1
|
Mok S, Radhakrishnan A, Nguyen TTT, Park J, Trukhin AM, Lee M, Moon HB. Target, suspect, and non-target analysis of halogenated organic pollutants in spotted seals (Phoca largha) from Peter the Great Bay, East Sea/Sea of Japan. MARINE POLLUTION BULLETIN 2025; 210:117336. [PMID: 39608088 DOI: 10.1016/j.marpolbul.2024.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Target, suspect, and non-target analyses were conducted to investigate the accumulation status of halogenated organic pollutants (HOPs) in spotted seals (Phoca largha Pallas, 1811) from Peter the Great Bay, East Sea/Sea of Japan. Despite long-standing regulations, polychlorinated biphenyls (PCBs) and organochlorine pesticides were highly accumulated, likely due to placental and lactational transfer. Hexabromocyclododecanes were the predominant brominated flame retardants, with their levels increasing with age. Suspect and non-target analyses identified 35 non-target PCBs not routinely monitored, suggesting conventional methods may underestimate PCB concentrations. Regression analysis showed significant correlations between the concentrations of major PCBs (CBs 138 and 153) and the sum of target and non-target PCBs. The study found that 95 % of the seals exceeded threshold levels for PCBs, posing potential health risks. These findings highlight the need for integrated monitoring, combining target and non-target analyses, to better assess and manage the risks of HOPs to marine mammals.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Aiswarya Radhakrishnan
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Thi Thu Trang Nguyen
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Junseong Park
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Alexey M Trukhin
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 41 Baltiyskaya Str., Vladivostok 690043, Russia
| | - Moonjin Lee
- Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
2
|
Wang YY, Luo WK, Tang SX, Xiang J, Dang Y, Tang B, Lu QY, Cai FS, Ren MZ, Yu YJ, Zheng J. Bioaccumulation and biotransformation of 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123460. [PMID: 38290655 DOI: 10.1016/j.envpol.2024.123460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Despite the increasing production, use, and ubiquitous occurrence of novel brominated flame retardants (NBFRs), little information is available regarding their fate in aquatic organisms. In this study, the bioaccumulation and biotransformation of two typical NBFRs, i.e., 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH), were investigated in tissues of zebrafish (Danio rerio) being administrated a dose of target chemicals through their diet. Linear accumulation was observed for both BTBPE and TBECH in the muscle, liver, gonads, and brain of zebrafish, and the elimination of BTBPE and TBECH in all tissues followed pseudo-first-order kinetics, with the fastest depuration rate occurring in the liver. BTBPE and TBECH showed low bioaccumulation potential in zebrafish, with biomagnification factors (BMFs) < 1 in all tissues. Individual tissues' function and lipid content are vital factors affecting the distribution of BTBPE and TBECH. Stereoselective accumulation of TBECH enantiomers was observed in zebrafish tissues, with first-eluting enantiomers, i.e. E1-α-TBECH and E1-β-TBECH, preferentially accumulated. Additionally, the transformation products (TPs) in the zebrafish liver were comprehensively screened and identified using high-resolution mass spectrometry. Twelve TPs of BTBPE and eight TPs of TBECH were identified: biotransformation pathways involving ether cleavage, debromination, hydroxylation, and methoxylation reactions for BTBPE and hydroxylation, debromination, and oxidation processes for TBECH. Biotransformation is also a vital factor affecting the bioaccumulation potential of these two NBFRs, and the environmental impacts of NBFR TPs should be further investigated in future studies. The findings of this study provide a scientific basis for an accurate assessment of the ecological and environmental risks of BTBPE and TBECH.
Collapse
Affiliation(s)
- Yu-Yu Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Wei-Keng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Song-Xiong Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jun Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China.
| | - Qi-Yuan Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Ming-Zhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| |
Collapse
|
3
|
Xie Z, Zhang X, Liu F, Xie Y, Sun B, Wu J, Wu Y. First determination of elevated levels of plastic additives in finless porpoises from the South China Sea. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133389. [PMID: 38185083 DOI: 10.1016/j.jhazmat.2023.133389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
Plastic additives, such as organophosphate esters (OPEs) and phthalate esters (PAEs), are raising public concerns due to their widespread presence and potential health risks. Nonetheless, the occurrences and potential health risks of these additives in marine mammals remain limited. Here, we first investigated the accumulation patterns and potential risks of OPEs and metabolites of PAEs (mPAEs) in Indo-Pacific finless porpoises inhabiting the northern South China Sea (NSCS) during 2007-2020. The average hepatic concentrations of ∑15OPEs and ∑16mPAEs in the NSCS finless porpoises were 53.9 ± 40.7 and 98.6 ± 54.8 ng/g ww, respectively. The accumulation of mPAEs and OPEs in the finless porpoises is associated with the chemical structures of the compounds. ∑5halogenated-OPEs were the most dominant category (62.6%) of ∑15OPEs, followed by ∑6aryl-OPEs (25.9%) and ∑6nonhalogenated alkyl-OPEs (11.5%). The accumulation of mPAEs displayed a declining trend with increasing alkyl side chain length (C0-C10). Although the hepatic burden of mPAEs in finless porpoises was sex-independent, some OPEs, including TDCIPP, TBOEP, TCIPP, TCrP, TPHP, and TDBPP, exhibited significantly higher concentrations in adult males than in adult females. TDBPP, as a new-generation OPE, exhibited a gradual increase during the study period, suggesting that TDBPP should be prioritized for monitoring in the coastal regions of South China. The estimated hazard quotient indicated that almost all mPAEs and OPEs pose no hazard to finless porpoises, with only DEHP presenting potential health risks to both adult and juvenile finless porpoises.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Bin Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
4
|
Guo X, Liu B, Liu H, Du X, Chen X, Wang W, Yuan S, Zhang B, Wang Y, Guo H, Zhang H. Research advances in identification procedures of endocrine disrupting chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83113-83137. [PMID: 37347330 DOI: 10.1007/s11356-023-27755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are increasingly concerned substance endangering human health and environment. However, there is no unified standard for identifying chemicals as EDCs, which is also controversial internationally. In this review, the procedures for EDC identification in different organizations/countries were described. Importantly, three aspects to be considered in identifying chemical substances as EDCs were summarized, which were mechanistic data, animal experiments, and epidemiological information. The relationships between them were also discussed. To elaborate more clearly on these three aspects of evidence, scientific data on some chemicals including bisphenol A, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane and perchlorate were collected and evaluated. Altogether, the above three chemicals were assessed for interfering with hormones and elaborated their health hazards from macroscopic to microscopic. This review is helpful for standardizing the identification procedure of EDCs.
Collapse
Affiliation(s)
- Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bing Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Wenjun Wang
- College of Nursing, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
5
|
Wang Q, Ruan Y, Jin L, Kot BCW, Leung KMY, Lam PKS. Temporal Trends and Suspect Screening of Halogenated Flame Retardants and Their Metabolites in Blubbers of Cetaceans Stranded in Hong Kong Waters during 2013-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37295780 DOI: 10.1021/acs.est.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Halogenated flame retardants (HFRs) are a large class of chemical additives intended to meet flammability safety requirements, and at present, they are ubiquitous in the environment. Herein, we conducted the target analysis and suspect screening of legacy and novel HFRs and their metabolites in the blubber of finless porpoises (Neophocaena phocaenoides; n = 70) and Indo-Pacific humpback dolphins (Sousa chinensis; n = 35) stranded in Hong Kong, a coastal city in the South China Sea, between 2013 and 2020. The average concentrations of total target HFRs (ΣHFRs) were 6.48 × 103 ± 1.01 × 104 and 1.40 × 104 ± 1.51 × 104 ng/g lipid weight in porpoises and dolphins, respectively. Significant decreasing temporal trends were observed in the concentrations of tetra-/penta-/hexa-bromodiphenyl ethers (tetra-/penta-/hexa-BDEs) in adult porpoises stranded from 2013-2015 to 2016-2020 (p < 0.05), probably because of their phasing out in China. No significant difference was found for the concentrations of decabromodiphenyl ether and hexabromocyclododecane, possibly due to their exemption from the ban in China until 2025 and 2021, respectively. Eight brominated compounds were additionally identified via suspect screening. A positive correlation was found between the concentrations of tetra-BDE and methyl-methoxy-tetra-BDE (Me-MeO-tetra-BDE) (p < 0.05), indicating that the metabolism of tetra-BDE may be a potential source of Me-MeO-tetra-BDE in marine mammals.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Brian C W Kot
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
6
|
Yang R, Wang X, Gao Q, Sang C, Zhao Y, Niu Y, Shao B. Dietary Exposure and Health Risk of the Emerging Contaminant Fluorinated Liquid-Crystal Monomers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6309-6319. [PMID: 37010985 DOI: 10.1021/acs.est.3c00322] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fluorinated liquid-crystal monomers (FLCMs) widely used in liquid crystal displays are considered to be a new generation of persistent, bioaccumulative, and toxic contaminants. They have been widely detected in the environment. However, little is known about their occurrence in food and human dietary exposure until now. Herein, we provided an evaluation of dietary exposure and health risks of FLCMs in the Chinese adult population based on the fifth and sixth total diet studies (TDSs). The detection frequencies of FLCMs in the two surveys were 90.5 and 99.5%, with concentrations ranging from not detected ∼72.6 μg/kg wet weight (ww) and ND ∼74.7 μg/kg ww, respectively. All TDS samples contained the multiresidue of FLCMs. The mean estimated daily intakes (EDIs) of FLCMs were 172.86 and 163.10 ng/kg bw/day in the fifth and sixth TDS, respectively. Meats, vegetables, and cereals contributed the most to the EDI of FLCMs. According to the threshold of toxicological concern (TTC) method, the EDIs of 1-fluoro-4-[2-(4-propylphenyl)ethynyl]benzene (4.56 and 3.26 ng/kg bw/day) and 2-fluoro-4-[4'-propyl-1,1'-bi(cyclohexyl)-4-yl]phenyl trifluoromethyl ether (3.12 and 3.28 ng/kg bw/day) were above their TTC value (2.5 ng/kg bw/day), suggesting their potential health risk. This is the first comprehensive national dietary exposure assessment of FLCMs.
Collapse
Affiliation(s)
- Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinyi Wang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Qun Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Chenhui Sang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
7
|
Berger ML, Shaw SD, Rolsky C, Harris JH, Guo Y, Kannan K. Occurrence and tissue-specific partitioning of alternative brominated flame retardants in northwest Atlantic harbor seal pups (Phoca vitulina vitulina). CHEMOSPHERE 2023; 318:137968. [PMID: 36708778 DOI: 10.1016/j.chemosphere.2023.137968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Brominated flame retardants such as polybrominated diphenyl ethers (PBDEs) have been used for decades until evidence of negative health effects led to bans in many countries. PBDEs have since been replaced by alternative legacy compounds or newly developed chemicals. In this study, eight alternative brominated flame retardants were analyzed in blubber and liver of harbor seal pups (≤6 months) from the Northwest Atlantic collected during 2001-2010 to elucidate concentrations, patterns, contamination trends, potential maternal transfer, and tissue partitioning. All compounds were detected in liver and blubber tissues with hexabromocyclododecane (HBCD) isomers and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) predominating. Overall, α-HBCD was the dominant HBCD isomer in both tissues although the concentrations of γ-HBCD exceeded those of α-HBCD in seven pups, indicating their mothers may have had alternative dietary patterns or recent exposure to the commercial mixture. Although it was detected in less than half of the samples, to our knowledge, this is the first study to report tetrabromobisphenol A (TBBPA) concentrations in multiple tissues of a top marine predator. For the brominated components of Firemaster® flame retardants, TBB concentrations exceeded bis-(2-ethylhexyl)-tetrabromophthalate (TBPH). This pattern may result from recent exposure to commercial mixtures in which TBB exceeds TBPH 4:1 or from differences in perinatal or lactational transfer efficiency of the two compounds. Between the two tissues, lipid-normalized β-HBCD, γ-HBCD, TBB and decabromodiphenyl ethane (DBDPE) concentrations were significantly higher in liver than blubber. This indicates that the bioaccumulation of these chemicals is not simply related to lipid dynamics but may be linked to blood proteins. This study demonstrates that harbor seal pups from this region are contaminated with alternative flame retardants passed to them via placental or lactational transfer. Given the evidence for negative health effects of these chemicals, this contamination adds additional pressure on the first year survival of these young, developing animals.
Collapse
Affiliation(s)
- Michelle L Berger
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA.
| | - Susan D Shaw
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Charles Rolsky
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Jennifer H Harris
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Ying Guo
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, 550 First Avenue, 698 MSB 6th Floor, New York, NY, 10016, USA
| |
Collapse
|
8
|
He W, Ding J, Liu W, Zhong W, Zhu L, Zhu L, Feng J. Occurrence, bioaccumulation and trophic transfer of organophosphate esters in marine food webs: Evidence from three bays in Bohai Sea, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160658. [PMID: 36473656 DOI: 10.1016/j.scitotenv.2022.160658] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Due to the widespread use of organophosphate esters (OPEs), the occurrence and trophic transfer of OPEs have attracted attentions in ecosystems. However, as the final sink for these chemicals, the bioaccumulations and trophodynamics of OPEs in marine ecosystems are still not clear. In this study, seawater, sediment and marine organisms collected from Bohai Bay (BHB), Laizhou Bay (LZB), and Liaodong Bay (LDB) in Bohai Sea (BS), China were analyzed to investigate the occurrence, bioaccumulation and trophic transfer of typical OPEs. Total concentration of OPEs (∑9 OPEs) in surface water in LZB (255.8 ± 36.44 ng/L) and BHB (209.6 ± 35.61 ng/L) was higher than that in LDB (170.0 ± 63.73 ng/L). Marine organisms in LZB accumulated the highest concentrations of OPEs among the 3 bays (∑10OPEs, 70.56 ± 61.36 ng/g ww). Average bioaccumulation factor (BAF) of OPEs in marine organism in BHB, LZB, and LDB was ranged from -2.48 to 0.16, from -2.96 to 1.78, and from -2.59 to 0.59. We also found that trophic magnification factors (TMF) are generally <1, which suggested trophic dilutions of OPEs in BS, China. Nevertheless, the relatively high OPEs levels in BS still may bring potential risks to ecosystem and human health.
Collapse
Affiliation(s)
- Wanyu He
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Jiaqi Ding
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Wanni Liu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Wenjue Zhong
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Lingyan Zhu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Lin Zhu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Jianfeng Feng
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China.
| |
Collapse
|
9
|
Li P, Su W, Liang W, Zhu B, Li T, Ruan T, Jiang G. Occurrence and Temporal Trends of Benzotriazole UV Stabilizers in Mollusks (2010-2018) from the Chinese Bohai Sea Revealed by Target, Suspect, and Nontarget Screening Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16759-16767. [PMID: 36334087 DOI: 10.1021/acs.est.2c04143] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Benzotriazole UV stabilizers (BZT-UVs), including 2-(3,5-di-tert-amyl-2-hydroxyphenyl)benzotriazole (UV-328) that is currently under consideration for listing under the Stockholm Convention, are applied in many commodities and industrial products. However, limited information is available on the interannual variation of their environmental occurrence. In this study, an all-in-one strategy combining target, suspect, and nontarget screening analysis was established to comprehensively explore the temporal trends of BZT-UVs in mollusks collected from the Chinese Bohai Sea between 2010 and 2018. Significant residue levels of the target analytes were determined with a maximum total concentration of 6.4 × 103 ng/g dry weight. 2-(2-Hydroxy-3-tert-butyl-5-methyl-phenyl)-5-chloro-benzotriazole (UV-326), 5-chloro-2-(3,5-di-tert-butyl-2-hydroxyphenyl)benzotriazole (UV-327), and 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P) were the predominant analogues, and UV-328 was the most frequently detected BZT-UV with a detection frequency (DF) of 87%. Whereas five biotransformation products and six impurity-like BZT-UVs were tentatively identified, their low DFs and semi-quantified concentrations suggest that the targeted analytes were the predominant BZT-UVs in the investigated area. A gradual decrease in the total concentrations of BZT-UVs was observed, accompanied by downward trends of the abundant compounds (e.g., UV-326 and UV-P). Consequently, the relative abundance of UV-327 increased because of its consistent environmental presence. These results suggest that continuous monitoring and risk assessment of BZT-UVs other than UV-328 are of importance in China.
Collapse
Affiliation(s)
- Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhang Y, Li S, Zhang Y, Chen Y, Wang X, Sun Y. Bioaccumulation and Biomagnification of Hexabromocyclododecane in Marine Biota from China: A Review. TOXICS 2022; 10:toxics10100620. [PMID: 36287900 PMCID: PMC9610277 DOI: 10.3390/toxics10100620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
Hexabromocyclododecane (HBCD) was listed in Annex A of the Stockholm Convention on Persistent Organic Pollutants for its persistence, bioaccumulation and toxicity, and pose significant adverse effects on natural environments and human health. HBCDs are ubiquitously found in marine environments worldwide and can be biomagnified in marine organisms with a high trophic level. In the present study, we reviewed the available data on contamination of HBCDs in the marine biota from China, including mollusks, crustaceans, fish and mammals. Bioaccumulation and biomagnification of HBCDs in the marine food web were summarized as well. This study also prospected the future research of HBCDs, including the transport and fluxes of HBCDs to and within the marine environment, the biomagnification of HBCDs in different ecosystems, and the metabolism of HBCDs in different marine species.
Collapse
Affiliation(s)
- Ying Zhang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510611, China
| | - Sijia Li
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510611, China
| | - Yafeng Zhang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510611, China
| | - Yezi Chen
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510611, China
| | - Xutao Wang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510611, China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yuxin Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
11
|
Tao D, Jin Q, Ruan Y, Zhang K, Jin L, Zhan Y, Su G, Wu J, Leung KMY, Lam PKS, He Y. Widespread occurrence of emerging E-waste contaminants - Liquid crystal monomers in sediments of the Pearl River Estuary, China. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129377. [PMID: 35738172 DOI: 10.1016/j.jhazmat.2022.129377] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Liquid crystal monomers (LCMs), commonly used in screens of electronic devices, have recently been identified as a group of emerging chemicals of concern associated with e-waste. They are potentially persistent, bioaccumulative, and toxic substances, and may pose a threat to the marine ecosystem. The Pearl River Estuary (PRE) receives organic contaminants discharged from the Pearl River Delta region, where primitive handling of e-waste is widespread. However, information on the pollution status of LCMs in the PRE is absent. Herein, a rapid and robust analytical method was established using ultrasonic extraction, solid phase extraction cleanup, and GC-Orbitrap-MS analysis. The spatial distribution of 39 target LCMs was investigated in 45 surface sediment samples from the PRE. Ten LCMs were detected, with ΣLCMs ranged from 0.9 to 31.1 ng/g dry weight. Our results demonstrated a widespread occurrence of LCMs in the sediments of the PRE, and a gradient of their contamination from inshore to offshore regions, indicating land-based origins. Our reported ΣLCMs concentrations were relatively higher compared to many other legacy and emerging pollutants found in the same investigated area. Preliminary risk assessment showed 3VbcH, Pe3bcH and tFMeO-3bcHP might be the top 3 risk contributors in the PRE. Further investigation on the ecological impact of LCMs on marine benthic ecosystems, as well as identification of their sources and control measures are warranted.
Collapse
Affiliation(s)
- Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Qianqian Jin
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, 999078, Macao Special Adminstrative Region of China
| | - Linjie Jin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuting Zhan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaxue Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Office of the President, Hong Kong Metropolitan University, Hong Kong, China
| | - Yuhe He
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Yang E, Wen B, Zhang Z, Huang H, Zhang S. Diastereomer- and enantiomer-selective accumulation and depuration of 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexanes (DBE-DBCHs) and 1,2,5,6-tetrabromocyclooctanes (TBCOs) in earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154145. [PMID: 35227722 DOI: 10.1016/j.scitotenv.2022.154145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Due to the regulation of hexabromocyclododecane (HBCD), much attention has been paid to its potential substitutes, 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (DBE-DBCH) and 1,2,5,6-tetrabromocyclooctane (TBCO). DBE-DBCH and TBCO contain several diastereomers and enantiomers, which may exhibit different environmental behaviors and biological effects. In this study, the accumulation and depuration of individual DBE-DBCH and TBCO diastereomers by earthworms (Eisenia fetida) from diastereomer-contaminated soils were evaluated. The accumulation and depuration kinetics of DBE-DBCH and TBCO diastereomers followed one-compartment first-order kinetics. The biota soil accumulation factor (BSAF) of β-DBE-DBCH (2.74 goc glip-1) was 1.26 times that of α-DBE-DBCH (2.18 goc glip-1), while the BSAF of β-TBCO (2.15 goc glip-1) was 1.62 times that of α-TBCO (1.3 goc glip-1), showing the diastereomer-specific accumulation of DBE-DBCH and TBCO. DBE-DBCH and TBCO diastereomers appeared to be transformed in earthworm-soil systems; however, no evidence of bioisomerization of the four diastereomers in earthworms was found, and no potential metabolites of debromination and hydroxylation were detected. Furthermore, the selective enrichment of E1-α-DBE-DBCH and E1-β-DBE-DBCH (E1 represents the first enantiomer eluted) occurred in earthworms as the enantiomer fractions (EFs) for α-DBE-DBCH (0.562-0.763) and β-DBE-DBCH (0.516-0.647) were significantly greater than those in the technical products (0.501 for α-DBE-DBCH and 0.497 for β-DBE-DBCH, p < 0.05), especially in the depuration stage. The results demonstrated the diastereomer- and enantiomer-selective accumulation of DBE-DBCH and the diastereomer-selective accumulation of TBCO in the earthworm.
Collapse
Affiliation(s)
- Entai Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhenying Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Huang H, Guo B, Wang D, Kang Y, Cao D, Geng F, Rao Z, Lv J, Wen B. Bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize (Zea mays L.): Stereoselective driving roles of plant biomacromolecules. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127610. [PMID: 34775311 DOI: 10.1016/j.jhazmat.2021.127610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize were investigated. Furthermore, the roles of plant biomacromolecules such as lipid transfer proteins (LTPs), CYP and GST enzymes in driving the biological processes of TBECH stereoisomers were explored. The uptake and translocation of TBECH in maize were diastereo- and enantio-selective. Isomerization from α- to δ-TBECH and β- to γ-TBECH, and metabolites of debromination, hydroxylation and TBECH-GSH adducts were identified in maize roots. The gene expressions of LTPs, CYPs and GSTs were extensively changed in maize after exposure to technical TBECH. CYP and GST enzyme activities as well as GST31 and CYP71C3v2 gene expressions were selectively induced or inhibited by TBECH diastereomers over time. TBECH was able to dock into the active sites and bind with specific residues of the typical biomacromolecules ZmLTP1.6, GST31 and CYP71C3v2, indicating their roles in the bioaccumulation and metabolization of TBECH. Binding modes and affinities to biomacromolecules were significantly different between α- and β-TBECH, which contributed to their stereo-selectivity. This study provided a deep understanding of the biological fate of TBECH, and revealed the driving molecular mechanisms of the selectivity of TBECH stereoisomers in plants.
Collapse
Affiliation(s)
- Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | - Bin Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Yunshui Haorui Environmental Technology Co. LTD, Beijing 100195, China
| | - Yuehui Kang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Jin Q, Tao D, Lu Y, Sun J, Lam CH, Su G, He Y. New insight on occurrence of liquid crystal monomers: A class of emerging e-waste pollutants in municipal landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127146. [PMID: 34536849 DOI: 10.1016/j.jhazmat.2021.127146] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Liquid crystal monomers (LCMs) have been proposed as a class of emerging organic pollutants, which were recently detected in indoor dust and sediment samples collected near electronic devices recycling facilities. However, there is a knowledge gap for analytical method, occurrence, and distribution of LCMs in aqueous sample. Herein, a robust method was developed to determine 38 target LCMs in landfill leachate. A combined ultrasonic enhanced liquid-liquid extraction, saponification and silica/florisil packed column purification method achieved recoveries of 76.9~127.1%, 84.5~114.6% and 81.3~104.6% at spiking levels of 2 ng, 10 ng and 50 ng in leachate, respectively. The developed method was validated through determination of target LCMs in leachate samples collected from municipal landfills in Hong Kong (HK) and Shenzhen (SZ), China. There were 23 and 20 LCMs detected in the HK (ΣLCMs=1120 ng/L) and SZ (ΣLCMs=409 ng/L) sample, respectively, with 6 LCMs newly detected in the environment. This study provided the first evidence suggesting that landfill leachate might be a potential sink of LCMs emitted from e-waste. Future study is urged to investigate the potential migration of LCMs from landfill leachate as a point source, and their occurrence, distribution, fate, and ecotoxicological risk in aquatic environments on regional and global scales.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Chun Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Li J, Ruan Y, Mak YL, Zhang X, Lam JCW, Leung KMY, Lam PKS. Occurrence and Trophodynamics of Marine Lipophilic Phycotoxins in a Subtropical Marine Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8829-8838. [PMID: 34142818 DOI: 10.1021/acs.est.1c01812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine lipophilic phycotoxins (MLPs) are produced by toxigenic microalgae and cause foodborne illnesses. However, there is little information on the trophic transfer potential of MLPs in marine food webs. In this study, various food web components including 17 species of mollusks, crustaceans, and fishes were collected for an analysis of 17 representative MLPs, including azaspiracids (AZAs), brevetoxins (BTXs), gymnodimine (GYM), spirolides (SPXs), okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins (PTXs), yessotoxins (YTXs), and ciguatoxins (CTXs). Among the 17 target MLPs, 12, namely, AZAs1-3, BTX3, GYM, SPX1, OA, DTXs1-2, PTX2, YTX, and the YTX derivative homoYTX, were detected, and the total MLP concentrations ranged from 0.316 to 20.3 ng g-1 wet weight (ww). The mean total MLP concentrations generally decreased as follows: mollusks (8.54 ng g-1, ww) > crustaceans (1.38 ng g-1, ww) > fishes (0.914 ng g-1, ww). OA, DTXs, and YTXs were the predominant MLPs accumulated in the studied biota. Trophic dilution of the total MLPs was observed with a trophic magnification factor of 0.109. The studied MLPs might not pose health risks to residents who consume contaminated seafood; however, their potential risks to the ecosystem can be a cause for concern.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaohua Zhang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Office of the President, The Open University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| |
Collapse
|
16
|
Wang XS, Tan X, Zhang Y, Hu XX, Shen C, Huang YY, Fu HL, Yu RH, He CT. The enantiomer-selective metabolism of hexabromocyclododecanes (HBCDs) by human HepG2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144430. [PMID: 33736337 DOI: 10.1016/j.scitotenv.2020.144430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Although hepatic metabolism of hexabromocyclododecanes (HBCDs) played critical roles in the selective bioaccumulation of HBCDs in humans, the hepatic metabolism patterns of its enantiomers remained ambiguous. Aiming to elucidate the mechanism on hepatic metabolism of hexabromocyclododecanes (HBCDs) enantiomers, the enantiomers ((+)-α-HBCD, (-)-α-HBCD, (+)-γ-HBCD, and (-)-γ-HBCD), the diastereoisomers (α-, β-, and γ-HBCDs) and the mixed of α- and γ-HBCDs were incubated with human HepG2 cell under different exposure levels in the present study. The clearance percentages ranked as γ-HBCD enantiomers >β-HBCD enantiomers >α-HBCD enantiomers at the same exposure levels. The clearance percentages of (+)- and (-)-α-HBCDs increased when cells were exposed to racemic α-HBCD and the mixture of racemic α- and γ-HBCDs (p < 0.05). (-)-γ-HBCD was more resistant to human hepatic metabolism than (+)-γ-HBCD, leading to the enantiomer fractions (EFs) of γ-HBCD lower than 0.50. (-)-α-HBCD was slightly more metabolized when independently exposed to α-HBCD, while (+)-α-HBCD was more preferentially metabolized after exposure to α- and γ-HBCD mixtures. Hydroxylation and debromination HBCD metabolites were identified. In addition, the different EFs of HBCDs in cells and mediums suggested the selective transfer of chiral HBCDs and HBCD metabolites through the cell membrane. This study provided new insight into the enantiomer-selective metabolism of HBCDs.
Collapse
Affiliation(s)
- Xue-Song Wang
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, China National Analytical Center Guangzhou (Guangdong Institute of Analysis), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Xiao Tan
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Zhang
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xia-Xin Hu
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuang Shen
- School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ying-Ying Huang
- School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Hui-Ling Fu
- School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ruo-Han Yu
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Chun-Tao He
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
17
|
The brominated flame retardants TBECH and DPTE alter prostate growth, histology and gene expression patterns in the mouse. Reprod Toxicol 2021; 102:43-55. [PMID: 33848595 DOI: 10.1016/j.reprotox.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The brominated flame retardants (BFRs), 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane (TBECH) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) bind to the androgen receptor (AR). in vitro bioassays have shown that TBECH is a potent androgen agonist while DPTE is a potent AR antagonist. Both TBECH and DPTE alter gene expression associated with AR regulation. However, it remains to be determined if TBECH and DPTE can affect the prostate. For this reason, we exposed CD1 mice to a 1:1 mixture of TBECH diastereomers α and β, a 1:1 mixture of γ and δ, and to DPTE, and tested their effects on prostate growth, histology and gene expression profiles. Castrated mice were used to study the androgenic effects of TBECHαβ and TBECHγδ while the antagonistic effects of DPTE were studied in non-castrated mice. We observed that testosterone and TBECHγδ increased body and prostate weights while TBECHαβ affected neither of them; and that DPTE had no effect on body weight but reduced prostate weight drastically. Histomorphometric analysis of the prostate revealed epithelial and glandular alterations in the TBECHγδ group comparable to those in testosterone group while alterations in the TBECHαβ group were less pronounced. DPTE displayed androgen antagonist activity reminiscent of castration. The transcription profile of the prostate was altered by castration and exposure to testosterone and to TBECHγδ reversed several of these changes. Testosterone and TBECHγδ also regulated the expression of several androgen responsive genes implicated in prostate growth and cancer. While DPTE resulted in a drastic reduction in prostate weight, it only affected a small number of genes. The results indicate that TBECHγδ and DPTE are of high human health concern as they may contribute to changes in prostate growth, histology and function.
Collapse
|
18
|
Marteinson SC, Bodnaryk A, Fry M, Riddell N, Letcher RJ, Marvin C, Tomy GT, Fernie KJ. A review of 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in the environment and assessment of its persistence, bioaccumulation and toxicity. ENVIRONMENTAL RESEARCH 2021; 195:110497. [PMID: 33232751 DOI: 10.1016/j.envres.2020.110497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
Following the ban of many historically-used flame retardants (FRs), numerous replacement chemicals have been produced and used in products, with some being identified as environmental contaminants. One of these replacement flame retardants is 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH; formerly abbreviated as TBECH), which to date has not been identified for risk assessment and potential regulation. DBE-DBCH technical mixtures consist largely of α- and β-diastereomers with trace amounts of γ- and δ-DBE-DBCH. The α- and β-isomers are known contaminants in various environmental media. While current global use and production volumes of DBE-DBCH are unknown, recent studies identified that DBE-DBCH concentrations were among the highest of the measured bromine-based FRs in indoor and urban air in Europe. Yet our mass balance fugacity model and modeling of the physical-chemical properties of DBE-DBCH estimated only 1% partitioning to air with a half-life of 2.2 d atmospherically. In contrast, our modeling characterized DBE-DBCH adsorbing strongly to suspended particulates in the water column (~12%), settling onto sediment (2.5%) with minimal volatilization, but with most partitioning and adsorbing strongly to soil (~85%) with negligible volatilization and slow biodegradation. Our modeling further predicted that organisms would be exposed to DBE-DBCH through partitioning from the dissolved aquatic phase, soil, and by diet, and given its estimated logKow (5.24) and a half-life of 1.7 d in fish, DBE-DBCH is expected to bioaccumulate into lipophilic tissues. Low concentrations of DBE-DBCH are commonly measured in biota and humans, possibly because evidence suggests rapid metabolism. Yet toxicological effects are evident at low exposure concentrations: DBE-DBCH is a proven endocrine disruptor of sex and thyroid hormone pathways, with in vivo toxic effects on reproductive, metabolic, and other endpoints. The objectives of this review are to identify the current state of knowledge concerning DBE-DBCH through an evaluation of its persistence, potential for bioaccumulation, and characterization of its toxicity, while identifying areas for future research.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| | - Anjelica Bodnaryk
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, R3T 2N2, Canada
| | - Mark Fry
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, R3T 2N2, Canada
| | - Nicole Riddell
- Wellington Laboratories, 345 Southgate Dr., Guelph, ON, N1G 3M5, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Chris Marvin
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, R3T 2N2, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada.
| |
Collapse
|
19
|
Feng H, Cheng Y, Ruan Y, Tsui MMP, Wang Q, Jin J, Wu R, Zhang H, Lam PKS. Occurrence and spatial distribution of legacy and novel brominated flame retardants in seawater and sediment of the South China sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116324. [PMID: 33360350 DOI: 10.1016/j.envpol.2020.116324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The occurrence and spatial distribution of polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in seawater and surficial sediment samples (N = 19 and 45, respectively) from the South China Sea (SCS) in 2018 were investigated, and the correlation between BFRs and site parameters (total organic carbon, depth, etc.) were assessed by principal component analysis. The concentration ranges of ΣPBDEs in seawater and sediments were 0.90-4.40 ng/L and 0.52-22.67 ng/g dry weight (dw), respectively, while those of ΣNBFRs were 0.49-37.42 ng/L and 0.78-82.29 ng/g dw, respectively. BDE-209 and decabromodiphenyl ethane were the predominant BFRs, accounting for 38.65% and 36.94% in seawater and 26.71% and 68.42% in sediments, respectively. Notably, tris(2,3-dibromopropyl)isocyanurate and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine, seldomly detected in aquatic matrices worldwide, were detected for the first time in the study area, and their relatively high levels and detection frequencies indicate the ubiquitous application of these NBFRs in the Pearl River Delta. Zhuhai and Jiangmen are the main sources of NBFRs in the SCS. Preliminary risk assessment on NBFRs using hazard quotient indicates low to medium risks to marine organisms at some sites. The occurrence of NBFRs in the SCS highlights the prioritization of more toxicological information on these compounds.
Collapse
Affiliation(s)
- Hongru Feng
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, Zhejiang University, Hangzhou, 310027, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yixue Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Mirabelle M P Tsui
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jing Jin
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Haiyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Cariou R, Malysheva SV, Goscinny S, Le Bizec B, Van Loco J, Dervilly G. Enantiomeric fraction of hexabromocyclododecanes in foodstuff from the Belgian market. CHEMOSPHERE 2020; 260:127607. [PMID: 32698116 DOI: 10.1016/j.chemosphere.2020.127607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Diet is considered a major route of human exposure to hexabromocyclododecane, a chiral environmental contaminant. A previous study reported on the occurrence of hexabromocyclododecane diastereoisomers in food items of animal origin collected in Belgium. The present study reports further results on corresponding enantiomeric fractions of the same samples. None of the samples could be considered as racemic for the α-isomer suggesting that foodstuff contamination occurred prior to death of the corresponding producing animal and was not the result of the food item being in contact with technical HBCDD. Non-racemic chiral signatures were also observed for β- and γ-isomers. We conclude that, depending on their dietary habits, different individuals might be overall exposed to non-racemic profiles. Considering that toxicological effects are enantiomer-dependent, this could modulate potential adverse effects.
Collapse
Affiliation(s)
| | - Svetlana V Malysheva
- Organic Contaminants and Additives, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Séverine Goscinny
- Organic Contaminants and Additives, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | | | - Joris Van Loco
- Organic Contaminants and Additives, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | | |
Collapse
|
21
|
Shi X, Wen B, Huang H, Zhang S. Cytotoxicity of hexabromocyclododecane, 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane and 1,2,5,6-tetrabromocyclooctane in human SH-SY5Y neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139650. [PMID: 32758930 DOI: 10.1016/j.scitotenv.2020.139650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
With the listing of the of cycloaliphatic brominated flame retardants (CBFR) hexabromocyclododecane (HBCD) as a persistent organic pollutant (POP) by the Stockholm Convention, much attention has been paid to the environmental behaviors and biological effects of HBCD, as well as its potential alternatives, such as 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (TBECH) and 1,2,5,6-tetrabromocyclooctane (TBCO). In this study, the neurotoxicity of HBCD, TBECH, and TBCO in human SH-SY5Y cells were compared. The results showed that HBCD, TBECH, and TBCO induced cytotoxicity, including dose-dependent cell viability decreases, cell membrane permeability increases, cytoskeleton development damage, and apoptosis induction, with the cytotoxicity in the order of HBCD > TBCO > TBECH. The expression levels of apoptotic proteins (caspase-3, Bax, caspase-9, Bcl-2, and cytochrome c (Cyt c)) followed the same order, which indicated that mitochondrial apoptotic pathway may be one of the mechanisms responsible for their neurotoxicity. In order to study the mechanisms of cytotoxicity, CBFRs-induced reactive oxygen species (ROS) and the intracellular calcium levels were determined. The ROS levels were significantly elevated for three CBFRs treatment, suggesting that oxidative stress contributes to their cytotoxicity. The intracellular calcium concentrations were significantly enhanced for HBCD and TBCO treatment, but not for TBECH, indicating that in addition to ROS, cytotoxicity of HBCD and TBCO may follow Ca2+-mediated apoptotic pathway. This study first compared the neurotoxicity of different CBFRs, providing valuable information for their risk assessment.
Collapse
Affiliation(s)
- Xiaoli Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Sun Y, Zhu H. Spatial and temporal distributions of hexabromocyclododecanes in surface soils of Jinan, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:629. [PMID: 32902786 DOI: 10.1007/s10661-020-08587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Contamination by hexabromocyclododecanes (HBCDDs) in the soil environment is an ongoing concern because of their "specific exemption" on the production and use in China. In this study, spatial distribution, temporal trend, and diastereoisomer profiles of HBCDDs were examined in surface soils collected in Jinan, China. Concentrations of ΣHBCDD (sum of α-, β-, and γ-HBCDDs) in soils ranged from 1.70 to 228 ng/g dry weight (dw), with a mean value of 26.1 ng/g dw. Soils collected from e-waste dismantling sites (mean 146 ng/g dw) contained significantly higher concentrations of ΣHBCDD than those of urban (15.5 ng/g dw) and farmland soils (3.86 ng/g dw) (p < 0.01). The temporal trend suggested that ΣHBCDD levels in the industrial area rose significantly between 2014 and 2019 (p < 0.05), with an annual increase of 12%. An increase in ΣHBCDD levels was also observed in urban and farmland soil samples during the study period, although it did not reach a significant level (p > 0.05). All surface soils were dominated by γ-HBCDD (mean 60.7% of total concentrations); however, the proportions of α-isomer increased from 28.7% in urban and rural soils to 43.4% in industrial soils. The calculated risk quotients of HBCDDs present in soils were at least 25-fold lower than the threshold limit value. The mean mass inventory of HBCDDs was approximately 2501 kg in the cultivated land of Jinan City; further studies are needed to discern the uptake of HBCDDs by crops and the fate of these chemicals in agricultural ecosystems.
Collapse
Affiliation(s)
- Yulian Sun
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
23
|
Ruan Y, Lin H, Zhang X, Wu R, Zhang K, Leung KMY, Lam JCW, Lam PKS. Enantiomer-specific bioaccumulation and distribution of chiral pharmaceuticals in a subtropical marine food web. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122589. [PMID: 32283383 DOI: 10.1016/j.jhazmat.2020.122589] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
There is a growing concern about the occurrence of chiral pharmaceuticals in the aquatic environment. However, trophic transfer of pharmaceutical enantiomers in marine organisms is still largely unknown. This study assessed the bioaccumulation and spatial distribution of four frequently detected pharmaceuticals - atenolol, metoprolol, venlafaxine, and chloramphenicol, in a subtropical marine food web in Hong Kong waters. Twenty-four species were analyzed, including mollusks, crustaceans, and fishes. Special focus was placed in the chirality of the four analytes comprising ten different stereoisomers. Results showed that mean concentrations of individual pharmaceuticals ranged from <0.03 to 5.88 ng/g wet weight, and invertebrates generally had higher concentrations than fishes. Organisms from Hong Kong western waters were likely more contaminated by the studied pharmaceuticals than those from southern and eastern waters. Trophic dilution was observed for atenolol and chloramphenicol, with trophic magnification factors of 0.164 and 0.517, respectively. R-(+)-atenolol, S-(-)-metoprolol, and R-(-)-venlafaxine were selectively accumulated in fishes, and stereoisomeric impurities of chloramphenicol, i.e., enantiomers apart from R,R-para-form, were widespread in the investigated species. Under the worst-case scenario, atenolol and metoprolol in collected fishes might exceed toxic threshold, while local adults were unlikely to experience health risks from pharmaceutical exposure via seafood consumption.
Collapse
Affiliation(s)
- Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, City University of Hong Kong, Hong Kong, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xiaohua Zhang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, City University of Hong Kong, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - James C W Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, City University of Hong Kong, Hong Kong, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Ma G, Yu H, Han C, Jia Y, Wei X, Wang Z. Binding and Metabolism of Brominated Flame Retardant β-1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane in Human Microsomal P450 Enzymes: Insights from Computational Studies. Chem Res Toxicol 2020; 33:1487-1496. [DOI: 10.1021/acs.chemrestox.0c00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cenyang Han
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yue Jia
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
25
|
Zhang K, Qian Z, Ruan Y, Hao Y, Dong W, Li K, Mei Z, Wang K, Wu C, Wu J, Zheng J, Lam PKS, Wang D. First evaluation of legacy persistent organic pollutant contamination status of stranded Yangtze finless porpoises along the Yangtze River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136446. [PMID: 31923702 DOI: 10.1016/j.scitotenv.2019.136446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis), inhabiting the Yangtze River, are an endangered species in China. They are threatened by various kinds of pollutants, among which persistent organic pollutants (POPs) are of special concern due to their toxicities, high persistency and bioaccumulation potential. To better understand the POP contamination status of Yangtze finless porpoises, an investigation of stranded porpoises along the Yangtze River and adjacent two major lakes in the Yangtze River basin was conducted; the concentrations of four groups of legacy POPs, i.e., hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyl (PCBs), were determined in the blubber samples. The mean concentrations of ΣHCHs (the sum of all congeners/isomers), ΣDDTs, ΣPBDEs and ΣPCBs, were 1670 ± 4210, 28,800 ± 52,300, 141 ± 174, and 1020 ± 1070 ng/g lipid weight, respectively; the high DDTs/PCBs ratio reflected a strong influence of agricultural pollution in the Yangtze River basin, and the high α/γ ratio of HCH isomers indicated the usage of lindane in the corresponding areas; the predominance of low-brominated congeners of PBDEs may be related to congruent patterns in the related environmental matrices. A hazard quotient risk assessment revealed that DDTs could pose a relatively high risk to Yangtze finless porpoises compared with the risks posed by the other POPs.
Collapse
Affiliation(s)
- Kai Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Zhengyi Qian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yujiang Hao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Weiwei Dong
- Bengbu Medical College, Bengbu 233030, China
| | - Ke Li
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Zhigang Mei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kexiong Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianhong Wu
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China.
| | - Jinsong Zheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ding Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
26
|
Jeong Y, Lee Y, Park KJ, An YR, Moon HB. Accumulation and time trends (2003-2015) of persistent organic pollutants (POPs) in blubber of finless porpoises (Neophocaena asiaeorientalis) from Korean coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121598. [PMID: 31732341 DOI: 10.1016/j.jhazmat.2019.121598] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Accumulation of persistent organic pollutants (POPs) in marine mammals is of great concern and is associated with declining populations. The concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) were measured in blubber of finless porpoises (Neophocaena asiaeorientalis) collected from Korean coastal waters in 2010 and 2015, to assess the concentrations, time trends, and ecotoxicological effects. Among the POPs measured, DDTs were detected at the highest concentrations, followed by PCBs and PBDEs. Significant age- and sex-dependent accumulation of POPs was evident for porpoises collected in 2010, but not for those collected in 2015. This finding may be a function of stabilization of POP concentrations over time. In our study, accumulation patterns of POPs were dependent on consumption patterns and physico-chemical properties of the contaminants, and on the metabolism in the porpoises. Significant reductions of POPs were found between 2003 and 2010, likely reflecting the impact of domestic and global regulation of POPs. However, no changes in most POPs were found between 2010 and 2015, suggesting a trend toward stabilization. Approximately 10 % and 27 % of porpoises exceeded previously proposed threshold levels for PCBs and DDTs, respectively, implying a potential health risk.
Collapse
Affiliation(s)
- Yunsun Jeong
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Youngsun Lee
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Kyum Joon Park
- Cetacean Research Institute (CRI), National Institute of Fisheries Science (NIFS), Ulsan 44780, Republic of Korea
| | - Yong-Rock An
- National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
27
|
Shi X, Zha J, Wen B, Zhang S. Diastereoisomer-specific neurotoxicity of hexabromocyclododecane in human SH-SY5Y neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:893-902. [PMID: 31200309 DOI: 10.1016/j.scitotenv.2019.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Hexabromocyclododecane (HBCD) is a widely applied brominated flame retardant (BFR) and is regarded as a persistent organic pollutant. It has been found in human tissues and has the potential to cause neurological disorders. However, our understanding of HBCD neurotoxicity at the diastereoisomer level remains lacking. Here, we investigated the neurotoxicity of three HBCD diastereoisomers, i.e., α-, β-, and γ-HBCD, in SH-SY5Y human neuroblastoma cells. Results showed that the HBCD diastereoisomers decreased cell viability, increased lactate dehydrogenase (LDH) release, and impaired cytoskeleton development. Typical morphological features and apoptosis rates showed that the HBCD diastereoisomers induced SH-SY5Y cell apoptosis. The expression levels of several cell apoptosis-related genes and proteins, including Bax, caspase-3, caspase-9, cytochrome c, Bcl-2, and X-linked inhibitor of apoptosis (XIAP), as well as the cell cycle arrest, DNA damage, adenosine triphosphate (ATP) consumption, reactive oxygen species (ROS) levels, and intracellular calcium ion (Ca2+) levels, were examined. Results showed that the HBCD diastereoisomer neurotoxicity was ranked β-HBCD > γ-HBCD > α-HBCD. The cell apoptosis and caspase expression levels of the three HBCD diastereoisomers followed the same order, suggesting that caspase-dependent apoptosis may be one mechanism responsible for the structure-selective HBCD diastereoisomer neurotoxicity. The levels of intracellular Ca2+ and ROS increased significantly. The ROS levels were ordered β-HBCD > γ-HBCD > α-HBCD, whereas those of intracellular Ca2+ were γ-HBCD > β-HBCD > α-HBCD. Thus, ROS may be a key factor regulating the neurotoxicity of HBCD diastereoisomers. To the best of our knowledge, this is the first study to report on the diastereoisomer-specific toxicity of HBCD in human neural cells and on the possible mechanisms responsible for the selective neurotoxicity of HBCD diastereoisomers.
Collapse
Affiliation(s)
- Xiaoli Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinmiao Zha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Ruan Y, Zhang K, Wu C, Wu R, Lam PKS. A preliminary screening of HBCD enantiomers transported by microplastics in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:171-178. [PMID: 31004893 DOI: 10.1016/j.scitotenv.2019.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 05/23/2023]
Abstract
Hexabromocyclododecane (HBCD), a commonly used flame retardant, causes public concern due to its potential negative effects on organisms. Microplastics are suspected to contain certain amounts of HBCD. Wastewater treatment plants (WWTPs) are believed to be one of the largest sources of microplastics and a sink for micropollutants, providing opportunities for interactions between them, especially for hydrophobic micropollutants such as HBCD. There is a lack of studies focusing on the prevalence of microplastics and HBCD they carry. The present study investigated two typical WWTPs in Hong Kong, Stonecutters Island WWTP (SCI) and Shek Wu Hui WWTP (SWH), which employ different treatment technologies. The abundance of microplastics decreased with the treatment flow, and the microplastic concentrations in effluent were at intermediate levels (0.40 and 0.27particles/L) compared with the levels reported in previous studies. The concentrations of HBCD transported by microplastics reached 4184.4 ng/g in the effluent, whereas that in sewage water (dissolved phase) was 0.8 pg/L. For microplastics, 7.32 × 107 and 2.24 × 107 particles per day were estimated to be released from SCI and SWH, respectively into the environment; the release of HBCD carried by microplastics potentially reached 15.5 g per day, whereas the dissolved HBCD in the effluent may reach 0.067 g per day. A preliminary risk assessment of HBCD transported by microplastics showed that HBCD posed negligible risk; nevertheless, attention should be paid to the continual discharge of microplastics from WWTPs.
Collapse
Affiliation(s)
- Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Ruan Y, Zhang K, Lam JCW, Wu R, Lam PKS. Stereoisomer-specific occurrence, distribution, and fate of chiral brominated flame retardants in different wastewater treatment systems in Hong Kong. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:211-218. [PMID: 31005053 DOI: 10.1016/j.jhazmat.2019.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the occurrence and fate of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), two chiral brominated flame retardants (BFRs) with sixteen different stereoisomers, in four Hong Kong wastewater treatment plants (WWTPs) featuring diverse treatment processes during a two-year sampling campaign. More effective HBCD removal was achieved via biodegradation as compared to sludge sorption, whereas both chemically enhanced primary treatment and secondary treatment yielded high TBECH elimination (>90%). α-HBCD (54-75%) predominated in all samples, and its proportions were increased in effluent as compared to influent and sludge. α- and β-TBECH (72.3-84.4% in total) were the predominant TBECH diastereomers, with a proportional shift from the latter to the former diastereomer mostly observed after treatment. More rapid biodegradation and preferential sorption of γ-HBCD as compared to α-HBCD as well as β-TBECH as compared to α-TBECH might account for this changing pattern. This is the first study to report the enantiomer-specific behavior of chiral BFRs in different wastewater treatment processes. A preferential elimination of (+)-α- and (+)-γ-HBCD and E2-β-TBECH (the second enantiomeric elution order) took place consistently after biological treatment, possibly due to enantioselective adsorption and microbial degradation. Our results highlight the importance of conducting enantiospecific analysis for chiral pollutants in wastewater samples.
Collapse
Affiliation(s)
- Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - James C W Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Science and Environmental Studies, The Education University of Hong of Kong, Hong Kong Special Administrative Region, China.
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
30
|
Sutton R, Chen D, Sun J, Greig DJ, Wu Y. Characterization of brominated, chlorinated, and phosphate flame retardants in San Francisco Bay, an urban estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:212-223. [PMID: 30366322 DOI: 10.1016/j.scitotenv.2018.10.096] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Flame retardant chemical additives are incorporated into consumer goods to meet flammability standards, and many have been detected in environmental matrices. A uniquely wide-ranging characterization of flame retardants was conducted, including polybrominated diphenyl ethers (PBDEs) and 52 additional brominated, chlorinated, or phosphate analytes, in water, sediment, bivalves, and harbor seal blubber of San Francisco Bay, a highly urbanized estuary once considered a hot spot for PBDE contamination. Among brominated flame retardants, PBDEs remained the dominant contaminants in all matrices, though declines have been observed over the last decade following their phase-out. Hexabromocyclododecane (HBCD) and other hydrophobic, brominated flame retardants were commonly detected at lower levels than PBDEs in sediment and tissue matrices. Dechlorane Plus (DP) and related chlorinated compounds were also detected at lower levels or not at all across all matrices. In contrast, phosphate flame retardants were widely detected in Bay water samples, with highest median concentrations in the order TCPP > TPhP > TBEP > TDCPP > TCEP. Concentrations in Bay water were often higher than in other estuarine and marine environments. Phosphate flame retardants were also widely detected in sediment, in the order TEHP > TCrP > TPhP > TDCPP > TBEP. Several were present in bivalves, with levels of TDCPP comparable to PBDEs. Only four phosphate flame retardants were detected in harbor seal blubber: TCPP, TDCPP, TCEP, and TPhP. Periodic, multi-matrix screening is recommended to track contaminant trends impacted by changes to flammability standards and manufacturing practices, with a particular focus on contaminants like TDCPP and TPhP that were found at levels comparable to thresholds for aquatic toxicity.
Collapse
Affiliation(s)
- Rebecca Sutton
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Jennifer Sun
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Denise J Greig
- California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Yan Wu
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
31
|
Lin W, Li X, Yang M, Lee K, Chen B, Zhang BH. Brominated Flame Retardants, Microplastics, and Biocides in the Marine Environment: Recent Updates of Occurrence, Analysis, and Impacts. ADVANCES IN MARINE BIOLOGY 2018; 81:167-211. [PMID: 30471656 DOI: 10.1016/bs.amb.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Emerging contaminants (ECs) may pose adverse effects on the marine ecosystem and human health. Based on the analysis of publications filed in recent years, this paper provides a comprehensive overview on three prominent groups of ECs, i.e., brominated flame retardants, microplastics, and biocides. It includes detailed discussions on: (1) the occurrence of ECs in seawater, sediment, and biota; (2) analytical detection and monitoring approaches for these target ECs; and (3) the biological impacts of the ECs on humans and other trophic levels. This review provides a summary of recent advances in the field and remaining knowledge gaps to address, to enable the assessment of risk and support the development of regulations and mitigation technologies for the control of ECs in the marine environment.
Collapse
Affiliation(s)
- Weiyun Lin
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Min Yang
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Helen Zhang
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| |
Collapse
|
32
|
Ruan Y, Zhang X, Qiu JW, Leung KMY, Lam JCW, Lam PKS. Stereoisomer-Specific Trophodynamics of the Chiral Brominated Flame Retardants HBCD and TBECH in a Marine Food Web, with Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8183-8193. [PMID: 29939731 DOI: 10.1021/acs.est.8b02206] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stereoisomers of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) were determined in sediments and 30 marine species in a marine food web to investigate their trophic transfer. Lipid content was found to affect the bioaccumulation of ΣHBCD and ΣTBECH in these species. Elevated biomagnification of each diastereomer from prey species to marine mammals was observed. For HBCD, biota samples showed a shift from γ- to α-HBCD when compared with sediments and technical mixtures; trophic magnification potential of (-)-α- and (+)-α-HBCD were observed in the food web, with trophic magnification factors (TMFs) of 11.8 and 8.7, respectively. For TBECH, the relative abundance of γ- and δ-TBECH exhibited an increasing trend from abiotic matrices to biota samples; trophic magnification was observed for each diastereomer, with TMFs ranging from 1.9 to 3.5. The enantioselective bioaccumulation of the first eluting enantiomer of δ-TBECH in organisms at higher TLs was consistently observed across samples. This is the first report on the trophic transfer of TBECH in the food web. The estimated daily intake of HBCD for Hong Kong residents was approximately 16-times higher than that for the general population in China, and the health risk to local children was high, based on the relevant available reference dose.
Collapse
Affiliation(s)
| | - Xiaohua Zhang
- Department of Science and Environmental Studies , The Education University of Hong of Kong , Hong Kong SAR , China
| | - Jian-Wen Qiu
- Department of Biology , Hong Kong Baptist University , Hong Kong SAR , China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - James C W Lam
- Department of Science and Environmental Studies , The Education University of Hong of Kong , Hong Kong SAR , China
| | | |
Collapse
|
33
|
Gui D, Zhang L, Zhan F, Liu W, Yu X, Chen L, Wu Y. Levels and trends of polycyclic aromatic hydrocarbons in the Indo-Pacific humpback dolphins from the Pearl River Estuary (2012-2017). MARINE POLLUTION BULLETIN 2018; 131:693-700. [PMID: 29886996 DOI: 10.1016/j.marpolbul.2018.04.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
We investigated the levels and trends of the 16 USEPA priority PAHs in the blubber of 37 Indo-Pacific humpback dolphins sampled during the period 2012-2017 from the Pearl River Estuary (PRE), China. Σ16PAHs concentrations (17.6-6080 ng g-1 wet weight) were at median level compared to dolphin species worldwide. Humpback dolphins affiliated with the hotspots of PAHs, had significantly higher levels of Σ16PAHs than individuals from the other areas in the PRE. Moreover, dolphins stranded on the coast of Lingdingyang are significantly more contaminated by Σ16PAHs than those in the West-four region of the PRE, which appears to reflect the heterogeneous distribution of PAHs in the environment. A marked decline in blubber Σ16PAHs levels is observed over the studied period, with the control of a range of confounding factors. The trend is strongly and statistically significant (p < 0.0001), indicating that the loading of PAHs are gradually being reduced.
Collapse
Affiliation(s)
- Duan Gui
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Lingli Zhang
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Fengping Zhan
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Wen Liu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Xinjian Yu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China
| | - Yuping Wu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
| |
Collapse
|