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Jinglin Xue
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China.
| |
Collapse
|
11
|
Moreira-González AR, Domit C, Rosa KMS, Mafra LL. Occurrence of potentially toxic microalgae and diarrhetic shellfish toxins in the digestive tracts of green sea turtles (Chelonia mydas) from southern Brazil. HARMFUL ALGAE 2023; 128:102498. [PMID: 37714579 DOI: 10.1016/j.hal.2023.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Algal toxins are involved in the mortality and/or illness of marine organisms via consumption of contaminated prey, or upon direct exposure to toxic cells. In this study, the presence of potentially toxic microalgal cells was investigated within the digestive tract contents of a threatened species of green turtle (Chelonia mydas). Additionally, lipophilic toxins were determined by LC-MS/MS in tissue samples (liver, stomach and/or intestine) of selected animals (n = 39 individuals) found dead-stranded in southern Brazil, from winter/2015 to autumn/2016. Thirteen potentially toxic species of microalgae (both benthic and planktonic), including seven dinoflagellates, six cyanobacteria and one diatom, were found in the digestive tract contents of green turtles. Among them, dinoflagellates belonging to the Dinophysis acuminata species complex were the most frequent (36%) and abundant (maximum average abundance of 566 cells g-1 in spring/2015). Moreover, 23% of the examined sea turtles exhibited detectable levels of the diarrhetic shellfish toxin okadaic acid (OA) in washed digestive tissues. Seven individuals accumulated OA in their intestines (max. 24.1 ng g-1) and two in the stomachs (max. 7.4 ng g-1). Toxin levels in the tissues were directly and significantly (r = 0.70, p < 0.025) associated with the cell abundance of OA-producing D. acuminata and Prorocentrum lima species complexes within the digestive contents of green turtles. Although OA concentrations were relatively low, possible chronic exposure might deteriorate general health conditions of exposed sea turtles, increasing the risk for diseases. Okadaic acid has been regarded as a tumor-promoting compound and an environmental co-factor in the incidence of fibropapillomatosis, a frequent disease in juvenile green turtles inhabiting this geographic region. Even though, only one green turtle containing OA in the digestive tissues (out of six examined) also presented fibropapillomatosis in this study. Notwithstanding, sea turtles are sentinels of ocean health. Monitoring the accumulation of algal toxins and their negative effects on these organisms contributes to conserving biodiversity and marine habitats.
Collapse
Affiliation(s)
- Angel R Moreira-González
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil; Centro de Estudios Ambientales de Cienfuegos (CEAC). Carretera a Castillo de Jagua. Km 1.5. AP. 5, Ciudad Nuclear 59350, Cienfuegos, Cuba
| | - Camila Domit
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil
| | - Kaianan M S Rosa
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil
| | - Luiz L Mafra
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil.
| |
Collapse
|
12
|
Lyu L, Zhang S. Chlorinated Paraffin Pollution in the Marine Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11687-11703. [PMID: 37503949 DOI: 10.1021/acs.est.3c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Chlorinated paraffins (CPs) are ubiquitous in the environment due to their large-scale usage, persistence, and long-range atmospheric transport. The oceans are a critical environment where CPs transformation occurs. However, the broad impacts of CPs on the marine environment remain unclear. This review describes the sources, occurrence and transport pathways, environmental processes, and ecological effects of CPs in the marine environment. CPs are distributed in the global marine environment by riverine input, ocean currents, and long-range atmospheric transport from industrial areas. Environmental processes, such as the deposition of particle-bound compounds, leaching of plastics, and microbial degradation of CPs, are the critical drivers for regulating CPs' fate in water columns or sediment. Bioaccumulation and trophic transfer of CPs in marine food webs may threaten marine ecosystem functions. To elucidate the biogeochemical processes and environmental impacts of CPs in marine environments, future work should clarify the burden and transformation process of CPs and reveal their ecological effects. The results would help readers clarify the current research status and future research directions of CPs in the marine environment and provide the scientific basis and theoretical foundations for the government to assess marine ecological risks of CPs and to make policies for pollution prevention and control.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 Xingangxi Road, Guangzhou 510301, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 Xingangxi Road, Guangzhou 510301, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| |
Collapse
|
13
|
Girones L, Guida Y, Oliva AL, Machado Torres JP, Marcovecchio JE, Vetter W, Arias AH. Short- and medium-chain chlorinated paraffins in fish from an anthropized south-western Atlantic estuary, Bahía Blanca, Argentina. CHEMOSPHERE 2023; 328:138575. [PMID: 37011823 DOI: 10.1016/j.chemosphere.2023.138575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Chlorinated paraffins (CPs) are synthetic organic compounds of growing environmental and social concern. Short-chain chlorinated paraffins (SCCPs) were listed under the Stockholm Convention on Persistent Organic Pollutants (POPs) in 2017. Further, in 2021, medium-chain chlorinated paraffins (MCCPs) were proposed to be listed as POPs. We investigated SCCP and MCCP amounts and homolog profiles in four wild fish species from Bahía Blanca Estuary, a South Atlantic Ocean coastal habitat in Argentina. SCCPs and MCCPs were detected in 41% and 36% of the samples, respectively. SCCP amounts ranged from <12 to 29 ng g-1 wet weight and <750-5887 ng g-1 lipid weight, whereas MCCP amounts ranged from <7 to 19 ng g-1 wet weight and <440-2848 ng g-1 lipid weight. Amounts were equivalent to those found in fish from the Arctic and Antarctic Oceans and from some North American and Tibetan Plateau lakes. We performed a human health risk assessment and found no direct risks to human health for SCCP or MCCP ingestion, according to present knowledge. Regarding their environmental behavior, no significant differences were observed among SCCP amounts, sampling locations, species, sizes, lipid content, and age of the specimens. However, there were significant differences in MCCP amounts across species, which could be attributed to fish size and feeding habits. Homolog profiles in all fish were dominated by the medium-chlorinated (Cl6 and Cl7) CPs and shorter chain length CPs were the most abundant, with C10Cl6 (12.8%) and C11Cl6 (10.1%) being the predominant SCCPs and C14Cl6 (19.2%) and C14Cl7 (12.4%) the predominant MCCPs. To the best of our knowledge, this is the first study on the presence of CPs in the environment in Argentina and the South Atlantic Ocean. CP occurrence in the environment, particularly in the food chain, promotes the need for further research on their occurrence and behavior, and the impact of CPs in marine ecosystems in Argentina.
Collapse
Affiliation(s)
- Lautaro Girones
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga Km 7.5, B8000FWB, Bahía Blanca, Argentina
| | - Yago Guida
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-902, Rio Janeiro, RJ, Brazil
| | - Ana Laura Oliva
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga Km 7.5, B8000FWB, Bahía Blanca, Argentina
| | - João Paulo Machado Torres
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-902, Rio Janeiro, RJ, Brazil
| | - Jorge Eduardo Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga Km 7.5, B8000FWB, Bahía Blanca, Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino, Gascón 3145, 7600, Mar del Plata, Argentina; Universidad Tecnológica Nacional - FRBB, 11 de Abril 445, 8000, Bahía Blanca, Argentina; Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN), Av. Alvear 1711, 1014, Ciudad Autónoma de Buenos Aires, Argentina
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), DE-70593, Stuttgart, Germany
| | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga Km 7.5, B8000FWB, Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
14
|
Mu YW, Cheng D, Zhang CL, Zhao XL, Zeng T. The potential health risks of short-chain chlorinated paraffin: A mini-review from a toxicological perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162187. [PMID: 36781137 DOI: 10.1016/j.scitotenv.2023.162187] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are ubiquitously distributed in various environmental matrics due to their wide production and consumption globally in the past and ongoing production and use in some developing countries. SCCPs have been detected in various human samples including serum, milk, placenta, nail, and hair, and internal SCCP levels were found to be positively correlated with biomarkers of some diseases. While the environmental occurrence has been reported in a lot of studies, the toxicity and underlying molecular mechanisms of SCCPs remain largely unknown. The current tolerable daily intakes (TDIs) recommended by the world health organization/international programme on chemical safety (WHO/IPCS, 100 μg/kg bw/d) and the UK Committee on Toxicity (COT, 30 μg/kg bw/d) were obtained based on a no observed adverse effect level (NOAEL) of SCCP from the repeated-dose study (90 d exposure) in rodents performed nearly 40 years ago. Importantly, the health risks assessment of SCCPs in a variety of studies has shown that the estimated daily intakes (EDIs) may approach and even over the established TDI by UK COT. Furthermore, recent studies revealed that lower doses of SCCPs could also result in damage to multiple organs including the liver, kidney, and thyroid. Long-term effects of SCCPs at environmental-related doses are warranted.
Collapse
Affiliation(s)
- Ying-Wen Mu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
15
|
Simond AÉ, Ross PS, Cabrol J, Lesage V, Lair S, Woudneh MB, Yang D, Peng H, Colbourne K, Brown TM. Declining concentrations of chlorinated paraffins in endangered St. Lawrence Estuary belugas (Delphinapterus leucas): Response to regulations or a change in diet? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161488. [PMID: 36626992 DOI: 10.1016/j.scitotenv.2023.161488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Very high levels of industrial contaminants in St. Lawrence Estuary (SLE) beluga whales represent one of the major threats to this population classified as endangered under the Species at Risk Act in Canada. Elevated concentrations of short-chained chlorinated paraffins (SCCPs) were recently reported in blubber of adult male SLE belugas. Recent regulations for SCCPs in North America, combined with their replacement by medium- (MCCPs) and long-chained chlorinated paraffins (LCCPs), highlight the importance of tracking this toxic chemical class. The objectives of this study were to evaluate (1) levels and profiles of chlorinated paraffins (CPs) in samples obtained from carcasses of adult male, adult female, juvenile, newborn, and fetus beluga, and (2) trends in adult male belugas between 1997 and 2018. Factors potentially influencing CP temporal trends such as age, feeding ecology and sampling year were also explored. SCCPs dominated (64 to 100%) total CP concentrations across all age and sex classes, MCCPs accounted for the remaining proportion of total CPs, and LCCPs were not detected in any sample. The chlorinated paraffin homolog that dominated the most in beluga blubber was C12Cl8. Adult male SCCP concentrations from this study were considerably lower (> 2000-fold) than those recently reported in Simond et al. (2020), likely reflecting a previously erroneous overestimate due to the lack of a suitable analytical method for SCCPs at the time. Both SCCPs and total CPs declined over time in adult males in our study (rate of 1.67 and 1.33% per year, respectively), presumably due in part to the implementation of regulations in 2012. However, there is a need to better understand the possible contribution of a changing diet to contaminant exposure, as stable isotopic ratios of carbon also changed over time.
Collapse
Affiliation(s)
- Antoine É Simond
- Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada; Simon Fraser University, Pacific Science Enterprise Centre, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| | - Peter S Ross
- Raincoast Conservation Foundation, W̱SÁNEĆ Territory, P.O. Box 2429, Sidney, BC V8L 3Y3, Canada.
| | - Jory Cabrol
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, QC G5H 3Z4, Canada.
| | - Véronique Lesage
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, QC G5H 3Z4, Canada.
| | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, St Hyacinthe, QC J2S 2M2, Canada.
| | - Million B Woudneh
- SGS AXYS Analytical Services Ltd., 2045 Mills Road West, Sydney, BC V8L 5X2, Canada.
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Hui Peng
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada; School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Katerina Colbourne
- Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| | - Tanya M Brown
- Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada; Simon Fraser University, Pacific Science Enterprise Centre, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| |
Collapse
|
16
|
Cao X, Lu R, Xu Q, Zheng X, Zeng Y, Mai B. Distinct biomagnification of chlorinated persistent organic pollutants in adjacent aquatic and terrestrial food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120841. [PMID: 36493935 DOI: 10.1016/j.envpol.2022.120841] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Biomagnification of persistent organic pollutants (POPs) in food webs has been studied for many years. However, the different processes and influencing factors in biomagnification of POPs in aquatic and terrestrial food webs still need clarification. Polychlorinated biphenyls (PCBs) and short-chain chlorinated paraffins (SCCPs) were measured in organisms from adjacent terrestrial and aquatic environment in this study. The median levels of PCBs in terrestrial and aquatic organisms were 21.7-138 ng/g lw and 37.1-149 ng/g lw, respectively. SCCP concentrations were 18.6-87.3 μg/g lw and 21.4-93.9 μg/g lw in terrestrial and aquatic organisms, respectively. Biomagnification factors (BMFs) of PCBs increased with higher log KOW in all food chains. BMFs of SCCPs were negatively correlated with log KOW in aquatic food chains, but positively correlated with log KOW in terrestrial food chains. The terrestrial food web had similar trophic magnification factors (TMFs) of PCBs, and higher TMFs of SCCPs than the aquatic food web. Biomagnification of PCBs was consistent in aquatic and terrestrial food webs, while SCCPs had higher biomagnification potential in terrestrial than aquatic organisms. The distinct biomagnification of SCCPs was affected by the respiratory elimination for terrestrial organisms, the different metabolism rates in various species, and more homotherms in terrestrial food webs. Fugacity model can well predict levels of less hydrophobic chemicals, and warrants more precise toxicokinetic data of SCCPs.
Collapse
Affiliation(s)
- Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qishan Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
17
|
Chen L, Mai B, Luo X. Bioaccumulation and Biotransformation of Chlorinated Paraffins. TOXICS 2022; 10:778. [PMID: 36548610 PMCID: PMC9783579 DOI: 10.3390/toxics10120778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated paraffins (CPs), a class of persistent, toxic, and bioaccumulated compounds, have received increasing attention for their environmental occurrence and ecological and human health risks worldwide in the past decades. Understanding the environmental behavior and fate of CPs faces a huge challenge owing to the extremely complex CP congeners. Consequently, the aims of the present study are to summarize and integrate the bioaccumulation and biotransformation of CPs, including the occurrence of CPs in biota, tissue distribution, biomagnification, and trophic transfer, and biotransformation of CPs in plants, invertebrates, and vertebrates in detail. Biota samples collected in China showed higher CP concentrations than other regions, which is consistent with their huge production and usage. The lipid content is the major factor that determines the physical burden of CPs in tissues or organs. Regarding the bioaccumulation of CPs and their influence factors, inconsistent results were obtained. Biotransformation is an important reason for this variable. Some CP congeners are readily biodegradable in plants, animals, and microorganisms. Hydroxylation, dechlorination, chlorine rearrangement, and carbon chain decomposition are potential biotransformation pathways for the CP congeners. Knowledge of the influence of chain length, chlorination degree, constitution, and stereochemistry on the tissue distribution, bioaccumulation, and biotransformation is still scarce.
Collapse
Affiliation(s)
- Liujun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
18
|
DiMento BP, Tusei CL, Aeppli C. Photochemical degradation of short-chain chlorinated paraffins in aqueous solution by hydrated electrons and hydroxyl radicals. CHEMOSPHERE 2022; 303:134732. [PMID: 35525447 DOI: 10.1016/j.chemosphere.2022.134732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are a complex mixture of polychlorinated alkanes (C10-C13, chlorine content 40-70%), and have been categorized as persistent organic pollutants. However, there are knowledge gaps about their environmental degradation, particularly the effectiveness and mechanism of photochemical degradation in surface waters. Photochemically-produced hydrated electrons (e-(aq)) have been shown to degrade highly chlorinated compounds in environmentally-relevant conditions more effectively than hydroxyl radicals (·OH), which can degrade a wide range of organic pollutants. This study aimed to evaluate the potential for e-(aq) and ·OH to degrade SCCPs. To this end, the degradation of SCCP model compounds was investigated under laboratory conditions that photochemically produced e-(aq) or ·OH. Resulting SCCP degradation rate constants for e-(aq) were on the same order of magnitude as well-known chlorinated pesticides. Experiments in the presence of ·OH yielded similar or higher second-order rate constants. Trends in e-(aq) and ·OH degradation rate constants of the investigated SCCPs were consistent with those of other chlorinated compounds, with higher chlorine content producing in higher rate constants for e-(aq) and lower for ·OH. Above a chlorine:carbon ratio of approximately 0.6, the e-(aq) second-order rate constants were higher than rate constants for ·OH reactions. Results of this study furthermore suggest that SCCPs are likely susceptible to degradation in sunlit surface waters, facilitated by dissolved organic matter as a source of photochemically produced e-(aq) and ·OH.
Collapse
Affiliation(s)
- Brian P DiMento
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, USA; Colby College, 5750 Mayflower Hill Drive, Waterville, ME, 04901, USA.
| | - Cristina L Tusei
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, USA; Humboldt State University, 1 Harpst St, Arcata, CA, USA
| | - Christoph Aeppli
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, USA; Colby College, 5750 Mayflower Hill Drive, Waterville, ME, 04901, USA
| |
Collapse
|
19
|
Occurrence, Distribution and Health Risk of Short-Chain Chlorinated Paraffins (SCCPs) in China: A Critical Review. SEPARATIONS 2022. [DOI: 10.3390/separations9080208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With being listed in the Stockholm Convention, the ban on short-chain chlorinated paraffins (SCCPs) has been put on the agenda in China. Based on the literature over the past decade, this study comprehensively analyzed the occurrence, distribution of and human exposure to SCCPs in China, aiming to provide a reference for the changes in SCCPs after the ban. SCCPs were ubiquitous in environmental matrices, and the levels were considerably higher than those in other countries. SCCPs from the emission region were 2–4 orders of magnitude higher than those in the background area. Environmental processes may play an important role in the SCCP profiles in the environment, and C10 and Cl6 were identified as potential factors distinguishing their spatial distribution. River input was the dominant source in the sea areas, and atmospheric transport was the main source in the remote inland areas. Ingestion and dermal absorption and food intake may pose potential risk to residents, especially for children and infants. More studies are needed on their temporal trend, source emission and environmental degradation. The enactment of the restriction order will have a great impact on China’s CP industry; nevertheless, it will play a positive role in the remediation of SCCP pollution in the environment.
Collapse
|
20
|
Song S, Huang T, Ma J, Mao X, Gao H, Zhao Y, Jiang W, Lian L, Chen B, Liu L, Wang Z. Assessing Safety of Market-Sold Fresh Fish: Tracking Fish Origins and Toxic Chemical Origins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9505-9514. [PMID: 35731583 DOI: 10.1021/acs.est.2c00495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Increasing global and domestic food trade and required logistics create uncertainties in food safety inspection due to uncertainties in food origins and extensive trade activities. Modern blockchain techniques have been developed to inform consumers of food origins but do not provide food safety information in many cases. A novel food safety tracking and modeling framework for quantifying toxic chemical levels in the food and the food origins was developed. By integrating chemicals' multimedia environment exchange, food web, and source tracking systems, the framework was implemented to identify short-chain chlorinated paraffin (SCCP) contamination of fresh hairtail fish sold by a Walmart supermarket in Xi'an, northwestern China, and sourced in Eastern China Sea coastal waters. The framework was shown to successfully predict SCCP level with a mean of 17.8 ng g-1 in Walmart-sold hairtails, which was comparable to lab-analyzed 21.9 ng g-1 in Walmart-sold hairtails. The framework provides an alternative and cost-effective approach for safe food inspection compared to traditional food safety inspection techniques. These encouraging results suggest that the approach and rationale reported here could add additional information to the food origin tracking system to enhance transparency and consumers' confidence in the traded food they consumed.
Collapse
Affiliation(s)
- Shijie Song
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, P. R. China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wanyanhan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, P. R. China
| | - Lulu Lian
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Boqi Chen
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Luqian Liu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhanxiang Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
21
|
Wu Y, Ji B, Zeng X, Liang Y, Gao S, Yu Z. Determination of Long Chain Chlorinated Paraffins in Soils and Sediments by High-Performance Liquid Chromatography (HPLC) High Resolution Mass Spectrometry (HR-MS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2065678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Bingjing Ji
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| |
Collapse
|
22
|
Chen H, Han X, Liang B, Deng M, Du B, Zeng L. Spatial distribution, homologue patterns and ecological risks of chlorinated paraffins in mangrove sediments along the South China Coast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118623. [PMID: 34871648 DOI: 10.1016/j.envpol.2021.118623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/20/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
The spatial distribution, homologue patterns, and ecological risks of chlorinated paraffins (CPs) were investigated in sediments from sixteen mangrove wetlands along the South China Coast (SCS). The total concentrations of CPs in mangrove sediments from Guangdong, Fujian, Guangxi, and Hainan were in the range of 933-4760, 619-2300, 375-1550, and 271-658 ng/g dry weight, respectively. The contamination levels and spatial distribution of short-chain and medium-chain CPs (SCCPs and MCCPs, respectively) in mangrove sediments were mainly affected by local population scale and CP industries. The dominant CP patterns in sediments were C10-11Cl6-8 and C14Cl7-9 for SCCPs and MCCPs, respectively. Redundancy analysis, based on CP levels and several potential influencing factors showed that MCCPs/SCCPs ratio was the main factor affecting the accumulation of CPs in mangrove sediments. Additionally, MCCP concentrations were significantly correlated with total organic carbon (TOC), indicating that TOC might affect MCCP accumulation in mangrove sediments. Risk assessments indicated that CPs would pose medium ecological risks to sediment dwelling organisms in nearly one-third of the sampling sites. This is the first comprehensive report of the sedimentary SCCPs and MCCPs in mangrove wetlands along the SCS and highlights the need for more sediment toxicity data for CPs.
Collapse
Affiliation(s)
- Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Bowen Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Man Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
23
|
Lee CC, Wu YY, Chen CS, Tien CJ. Spatiotemporal distribution and risk assessment of short-chain chlorinated paraffins in 30 major rivers in Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150969. [PMID: 34656600 DOI: 10.1016/j.scitotenv.2021.150969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Because of their highly persistent, bioaccumulative and toxic properties, short-chain chlorinated paraffins (SCCPs) have become emerging contaminants and have been included in Annex A (elimination) of the Stockholm Convention since 2017. The contamination of SCCPs has been observed in the environment and biota worldwide but has not been detected in Taiwanese river ecosystems. Thus, this study aimed to determine the occurrence of SCCPs in sediments and fish from 30 major rivers in Taiwan and to evaluate the risk of SCCPs to river ecosystems and human health. The concentrations of SCCPs in sediments and fish ranged from ND (not detected) to 12.6 mg/kg dw and ND to 2.07 mg/kg ww, respectively. The concentrations of SCCPs in sediments were significantly correlated with some indicators of the discharge sources and water quality variables, indicating that SCCPs were released via human activities and various discharges into rivers and accumulated in sediments. The bioaccumulation of SCCPs in fish exhibited species-specific profiles and was related to environmental contamination levels and the living pattern and trophic level of the fish. The SCCP levels in sediments from 20 major rivers in Taiwan might pose a potential ecological risk to river ecosystems according to the criteria of the Federal Environmental Quality Guidelines in Canada, the biota-sediment accumulation factor and the risk quotient. Consumption of SCCP-contaminated river fish by different gender and age groups showed no significant health risk to residents in Taiwan evaluated by the estimated daily intake and hazard quotient. However, there was a health concern for the 0- to 3-year-old group due to the consumption of contaminated river fish at a bioaccessibility of 100% for SCCPs by the margin of exposure. Routine monitoring of SCCPs in river ecosystems is needed to protect aquatic organisms and human health.
Collapse
Affiliation(s)
- Ching-Chang Lee
- Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, 138 Sheng Li Road, Tainan 704, Taiwan; Research Center of Environmental Trace Toxic substances, National Cheng Kung University, 138 Sheng Li Road, Tainan 704, Taiwan
| | - Yi-Yun Wu
- Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, 138 Sheng Li Road, Tainan 704, Taiwan
| | - Colin S Chen
- Department of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung 824, Taiwan
| | - Chien-Jung Tien
- Department of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung 824, Taiwan.
| |
Collapse
|
24
|
Han X, Chen H, Shen M, Deng M, Du B, Zeng L. Hair and nails as noninvasive bioindicators of human exposure to chlorinated paraffins: Contamination patterns and potential influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149257. [PMID: 34315053 DOI: 10.1016/j.scitotenv.2021.149257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Most of the studies on short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in human tissues have focused on human milk and blood. However, little is known about the occurrence of CPs in human hair and nails. In this study, SCCPs and MCCPs were analyzed in 62 pairs of human hair and nails from North China. Median concentrations (range) of SCCPs and MCCPs in human hair were 239 (19.2-877) and 325 (16.9-893) ng/g dw, respectively, all of which were significantly higher than 154 (57.7-355) and 233 (61.0-476) ng/g dw, respectively, in nail samples (p < 0.05). The homologue profiles of CPs in human hair were similar to those in nails, where SCCPs and MCCPs were dominated by C10Cl6-7 and C14Cl7-8, respectively. A significant positive relationship was observed between CP levels and age of people for hair, whereas negative linear correlations were observed for nails. The redundancy analysis indicated that age of people might be the main influencing factor on the accumulation of CPs in hair and nails. The present study performed comprehensive evaluation of CP exposure levels in human hair and nail and highlights the need for more data on relationship between internal and external exposure to CPs.
Collapse
Affiliation(s)
- Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Man Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
25
|
Facciola N, Pedro S, Houde M, Fisk AT, Ferguson SH, Steer H, Muir DCG, McKinney MA. Measurable Levels of Short-Chain Chlorinated Paraffins in Western Hudson Bay Fishes but Limited Biomagnification from Fish to Ringed Seals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2990-2999. [PMID: 34352119 DOI: 10.1002/etc.5188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
We investigated short-chain (C10-13 ) chlorinated paraffins (SCCP) in an Arctic marine food web. In zooplankton, fishes, and ringed seals from western Hudson Bay, Canada, SCCP concentrations ranged from 38.3 to 687 ng g-1 lipid weight. Monte Carlo-simulated trophic-adjusted biomagnification factors of individual SCCP congeners ranged from 0.07 to 0.55 for small pelagic fishes to seals. Despite relatively high concentrations in fishes, biomagnification of SCCPs within this food web appears limited. Environ Toxicol Chem 2021;40:2990-2999. © 2021 SETAC.
Collapse
Affiliation(s)
- Nadia Facciola
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sara Pedro
- Department of Social and Preventive Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montreal, Ontario, Canada
| | - Aaron T Fisk
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Steven H Ferguson
- Fisheries and Oceans Canada, Central and Arctic Region, Winnipeg, Manitoba, Canada
| | - Helena Steer
- National Laboratory for Environmental Testing, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlingto, Ontario, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
26
|
Nevondo V, Okonkwo OJ. Status of short-chain chlorinated paraffins in matrices and research gap priorities in Africa: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52844-52861. [PMID: 34478051 PMCID: PMC8476396 DOI: 10.1007/s11356-021-15924-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Chlorinated paraffins (CPs) have been applied as additives in a wide range of consumer products, including polyvinyl chloride (PVC) products, mining conveyor belts, paints, sealants, adhesives and as flame retardants. Consequently, CPs have been found in many matrices. Of all the CP groups, short-chain chlorinated paraffins (SCCPs) have raised an alarming concern globally due to their toxicity, persistence and long-range transportation in the environment. As a result, SCCPs were listed in the Stockholm Convention on Persistent Organic Pollutants (POPs) in May 2017. Additionally, a limit for the presence of SCCPs in other CP mixtures was set at 1% by weight. CPs can be released into the environment throughout their life cycle; therefore, it becomes crucial to assess their effects in different matrices. Although about 199 studies on SCCP concentration in different matrices have been published in other continents; however, there are scarce/or limited studies on SCCP concentration in Africa, particularly on consumer products, landfill leachates and sediment samples. So far, published studies on SCCP concentration in the continent include SCCPs in egg samples, e-waste recycling area and indoor dust in Ghana and South Africa, despite absence of any production of SCCPs in Africa. However, there still remains a huge research gap in the continent of Africa on SCCPs. Consequently, there is a need to develop robust SCCP inventories in Africa since the Stockholm Convention has already developed guidance document in this respect. This review, therefore, examines the state of knowledge pertaining to the levels and trends of these contaminants in Africa and further provides research gaps that need to be considered in order to better understand the global scale of the contaminant.
Collapse
Affiliation(s)
- Vhodaho Nevondo
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, 175 Nelson Mandela Drive, Pretoria Central, 0001 South Africa
| | - Okechukwu Jonathan Okonkwo
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, 175 Nelson Mandela Drive, Pretoria Central, 0001 South Africa
| |
Collapse
|
27
|
Li J, Ruan Y, Mak YL, Zhang X, Lam JCW, Leung KMY, Lam PKS. Occurrence and Trophodynamics of Marine Lipophilic Phycotoxins in a Subtropical Marine Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8829-8838. [PMID: 34142818 DOI: 10.1021/acs.est.1c01812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine lipophilic phycotoxins (MLPs) are produced by toxigenic microalgae and cause foodborne illnesses. However, there is little information on the trophic transfer potential of MLPs in marine food webs. In this study, various food web components including 17 species of mollusks, crustaceans, and fishes were collected for an analysis of 17 representative MLPs, including azaspiracids (AZAs), brevetoxins (BTXs), gymnodimine (GYM), spirolides (SPXs), okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins (PTXs), yessotoxins (YTXs), and ciguatoxins (CTXs). Among the 17 target MLPs, 12, namely, AZAs1-3, BTX3, GYM, SPX1, OA, DTXs1-2, PTX2, YTX, and the YTX derivative homoYTX, were detected, and the total MLP concentrations ranged from 0.316 to 20.3 ng g-1 wet weight (ww). The mean total MLP concentrations generally decreased as follows: mollusks (8.54 ng g-1, ww) > crustaceans (1.38 ng g-1, ww) > fishes (0.914 ng g-1, ww). OA, DTXs, and YTXs were the predominant MLPs accumulated in the studied biota. Trophic dilution of the total MLPs was observed with a trophic magnification factor of 0.109. The studied MLPs might not pose health risks to residents who consume contaminated seafood; however, their potential risks to the ecosystem can be a cause for concern.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaohua Zhang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Office of the President, The Open University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| |
Collapse
|
28
|
Gong Y, Geng N, Zhang H, Luo Y, Giesy JP, Sun S, Wu P, Yu Z, Chen J. Exposure to short-chain chlorinated paraffins inhibited PPARα-mediated fatty acid oxidation and stimulated aerobic glycolysis in vitro in human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144957. [PMID: 33578161 DOI: 10.1016/j.scitotenv.2021.144957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) could disrupt fatty acid metabolism in male rat liver through activating rat PPARα signaling. However, whether this mode of action can translate to humans remained largely unclear. In this study, based on luciferase assays, C10-13-CPs (56.5% Cl) at concentrations greater than 1 μM (i.e., 362 μg/L) showed weak agonistic activity toward human PPARα (hPPARα) signaling. But in HepG2 cells, exposure to C10-13-CPs (56.5% Cl) at the human internal exposure level (100 μg/L) down-regulated expressions of most of the tested hPPARα target genes, which encode for enzymes that oxidize fatty acids. In line with the gene expression data, metabolomics further confirmed that exposure to four SCCP standards with varying chlorine contents at 100 μg/L significantly suppressed oxidation of fatty acids in HepG2 cells, mainly evidenced by elevations in both total fatty acids and long-chain acylcarnitines. In addition, exposure to these SCCPs also caused a shift in carbohydrate metabolism from the tricarboxylic acid cycle (TCA cycle) to aerobic glycolysis. Overall, the results revealed that SCCPs could inhibit hPPARα-mediated fatty acid oxidation, and stimulated aerobic glycolysis in HepG2 cells.
Collapse
Affiliation(s)
- Yufeng Gong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ping Wu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Zhengkun Yu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| |
Collapse
|
29
|
Dong S, Zhang S, Zou Y, Fan M, Wang Y, Cheng J, Wang R, Li T, Li X, Wang P. Concentrations and sources of short- and medium-chain chlorinated paraffins in farmed Chinese mitten crabs in China. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125076. [PMID: 33485226 DOI: 10.1016/j.jhazmat.2021.125076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/06/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Aquatic foods are important sources of chlorinated paraffins (CPs) to humans. Farmed crabs are bottom-dwelling aquatic animals, and can accumulate CPs through food and aquatic environment. However, limited information is available on CPs concentrations in and sources to farmed crabs. In this study, short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) concentrations in 59 samples from the farmed crab food web (crab, crab feed, and aquaculture environment) were determined. The samples were from 17 crab farms in Anhui Province, Jiangxi Province, and Shanghai, in China. The SCCPs and MCCPs concentrations in the crab samples were 82-1760 and not detected-680 ng/g lipid weight, respectively. The dominant SCCPs and MCCPs in the crab samples were C10Cl6-7 and C14Cl7-8, respectively. The SCCPs concentrations in the crab food web samples were higher than the MCCPs concentrations. SCCPs contamination of the crab food web samples was not directly related to CPs product use. The main factors affecting SCCPs concentrations in the crab samples were different for different crab farms. Crab feed and the aquaculture environment could be sources of SCCPs to farmed crabs. No marked health risks are posed to humans through consuming CPs in Chinese mitten crabs farmed in China.
Collapse
Affiliation(s)
- Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Su Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Zou
- Organic Biological Analytical Chemistry Group, Department of Chemistry, University of Liège, Liège 4000, Belgium
| | - Mengdie Fan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaxin Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tong Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomin Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
30
|
Chen W, Hou X, Liu Y, Hu X, Liu J, Schnoor JL, Jiang G. Medium- and Short-Chain Chlorinated Paraffins in Mature Maize Plants and Corresponding Agricultural Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4669-4678. [PMID: 33754697 PMCID: PMC8610282 DOI: 10.1021/acs.est.0c05111] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For the most complex artificial chlorinated environmental contaminants, much less is known for medium-chain CPs than short-chain CPs. In this research, the spatial distributions of MCCPs and SCCPs in farmland soil and maize leaves near a CP production facility were found marginally influenced by seasonal winds. The levels of ∑MCCPs and ∑SCCPs were in the ranges of <1.51-188 and 5.41-381 ng/g dw for soils; and 77.6-52930 and 119-61999 ng/g dw for maize leaf, respectively. Bioaccumulation and tissue distributions of the CPs within maize plants were specifically analyzed. Most of the CPs were contained in the tissues directly exposed to airborne CPs. Though the estimated risk of CPs to humans through ingestion of kernels appears to be minimal, the edible safety of MCCPs in maize plants for cattle was nearly in the designated range of adverse effects. To our knowledge, this is the first report on bioaccumulation of CPs in mature maize plants, especially in the parts eaten by humans and domestic animals. It provides a baseline reference to the edible risks of CPs in agricultural food plants and alerts us to the problematic environmental behavior of MCCPs, a probable future replacement for SCCPs commercially.
Collapse
Affiliation(s)
- Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinxiao Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
31
|
Ranjbar Jafarabadi A, Dashtbozorg M, Raudonytė-Svirbutavičienė E, Riyahi Bakhtiari A. Chlorinated paraffins (SCCPs and MCCPs) in corals and water-SPM-sediment system in the Persian Gulf, Iran: A potential global threat for coral reefs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116531. [PMID: 33581638 DOI: 10.1016/j.envpol.2021.116531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Swift degradation of the coral reef ecosystems urges the need to identify the reef decline drivers. Due to their widespread use, bioaccumulative and toxic characteristics, chlorinated organic compounds, such as chlorinated paraffins (CPs), are regarded as specific pollutants of concern. Yet little is known about the occurrence of CPs in the coral reef ecosystems. This study focuses on the short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs). Their distribution and congener pattern were investigated in the water-SPM-sediment system and in the corals of the Larak coral reef for the first time. Chlorinated paraffins were detected in all the coral species. Their total loadings ranged from 42.1 to 178 ng g-1 dw in coral tissue, from 6.0 to 144 ng g-1dw in the skeleton, and from 55.0 to 240 ng g-1dw in zooxanthellae. Soft corals were found to accumulate more CPs than Scleractinian corals. Zooxanthellae and mucus accumulated more CPs than tissue and skeleton. In most cases, congener group patterns were dominated by C13 (for SCCPs) and C17 (MCCPs) groups, respectively. The congener patterns of CPs altered to some extent between mucus and the remaining coral compartments. High loadings of CPs were detected in the skeleton of the bleached corals. Moreover, a significant negative correlation between the levels of CPs and the symbiodinium density was observed.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mehdi Dashtbozorg
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| |
Collapse
|
32
|
Chen H, Xu L, Zhou W, Han X, Zeng L. Occurrence, distribution and seasonal variation of chlorinated paraffins in coral communities from South China Sea. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123529. [PMID: 32721639 DOI: 10.1016/j.jhazmat.2020.123529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Our previous study revealed bioaccumulation and trophic magnification of chlorinated paraffins (CPs) in marine organisms. However, little is known about the occurrence and distribution of CPs in coral reef ecosystems. In this study, the levels of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) were determined in ten common coral species from the coastal regions of Hainan Island, South China Sea. SCCPs and MCCPs were detected in all coral species in concentrations ranging from 184 to 7,410 and 305 to 14,800 ng g-1 lw, respectively. In most of the coral species, congener group patterns of the SCCPs and MCCPs were dominated by C10Cl6-8 and C14Cl7-8, respectively. The CP levels and congener group patterns changed slightly between the dry and wet seasons. Redundancy analyses indicated that the accumulation patterns of CPs in different corals were partly influenced by Symbiodinium densities and coral species. Significant negative correlations were found between Symbiodinium densities and CP levels. This is the first report of CP exposure in reef corals and highlights the need for CP toxicity data to evaluate the health of coral reef ecosystems.
Collapse
Affiliation(s)
- Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China; Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, The Ministry of Ecology and Environment of PRC, Guangzhou, 510530, China
| | - Wei Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
33
|
Du X, Zhou Y, Li J, Wu Y, Zheng Z, Yin G, Qiu Y, Zhao J, Yuan G. Evaluating oral and inhalation bioaccessibility of indoor dust-borne short- and median-chain chlorinated paraffins using in vitro Tenax-assisted physiologically based method. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123449. [PMID: 32683154 DOI: 10.1016/j.jhazmat.2020.123449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 05/22/2023]
Abstract
Though ingestion and inhalation of dust have been suggested as important exposure routes contributing chlorinated paraffins (CPs) build-up in humans, the bioaccessibility of dust-borne CPs in the organ environment has not been well-studied, which may hinder an accurate estimation of exposure risks. In this study, the ingestion and inhalation bioaccessibility of dust-borne short- and median-chain CPs (SCCPs and MCCPs) was assessed using (colon-extended) physiologically based extraction test with the addition of Tenax. The ingestion bioaccessibility of SCCPs 51.5 %Cl, SCCPs 63 %Cl, MCCPs 42 %Cl, and MCCPs 57 %Cl was in ranges of 21.1-44.0 %, 11.7-45.8 %, 21.9-36.6 %, and 7.9-32.9 %, respectively. Multiple linear regression analysis demonstrated statistically significant associations of ingestion bioaccessibility with carbon chain length and chlorine substitution. The ingestion bioaccessibility of CPs also increased with co-existence of carbohydrate/protein. The inhalation bioaccessibility of SCCPs (16.7-38.7 % in artificial lysosomal fluid and 15.5-34.1 % in modified Gamble solution) was significantly higher than MCCPs (<5 %), and varied with dust particle size/total organic carbon content. Our study indicates that modest bioaccessible fractions of CPs in dust should be taken into account to refine the estimation of human exposure, and their bioaccessibility may be affected by CP molecular size, nutritional content and dust property.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| | - Yan Wu
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Ziye Zheng
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai, 200233, China
| | - Yanling Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guoli Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
34
|
Pan X, Zhen X, Tian C, Tang J. Distributions, transports and fates of short- and medium-chain chlorinated paraffins in a typical river-estuary system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141769. [PMID: 32882559 DOI: 10.1016/j.scitotenv.2020.141769] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) are widely employed in a variety of domestic and industrial products, and are ubiquitously detected in the environment. Short-chain chlorinated paraffins (SCCPs) have been listed in the Stockholm Convention as persistent organic pollutants (POPs), but not medium-chain chlorinated paraffins (MCCPs), even though they exhibit physicochemical properties and environmental behaviors similar to SCCPs. However, very limited data are available regarding their environmental behaviors and fates in river-estuary systems. China is the major producer of chlorinated paraffins (CPs), and Shandong Province is the main producer of CPs in China. Here, we investigated the distribution, transport, and fate of SCCPs and MCCPs in a heavily polluted river in Shandong Province, aiming to explore the distributions of CPs between dissolved and particulate phases, and between water and sediment phases, as well as the transport of CPs from river headwaters to estuaries and the roles of the estuarine turbidity maximum zone (ETM) on the fate of CPs. CP concentrations in sediments were 9.1-16,000 ng/g dw (mean value: 1000 ng/g dw) for SCCPs and 2.4-27,000 ng/g dw (mean value: 4400 ng/g dw) for MCCPs. In the water column, CP concentrations were 7.4-470 ng/L for SCCPs (mean value: 43 ng/L) and 4.0-120 ng/L for MCCPs (mean value: 27 ng/L). CP concentrations in riverine sediments were among the highest worldwide. SCCPs accounted for 95% of CPs (sum of SCCPs and MCCPs) in the dissolved phase. Cities around the river basin were found to be important pollution sources for CPs. Long-chained and more chlorinated congeners with larger LogKow values might be more likely to be 'salted-out', and thus, will be sequestrated in sediments in the ETM, while those lighter congener groups with relatively high water solubility were prone to be transported by water flow to larger distances.
Collapse
Affiliation(s)
- Xiaohui Pan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaomei Zhen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
35
|
Li H, Bu D, Gao Y, Zhu N, Wu J, Chen X, Fu J, Wang Y, Zhang A, Jiang G. Long-range atmospheric transport and alpine condensation of short-chain chlorinated paraffins on the southeastern Tibetan Plateau. J Environ Sci (China) 2021; 99:275-280. [PMID: 33183706 DOI: 10.1016/j.jes.2020.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 05/22/2023]
Abstract
Pristine alpine regions are ideal regions for investigating the long-range atmospheric transport and cold trapping effects of short chain chlorinated paraffins (SCCPs). The concentrations and alpine condensation of SCCPs were investigated in lichen samples collected from the southeastern Tibetan Plateau. The concentrations of SCCPs ranged from 3098 to 6999 ng/g lipid weight (lw) and appeared to have an increasing trend with altitude. For congeners, C10 dominated among all the congener groups. The different environmental behavior for different congener groups was closely related to their octanol-air partition coefficient (Koa). C10 congeners showed an increasing trend with altitude, whereas C13 congeners were negatively correlated with altitude. Volumetric bioconcentration factors (BCF) of SCCPs reached 8.71 in lichens, which were higher than other semivolatile organic compounds (SVOCs) such as organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hexabromocyclododecane (HBCD). These results suggested that SCCPs were prone to accumulate in the lichen from the air and provided evidence for the role of lichens as a suitable atmospheric indicator in the Tibetan Plateau.
Collapse
Affiliation(s)
- Huijuan Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytic Instrument, Jinan 250014, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Duo Bu
- Department of Chemistry & Environmental Science, Tibet University, Lhasa 850000, China
| | - Yan Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nali Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangfeng Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytic Instrument, Jinan 250014, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
36
|
Wang W, Wang J, Nie H, Fan R, Huang Y. Occurrence, trophic magnification and potential risk of short-chain chlorinated paraffins in coral reef fish from the Nansha Islands, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140084. [PMID: 32554110 DOI: 10.1016/j.scitotenv.2020.140084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 05/22/2023]
Abstract
As emerging persistent organic pollutants in marine environment, short-chain chlorinated paraffins (SCCPs) have attracted increasing attentions recently. Coral reefs are important ocean ecosystems. However, data on SCCP pollution in the coral reef regions is still unavailable. In the present work, bioaccumulation of SCCPs in the coral reef ecosystems was reported for the first time. SCCP concentrations in coral reef fish from the Nansha Islands of the South China Sea were in the range of 37.9-25,400 ng/g lipid weight (lw) (average: 4400 ± 6590 ng/g lw; median: 1020 ng/g lw). C10 SCCPs were the dominating SCCP homologues, accounting for 59% to 80% of the total SCCPs (average: 70 ± 5.0%), followed by C11 SCCPs (average: 23 ± 4.5%). Regarding chlorine substitution, SCCPs were dominated by Cl7 SCCPs (average: 45 ± 2.5%) and Cl8 SCCPs (average: 30 ± 5.4%). Trophic magnification factor (TMF) of total SCCPs was 8.5, indicating trophic magnification potential of SCCPs in the coral reef ecosystems. In addition, a parabolic relationship was established between TMFs and log Kow of specific SCCP homologues. SCCP residues in the coral reef fish from the Nansha Islands of the South China Sea did not pose significant risk to human health.
Collapse
Affiliation(s)
- Wenjing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Huayue Nie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Rui Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yumei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
37
|
Liu Y, Luo X, Zeng Y, Wang Q, Tu W, Yang C, Mai B. Trophic Magnification of Short- and Medium-Chain Chlorinated Paraffins in Terrestrial Food Webs and Their Bioamplification in Insects and Amphibians during Metamorphosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11282-11291. [PMID: 32822158 DOI: 10.1021/acs.est.0c03096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Studies on the biomagnification of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in terrestrial ecosystems and their bioamplification during metamorphosis in insects and amphibians are scarce. Therefore, this study sought to characterize the occurrence and trophic dynamics of SCCPs and MCCPs in an insect-dominated terrestrial food web in an e-waste recycling site in South China. Median ∑SCCPs and ∑MCCPs concentrations in the organisms ranged from 2200 to 34 000 ng/g lipid weight and from 990 to 19 000 ng/g lipid weight, respectively. The homologue profiles of CPs in the predators were distinct from those in insects, presenting more short chain-high chlorinated congeners (C10-12Cl8-10). The trophic magnification factors (TMFs) of ∑SCCPs and ∑MCCPs were 2.08 and 2.45, respectively, indicating biomagnification in the terrestrial food web. A significant positive relationship between the TMFs and octanol-air partition coefficients was observed. TMFs were also positively correlated with chlorination degree but did not correlate with carbon chain length. Nonlinear correlations between metamorphosis-associated bioamplification and the octanol-water partition coefficients of SCCPs and MCCPs were observed for insects, whereas negative linear correlations were observed for amphibians, which suggested species-specific alterations to the chemicals during metamorphosis.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanghong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Chunyan Yang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
38
|
Sun R, Chen J, Shao H, Tang L, Zheng X, Li QX, Wang Y, Luo X, Mai B. Bioaccumulation of short-chain chlorinated paraffins in chicken (Gallus domesticus): Comparison to fish. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122590. [PMID: 32315939 DOI: 10.1016/j.jhazmat.2020.122590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are a complex group of chlorinated organic pollutants that have raised an increasing public attention. However, limited information is currently available on the bioaccumulation of SCCPs in terrestrial birds which are abundant and widely distributed around the world. In the present study, chicken (Gallus domesticus) was used as a model organism to provide significant implications for other avian species. We investigated the transfer of SCCPs from dietary sources (feed and topsoil) to chicken and their tissue distribution behavior. SCCPs were detected in chicken feed (54-170 ng/g, dry weight), topsoil (170-860 ng/g, dry weight), and adult chicken tissues (460-13000 ng/g, lipid weight). Adult chicken tended to accumulate SCCP congeners with lower n-octanol-water partition coefficients (KOW) and octanol-air partition coefficients (KOA). The accumulation ratio values for SCCPs of the chicken were more influenced by KOA than by KOW, which was contrary to those for aquatic fish. Levels and homologue profiles of SCCPs varied among chicken tissues. SCCP levels in the livers were significantly lower than those in the other tissues (p < 0.05). The accumulation potential for SCCP congeners with higher KOW increased in the order of muscle < liver < fat.
Collapse
Affiliation(s)
- Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiemin Chen
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yangyang Wang
- College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
39
|
Chen H, Zhou W, Lam JCW, Ge J, Li J, Zeng L. Blood partitioning and whole-blood-based maternal transfer assessment of chlorinated paraffins in mother-infant pairs from South China. ENVIRONMENT INTERNATIONAL 2020; 142:105871. [PMID: 32590282 DOI: 10.1016/j.envint.2020.105871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 05/09/2023]
Abstract
As a new group of persistent organic pollutants of concern, chlorinated paraffins (CPs) have been widely detected in the environment and biota, but their occurrence, partitioning, and transfer in humans have been not well documented. In this study, 32 pairs of maternal blood, cord blood, and placenta samples were collected from pregnant women in South China, and the blood was further separated into plasma and red blood cells (RBCs) for blood partitioning study. Short- and medium-chain CPs (SCCPs and MCCPs, respectively) were detected in all the five human biological matrices, suggesting prevalent exposure and maternal transfer of CPs in the pregnant women. Discrepant congener group profiles of CPs were observed in different human biological matrices. Significant differences in the plasma-RBC partitioning of CPs in the maternal and cord bloods were identified (p < 0.001). CP partitioning to plasma was stronger than that to RBCs in maternal blood, but the converse was true for cord blood. Mass fractions in plasma (Fp) for SCCPs (mean, 0.78) and MCCPs (0.74) in maternal blood were significantly higher than the values in cord blood. Transplacental transfer efficiencies (TTEs) were evaluated based on the whole blood concentrations of CPs in the maternal and cord bloods, and the TTEs ranged from 0.50 to 0.69 (first to third quartiles) for SCCPs and MCCPs, indicating that the placenta can partially restrict maternal transfer. The extent of CP retention in the placenta was assessed by the concentration ratio (RPM) of matched placenta and maternal blood, and interestingly, a U-shaped trend for placental retention (RPM) with increasing chain length was observed for individual congener groups. Significant relationships of the CP concentrations among the maternal blood, cord blood, and placenta were observed (p < 0.001). To our knowledge, this is the first study to report the plasma-RBC partitioning of CPs in human maternal and cord bloods, as well as the first study to evaluate TTEs based on whole blood concentrations. Our study confirmed that whole blood is the preferred matrix for accurately assessing human internal exposure and transplacental transfer of CPs.
Collapse
Affiliation(s)
- Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Wei Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region.
| | - Jiali Ge
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China
| | - Juan Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
40
|
Chen W, Yu M, Zhang Q, Hou X, Kong W, Wei L, Mao X, Liu J, Schnoor JL, Jiang G. Metabolism of SCCPs and MCCPs in Suspension Rice Cells Based on Paired Mass Distance (PMD) Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9990-9999. [PMID: 32600037 PMCID: PMC7703871 DOI: 10.1021/acs.est.0c01830] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) are mixtures of complex chemical compounds with intensive usage. They are frequently detected in various environmental samples. However, the interaction between CPs and plants, especially the biotransformation behaviors of CPs within plants, is poorly understood. In this study, 1,2,5,6,9,10-hexachlorodecane (CP-4, a typical standard of individual SCCP congeners) and 52%-MCCP (a commercial mixture standard of MCCPs with 52% chlorine content by mass) were selected as representative chemicals to explore the metabolic behaviors of SCCPs and MCCPs using suspension rice cell culture exposure systems. Both 79.53% and 40.70% of CP-4 and 52%-MCCP were metabolized by suspension rice cells, respectively. A complementary suspected screening strategy based on the pair mass distances (PMD) analysis algorithm was used to study the metabolism of CPs mediated by the plant cells. Forty and 25 metabolic products for CP-4 and 52%-MCCP, respectively, were identified, including (multi-) hydroxylation, dechlorination, -HCl- elimination metabolites, (hydroxylation-) sulfation, and glycosylation conjugates. Here, we propose a comprehensive metabolic molecular network and provide insight on degradation pathways of SCCPs and MCCPs in plants for the first time, aiding in further understanding of the transformation behaviors of CPs.
Collapse
Affiliation(s)
- Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Yu
- Department of Environmental Medical and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310008, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Mao
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310008, China
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310008, China
| |
Collapse
|
41
|
Lee S, Choo G, Ekpe OD, Kim J, Oh JE. Short-chain chlorinated paraffins in various foods from Republic of Korea: Levels, congener patterns, and human dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114520. [PMID: 32283402 DOI: 10.1016/j.envpol.2020.114520] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 05/22/2023]
Abstract
Short-chain chlorinated paraffin (SCCP) concentrations in 419 food samples (from 59 species) from Republic of Korea were determined. The SCCP concentrations and lipid contents in whole foods positively correlated and the highest SCCP concentration (891 ng/g wet weight) was observed in fats and oils. The SCCP concentrations were higher in benthic fish/shellfish and demersal fish than other fish and shellfish. The SCCP concentrations were higher in duck meat and eggs than meat and eggs of other species. The chlorine-based congener group patterns were related to the lipid contents of the foods. SCCPs in eggs (high lipid content) were dominated by more-chlorinated SCCPs (particularly Cl8-SCCPs, which contributed 43% of the total) but SCCPs in seaweed (low lipid content) were dominated by less-chlorinated SCCPs (particularly Cl6-SCCPs, which contributed 46%). Dietary SCCP intakes were calculated using the median SCCP concentrations and estimated 888 and 781 ng/kg/d for male and female Korean adults, respectively. The predominant contributing foods to SCCP dietary exposure differed according to sex and age. Dairy products contributed most (about 50%) for infants/children (1-5 y old), but meat and dairy products contributed most for adult males and females, respectively. Grain contributed most for ≥65 y old.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jongchul Kim
- School of Environmental Science and Engineering, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang, Kyungbuk, 790-784, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
42
|
Abstract
For the first time, transplants with moss-bags and mussels together were applied to study the water quality in standing water bodies. The tested species: Fontinalis antipyretica Hedw. and Sinanodonta woodiana (Lea, 1834) were collected from unpolluted sites and analyzed to obtain background levels. Then, the moss and mussels were left in cages for a period of 30 days in three reservoirs where both are not present naturally. Two of the reservoirs suffer from old industrial contamination and one is affected by untreated wastes. Twenty-four compounds were studied, among them trace elements Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn and organic priority substances: six polybrominated diphenyl ethers (PBDEs) congeners and short-chain chlorinated paraffins (SCCPs). The trace element accumulation was significant after the exposition period in all studied stations. PBDEs and SCCPs were also accumulated up to two times more in the moss tissues. PBDEs in the mussels exceeded the environmental quality standard (EQS). The applied combined transplants, and especially the moss-bags, revealed severe contamination with heavy metals not detected by the water samples. The moss and the mussel followed a different model of trace element and PBDEs accumulation. The SCCPs levels were alarmingly high in all plant samples. The study confirmed PBDEs and SCCPs as bioaccumulative compounds and suggested that an EQS for SCCPs in biota needs to be established.
Collapse
|
43
|
Li H, Gao S, Yang M, Zhang F, Cao L, Xie H, Chen X, Cai Z. Dietary exposure and risk assessment of short-chain chlorinated paraffins in supermarket fresh products in Jinan, China. CHEMOSPHERE 2020; 244:125393. [PMID: 31790997 DOI: 10.1016/j.chemosphere.2019.125393] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Dietary intake is the major route for the exposure of residents to short-chain chlorinated paraffins (SCCPs). SCCPs are classified as persistent organic pollutants (POPs) by the Stockholm Convention since May 2017. This study assessed the general population's dietary exposure to SCCPs through supermarket products. Five food categories, which included 40 food species, were collected from five supermarkets in April 2019. The SCCP concentrations in all food matrices varied between 58.6 and 1977 ng g-1 dry weight (dw), with the average and standard deviation (SD) value of 301 ± 379 ng g-1 dw. Generally, the SCCP concentrations in animal-origin food matrices were higher than those in plant-origin food matrices. The C10Cl7 congeners were predominant among the congener groups of SCCPs. The proportion of C10 congeners in the animal-origin food samples (29.8%) was lower than that in the plant-origin food samples (39.7%), and the C13 congeners showed a contrasting result. The estimated daily intake (EDI) of SCCPs through dietary intake for the residents was 3109 ng kg-1 day-1, which is much lower than the standards of European Food Safety Authority (10 mg kg-1 day-1) for SCCPs. Risk assessment based on the supermarket foods indicated that SCCP exposure through dietary intake does not cause adverse effects to human health according to the margin of exposure (MOE).
Collapse
Affiliation(s)
- Huijuan Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Shan Gao
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Limin Cao
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, China
| | - Hanyi Xie
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
44
|
Du X, Yuan B, Zhou Y, de Wit CA, Zheng Z, Yin G. Chlorinated Paraffins in Two Snake Species from the Yangtze River Delta: Tissue Distribution and Biomagnification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2753-2762. [PMID: 32036653 DOI: 10.1021/acs.est.9b06467] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Very-short, short-, medium-, and long-chain chlorinated paraffins (vSCCPs, SCCPs, MCCPs, and LCCPs, respectively) were analyzed in different tissues of the terrestrial short-tailed mamushi (Gloydius brevicaudus) and the semi-aquatic red-backed rat snake (Elaphe rufodorsata) from the Yangtze River Delta, China. The total CP concentrations in liver, muscle, and adipose tissues in the two snake species were in the range of 2500-24 000, 4900-48 000, and 12-630 ng/g lw, respectively. Tissue burdens indicated that vSCCPs (C6-9) and SCCPs (C10-13) preferentially distributed to snake liver, while adipose was an important storage site and sink of MCCPs (C14-17) and LCCPs (C>18). On a lipid weight basis, vSCCPs and SCCPs were found in highest concentrations in red-backed rat snake liver and MCCPs and LCCPs in muscle, whereas for short-tailed mamushi, all CP groups were predominant in muscle, probably reflecting ecosystem/food web differences. Moreover, vSCCPs, SCCPs, MCCPs, and LCCPs were found to be biomagnified from black-spotted frogs to red-backed rat snakes with mean (maximum) biomagnification factors of 2.2 (3.4), 1.9 (3.7), 1.8 (2.8), and 1.7 (4.5), respectively. This is the first field study of biomagnification potential involving vSCCPs and LCCPs and highlights the need to include all CPs in studies.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Ziye Zheng
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Ge Yin
- Shimadzu (China) Company, LTD, 200233 Shanghai, China
| |
Collapse
|
45
|
Li Y, Chen W, Kong W, Liu J, Schnoor JL, Jiang G. Transformation of 1,1,1,3,8,10,10,10-octachlorodecane in air phase increased by phytogenic volatile organic compounds of pumpkin seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135455. [PMID: 31791777 PMCID: PMC7029796 DOI: 10.1016/j.scitotenv.2019.135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 05/15/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are widely distributed persistent organic pollutants (POPs). Airborne chlorodecanes were hypothesized to be transformed by reactive phytogenic volatile organic compounds (PVOCs) in our previous work. To test this hypothesis, PVOCs of pumpkin (Cucurbita maxima x C. moschata) were collected and reacted with 1,1,1,3,8,10,10,10-octachlorodecane in the air phase of a sealed glass bottle under illumination for 10 days (reaction system I, simulating atmospheric reaction conditions with PVOCs). The reaction control group (reaction system II) was set at the same conditions but only had chlorodecane (without PVOCs) inside the bottle. Transformation of SCCPs in the air phase of reaction control group was unexpectedly found. Results showed that 1,1,1,3,8,10,10,10-octachlorodecane was transformed to a great extent to C10Cl5-8, C9Cl6-8, and C8Cl7-8 in the air phase after 10-d illumination in both with and without the presence of PVOCs, which is explained by carbon chain decomposition, dechlorination and chlorine rearrangement products of the parent SCCP. Those transformation processes were increased to some extent by the PVOCs from pumpkin seedlings. This study provides the first experimental data on atmospheric transformation of SCCPs and also the first evidence that plant emissions (PVOCs) can increase the transformation of SCCPs in air under light and experimental conditions. It provides new insight into the potential transformation and fate of CPs in the environment.
Collapse
Affiliation(s)
- Yanlin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Huang Y, Qing X, Jiang G, Chen L, He Q, Meng XZ, Gao B. Short-chain chlorinated paraffins in fish from two developed regions of China: Occurrence, influencing factors and implication for human exposure via consumption. CHEMOSPHERE 2019; 236:124317. [PMID: 31325827 DOI: 10.1016/j.chemosphere.2019.07.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 05/22/2023]
Abstract
The risk associated with human exposure to short-chain chlorinated paraffins (SCCPs) via dietary intake are of great concern because of the bioaccumulation potential of SCCPs in biota and adverse effects. Fish are an important food source for human beings. However, there is a paucity of studies on human exposure to SCCPs via fish consumption. In this study, SCCPs were measured in frequently consumed river fish from the Pearl River Delta, and farmed freshwater fish and wild sea fish from the Yangtze River Delta. Lipid-normalized SCCP levels in river fish ranged from 3000 to 41,000 ng/g lipid weight (lw), with an average of 16,000 ± 12,000 ng/g lw. SCCP concentrations in farmed fish were significantly lower than those in river fish (p < 0.05), but significantly higher than those in sea fish (p < 0.05). Homologue patterns of SCCPs in river fish, farmed fish and sea fish were similar, with C10-11Cl6-7 SCCPs being the predominant homologues. SCCP concentrations in river fish increased significantly with increasing lipid content (p < 0.01), indicating that lipid content was a controlling factor influencing SCCP concentrations. Body length and weight also played important roles in SCCP concentrations in river fish, as SCCP concentrations decreased with the increase of body length and weight of breams, keeled mullets and tilapias. Although risk assessment implied no significant risk for human exposure to SCCPs via consuming fish collected in this study, the estimated daily intakes indicated that the consumption of sea fish was safer than farmed freshwater fish.
Collapse
Affiliation(s)
- Yumei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China
| | - Xian Qing
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China
| | - Guo Jiang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China
| | - Laiguo Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China.
| | - Qiusheng He
- Coal Mining Safety and Coal Pollution Control Research Center, College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Bo Gao
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China
| |
Collapse
|
47
|
Gong Y, Zhang H, Geng N, Ren X, Giesy JP, Luo Y, Xing L, Wu P, Yu Z, Chen J. Short-chain chlorinated paraffins (SCCPs) disrupt hepatic fatty acid metabolism in liver of male rat via interacting with peroxisome proliferator-activated receptor α (PPARα). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:164-171. [PMID: 31185430 DOI: 10.1016/j.ecoenv.2019.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are frequently detected in environmental matrices and human tissues. It was hypothesized that SCCPs might interact with the peroxisome proliferator-activated receptor α (PPARα). In the present study, an in vitro, dual-luciferase reporter gene assay and in silico molecular docking analysis were employed together to study the interactions between SCCPs congeners and PPARα. Expressions of genes downstream in pathways activated by PPARα in liver of rats exposed to 1, 10, or 100 mg/kg bm/d of C10-13-CPs (56.5% Cl) for 28 days were examined to confirm activation potencies of SCCPs toward PPARα signaling. Effects of exposure to C10-13-CPs (56.5% Cl) on fatty acid metabolism in rat liver were also explored via a pseudo-targeted metabolomics strategy. Our results showed that C10-13-CPs (56.5% Cl) caused a dose-dependent greater expression of luciferase activity of rat PPARα. Molecular docking modeling revealed that SCCPs had a strong capacity to bind with PPARα only through hydrophobic interactions and the binding affinity was dependent on the degree of chlorination in SCCPs congeners. In livers of male rats, exposure to 100 mg/kg bm/d of C10-13-CPs (56.5% Cl) resulted in up-regulated expressions of 11 genes that are downstream in the PPARα-activated pathway and regulate catabolism of fatty acid. Consistently, accelerated fatty acid oxidation was observed mainly characterized by lesser concentrations of ∑fatty acids in livers of rats. Overall, these results demonstrated, for the first time, that SCCPs could activate rat PPARα signaling and thereby disrupt metabolism of fatty acid in livers of male rats.
Collapse
Affiliation(s)
- Yufeng Gong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Xiaoqian Ren
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon SK, S7N 5B4, Saskatchewan, Canada; Department of Environmental Science, Baylor University, Waco TX, 76706, Texas, United States
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liguo Xing
- Safety Evaluation Center of Shenyang Research Institute of Chemical Industry Ltd, Shenyang, 110021, Liaoning, China
| | - Ping Wu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Zhengkun Yu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| |
Collapse
|
48
|
Yang X, Zhang B, Gao Y, Chen Y, Yin D, Xu T. The chlorine contents and chain lengths influence the neurobehavioral effects of commercial chlorinated paraffins on zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:172-178. [PMID: 31158586 DOI: 10.1016/j.jhazmat.2019.05.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 05/26/2023]
Abstract
Increasing concern has arisen regarding ubiquitous environmental distribution and potential ecological and health risks of chlorinated paraffins (CPs), especially short chain congeners. Four commercial CP products with different carbon chain lengths and chlorine contents were employed to investigate and compare the possible neurotoxic effects on zebrafish larvae at 5 days post fertilization using behavioral tests, including locomotion, path angle, and two-fish social interaction. The high-chlorinated short-chain CP-70 product resulted in the strongest effects in all three tests, while the low-chlorinated long-chain CP-42 product was on the other end of the spectrum. The consequences of the chain length of two CP-52 products could be clearly distinguished by the tests. Although exposure to the two products both caused inhibition in the locomotion test, they resulted in different kinds of effects in the path angle and interaction tests. Our results suggested, as evidenced by the sensitivity and resolution of the behavioral tests, that the influence of the chain length and chlorine content of CPs could be well characterized and that chlorine content consistently showed a more significant impact than chain length. The health threats of long-chain CPs could also not be overlooked when they contained relatively high chlorine contents.
Collapse
Affiliation(s)
- Xinyue Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 200092, PR China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
49
|
Li H, Bu D, Fu J, Gao Y, Cong Z, Zhang G, Wang Y, Chen X, Zhang A, Jiang G. Trophic Dilution of Short-Chain Chlorinated Paraffins in a Plant-Plateau Pika-Eagle Food Chain from the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9472-9480. [PMID: 31310123 DOI: 10.1021/acs.est.9b00858] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Little is currently known about the trophic transfer behavior of short-chain chlorinated paraffins (SCCPs) in terrestrial ecosystems. The trophodynamics of SCCPs were investigated in a typical terrestrial food chain (plant-plateau pika-eagle) from the interior of the Tibetan Plateau with an altitude of 4730 m. Pervasive contamination by SCCPs was found in the Tibetan Plateau samples, and the average concentrations of SCCPs in soil, plant, plateau pika, eagle, and gut content of eagle samples were 81.6 ± 31.1, 173 ± 70.3, 258 ± 126, 108 ± 59.6, and 268 ± 93.9 ng/g (average ± standard deviation, dry weight, dw), respectively. The trophic magnification factor (TMF) of SCCPs was 0.37, implying the trophic dilution of SCCPs in this terrestrial food chain. The TMF values of individual congener groups were positively correlated with the values of log Kow, log Koa and biotransformation half-life. As a result of long-range transport, SCCPs congeners with low molecular weight dominated in Tibetan Plateau species (C10+11 congeners = 76.9%, Cl5+6+7 congeners = 71.5%), which could partly explain the low biomagnification factors (BMFs) of SCCPs in the Tibetan Plateau.
Collapse
Affiliation(s)
- Huijuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument , Qilu University of Technology (Shandong Academy of Science) , Jinan 250014 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Duo Bu
- Department of Chemistry & Environmental Science , Tibet University , Lhasa 850000 , China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Yan Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
| | - Guoshuai Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument , Qilu University of Technology (Shandong Academy of Science) , Jinan 250014 , China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
50
|
Du B, Ge J, Yang R, Han X, Chen H, Li J, Zeng L. Altitude-dependent accumulation of short chain chlorinated paraffins in fish from alpine lakes and Lhasa river on the Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:594-600. [PMID: 31026708 DOI: 10.1016/j.envpol.2019.04.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
High mountain cold-trapping effects can play important roles in the global long-range transport of persistent organic pollutants (POPs). Short chain chlorinated paraffins (SCCPs) have recently been included into the Stockholm Convention as a new class of POPs. However, the long-range transport behavior and environmental fate of SCCPs still remain largely unknown in high-altitude mountain areas. In this study, a total of 51 fish samples were collected from five high-altitude mountain lakes and Lasha river across the Tibetan Plateau. SCCPs were positively detected in all fish samples, and the concentrations ranged from 3.9 to 107 ng g-1 dry weight (dw) with an average of 26.6 ng g-1 dw. Compared to aquatic organisms from the Artic and Antarctica, the SCCP levels found in alpine fish from the Tibetan Plateau were lower. A significant increasing trend in accumulation levels of SCCPs in alpine fish with the increasing altitude was found on the Tibetan Plateau (r = 0.98, p < 0.001). Shorter chain congener group C10 showed a significant increase in percentage contribution to total SCCPs with increasing altitude, but a contrary tendency was found for longer chain congener group C13. The widespread occurrence of SCCPs in Tibetan fish was mainly sourced from the long-range atmospheric transport, and the altitude-dependent distribution of SCCPs was due to the mountain cold-trapping effects and potential susceptibility to bioaccumulation. To our knowledge, this is the first report regarding the altitude-dependent accumulation of SCCPs in biota in the polar environment.
Collapse
Affiliation(s)
- Bibai Du
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Jiali Ge
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xu Han
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Hui Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Juan Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Lixi Zeng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|