1
|
Stead JL, de Souza Leite L, Bond T. Gradient columns to measure the density of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176176. [PMID: 39260502 DOI: 10.1016/j.scitotenv.2024.176176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Density gradient columns are an established industrial method for measuring the density of plastics, but have rarely been applied to environmental plastics. In this study 14 density gradient columns were used to measure the density of 150 environmental plastics particles from an urban beach, plus 100 microplastics of known identity, representing what is believed to be the most extensive density dataset for environmental plastic debris available in scientific literature. In total, 92 % of investigated particles had their density measured, with the remainder falling outside of the range of the density columns: 800-1418 kg·m-3. Error values for individual plastic particles were conservatively estimated as ≤0.27 kg·m-3, equating to the density difference associated with a distance of 1 mm in the density gradient column. Moreover, error values for plastics of known identity, based on the standard deviation of five different particles of the same polymer type, were generally low, ≤± 1.78 kg·m-3 for 75 % of polymers. The most notable exception was crumb rubber from used tyres, with a density of 1204.84 ± 105.87 kg·m-3, reflecting a heterogenous material. The majority of environmental plastics were polyethylene pellets, with densities from 823.47 to 1143.47 kg·m-3, a much wider range than reported in literature for this polymer. The densest environmental pellet was biologically attached to a stone-like particle. Otherwise, there was no evidence that environmental processing, in the form of biofilm growth or weathering, was driving variability in density. Most pellets with extremely high or low density were coloured, indicating that additives or impurities introduced during manufacturing altered the density of the virgin resin. Overall, density gradient columns show great promise for improving our knowledge of microplastic density. They represent an accurate and efficient high-throughput method, which can measure the density of ∼40 microplastics simultaneously over relatively short time periods.
Collapse
Affiliation(s)
- Jessica L Stead
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Luan de Souza Leite
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos 13566-59, São Paulo, Brazil
| | - Tom Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
2
|
Tarte JV, Johir MAH, Tra VT, Cai Z, Wang Q, Nghiem LD. Optimising microplastics analysis for quantifying and identifying microplastic fibres in laundry wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175907. [PMID: 39218097 DOI: 10.1016/j.scitotenv.2024.175907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Current methods for measuring microplastic fibres (MPF) are cumbersome, time consuming and unscalable for routine high throughput analysis. This study reports a method for rapidly extracting, quantifying and analysing MPFs in laundry wastewater with several key improvements which vastly enhance overall efficiency and scalability of analysis. FT-IR surveying is employed as a preliminary step in analysis to quickly determine what polymers are present in a sample prior to fluorescence treatment. Using random quadrating, whole 25 mm filter membranes were surveyed in <30 min with high recovery rates. In industrial laundry wastewater samples, polyester was the most common MPF, however acrylic, nylon, cotton and rayon were all ubiquitous. The study also demonstrates that an excitation wavelength of 365 nm was optimal for fluorescing PET fibres like polyester which were stained with Nile Red, but not 495 nm, which is commonly used in microplastic analysis. Finally, a custom ImageJ macro was written to automatically enumerate and describe MPFs on filter membranes using just a single stitched fluorescence image. In just a few seconds, concentrations of up to 40,000 fibres/L were analysed in industrial laundry wastewater samples with a lower particle size limit of 20 μm. This study highlights the need for more optimised and scalable analysis workflows which maintain high levels of reliability and accuracy.
Collapse
Affiliation(s)
- James V Tarte
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Van-Tung Tra
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Zhengqing Cai
- National Engineering Research Centre of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
3
|
Ko K, Chung H. Fluorescence microfluidic system for real-time monitoring of PS and PVC sub-micron microplastics under flowing conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175016. [PMID: 39059645 DOI: 10.1016/j.scitotenv.2024.175016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Plastics, recognized for their convenience, disposability, and recyclability, have emerged as a significant ecological challenge, particularly with the prevalence of microplastics (MPs, 1 μm - 5 mm) and sub-micron MPs (100 - 1000 nm) in natural environments. While extensive research has focused on their occurrence and environmental impacts, quantification methods developed for MPs exhibit limitations when applied to sub-micron MPs due to their smaller size. This study addresses these limitations by introducing a novel monitoring system that integrates fluorescence labeling with a microfluidic device and particle tracking software, enabling automated quantification and size measurement of both spherical and fragmented MPs of size in the sub-micrometer range. Results showed that the developed system enabled fast quantification and size measurement of 500- and 1000-nm polystyrene (PS) sub-micron MP beads and fragmented PS and polyvinyl chloride (PVC) sub-micron MPs. Additionally, fluorescence labeling enabled the real-time discrimination of PS and PVC sub-micron MPs. Lastly, the microfluidic system allowed the monitoring of sub-micron MPs within a small quantity of water samples. This automated system has a high potential for swift and real-time monitoring of sub-micron MPs in the environment. By enhancing our ability to detect and quantify sub-micron MPs, this study contributes to a more comprehensive understanding of their presence and distribution in environmental systems.
Collapse
Affiliation(s)
- Kwanyoung Ko
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Haegeun Chung
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Xue Q, Yu G, Lu F, Dong Y. Fluorescent labelling combined with confocal differential Raman spectroscopy to detect microplastics in seawater. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124591. [PMID: 38850818 DOI: 10.1016/j.saa.2024.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
As an emerging marine pollutant, microplastics represent a focal point in global monitoring and management efforts. With seawater accounts for 97 % of the total global water resources, scientific assessments of microplastics in seawater are crucial for pollution control and management of marine environments. This study focuses on investigating microplastics in near-shore seawater and proposes a rapid and accurate detection method using a constructed confocal Raman spectroscopy detection system. By optimizing the pretreatment process of seawater microplastic samples, the efficient removal of organic matter interference in microplastic detection is achieved. Employing fluorescent labeling addresses the issues of prolonged detection time and high false positive rates associated with traditional methods, enabling rapid differentiation between microplastics and other substances and significantly enhancing detection efficiency and accuracy. Additionally, the use of differential Raman spectroscopy effectively mitigates fluorescence signal interference, thus improving the signal-to-noise ratio of the spectra. By employing dual-wavelength laser excitation at 784 nm/785 nm, microplastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS) ranging in size from 60 to 500 μm are successfully detected in seawater. The results demonstrate that the proposed pretreatment method for seawater microplastics and novel detection techniques enable rapid screening and comprehensive non-destructive detection of microplastics in seawater, thereby facilitating the characterization of marine microplastics and providing scientific support for enhancing the management of microplastic pollution and ecological risk control.
Collapse
Affiliation(s)
- Qingsheng Xue
- College of Physics and Optoelectronic Engineering, Department of Information Science and Engineering, Ocean University of China Qingdao, Shandong 266100, China; Laboratory for Regional Oceanography and Numerical Modeling, Qingdao Marine Science and Technology Center, 266200 Qingdao, Shangdong Province, China; Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Qingdao 266100, China.
| | - Guiting Yu
- College of Physics and Optoelectronic Engineering, Department of Information Science and Engineering, Ocean University of China Qingdao, Shandong 266100, China; Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Qingdao 266100, China
| | - Fengqin Lu
- College of Physics and Optoelectronic Engineering, Department of Information Science and Engineering, Ocean University of China Qingdao, Shandong 266100, China; Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Qingdao 266100, China; Basic Teaching Center, Ocean University of China, Qingdao 266100, China
| | - Yang Dong
- College of Physics and Optoelectronic Engineering, Department of Information Science and Engineering, Ocean University of China Qingdao, Shandong 266100, China; Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Qingdao 266100, China
| |
Collapse
|
5
|
Wu Z, Janssen SE, Tate MT, Wei H, Qin M. Adaptable Plasmonic Membrane Sensors for Fast and Reliable Detection of Trace Low-Micrometer Microplastics in Lake Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39471153 DOI: 10.1021/acs.est.4c06503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In freshwater environments, low-micrometer microplastics (LMMPs) have captured significant attention due to their prevalence and toxicity. Yet, rapid detection of LMMPs (1-10 μm) at the single-particle level within complex freshwater matrices remains a hurdle. We developed an adaptable plasmonic membrane sensor for fast detection of individual LMMPs in eutrophic lake waters. The plasmonic membrane sensor functions both as a membrane filter and as a sensor for LMMP collection and analysis. Among the four types of membrane sensors, polycarbonate track-etch (PCTE) membrane sensors exhibit superior imaging quality for LMMPs due to their flat and homogeneous surfaces. Besides the significantly improved imaging contrast and reduced background interferences, the Raman intensity of LMMPs is enhanced by 48% ± 25% on PCTE membrane sensors compared to unmodified membranes. The increased Raman intensities of a chemical probe with an increasing gold layer thickness and a decreasing membrane pore size suggest a surface-enhanced Raman scattering effect from the membrane sensors. The membrane sensors achieve a detection limit of 1 μg/L and an ultrafast scanning time of 0.01 s for individual LMMPs across natural eutrophic lake water. The developed membrane sensors offer an adaptable tool for the swift and reliable detection of individual LMMPs in complex environmental matrices.
Collapse
Affiliation(s)
- Ziyan Wu
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sarah E Janssen
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin 53726, United States
| | - Michael T Tate
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin 53726, United States
| | - Haoran Wei
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mohan Qin
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
LaRue RJ, Koo S, Warren A, McKay YG, Latulippe DR. A Strategy for Quantifying Microplastic Particles in Membrane Filtration Processes using Flow Cytometry. CHEMOSPHERE 2024:143613. [PMID: 39454767 DOI: 10.1016/j.chemosphere.2024.143613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Microplastic (MP) pollution is ubiquitous in the aquatic environment, with significant quantities of MPs originating from municipal wastewater treatment plants. Efforts to evaluate and implement MP removal processes are underway, with membrane technologies often recommended as an "ideal" solution. A key challenge in evaluating these technologies involves efficiently quantifying MP concentrations in samples. Here, flow cytometry (FC) is demonstrated as an effective technique to obtain concentration measurements of plastic microbeads (MBs; 1-5 μm) suspended in water with/without added humic acid. Regardless of solution conditions, MB concentrations were easily quantified via FC. Subsequently, two microfiltration membranes were challenged to these suspensions. As measured via FC, the 0.45 μm membrane demonstrated effective MB rejection (>99%) whereas the 5 μm membrane exhibited a broad range of rejections (40% to >95%) depending on solution conditions and filtration time. Finally, a model was formulated utilizing FC forward light scattering intensity measurements to estimate MB sizes in samples. Using the model, a 33% reduction in median MB size, on average, was noted across the 5 μm membrane when filtering MBs suspended in humic acid solution, affirming a preferential permeation of smaller particles. Overall, this study advances MP quantification techniques towards validating removal processes.
Collapse
Affiliation(s)
- Ryan J LaRue
- McMaster University Department of Chemical Engineering, Hamilton, ON.
| | - Samuel Koo
- McMaster University Department of Chemical Engineering, Hamilton, ON.
| | - Ashleigh Warren
- McMaster University Department of Chemical Engineering, Hamilton, ON.
| | - Yves G McKay
- McMaster University Department of Chemical Engineering, Hamilton, ON.
| | - David R Latulippe
- McMaster University Department of Chemical Engineering, Hamilton, ON.
| |
Collapse
|
7
|
Jia M, Farid MU, Ho YW, Ma X, Wong PW, Nah T, He Y, Boey MW, Lu G, Fang JKH, Fan J, An AK. Advanced nanobubble flotation for enhanced removal of sub-10 µm microplastics from wastewater. Nat Commun 2024; 15:9079. [PMID: 39433744 PMCID: PMC11493987 DOI: 10.1038/s41467-024-53304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Sub-10 µm microplastics (MPs) in aquatic environments pose significant ecological and health risks due to their mobility and potential to carry harmful microcontaminants. Our effluent analysis from a Hong Kong Sewage Treatment Works shows that traditional treatment often fails to effectively remove these MPs. These small-sized MPs are commonly neglected due to challenges in accurate quantification, analysis, and removal. This study introduces a nanobubble-assisted flotation process that enhances the removal efficiency of both regular and irregular small-sized MPs from wastewater. The proposed process outperforms the traditional flotation process by fostering a more effective interaction between bubbles and MPs, increasing removal rates of MPs from 1 µm to 10 µm by up to 12% and providing a total efficiency boost of up to 17% for various particle sizes. Improvements are attributed to enhanced collision and adhesion probabilities, hydrophobic interactions, as well as better floc flotation. Supported by empirical evidence, mathematical models, and Molecular Dynamics simulations, this research elucidates the nanoscale mechanisms at play. The findings confirm the nanobubble-assisted flotation technique as an innovative and practical approach to removing sub-10 µm MPs in water treatment processes.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Yuen-Wa Ho
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong SAR, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Theodora Nah
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Min Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Gang Lu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
8
|
Kushwaha M, Shankar S, Goel D, Singh S, Rahul J, Rachna K, Singh J. Microplastics pollution in the marine environment: A review of sources, impacts and mitigation. MARINE POLLUTION BULLETIN 2024; 209:117109. [PMID: 39413476 DOI: 10.1016/j.marpolbul.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Over the past few years, microplastics (MPs) pollution in the marine environment has emerged as a significant environmental concern. Poor management practices lead to millions of tons of plastic waste entering oceans annually, primarily from land-based sources like mismanaged waste, urban runoff, and industrial activities. MPs pollution in marine environments poses a significant threat to ecosystems and human health, as it adsorbs pollutants, heavy metals, and leaches additives such as plasticizers and flame retardants, thus contributing to chemical pollution. The review article provides a comprehensive overview of MPs pollution, its sources, and impacts on marine environments, including human health, detection techniques, and strategies for mitigating microplastic contamination in marine environments. The paper provides current information on microplastic pollution in marine environments, offering insights for researchers, policymakers, and the public, as well as promoting sustainable practices to protect the environment.
Collapse
Affiliation(s)
- Manzari Kushwaha
- Department of Applied Chemistry, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shiv Shankar
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India.
| | - Divya Goel
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shailja Singh
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow - 226025, India
| | - Jitin Rahul
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Km Rachna
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Jaspal Singh
- Department of Environmental Science, Bareilly College, Bareilly- 243001, Uttar Pradesh, India
| |
Collapse
|
9
|
Huang Y, Laghrissi A, Fiutowski J, Hedegaard MAB, Duan X, Wang X, Helal M, Rubahn HG, Holbech H, Hardiman G, Xu X, Xu EG. Million Microfiber Releases: Comparing Washable and Disposable Face Masks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17874-17885. [PMID: 39255065 DOI: 10.1021/acs.est.4c03601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The extensive use of single-use or disposable face masks has raised environmental concerns related to microfiber contamination. In contrast, research on the potential release and ecological impact of microfibers from washable masks (WMs), suggested as an eco-friendly alternative, is currently lacking. Here, we comprehensively investigated the release of microfibers from disposable and WMs of different types in simulated aquatic environments and real-life scenarios, including shaking, disinfection, hand washing, and machine washing. Using a combination of wide-field fluorescence microscopy, He-ion microscopy, and confocal μ-Raman spectroscopy, we revealed that disposable masks (DMs) released microfibers ranging from 18 to 3042 microfiber/piece, whereas WMs released 6.1 × 104-6.7 × 106 microfibers/piece depending on the simulated conditions above. Another noteworthy finding was the observed negative correlation between microfiber release and the proportion of reinforcement (embossing) on the DM surfaces. Microfibers from tested DMs primarily comprised polypropylene (PP), while WMs predominantly released poly(ethylene terephthalate) (PET) and cellulose microfibers. Furthermore, acute toxicological analyses unveiled that PP microfibers (0.01-50 mg/L) from DMs impacted zebrafish larval swimming behavior, while PET microfibers from WMs delayed early-stage zebrafish hatching. This study offers new insights into the source of microfiber contamination and raises concerns about the environmental implications linked to the use of washable face masks.
Collapse
Affiliation(s)
- Yuyue Huang
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Ayoub Laghrissi
- NanoSyd, University of Southern Denmark, Sønderborg 6400, Denmark
| | - Jacek Fiutowski
- NanoSyd, University of Southern Denmark, Sønderborg 6400, Denmark
| | - Martin A B Hedegaard
- Department of Green Technology, University of Southern Denmark, Odense 5230, Denmark
| | - Xiaoyu Duan
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Xin Wang
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Mohamed Helal
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | | | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, BT7 1NN Northern Ireland, U.K
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
10
|
Ermolin MS, Savonina EY, Katasonova ON, Ivaneev AI, Maryutina TA, Fedotov PS. Continuous-flow separation and preconcentration of microplastics from natural waters using countercurrent chromatography. Talanta 2024; 278:126504. [PMID: 38986309 DOI: 10.1016/j.talanta.2024.126504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Microplastics is known to be ubiquitous in aquatic environment. Quantification of microplastics in natural waters is an important problem of analytical chemistry, the solution of which is needed for the assessment of water quality and potential risks for water inhabitants and consumers. Separation methods play a key role in the correct quantification of microplastics in natural waters. In the present study the applicability of countercurrent chromatography to the continuous-flow separation and preconcentration of microplastics from water samples in rotating coiled column (RCC) using water-oil systems has been demonstrated for the first time. The effect of column rotation speed and mobile phase (water) flow rate on the retention of the stationary (oil) phase in RCC is studied. The retention parameters of 10 vegetable and 2 synthetic oils are determined. Castor, olive, rapeseed, soybean, linseed, sesame, and sunflower oils are found to be applicable to the separation of microplastics from water samples using RCC. Taking as example polyethylene microparticles of different size (40-63, 63-100, and 100-250 μm), the high recovery of microplastics (about 100 %) from aqueous phase into castor and rapeseed oils is shown. The method has been proven to be efficient for the separation of microplastics from simulated fresh and sea natural waters. It may be perspective not only for the quantification of microplastics in natural waters but as well as for the purification of wastewaters containing microplastics.
Collapse
Affiliation(s)
- Mikhail S Ermolin
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, 119991 Moscow, Russia.
| | - Elena Yu Savonina
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, 119991 Moscow, Russia
| | - Olesya N Katasonova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, 119991 Moscow, Russia
| | - Alexandr I Ivaneev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, 119991 Moscow, Russia
| | - Tatiana A Maryutina
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, 119991 Moscow, Russia
| | - Petr S Fedotov
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, 119991 Moscow, Russia
| |
Collapse
|
11
|
Mercedi A, Gentili G, Poli V, Philipp C, Rosso B, Lavagnolo MC, Hallanger I, Corami F, Meneghetti M, Litti L. Selective Labeling of Small Microplastics with SERS-Tags Based on Gold Nanostars: Method Optimization Using Polystyrene Beads and Application in Environmental Samples. ACS OMEGA 2024; 9:40821-40831. [PMID: 39371984 PMCID: PMC11447870 DOI: 10.1021/acsomega.4c05693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
Microplastics pollution is being unanimously recognized as a global concern in all environments. Routine analysis protocols foresee that samples, which are supposed to contain up to hundreds of microplastics, are eventually collected on nanoporous filters and inspected by microspectroscopy techniques like micro-FTIR or micro-Raman. All particles, whether made of plastic or not, must be inspected one by one to detect and count microplastics. This makes it extremely time-consuming, especially when Raman is adopted, and indeed mandatory for the small microplastic fraction. Inspired by the principles of cell labeling, the present study represents the first report in which gold nanostars (AuNS) are functionalized to act as SERS-tags and used to selectively couple to microplastics. The intrinsic bright signals provided by the SERS-tags are used to run a quick scan over a wide filter area with roughly 2 orders of magnitude shorter analysis time in respect of state of the art in micro- and nanoplastics detection by μ-Raman. The applicability of the present protocol has been validated at the proof-of-concept level on both fabricated and real offshore marine samples. It is indeed worth mentioning that a SERS-based approach is herein successfully applied on filters and protocols routinely adopted in environmental microplastics monitoring, paving the way for future implementations and applications.
Collapse
Affiliation(s)
- Anna Mercedi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giulia Gentili
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Valentina Poli
- DICEA,
Department of Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | | | - Beatrice Rosso
- Institute
of Polar Sciences, CNR-ISP, Campus Scientifico, Via Torino 155, 30172 Venezia-Mestre, Italy
- Department
of Environmental Sciences, Informatics, and Statistics, DAIS, Campus
Scientifico, Ca’Foscari University
of Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Maria Cristina Lavagnolo
- DICEA,
Department of Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | | | - Fabiana Corami
- Institute
of Polar Sciences, CNR-ISP, Campus Scientifico, Via Torino 155, 30172 Venezia-Mestre, Italy
- Department
of Environmental Sciences, Informatics, and Statistics, DAIS, Campus
Scientifico, Ca’Foscari University
of Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Moreno Meneghetti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Lucio Litti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
12
|
Skalska K, Ockelford A, Ebdon J, Cundy A, Horton AA. Spatio-temporal trends in microplastic presence in the sediments of the River Thames catchment (UK). MARINE POLLUTION BULLETIN 2024; 207:116881. [PMID: 39236492 DOI: 10.1016/j.marpolbul.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
This study investigated the spatio-temporal variability of microplastics (MPs) in the sediments of the River Thames (UK) catchment over 30 months (July 2019 - Dec 2021). The average MP concentration was 61 items kg-1 d.w., with fragments <1 mm being dominant and polyethylene (PE) the most common polymer. Adjacent land use influenced MP concentrations and types, with industrial sites showing particularly high levels and a prevalence of small beads and industrial polymers. MP concentrations generally decreased after higher winter flows, likely due to sediment rearrangement or winnowing. This study describes the seasonal concentrations and characteristics of MPs present in sediment from the River Thames catchment, and attempts to identify their likely origin. Further, the study provides new insights into the mobility and fate of MPs in riverine settings under varying flow conditions, which is vital given the predicted increases in flooding under various global heating scenarios.
Collapse
Affiliation(s)
- Karolina Skalska
- School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, UK; Environment Agency, Guildbourne Centre, Chatsworth Rd, Worthing, UK
| | - Annie Ockelford
- School of Engineering, University of Liverpool, Liverpool, UK
| | - James Ebdon
- School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, UK.
| | - Andrew Cundy
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, UK
| | - Alice A Horton
- National Oceanography Centre, European Way, Southampton, UK
| |
Collapse
|
13
|
Pawak VS, Bhatt VK, Sabapathy M, Loganathan VA. Multifaceted analysis of microplastic pollution dynamics in the Yamuna river: Assessing anthropogenic impacts and ecological consequences. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135976. [PMID: 39369675 DOI: 10.1016/j.jhazmat.2024.135976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Microplastics (MPs) are pervasive contaminants that pose significant ecological and human health risks, emerging as one of the most widespread anthropogenic pollutants in natural environments. This study investigates the abundance, characteristics, and distribution of microplastics (MPs) in the Yamuna River, encompassing 29 sampling points across urban, rural, and industrial zones in and around Delhi, Mathura, Haryana, and Agra. Microplastics were identified and quantified using Nile red dye staining and Micro-Raman spectroscopy, with particle size distribution predominantly between 2 μm to 80 μm and the largest detected particle measuring 256.5 μm. The average MPs concentration was 14,717 ± 4444 L-1, with a significant abundance of hazardous polymers such as polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). The study found that MPs were predominantly fragments and films (65.6 %) and fibers (30.6 %), with transparent particles being the most prevalent. The Pollution Load Index (PLI) consistently indicated high-risk levels (PLI > 100) at all sampling sites, highlighting substantial MP contamination. These results underscore the urgent need for continuous monitoring and the development of robust management strategies to address microplastic pollution in the Yamuna River. This study provides valuable insights into MPs spatial distribution and persistence, contributing to an improved understanding of their environmental impacts and guiding future mitigation and regulatory efforts.
Collapse
Affiliation(s)
- Vishal Singh Pawak
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Vinod K Bhatt
- Atulya Ganga Trust, Gurugram, 122009, Haryana, India
| | - Manigandan Sabapathy
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India; The Centre of Research for Energy Efficiency and Decarbonization (CREED), Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab.
| | - Vijay A Loganathan
- Department of Civil Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| |
Collapse
|
14
|
Kang A, Luo Y, Luo Q, Li S, Tang Y, Yi F, Zhang H, Chen Y, Jia M, Xiong W, Yang Z, Xu H. An investigation into the aging mechanism of disposable face masks and the interaction between different influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135308. [PMID: 39053070 DOI: 10.1016/j.jhazmat.2024.135308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the natural environment, a symphony of environmental factors including sunlight exposure, current fluctuations, sodium chloride concentrations, and sediment dynamics intertwine, potentially magnifying the impacts on the aging process of disposable face masks (DFMs), thus escalating environmental risks. Employing Regular Two-Level Factorial Design, the study scrutinized interactive impacts of ultraviolet radiation, sand abrasion, acetic acid exposure, sodium chloride levels, and mechanical agitation on mask aging. Aging mechanisms and environmental risks linked with DFMs were elucidated through two-dimensional correlation analyses and risk index method. Following a simulated aging duration of three months, a single mask exhibited the propensity to release a substantial quantity of microplastics, ranging from 38,800 ± 360 to 938,400 ± 529 particles, and heavy metals, with concentrations from 0.06 ± 0.02 μg/g (Pb) to 29.01 ± 1.83 μg/g (Zn). Besides, specific contaminants such as zinc ions (24.24 μg/g), chromium (VI) (4.20 μg/g), thallium (I) (0.92 μg/g), tetracycline (0.51 μg/g), and acenaphthene (1.73 μg/g) can be adsorbed significantly by aged masks. The study elucidates pivotal role of interactions between ultraviolet radiation and acetic acid exposure in exacerbating the environmental risks associated with masks, while emphasizing the pronounced influence of many other interactions. The research provides a comprehensive understanding of the intricate aging processes and ensuing environmental risks posed by DFMs, offering valuable insights essential for developing sustainable management strategies in aquatic ecosystems.
Collapse
Affiliation(s)
- Anqi Kang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuanling Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Environmental Protection College, Changsha 410004, China.
| | - Qiao Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siyu Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fan Yi
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yalin Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Meiying Jia
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Haiyin Xu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
15
|
Zhao B, Richardson RE, You F. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135329. [PMID: 39088945 DOI: 10.1016/j.jhazmat.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Bu Zhao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fengqi You
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Systems Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Wang C, Zhang Y, Wang C, He M. Enhancing aggregation of microalgae on polystyrene microplastics by high light: Processes, drivers, and environmental risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135062. [PMID: 38959831 DOI: 10.1016/j.jhazmat.2024.135062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Microplastics (MPs) are emerging pollutants, causing potential threats to aquatic ecosystems and serious concern in aggregating with microalgae (critical primary producers). When entering water bodies, MPs are expected to sink below the water surface and disperse into varying water compartments with different light intensities. However, how light influences the aggregation processes of algal cells onto MPs and the associated molecular coupling mechanisms and derivative risks remain poorly understood. Herein, we investigated the aggregation behavior between polystyrene microplastics (mPS, 10 µm) and Chlorella pyrenoidosa under low (LL, 15 μmol·m-2·s-1), normal (NL, 55 μmol·m-2·s-1), and high light (HL, 150 μmol·m-2·s-1) conditions from integrated in vivo and in silico assays. The results indicated that under LL, the mPS particles primarily existed independently, whereas under NL and HL, C. pyrenoidosa tightly bounded to mPS by secreting more protein-rich extracellular polymeric substances. Infrared spectroscopy analysis and density functional theory calculation revealed that the aggregation formation was driven by non-covalent interaction involving van der Waals force and hydrogen bond. These processes subsequently enhanced the deposition and adherence capacity of mPS and relieved its phytotoxicity. Overall, our findings advance the practical and theoretical understanding of the ecological impacts of MPs in complex aquatic environments.
Collapse
Affiliation(s)
- Chun Wang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yaru Zhang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China.
| | - Meilin He
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Li D, Liu C, Leng P, Wang X, Feng J, Liu J, Liu G, Xu C. A study on the effect of fluorescently stained micro(nano)plastics on the full life history of Skeletonema costatum. CHEMOSPHERE 2024; 364:143110. [PMID: 39151587 DOI: 10.1016/j.chemosphere.2024.143110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
As a new type of environmental pollutant, micro(nano)plastics have become a research hotspot in recent years, and their effects on the full life history of marine microalgae have not been studied. To investigate the effects of micro(nano)plastics on the growth, photosynthesis, physiological morphology and interaction of microalgae during the full life cycle, we selected fluorescently stained polystyrene (PS) plastic microbeads as the target pollutant. By sampling and testing the growth rate, photosynthesis and physiological morphology parameters of algal species, the influence of different concentrations of PS (10, 50 and 100 mg/L) and different particle sizes (0.1, 0.5 and 1 μm) on the full life history of Skeletonema costatum (S. costatum) was investigated. The results showed that after adding PS (particle sizes of 0.5 and 1 μm), the response of S. costatum showed a dual character, while adding the same kind of microplastics (MPs) with a particle size of 0.1 μm inhibited S. costatum throughout the full life cycle. Compared with previous studies, short-term experimental data may overestimate the true ecological risks of MPs. In addition, 0.1 μm fluorescent-stained MPs obviously accumulated around the microalgae, indicating that MPs mainly adhered to the surface of algal cells and may enter the food chain by direct or indirect ways, which can cause negative effects on the aquatic ecosystem. This study supports a more accurate assessment of the true risk of MPs to marine aquatic ecosystems.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Chengyin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Panchuan Leng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Xin Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Jie Feng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Jing Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Guo Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Chunyang Xu
- College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
18
|
Morgan SE, DeLouise LA. Assessing bioactivity of environmental water samples filtered using nanomembrane technology and mammalian cell lines. ECO-ENVIRONMENT & HEALTH 2024; 3:347-354. [PMID: 39281073 PMCID: PMC11400607 DOI: 10.1016/j.eehl.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 09/18/2024]
Abstract
This project reports on the use of a novel nanomembrane filtering technology to isolate and analyze the bioactivity of microplastic (MP)-containing debris from Lake Ontario water samples. Environmental MPs are a complex mixture of polymers and sorbed chemicals that are persistent and can exhibit a wide range of toxic effects. Since human exposure to MPs is unavoidable, it is necessary to characterize their bioactivity to assess potential health risks. This work seeks to quantify MP presence in the nearshore waters of Lake Ontario and begin to characterize the bioactivity of the filtrate containing MPs. We utilized silicon nitride (SiN) nanomembrane technology to isolate debris sized between 8 and 20 μm from lake water samples collected at various times and locations. MPs were identified with Nile red staining. Cell-based assays were conducted directly on the filtered debris to test for cell viability, aryl hydrocarbon receptor (AhR) activity, and interleukin 6 (IL-6) levels as a measure of proinflammatory response. All samples contained MPs. None of the isolated debris impacted cell viability. However, AhR activity and IL-6 levels varied over time. Additionally, no associations were observed between the amount of plastic and bioactivity. Observed differences in activity are likely due to variations in the physiochemical properties of debris between samples. Our results highlight the need for increased sampling to fully characterize the bioactivity of MPs in human cells and to elucidate the role that sample physiochemical and spatiotemporal properties play in this activity.
Collapse
Affiliation(s)
- Sarah E. Morgan
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Lake Ontario Center for Microplastics and Human Health in a Changing Environment, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa A. DeLouise
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Lake Ontario Center for Microplastics and Human Health in a Changing Environment, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
19
|
Velikov DI, Jancik-Prochazkova A, Pumera M. On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots. ACS NANOSCIENCE AU 2024; 4:243-249. [PMID: 39184834 PMCID: PMC11342339 DOI: 10.1021/acsnanoscienceau.4c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 08/27/2024]
Abstract
Nanoplastics are considered an emerging organic persistent pollutant with possible severe long-term implications for the environment and human health; therefore, their remediation is of paramount importance. However, detecting and determining the concentration of nanoparticles in water is challenging and time-consuming due to their small size. In this work, we present a universal yet simple method for the detection and quantification of nanoplastics to monitor their removal from water using magnetic nanorobots. Nanoplastics were stained with a hydrophobic fluorescent dye to enable the use of photoluminescence techniques for their detection and quantification. Magnetic nanorobotic tools were employed to capture and subsequently remove the nanoplastics from contaminated waters. We demonstrated that nanorobots can capture and remove more than 90% of the nanoplastics from an aqueous solution within 120 min. This work shows that easy-to-use common fluorescent dyes combined with photoluminescence spectroscopy methods can be used as an alternative method for the detection and quantification of nanoplastics in water environments and swarming magnetic nanorobots for efficient capture and removal. These methods hold great potential for future research to improve the quantification and removal of nanoplastics in water, and it will ultimately reduce their harmful impact on the environment and human health.
Collapse
Affiliation(s)
- Dean I. Velikov
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Anna Jancik-Prochazkova
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Martin Pumera
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Advanced
Nanorobots and Multiscale Robotics Laboratory, Faculty of Electrical
Engineering and Computer Science, VSB -
Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
- Department
of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, 406040 Taichung, Taiwan
| |
Collapse
|
20
|
Jin T, Liu Y, Lyu H, He Y, Sun H, Tang J, Xing B. Plastic takeaway food containers may cause human intestinal damage in routine life usage: Microplastics formation and cytotoxic effect. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134866. [PMID: 38870856 DOI: 10.1016/j.jhazmat.2024.134866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
The microplastics and organic additives formed in routine use of plastic takeaway food containers may pose significant health risks. Thus, we collected plastic containers made of polystyrene, polypropylene, polyethylene terephthalate, polylactic acid and simulated two thermal usages, including hot water (I) and microwave treatments (M). Nile Red fluorescence staining was developed to improve accurate counting of microplastics with the aid of TEM and DLS analysis. The quantity of MPs released from thermal treatments was determined ranging from 285.7 thousand items/cm2 to 681.5 thousand items/cm2 in containers loaded with hot water with the following order: IPS>IPP>IPET>IPLA, while microwave treatment showed lower values ranging from 171.9 thousand items/cm2 to 301.6 thousand items/cm2. In vitro toxicity test using human intestinal epithelial Caco-2 cells indicated decrease of cell viability in raw leachate, resuspended MPs and supernatants, which might further lead to cell membrane rupture, ROS production, and decreased mitochondrial membrane potential. Moreover, the leachate inhibited the expression of key genes in the electron transport chain (ETC) process, disrupted energy metabolism. For the first time, we isolate the actually released microplastics and organic substances for in vitro toxicity testing, and demonstrate their potential impacts to human intestine. SYNOPSIS: Plastic take-out containers may release microplastics and organic substances during daily usage, both of which can cause individual and combined cytotoxic effects on human colon adenocarcinoma cells Caco-2.
Collapse
Affiliation(s)
- Tianyue Jin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yaxuan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
21
|
Mompó-Curell R, Alonso-Molina JL, Amorós-Muñoz I, Mendoza-Roca JA, Bes-Piá MA. Characterization of HDPE microparticles in sludge aerobic digestion and their influence on the process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121704. [PMID: 38968892 DOI: 10.1016/j.jenvman.2024.121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The occurrence of microplastics (MPs) in wastewater has been studied in the last years. The high efficiency of their removal from wastewater is linked to their transfer to the sludge. In this work, the effect of high-density polyethylene (HDPE) on aerobic digestion was evaluated and these MPs were monitored, characterizing them by three different techniques. Two parallel batch digesters were monitored. AD-Control (meaning Aerobic Digester) operated as a reference, with no external HDPE particles, whereas these polymeric fragments were introduced to the second aerobic digester (AD-HDPE) using ring pulls as microplastic support. FTIR, Raman spectroscopies and fluorescence analysis of these microparticles showed some relevant results that should be highlighted. Higher fluorescence appeared after 7 days in the digester. It coincided with an increase of active volatile suspended solids (AVSS) in the AD-HDPE, which means that an increase of the microbial activity took place. Despite the presence of HDPE particles in the sludge, the digester performance was not compromised. Besides, the HDPE particles did not affect the microbial diversity (Shannon index) of the bacterial community at the end of the experiment compared to the bacterial community of the aerobic digester control tank. Based on the analysis of the relative abundances of microbial taxa, it was concluded that HDPE had selective effects on sludge microbial community, increasing the relative abundance of Bacteroridota phylum.
Collapse
Affiliation(s)
- R Mompó-Curell
- Research Institute for Industrial Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| | - J L Alonso-Molina
- Water and Environmental Engineering University Research Institute (IIAMA), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - I Amorós-Muñoz
- Water and Environmental Engineering University Research Institute (IIAMA), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - J A Mendoza-Roca
- Research Institute for Industrial Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - M A Bes-Piá
- Research Institute for Industrial Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| |
Collapse
|
22
|
Morgan SE, Romanick SS, DeLouise L, McGrath J, Elder A. Understanding Human Health Impacts Following Microplastic Exposure Necessitates Standardized Protocols. Curr Protoc 2024; 4:e1104. [PMID: 39018010 PMCID: PMC11451905 DOI: 10.1002/cpz1.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Microplastics (MPs; 1 µm to 5 mm) are a persistent and pervasive environmental pollutant of emergent and increasing concern. Human exposure to MPs through food, water, and air has been documented and thus motivates the need for a better understanding of the biological implications of MP exposure. These impacts are dependent on the properties of MPs, including size, morphology, and chemistry, as well as the dose and route of exposure. This overview offers a perspective on the current methods used to assess the bioactivity of MPs. First, we discuss methods associated with MP bioactivity research with an emphasis on the variety of assays, exposure conditions, and reference MP particles that have been used. Next, we review the challenges presented by common instrumentation and laboratory materials, the lack of standardized reference materials, and the limited understanding of MP dosimetry. Finally, we propose solutions that can help increase the applicability and impact of future studies while reducing redundancy in the field. The excellent protocols published in this issue are intended to contribute toward standardizing the field so that the MP knowledge base grows from a reliable foundation. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Sarah E Morgan
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, United States
| | - Samantha S Romanick
- Department of Biomedical Engineering, University of Rochester, 480 Intercampus Drive, Rochester, New York
| | - Lisa DeLouise
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York
| | - James McGrath
- Department of Biomedical Engineering, University of Rochester, 480 Intercampus Drive, Rochester, New York
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, United States
| |
Collapse
|
23
|
Tuuri EM, Gascooke JR, Leterme SC. Efficacy of chemical digestion methods to reveal undamaged microplastics from planktonic samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174279. [PMID: 38942303 DOI: 10.1016/j.scitotenv.2024.174279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Standardisation and validation of methods for microplastics research is essential. A major methodological challenge is the removal of planktonic organisms from marine water samples allowing for the identification of microplastics associated to planktonic communities. To improve the reproducibility and accuracy of digestion methods for the removal of planktonic biomass, we compared and modified existing chemical digestion methods. These digestion methods included an acidic digestion using nitric acid, alkaline digestions with potassium hydroxide (alkaline 1 digestion) and sodium hydroxide from drain cleaner (alkaline 2 digestion), an oxidative digestion using sodium dodecyl sulfate with hydrogen peroxide, and an enzymatic digestion using enzyme drain clean pellets. Chemical digestion of three densities of zooplankton communities (high, medium, and low) in the presence of five commonly found environmental microplastic pollutants (polyamide, polyethylene, polyethylene terephthalate, polypropylene, and polystyrene) were performed for each treatment. The chemical treatments were assessed for (i) their digestion efficiency of zooplankton communities by different biomass densities, and (ii) their impact on microplastic particles through the comparison of both chemical (Raman spectroscopy) and physical (length, width, and visual) changes, between the pre-treatment and post-treatment microplastic particles. The alkaline 1, alkaline 2 and oxidative methods demonstrated significantly better digestion efficiency (p < 0.05) than the modified enzymatic and acidic treatments. The acidic, alkaline 1, and alkaline 2, treatments caused the most damages to the microplastic particles. We suggest future studies to implement the oxidative digestion method with sodium dodecyl sulfate and hydrogen peroxide because of its high digestion efficiency, and low damage to microplastic particles. This method is similar to the wet peroxide oxidation digestion method used throughout the literature but can be implemented at a lower cost.
Collapse
Affiliation(s)
- Elise M Tuuri
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Institute for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.
| | - Jason R Gascooke
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Institute for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Sophie C Leterme
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Institute for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
24
|
Soliz DL, Paniagua González G, Muñoz-Arnanz J, Bravo-Yagüe JC, Fernández Hernando P, Garcinuño Martínez RM. Identification and morphological characterization of different types of plastic microparticles. Heliyon 2024; 10:e30749. [PMID: 38867989 PMCID: PMC11167249 DOI: 10.1016/j.heliyon.2024.e30749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
The knowledge of the polymeric composition of microplastics (MPs) is interesting because offers useful information on the resistance, durability, and degradability of these materials, also allowing progress in the control of this contamination. However, there is currently a lack of reliable standardized methods for the identification, and characterization of the plastic microparticles. This work uses different techniques in a complementary manner for the identification, and characterization of MPs that more frequently are found in the environment. A total of 10 types of plastics were collected (polystyrene (PS), polyethylene terephthalate (PETE), polyethylene (PE), high- and low-density polyethylene (HDPE and LDPE, respectively), polyvinyl chloride (PVC), polypropylene (PP), polytetrafluoroethylene (PTFE), Polyamide (PA, Nylon 6,6) and poly-carbonate (PC)) and their chemical identification were analyzed by reflectance-attenuated infrared (FTIR-ATR). Furthermore, the samples were observed using light microscopy, and scan-ning electron microscopy (SEM). Also, staining with 12 different dyes was performed to improve the identification of microplastics. The results of this study revealed that PETE, PE, HDPE and LDPE, whose SEM images exhibited smoothness and flat uniformity of their surface, were not (or less) susceptible to adsorb staining solutions while PP, PA, PVC, and PTFE, were capable of adsorbing the dye solutions.
Collapse
Affiliation(s)
- Dulce L. Soliz
- Researcher in Training at the International Doctoral School of UNED, in the Doctoral Program in Sciences, Spain
| | - Gema Paniagua González
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG, CSIC), Juan de la Cierva 3, Madrid, 28006, Spain
| | - Juan Carlos Bravo-Yagüe
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| | - Pilar Fernández Hernando
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| | - Rosa María Garcinuño Martínez
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| |
Collapse
|
25
|
Gani A, Pathak S, Hussain A, Shukla AK, Chand S. Emerging pollutant in surface water bodies: a review on monitoring, analysis, mitigation measures and removal technologies of micro-plastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:214. [PMID: 38842590 DOI: 10.1007/s10653-024-01992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Water bodies play a crucial role in supporting life, maintaining the environment, and preserving the ecology for the people of India. However, in recent decades, human activities have led to various alterations in aquatic environments, resulting in environmental degradation through pollution. The safety of utilizing surface water sources for drinking and other purposes has come under intense scrutiny due to rapid population growth and industrial expansion. Surface water pollution due to micro-plastics (MPs) (plastics < 5 mm in size) is one of the emerging pollutants in metropolitan cities of developing countries because of its utmost resilience and synthetic nature. Recent studies on the surface water bodies (river, pond, Lake etc.) portrait the correlation between the MPs level with different parameters of pollution such as specific conductivity, total phosphate, and biological oxygen demand. Fibers represent the predominant form of MPs discovered in surface water bodies, exhibiting fluctuations across seasons. Consequently, present study prioritizes understanding the adaptation, prevalence, attributes, fluctuations, and spatial dispersion of MPs in both sediment and surface water environments. Furthermore, the study aims to identify existing gaps in the current understanding and underscore opportunities for future investigation. From the present study, it has been reported that, the concentration of MPs in the range of 0.2-45.2 items/L at the Xisha Islands in the south China sea, whereas in India it was found in the range of 96 items/L in water samples and 259 items/kg in sediment samples. This would certainly assist the urban planners in achieving sustainable development goals to mitigate the increasing amount of emergent pollutant load.
Collapse
Affiliation(s)
- Abdul Gani
- Civil Engineering Department, Netaji Subhas University of Technology, New Delhi, 110073, India
| | - Shray Pathak
- Department of Civil Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| | - Athar Hussain
- Civil Engineering Department, Netaji Subhas University of Technology, New Delhi, 110073, India
| | - Anoop Kumar Shukla
- Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sasmita Chand
- Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
26
|
Bakir A, McGoran AR, Silburn B, Russell J, Nel H, Lusher AL, Amos R, Shadrack RS, Arnold SJ, Castillo C, Urbina JF, Barrientos E, Sanchez H, Pillay K, Human L, Swartbooi T, Cordova MR, Sani SY, Wijesinghe TWAW, Amarathunga AAD, Gunasekara J, Somasiri S, Mahatantila K, Liyanage S, Müller M, Hee YY, Onda DF, Jansar KM, Shiraz Z, Amir H, Mayes AG. Creation of an international laboratory network towards global microplastics monitoring harmonisation. Sci Rep 2024; 14:12714. [PMID: 38830923 PMCID: PMC11148021 DOI: 10.1038/s41598-024-62176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Infrastructure is often a limiting factor in microplastics research impacting the production of scientific outputs and monitoring data. International projects are therefore required to promote collaboration and development of national and regional scientific hubs. The Commonwealth Litter Programme and the Ocean Country Partnership Programme were developed to support Global South countries to take actions on plastics entering the oceans. An international laboratory network was developed to provide the infrastructure and in country capacity to conduct the collection and processing of microplastics in environmental samples. The laboratory network was also extended to include a network developed by the University of East Anglia, UK. All the laboratories were provided with similar equipment for the collection, processing and analysis of microplastics in environmental samples. Harmonised protocols and training were also provided in country during laboratory setup to ensure comparability of quality-controlled outputs between laboratories. Such large networks are needed to produce comparable baseline and monitoring assessments.
Collapse
Affiliation(s)
- Adil Bakir
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK.
| | - Alexandra R McGoran
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
| | - Briony Silburn
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
| | - Josie Russell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
| | - Holly Nel
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
| | - Amy L Lusher
- Norwegian Institute for Water Research (NIVA), 0579, Oslo, Norway
| | - Ruth Amos
- Vanuatu Bureau of Standards, PO Box 6532, Port Vila, Vanuatu
| | | | - Shareen J Arnold
- Faculty of Science and Technology, University of Belize, Hummingbird Avenue, Belmopan City, Belize
| | - Cecy Castillo
- Faculty of Science and Technology, University of Belize, Hummingbird Avenue, Belmopan City, Belize
| | - Joaquin F Urbina
- Faculty of Science and Technology, University of Belize, Hummingbird Avenue, Belmopan City, Belize
| | - Eduardo Barrientos
- Faculty of Science and Technology, University of Belize, Hummingbird Avenue, Belmopan City, Belize
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4 5-7, Konan, Minato-Ku, Tokyo, 108-8477, Japan
| | - Henry Sanchez
- Department of Environment, 7552 Hummingbird Hwy, Belmopan City, Belize
| | - Keshnee Pillay
- Department of Forestry, Fisheries and the Environment (DEFF), 2Nd Floor Foretrust Building, Martin Hammerschlag Way, Foreshore, Cape Town, 8001, South Africa
| | - Lucienne Human
- South African Environmental Observation Network (SAEON), Nelson Mandela University Ocean Sciences Campus, 4 Gomery Avenue, Summerstrand, Port Elizabeth, South Africa
- Botany Department, Institute of Coastal and Marine Research (CMR), Nelson Mandela University, Summerstrand South Campus, PO Box 77 000, Port Elizabeth, 6031, South Africa
| | - Tarryn Swartbooi
- South African Environmental Observation Network (SAEON), Nelson Mandela University Ocean Sciences Campus, 4 Gomery Avenue, Summerstrand, Port Elizabeth, South Africa
| | - Muhammad Reza Cordova
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency (BRIN), Kawasan Jakarta Ancol Jl Pasir Putih 1 Ancol, Jakarta, 14430, Indonesia
| | - Sofia Yuniar Sani
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency (BRIN), Kawasan Jakarta Ancol Jl Pasir Putih 1 Ancol, Jakarta, 14430, Indonesia
| | - T W A Wasantha Wijesinghe
- Central Environmental Authority, No 104, Parisara Piyasa, Densil Kobbekaduwa Mawatha, Battaramulla, Sri Lanka
| | - A A Deeptha Amarathunga
- Environmental Studies Division, National Aquatic Resource Research & Development Agency, Crow Island, Colombo, 15, Sri Lanka
| | - Jagath Gunasekara
- Marine Environment Protection Authority, No.177, Nawala Road, Narahenpita, Colombo, 05, Sri Lanka
| | - Sudarshana Somasiri
- Industrial Technology Institute, No. 363, Bauddhaloka Mawatha, Colombo, 07, Sri Lanka
| | - Kushani Mahatantila
- Industrial Technology Institute, No. 363, Bauddhaloka Mawatha, Colombo, 07, Sri Lanka
| | - Sureka Liyanage
- Industrial Technology Institute, No. 363, Bauddhaloka Mawatha, Colombo, 07, Sri Lanka
| | - Moritz Müller
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| | - Yet Yin Hee
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21300, Kuala Nerus, Terengganu, Malaysia
| | - Deo Florence Onda
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines, Diliman Quezon City, Philippines
| | - Khairiatul Mardiana Jansar
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zana Shiraz
- Maldives Marine Research Institute, Ministry of Fisheries and Ocean Resources, H. White waves, Moonlight Hingun Magu, Male', 20025, Maldives
| | - Hana Amir
- Maldives Marine Research Institute, Ministry of Fisheries and Ocean Resources, H. White waves, Moonlight Hingun Magu, Male', 20025, Maldives
| | - Andrew G Mayes
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
27
|
Arslan A, Topkaya E, Sezer M, Aksan S, Veli S. Investigation of microplastics in advanced biological wastewater treatment plant effluent. MARINE POLLUTION BULLETIN 2024; 203:116486. [PMID: 38781801 DOI: 10.1016/j.marpolbul.2024.116486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
In recent years, plastic pollution in the environment has also increased due to the increasing production and consumption of plastics worldwide. The presence of microplastics (MPs) in the environment from different sources is observed almost everywhere, especially in aquatic environments. A standard method for sampling, identification, and quantification of MPs in wastewater has not yet been established. In this study, it was aimed to determine the MPs and their characteristics in the effluent of an advanced biological domestic wastewater treatment plant. The seasonal changes of MPs in a year were revealed. Pre-treatments suitable for the studied wastewater were developed for visual determination of MPs. Fibers are the dominant type of MPs, with numbers ranging between 32.0 and 95.5 particle/L. MPs in five different polymer structures were determined by FTIR analysis. These are Polyethylene, Polypropylene, Polyester, Polyurethane and Polyethylene terephthalate. The results were evaluated according to QA/QC and determined to meet the standards.
Collapse
Affiliation(s)
- Ayla Arslan
- Department of Environmental Engineering, Kocaeli University, 41001 Kocaeli, Türkiye.
| | - Eylem Topkaya
- Department of Environmental Engineering, Kocaeli University, 41001 Kocaeli, Türkiye
| | - Mesut Sezer
- Department of Environmental Engineering, Kocaeli University, 41001 Kocaeli, Türkiye
| | - Serdar Aksan
- Department of Biology, Kocaeli University, 41001 Kocaeli, Türkiye
| | - Sevil Veli
- Department of Environmental Engineering, Kocaeli University, 41001 Kocaeli, Türkiye
| |
Collapse
|
28
|
Sharma S, Bhardwaj A, Thakur M, Saini A. Understanding microplastic pollution of marine ecosystem: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41402-41445. [PMID: 37442935 DOI: 10.1007/s11356-023-28314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Microplastics are emerging as prominent pollutants across the globe. Oceans are becoming major sinks for these pollutants, and their presence is widespread in coastal regions, oceanic surface waters, water column, and sediments. Studies have revealed that microplastics cause serious threats to the marine ecosystem as well as human beings. In the past few years, many research efforts have focused on studying different aspects relating to microplastic pollution of the oceans. This review summarizes sources, migration routes, and ill effects of marine microplastic pollution along with various conventional as well as advanced methods for microplastics analysis and control. However, various knowledge gaps in detection and analysis require attention in order to understand the sources and transport of microplastics, which is critical to deploying mitigation strategies at appropriate locations. Advanced removal methods and an integrated approach are necessary, including government policies and stringent regulations to control the release of plastics.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Aprajita Bhardwaj
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Monika Thakur
- Department of Microbiology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Anita Saini
- Department of Microbiology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, Himachal Pradesh, India.
| |
Collapse
|
29
|
Tang Y, Yao J, Dong Z, Hu Z, Wu T, Zhang Y. A highly accurate and semi-automated method for quantifying spherical microplastics based on digital slide scanners and image processing. ENVIRONMENTAL RESEARCH 2024; 250:118494. [PMID: 38365061 DOI: 10.1016/j.envres.2024.118494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/28/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Microplastics (MPs), the emerging pollutants appeared in water environment, have grabbed significant attention from researchers. The quantitative method of spherical MPs is the premise and key for the study of MPs in laboratory researches. However, the manual counting is time-consuming, and the existing semi-automated analysis lacked of robustness. In this study, a highly accurate quantification method for spherical MPs, called VS120-MC was proposed. VS120-MC consisted of the digital slide scanner VS120 and the MPs image processing software, MPs-Counter. The full-area scanning photography was employed to fundamentally avoid the error caused by random or partition sampling modes. To accomplish high-performance batch recognition, the Weak-Circle Elimination Algorithm (WEA) and the Variable Coefficient Threshold (VCT) was developed. Finally, lower than 0.6% recognition error rate of simulated images with different aggregated indices was achieved by MPs-Counter with fast processing speed (about 2 s/image). The smallest size for VS120-MC to detect was 1 μm. And the applicability of VS120-MC in real water body was investigated. The measured value of 1 μm spherical MPs in ultra-pure water and two kinds of polluted water after digestion showed a good linear relationship with the Manual measurements (R2 = 0.982,0.987 and 0.978, respectively). For 10 μm spherical MPs, R2 reached 0.988 for ultra-pure water and 0.984 for both of the polluted water. MPs-Counter also showed robustness when using the same set of parameters processing the images with different conditions. Overall, VS120-MC eliminated the error caused by traditional photography and realized an accurate, efficient, stable image processing tool, providing a reliable alternative for the quantification of spherical MPs.
Collapse
Affiliation(s)
- Yu Tang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Jie Yao
- Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China.
| | - Zekun Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Zhihui Hu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Tongqing Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Yan Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Bragato G, Piccolo G, Sattier G, Sada C. Identification of spectral responses of different plastic materials by means of multispectral imaging. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:802-813. [PMID: 38329100 DOI: 10.1039/d3em00324h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In this work, multispectral imaging (MSI) is introduced as an innovative, practical, and non-invasive solution capable of identifying and detecting (micro)plastics. MSI holds significant appeal for industry due to its flexibility, ease of implementation, and portability. The integration of MSI with Principal Components Analysis (PCA) enables precise identification of different plastics and differentiation of microplastics within mixtures. The technique successfully identifies and quantifies the pure spectral response (endmembers) of each microplastic in every pixel of the original image. As a result, the model excels in distinguishing specific plastic materials from their surrounding backgrounds. This novel approach facilitates the identification of randomly dispersed microplastics in water.
Collapse
Affiliation(s)
- Giovanni Bragato
- Physics and Astronomy Department "Galileo Galilei", University of Padova, Via F. Marzolo 8, Padova, Italy.
| | - Giovanni Piccolo
- Physics and Astronomy Department "Galileo Galilei", University of Padova, Via F. Marzolo 8, Padova, Italy.
| | - Gabriele Sattier
- Physics and Astronomy Department "Galileo Galilei", University of Padova, Via F. Marzolo 8, Padova, Italy.
| | - Cinzia Sada
- Physics and Astronomy Department "Galileo Galilei", University of Padova, Via F. Marzolo 8, Padova, Italy.
| |
Collapse
|
31
|
Ceccanti C, Davini A, Lo Piccolo E, Lauria G, Rossi V, Ruffini Castiglione M, Spanò C, Bottega S, Guidi L, Landi M. Polyethylene microplastics alter root functionality and affect strawberry plant physiology and fruit quality traits. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134164. [PMID: 38583200 DOI: 10.1016/j.jhazmat.2024.134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/24/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Strawberry, a globally popular crop whose fruit are known for their taste and health benefits, were used to evaluate the effects of polyethylene microplastics (PE-MPs) on plant physiology and fruit quality. Plants were grown in 2-L pots with natural soil mixed with PE-MPs at two concentrations (0.2% and 0.02%; w/w) and sizes (⌀ 35 and 125 µm). Plant physiological responses, root histochemical and anatomical analyses as well as fruit biometric and quality features were conducted. Plants subjected to ⌀ 35 µm/0.2% PE-MPs exhibited the most severe effects in terms of CO2 assimilation due to stomatal limitations, along with the highest level of oxidative stress in roots. Though no differences were observed in plant biomass, the impact on fruit quality traits was severe in ⌀ 35 µm/0.2% MPs treatment resulting in a drop in fruit weight (-42%), soluble solid (-10%) and anthocyanin contents (-25%). The smallest sized PE-MPs, adsorbed on the root surface, impaired plant water status by damaging the radical apparatus, which finally resulted in alteration of plant physiology and fruit quality. Further research is required to determine if these alterations also occur with other MPs and to understand more deeply the MPs influence on fruit physio-chemistry.
Collapse
Affiliation(s)
- C Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - A Davini
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - E Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino, Firenze, Italy.
| | - G Lauria
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - V Rossi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - M Ruffini Castiglione
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - C Spanò
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - S Bottega
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy
| | - L Guidi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - M Landi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy.
| |
Collapse
|
32
|
Afonso V, Borges R, Rodrigues B, Barros R, João Bebianno M, Raposo S. Are native microalgae consortia able to remove microplastics from wastewater effluents? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123931. [PMID: 38582186 DOI: 10.1016/j.envpol.2024.123931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Wastewater Treatment Plants (WWTPs) are potential sources of microplastics (MPs) in the aquatic environment. This study aimed to investigate the potential of wastewater-native microalgae consortia to remove MPs from the effluent of two different types of WWTPs as a dual-purpose solution for MPs mitigation and biomass production. For that purpose, the occurrence of MPs from two types of WWTP effluents was analysed over one year. MPs were characterized in terms of morphology (microbead, foam, granule, irregular, filament and film), colour and size. The wastewater characterisation was followed by the removal of MP loads, using native microalgae consortia, pre-adapted to the wastewater effluent. Microalgae consortia evolved naturally through four mitigation assays, adapted to seasonal conditions, such as temperature, photoperiod, and wastewater composition. MPs were present in all the effluent samples, ranging from 52 to 233 MP L-1. The characterisation of MPs indicated a predominance of white and transparent particles, with irregular and filament shapes, mainly under 500 μm in size. The μFTIR analysis revealed that 43% of the selected particles were plastic, with a prevalence of polypropylene (PP) (34%) and polyethylene terephthalate (PET) (30 %). In the mitigation experiments, substantial biomass production was achieved (maximum of 2.6 g L-1 (d.w.)), with successful removal of MPs, ranging from 31 ± 25% to 82 ± 13%. These results show that microalgae growth in wastewater effluents efficiently promotes the removal of MPs, reducing this source of contamination in the aquatic environment, while generating valuable biomass. Additionally, the strategy employed, requires minimal control of culture conditions, simplifying the integration of these systems in real-world WWTP facilities for improved wastewater management.
Collapse
Affiliation(s)
- Valdemira Afonso
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Rodrigo Borges
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Brígida Rodrigues
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Raúl Barros
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Maria João Bebianno
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Sara Raposo
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
33
|
Kim C, Kalčíková G, Jung J. Role of benzophenone-3 additive in the effect of polyethylene microplastics on Daphnia magna population dynamics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106901. [PMID: 38493548 DOI: 10.1016/j.aquatox.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The adverse effects of microplastics (MPs) on Daphnia magna have been extensively studied; however, their population-level effects are relatively unknown. This study investigated the effect of polyethylene MP fragments (33.90 ± 17.44 μm) and benzophenone-3 (BP-3), which is a widely used plastic additive (2.91 ± 0.02% w/w), on D. magna population dynamics in a 34-day microcosm experiment. In the growth phase, neither MP nor MP/BP-3 fragments changed the population size of D. magna compared with the control. However, MP/BP-3 fragments significantly reduced (p < 0.05) the population biomass compared to that of the control, whereas MP fragments did not induce a significant reduction. The MP/BP-3 group had a significantly higher (p < 0.05) neonate proportion than that in the control and MP groups. MP/BP-3 fragments upregulated usp and downregulated ecrb, ftz-f1, and hr3, altering gene expression in the ecdysone signaling pathway linked to D. magna growth and development. These findings suggested that BP-3 in MP/BP-3 fragments may disrupt neonatal growth, thereby decreasing population biomass. In the decline phase, MP fragments significantly decreased (p < 0.05) the population size and biomass of D. magna compared with the control and MP/BP-3 fragments. This study highlights the importance of plastic additives in the population-level ecotoxicity of MPs.
Collapse
Affiliation(s)
- Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea.
| |
Collapse
|
34
|
Ling X, Cheng J, Yao W, Qian H, Ding D, Yu Z, Xie Y, Yang F. Identification and Visualization of Polystyrene Microplastics/Nanoplastics in Flavored Yogurt by Raman Imaging. TOXICS 2024; 12:330. [PMID: 38787108 PMCID: PMC11125995 DOI: 10.3390/toxics12050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
The contamination of food by microplastics has garnered widespread attention, particularly concerning the health risks associated with small-sized microplastics. However, detecting these smaller microplastics in food poses challenges attributed to the complexity of food matrices and instrumental and method limitations. Here, we employed Raman imaging for visualization and identification of polystyrene particles synthesized in polymerization reactions, ranging from 400 to 2600 nm. We successfully developed a quantitative model of particle size and concentration for polystyrene, exhibiting excellent fit (R2 of 0.9946). We established procedures for spiked flavored yogurt using synthesized polystyrene, providing fresh insights into microplastic extraction efficiency. Recovery rates calculated from models validated the method's feasibility. In practical applications, the assessment of the size, type, shape, and quantity of microplastics in unspiked flavored yogurt was conducted. The most common polymers found were polystyrene, polypropylene, and polyethylene, with the smallest polystyrene sizes ranging from 1 to 10 μm. Additionally, we conducted exposure assessments of microplastics in branded flavored yogurt. This study established a foundation for developing a universal method to quantify microplastics in food, covering synthesis of standards, method development, validation, and application.
Collapse
Affiliation(s)
- Xin Ling
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dazhi Ding
- School of Microelectronics (School of Integrated Circuits), Nanjing University of Science and Technology, Nanjing 210094, China;
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
35
|
Lim J, Shin G, Shin D. Fast Detection and Classification of Microplastics below 10 μm Using CNN with Raman Spectroscopy. Anal Chem 2024; 96:6819-6825. [PMID: 38625095 DOI: 10.1021/acs.analchem.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In light of the growing awareness regarding the ubiquitous presence of microplastics (MPs) in our environment, recent efforts have been made to integrate Artificial Intelligence (AI) technology into MP detection. Among spectroscopic techniques, Raman spectroscopy is preferred for the detection of MP particles measuring less than 10 μm, as it overcomes the diffraction limitations encountered in Fourier transform infrared (FTIR). However, Raman spectroscopy's inherent limitation is its low scattering cross section, which often results in prolonged data collection times during practical sample measurements. In this study, we implemented a convolutional neural network (CNN) model alongside a tailored data interpolation strategy to expedite data collection for MP particles within the 1-10 μm range. Remarkably, we achieved the classification of plastic types for individual particles with a mere 0.4 s of exposure time, reaching an approximate confidence level of 85.47(±5.00)%. We postulate that the result significantly accelerates the aggregation of microplastic distribution data in diverse scenarios, contributing to the development of a comprehensive global microplastic map.
Collapse
Affiliation(s)
- Jeonghyun Lim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Gogyun Shin
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dongha Shin
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
36
|
Teska CJ, Dieser M, Foreman CM. Clothing Textiles as Carriers of Biological Ice Nucleation Active Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6305-6312. [PMID: 38530277 DOI: 10.1021/acs.est.3c09600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Microplastics have littered the globe, with synthetic fibers being the largest source of atmospheric microplastics. Many atmospheric particles can act as ice nucleators, thereby affecting the microphysical and radiative properties of clouds and, hence, the radiative balance of the Earth. The present study focused on the ice-nucleating ability of fibers from clothing textiles (CTs), which are commonly shed from the normal wear of apparel items. Results from immersion ice nucleation experiments showed that CTs were effective ice nucleators active from -6 to -12 °C, similar to common biological ice nucleators. However, subsequent lysozyme and hydrogen peroxide digestion stripped the ice nucleation properties of CTs, indicating that ice nucleation was biological in origin. Microscopy confirmed the presence of biofilms (i.e., microbial cells attached to a surface and enclosed in an extracellular polysaccharide matrix) on CTs. If present in sufficient quantities in the atmosphere, biological particles (biofilms) attached to fibrous materials could contribute significantly to atmospheric ice nucleation.
Collapse
Affiliation(s)
- Christy J Teska
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Markus Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Christine M Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
37
|
Obrador‐Viel T, Zadjelovic V, Nogales B, Bosch R, Christie‐Oleza JA. Assessing microbial plastic degradation requires robust methods. Microb Biotechnol 2024; 17:e14457. [PMID: 38568802 PMCID: PMC10990042 DOI: 10.1111/1751-7915.14457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Plastics are versatile materials that have the potential to propel humanity towards circularity and ultimate societal sustainability. However, the escalating concern surrounding plastic pollution has garnered significant attention, leading to widespread negative perceptions of these materials. Here, we question the role microbes may play in plastic pollution bioremediation by (i) defining polymer biodegradability (i.e., recalcitrant, hydrolysable and biodegradable polymers) and (ii) reviewing best practices for evaluating microbial biodegradation of plastics. We establish recommendations to facilitate the implementation of rigorous methodologies in future studies on plastic biodegradation, aiming to push this field towards the use of isotopic labelling to confirm plastic biodegradation and further determine the molecular mechanisms involved.
Collapse
Affiliation(s)
| | - Vinko Zadjelovic
- Centro de Bioinnovación de Antofagasta (CBIA), Facultad de Ciencias del Mar y Recursos BiológicosUniversidad de AntofagastaAntofagastaChile
- Centre for Biotechnology & Bioengineering (CeBiB)SantiagoChile
| | - Balbina Nogales
- Department of BiologyUniversity of the Balearic IslandsPalmaSpain
| | - Rafael Bosch
- Department of BiologyUniversity of the Balearic IslandsPalmaSpain
| | | |
Collapse
|
38
|
Xia X, Ma X, Liang N, Qin L, Huo W, Li Y. Damage of polyethylene microplastics on the intestine multilayer barrier, blood cell immune function and the repair effect of Leuconostoc mesenteroides DH in the large-scale loach (Paramisgurnus dabryanus). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109460. [PMID: 38382690 DOI: 10.1016/j.fsi.2024.109460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Polyethylene microplastics (PE-MPs) has become a global concern due to their widespread distribution and hazardous properties in aquatic habitats. In this study, the accumulation effect of PE-MPs in the intestine of large-scale loach (Paramisgurnus dabryanus) was explored by adding different concentrations of PE-MPs to the water, the destination of PE-MPs after breaking the intestinal barrier and the effects caused. The collected data showed that PE-MPs accumulation for 21d altered the histomorphology and antioxidant enzyme activity of the intestine, induced dysbiosis of the intestinal flora. 10 mg/L of PE-MPs induced a significant increase in the transcript levels of intestinal immunity factors in loach after 21d of exposure. Moreover, the levels of diamine oxidase (DAO) and d-lactic acid (D-Lac) in the gut and serum of loach were significantly increased after exposure to PE-MPs at all concentrations (1, 5, 10 mg/L). Subsequently, the presence of PE-MPs was detected in the blood, suggesting that the disruption of the intestinal multilayer barrier allowed PE-MPs to spill into the circulation. The accumulation of PE-MPs (1,5,10 mg/L) in the blood led to massive apoptosis and necrosis of blood cells and activated phagocytosis in response to PE-MPs invasion. To alleviate the damage, this study further exposure the effect of probiotics on PE-MPs treated loach by adding Leuconostoc mesenteroides DH (109 CFU/g) to the feed. The results showed that DH significantly increased the intestinal index and reduced the levels of DAO and D-Lac. To investigate the reason, we followed the PE-MPs in the intestine and blood of the loach and found that the number of PE-MPs particles was significantly reduced in the probiotic group, while the PE-MPs content in the feces was elevated. Thus, we concluded that DH reducing the accumulation of PE-MPs in the intestinal by increases fecal PE-MPs, which in turn mitigates the damage to the intestinal barrier caused by PE-MPs, and reduces the amount of PE-MPs in the blood. This work offers a robust analysis to understand the mechanisms of damage to the intestinal barrier by MPs and the fate of MPs after escaping the intestinal barrier and provide a new perspective on the application of probiotics in mitigating PE-MPs toxicity.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyu Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ning Liang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Lu Qin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Yi Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
39
|
Talukdar A, Kundu P, Bhattacharya S, Dutta N. Microplastic contamination in wastewater: Sources, distribution, detection and remediation through physical and chemical-biological methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170254. [PMID: 38253100 DOI: 10.1016/j.scitotenv.2024.170254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Microplastics are tiny plastic particles smaller than 5 mm. that have been widely detected in the environment, including in wastewater. They originate from various sources including breakdown of larger plastic debris, release of plastic fibres from textiles, and microbeads commonly used in personal care products. In wastewater, microplastics can pass through the treatment process and enter the environment, causing harm to biodiversity by potentially entering the food chain. Additionally, microplastics can act as a vector for harmful pollutants, increasing their transport and distribution in the environment. To address this issue, there is a growing need for effective wastewater treatment methods that can effectively remove microplastics. Currently, several physical and chemical methods are available, including filtration, sedimentation, and chemical degradation. However, these methods are costly, low efficiency and generate secondary pollutants. Furthermore, lack of standardization in the measurement and reporting of microplastics in wastewater, makes it difficult to accurately assess microplastic impact on the environment. In order to effectively manage these issues, further research and development of effective and efficient methods for removing microplastics from wastewater, as well as standardization in measurement and reporting, are necessary to effectively manage these detrimental contaminants.
Collapse
Affiliation(s)
- Avishek Talukdar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| | - Nalok Dutta
- Biochemical Engineering Department, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
40
|
Zheng X, Feng Q, Guo L. Quantitative analysis of microplastics and nanoplastics released from disposable PVC infusion tubes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133246. [PMID: 38147754 DOI: 10.1016/j.jhazmat.2023.133246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The exposure of micro- and nanoplastics (MNPs) via medical device is still unknown to us. Herein, a visual quantitative detection of polyvinyl chloride (PVC) MPs and a fluorescent quantitative detection of PVC NPs were developed. To overcome the aggregation of PVC NPs, sodium dodecylbenzene sulfonate was used as the stabilizer of PVC NPs. The brand-new disposable PVC infusion tubes were found to carry PVC MPs with the average total number (ATN) of 931.4 particles and PVC NPs with the average mass of 0.040 μg, respectively. For four typical infusion fluids such as 0.9% sodium chloride, 5% glucose, 5% sodium bicarbonate, hydroxyethyl starch 40 sodium chloride, the released PVC MPs and NPs were ranged from 1003.6 ∼ 3494.6 particles and 0.042 ∼ 0.087 μg, respectively in stimulating normal infusion scenario (room temperature 4 h). The released PVC MPs and NPs were also increased with the infusion duration and temperature. The released PVC MPs are mainly in granular form, accounting for 38 ∼ 49% of the total PVC MPs. Our findings indicate PVC MNPs can enter the blood vessel directly with the infusion fluids during intravenous infusion and the PVC MNPs exposure risk towards patients deserves more attention.
Collapse
Affiliation(s)
- Xueyi Zheng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Qiaochen Feng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
41
|
Luo S, Wu H, Xu J, Wang X, He X, Li T. Effects of lakeshore landcover types and environmental factors on microplastic distribution in lakes on the Inner Mongolia Plateau, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133115. [PMID: 38096614 DOI: 10.1016/j.jhazmat.2023.133115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Microplastic pollution in freshwater environments has received increasing attention. However, limited research on the occurrence and distribution of microplastics in plateau lakes. This study investigated the microplastic characteristics and influencing factors in lakes with different land cover types on the Inner Mongolia Plateau. Results showed that microplastic abundance ranged from 0.5 to 12.6 items/L in water and 50-325 items/kg in sediments. Microplastics in water were predominantly polypropylene (50.5%), fragments (40.5%), and 50-200 µm (66.7%). High-density (27.9%), fibrous (69.3%), and large-sized microplastics (47.7%) were retained primarily in lake sediments. The highest microplastic abundance in water was found in cropland lakes and grassland lakes, while that in sediments was in descending order of desert lakes > cropland lakes > grassland lakes > forest-grassland lakes. Differences among lake types suggest that agriculture, tourism, and atmospheric transport may be critical microplastic sources. Microplastic distribution was positively correlated with farmland and artificial surface coverage, showing that land cover types related to human activities could exacerbate microplastic pollution in lakes. Redundancy analysis showed that ammonia nitrogen and pH were the key physicochemical factors affecting microplastic distribution in lakes, indicating the potential sources of microplastics in lakes and the uniqueness of microplastic occurrence characteristics in desert saline-alkaline lakes, respectively.
Collapse
Affiliation(s)
- Shuai Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Haonan Wu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jifei Xu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Xiujun Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xude He
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
42
|
Luo D, Wang Z, Liao Z, Chen G, Ji X, Sang Y, Qu L, Chen Z, Wang Z, Dahlgren RA, Zhang M, Shang X. Airborne microplastics in urban, rural and wildland environments on the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133177. [PMID: 38064947 DOI: 10.1016/j.jhazmat.2023.133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024]
Abstract
The concentration of airborne microplastics is largely unknown in the remote high mountain area of the Tibetan Plateau. Here we report airborne microplastic concentrations of 2.5-58.8 n/m3 in urban, rural and wildland areas across the Tibetan Plateau, with smaller (∼89% <100 µm) fragments (>80%) dominating. Polyethylene terephthalate, polyethylene, polyamide and polystyrene were the dominant polymers of airborne microplastics on the Tibetan Plateau. Distribution of airborne microplastics was positively correlated with anthropogenic activity indices, such as population density and nighttime light intensity. Although the contribution of long-range atmospheric transport is valid, dispersed villages also appear to be a source of airborne microplastics for wildland areas across the Tibetan Plateau.
Collapse
Affiliation(s)
- Dehua Luo
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenfeng Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhonglu Liao
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Gang Chen
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoliang Ji
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanfang Sang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyin Qu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Zheng Chen
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhonggen Wang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Randy A Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Xu Shang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
43
|
Luo D, Chu X, Wu Y, Wang Z, Liao Z, Ji X, Ju J, Yang B, Chen Z, Dahlgren R, Zhang M, Shang X. Micro- and nano-plastics in the atmosphere: A review of occurrence, properties and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133412. [PMID: 38218034 DOI: 10.1016/j.jhazmat.2023.133412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
The ubiquitous occurrence of micro/nano plastics (MNPs) poses potential threats to ecosystem and human health that have attracted broad concerns in recent decades. Detection of MNPs in several remote regions has implicated atmospheric transport as an important pathway for global dissemination of MNPs and hence as a global health risk. In this review, the latest research progress on (1) sampling and detection; (2) origin and characteristics; and (3) transport and fate of atmospheric MNPs was summarized. Further, the current status of exposure risks and toxicological effects from inhaled atmospheric MNPs on human health is examined. Due to limitations in sampling and identification methodologies, the study of atmospheric nanoplastics is very limited today. The large spatial variation of atmospheric MNP concentrations reported worldwide makes it difficult to compare the overall indoor and outdoor exposure risks. Several in vitro, in vivo, and epidemiological studies demonstrate adverse effects of immune response, apoptosis and oxidative stress caused by MNP inhalation that may induce cardiovascular diseases and reproductive and developmental abnormalities. Given the emerging importance of atmospheric MNPs, the establishment of standardized sampling-pretreatment-detection protocols and comprehensive toxicological studies are critical to advance environmental and health risk assessments of atmospheric MNPs.
Collapse
Affiliation(s)
- Dehua Luo
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyun Chu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yue Wu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenfeng Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhonglu Liao
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoliang Ji
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjuan Ju
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Bin Yang
- Pingyang County Health Inspection Center, Wenzhou 325405, China.
| | - Zheng Chen
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Xu Shang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
44
|
Lee JJ, Kang J, Kim C. A low-cost TICT-based staining agent for identification of microplastics: Theoretical studies and simple, cost-effective smartphone-based fluorescence microscope application. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133168. [PMID: 38104521 DOI: 10.1016/j.jhazmat.2023.133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
A novel staining agent, (5-(4-(diethylamino)benzylidene)- 1,3-dimethylpyrimidine-2,4,6(1 H,3 H,5 H)-trione) (DDB) was developed for the effective detection of environmentally harmful microplastics. DDB has competitive cost advantages, namely its facile synthesis and high yield, over Nile Red (NR), which is commonly used for microplastic staining. The unique photophysical properties of DDB, including emissive twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE), were corroborated via spectroscopic investigations and density functional theory (DFT) calculations. Notably, DDB demonstrated superior selectivity for staining microplastics (polyethylene (PE), polyurethane (PU), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), and polyethylene terephthalate (PET)) over non-plastic materials in water. Furthermore, modulation of the solvent environment during the staining process yielded distinct fluorescence in both the green and red channels for specific types of plastic with the interplay between locally excited (LE) and TICT states. Treatment with 5% ethanol results in the selective staining of PE and PET with the emission of red fluorescence, whereas treatment with 30% ethanol facilitates the selective staining of PU, PVC, and PET with the emission of green fluorescence. Additionally, DDB could selectively stain microplastics in spiked soil and river water samples. Furthermore, a smartphone-based fluorescence microscope was developed at a cost below $100, validating the effective detection of microplastics stained with the newly synthesized DDB. The outcomes of this research demonstrate the potential of DDB as an economical and efficient agent for selective microplastic detection.
Collapse
Affiliation(s)
- Jae Jun Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Jiyun Kang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, South Korea.
| |
Collapse
|
45
|
Li X, Guo S, Shen D, Shentu J, Lv L, Qi S, Zhu M, Long Y. Microplastic release and sulfate reduction response in the early stage of a simulated landfill. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:22-29. [PMID: 38150952 DOI: 10.1016/j.wasman.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Landfills are essential facilities for treating and disposing municipal solid waste. They emit sulfur-containing odors and serve as an important sink for a new type of pollutant called microplastics (MPs). This study focused on the initial stage of anaerobic degradation to establish the relationship between the release of MPs and odor generation. Our findings show the rapid release of MPs into the leachate in the early stage of landfill and their predominant accumulation in the leachate sediment. The circulating leachate contained 1.45 times higher concentrations of MPs than the noncirculating leachate, with a peak concentration of 39 items·L-1. In addition, fragmentation of MPs occurred. The percentage of MPs with particle sizes of 2.5-5 mm decreased from 66.70 % to 22.32 %, while those measuring 0.1-0.5 mm increased by 33.12 %. A positive correlation was observed between MP release and sulfate reduction. Although leachate circulation increased the release of MPs, it also reduced the overall release time and total amount of MPs exported from the landfill. Compared with the initial landfill waste, the leachate operation mode, regardless of circulation, resulted in a 6.15-8.93-fold increase in MP release. These findings provide a valuable foundation for the simultaneous regulation of traditional pollutant odor and new pollutants (MPs) in landfills.
Collapse
Affiliation(s)
- Xianghang Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shuli Guo
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Li Lv
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
46
|
Hu F, Zhao H, Ding J, Jing C, Zhang W, Chen X. Uptake and toxicity of micro-/nanoplastics derived from naturally weathered disposable face masks in developing zebrafish: Impact of COVID-19 pandemic on aquatic life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123129. [PMID: 38092337 DOI: 10.1016/j.envpol.2023.123129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The unprecedented proliferation of disposable face masks during the COVID-19 pandemic, coupled with their improper disposal, threatens to exacerbate the already concerning issue of plastic pollution. This study evaluates the role of environmentally weathered masks as potential sources of microplastics (MPs) and nanoplastics (NPs) and assesses their adverse impact on the early life stages of zebrafish. Experimental findings revealed that a single disposable mask could release approximately 1.79 × 109 particles, with nearly 70% measuring less than 1 μm, following 60 days of sunlight exposure and subsequent sand-induced physical abrasion. Remarkably, the MPs/NPs (MNPs) emanating from face masks have the potential to permeate the outer layer (chorion) of zebrafish embryos. Furthermore, due to their minute size, these particles can be consumed by the larvae's digestive system and subsequently circulated to other tissues, including the brain. Exposure to mask-derived MNPs at concentrations of 1 and 10 μg/L led to significant cases of developmental toxicity, incited oxidative stress, and prompted cell apoptosis. A subsequent metabolomics analysis indicated that the accumulation of these plastic particles perturbed metabolic functions in zebrafish larvae, primarily disrupting amino acid and lipid metabolism. The outcomes of this research underscore the accelerating possibility of environmental aging processes and physical abrasion in the release of MNPs from disposable face masks. Most importantly, these results shed light on the possible ecotoxicological risk posed by improperly disposed of face masks.
Collapse
Affiliation(s)
- Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haocheng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Jing
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
47
|
Li Y, Zhang C, Tian Z, Cai X, Guan B. Identification and quantification of nanoplastics (20-1000 nm) in a drinking water treatment plant using AFM-IR and Pyr-GC/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132933. [PMID: 37951177 DOI: 10.1016/j.jhazmat.2023.132933] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Nanoplastics, owing to their small particle size, pose a significant threat to creatures, deserving heightened attention. Numerous studies have investigated microplastics pollution and their removal efficiency in drinking water treatment plants, none of which have involved nanoplastics due to lacking a suitable analytical method. This study introduced a feasible method of combing AFM-IR and Pyr-GC/MS to identify and quantify nanoplastics (20-1000 nm) for a preliminary understanding of their fate during drinking water treatment processes. Resolving of chemical functional groups and pyrolysis products from AFM-IR and Pyr-GC/MS data demonstrated the presence of PE and PVC nanoplastics in this drinking water treatment plant. The initial influent abundances of PE and PVC nanoplastics were 0.86 μg/L and 137.31 μg/L, with subsequent increase to 4.49 μg/L and 208.64 μg/L in ozonation contact tank unit. Then a gradual decreasing was observed along water process, achieving 98.4% removal of PE nanoplastics and 44.0% removal of PVC nanoplastics, respectively. Although this drinking water treatment plant has exhibited a certain level of nanoplastics removal efficiency, particular attention should be directed to the oxidation unit, which appears to be a significant source of nanoplastics. This study will lay a foundation for revealing nanoplastics pollution in the environment.
Collapse
Affiliation(s)
- Yu Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| | - Chuanming Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Xueyi Cai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Yan L, Yao X, Wang P, Zhao C, Zhang B, Qiu L. Effect of polypropylene microplastics on virus resistance in spotted sea bass (Lateolabrax maculatus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123054. [PMID: 38043770 DOI: 10.1016/j.envpol.2023.123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MPs) pollution is a hot issue of global concern. Polypropylene microplastics (PP-MPs) age quickly in the marine environment and break down into smaller particles because of their relatively low temperature resistance, poor ultraviolet resistance, and poor antioxidant capacity, making them one of the major pollutants in the ocean. We assessed whether long-term exposure to micron-sized PP-MPs influences fish susceptibility to viral diseases. We found that exposure to PP-MPs (1-6 μm and 10-30 μm) at concentrations of 500 and 5000 μg/L resulted in uptake into spleen and kidney tissues of Lateolabrax maculatus. Increased activation of melanomacrophage centers was visible in histopathological sections of spleen from fish exposed to PP-MPs, and greater deterioration was observed in the spleen of fish infected by largemouth bass ulcerative syndrome virus after PP-MPs exposure. Additionally, exposure to PP-MPs led to significant cytotoxicity and a negative impact on the antiviral ability of cells. PP-MPs exposure had inhibitory or toxic effects on the immune system in spotted sea bass, which accelerated virus replication in vivo and decreased the expression of the innate immune- and acquired immune related genes in spleen and kidney tissues, thus increasing fish susceptibility to viral diseases. These results indicate that the long-term presence of micron-sized PP-MPs might impact fish resistance to disease, thereby posing a far-reaching problem for marine organisms.
Collapse
Affiliation(s)
- Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Xiaoxiao Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China.
| |
Collapse
|
49
|
Sun J, Wang X, Zheng H, Xiang H, Jiang X, Fan J. Characterization of the degradation products of biodegradable and traditional plastics on UV irradiation and mechanical abrasion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168618. [PMID: 37977371 DOI: 10.1016/j.scitotenv.2023.168618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Biodegradable plastics are popular alternatives to traditional plastics in packaging, mulch sheets, and other applications. However, there are concerns regarding the potential for pollution as a result of their abiotic degradation. In this study, we investigated the degradation of biodegradable polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) and traditional polyethylene (PE) plastic under two typical abiotic conditions: ultraviolet (UV) irradiation and mechanical abrasion (MA) for up to nine months. The physical and chemical properties of the two plastics during the degradation period were assessed. In addition, quantitative analysis of the degradation products was carried out using a new method called membrane filtration and total organic carbon determination (MF-TOCD). The results revealed that PBAT/PLA underwent a greater number of changes in surface morphology, thermal stability, and mass loss compared to PE when exposed to UV and MA during the test period. Further analysis of the released products revealed that PBAT/PLA released more products than PE. Overall, PE mainly produced microplastics (MPs) larger than 0.22 μm, whereas PBAT/PLA produced products <0.22 μm (nanoplastics and soluble molecules) on UV exposure. In contrast, when subjected to MA, PBAT/PLA produced MPs larger than 0.22 μm, and these accumulated gradually; this behavior is similar to that of PE. By combining the mass loss and the TOC data for the degradation products, we determined that long-term UV irradiation generated a large number of smaller particles from PBAT/PLA that could further degrade rather than accumulate in the environment. In summary, we established a new method to separate and characterize MPs as well as nanoplastics and soluble molecules, and provided new insights into the fate of PBAT/PLA during abiotic degradation.
Collapse
Affiliation(s)
- Jiaoxia Sun
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Xi Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hanyue Zheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hong Xiang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xueting Jiang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jianxin Fan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
50
|
Zambrano-Pinto MV, Tinizaray-Castillo R, Riera MA, Maddela NR, Luque R, Díaz JMR. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168244. [PMID: 37923271 DOI: 10.1016/j.scitotenv.2023.168244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous and persistent presence of microplastics (MPs) in aquatic and terrestrial ecosystems has raised global concerns due to their detrimental effects on human health and the natural environment. These minuscule plastic fragments not only threaten biodiversity but also serve as vectors for contaminants, absorbing organic and inorganic pollutants, thereby causing a range of health and environmental issues. This review provides an overview of microplastics and their effects. This work highlights available analytical techniques for detecting and characterizing microplastics in different environmental matrices, assessing their advantages and limitations. Additionally, this review explores innovative remediation approaches, such as microbial degradation and other advanced methods, offering promising prospects for combatting microplastic accumulation in contaminated environments. The focus on environmentally-friendly technologies, such as the use of microorganisms and enzymes for microplastic degradation, underscores the importance of sustainable solutions in plastic pollution management. In conclusion, this article not only deepens our understanding of the microplastic issue and its impact but also advocates for the urgent need to develop and implement effective strategies to mitigate this critical environmental challenge. In this context, the crucial role of advanced technologies, like quantitative Nuclear Magnetic Resonance spectroscopy (qNMR), as promising tools for rapid and efficient microplastic detection, is emphasized. Furthermore, the potential of the enzyme PETase (polyethylene terephthalate esterase) in microplastic degradation is examined, aiming to address the growing plastic pollution, particularly in saline environments like oceanic ecosystems. These innovations offer hope for effectively addressing microplastic accumulation in contaminated environments and minimizing its adverse impacts.
Collapse
Affiliation(s)
- Maria Veronica Zambrano-Pinto
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Rolando Tinizaray-Castillo
- Departamento de Construcciones Civiles, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - María A Riera
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador.
| | - Joan Manuel Rodríguez Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| |
Collapse
|