1
|
Chen S, Zhao Z, Li L, Cui F. Comparison of UV/PS and VUV/PS as ultrafiltration pretreatment: Performance, mechanisms, DBPs formation and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174457. [PMID: 38969137 DOI: 10.1016/j.scitotenv.2024.174457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Ultrafiltration (UF) is widely used in drinking water plants, nevertheless, it still encounters challenges stemming from inevitable membrane fouling caused by natural organic matter (NOM). Herein, this work applied VUV/PS as UF membrane pretreatment and used UV/PS for comparison. VUV/PS system exhibited superior ability in removing NOM compared to UV/PS system. HO and SO4- played crucial roles in the degradation. [SO4-]ss was notably higher than [HO]ss in the systems, yet HO was of greater significance. [HO]ss and [SO4-]ss in the VUV/PS process were remarkably higher than those in the UV/PS process, due to the function of 185 nm photons. VUV/PS pretreatment basically recovered flux and effectively reduced fouling resistance, with better performance than UV/PS. Fouling mechanism was dominated by multiple mechanisms after UV/PS pretreatment, whereas it was transformed into pore blockage after VUV/PS pretreatment. Moreover, the UF effluent quality after VUV/PS pretreatment outperformed that of UV/PS but fell short of that without pretreatment, possibly due to the generation of abundant low MW substances under the action of HO and SO4-. After chlorine disinfection, UV/PS and VUV/PS pretreatments increased the DBPs production and cytotoxicity. Specifically, oxidant PS affected the membrane surface morphology and fouling behaviors, and had no obvious effect on interception performance and mechanical properties. In actual water treatment, VUV/PS and UV/PS pretreatments exhibited excellent performance in alleviating membrane fouling, improving water quality, and reducing DBPs formation and acute toxicity.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Li Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
2
|
Zhang H, Sun W, Zhang J, Ma J. Vacuum-ultraviolet based advanced oxidation and reduction processes for water treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134432. [PMID: 38691932 DOI: 10.1016/j.jhazmat.2024.134432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The use of vacuum-ultraviolet (VUV) photolysis in water treatment has been gaining significant interest due to its efficacy in degrading refractory organic contaminants and eliminating oxyanions. In recent years, the reactive species driving pollutant decomposition in VUV-based advanced oxidation and reduction processes (VUV-AOPs and VUV-ARPs) have been identified. This review aims to provide a concise overview of VUV photolysis and its advancements in water treatment. We begin with an introduction to VUV irradiation, followed by a summary of the primary reactive species in both VUV-AOPs and VUV-ARPs. We then explore the factors influencing VUV-photolysis in water treatment, including VUV irradiation dose, catalysts or activators, dissolved gases, water matrix components (e.g., DOM and inorganic anions), and solution pH. In VUV-AOPs, the predominant reactive species are hydroxyl radicals (˙OH), hydrogen peroxide (H2O2), and ozone (O3). Conversely, in VUV-ARPs, the main reactive species are the hydrated electron (eaq-) and hydrogen atom (˙H). It is worth noting that VUV-based advanced oxidation/reduction processes (VUV-AORPs) can transit between VUV-AOPs and VUV-ARPs based on the externally added chemicals and dissolved gases in the solution. Increase of the VUV irradiation dose and the concentration of catalysts/activators enhances the degradation of contaminants, whereas DOM and inorganic anions inhibit the reaction. The pH influences the redox potential of ˙OH, the speciation of contaminants and activators, and thus the overall performance of the VUV-AOPs. Conversely, an alkaline pH is favored in VUV-ARPs because eaq- predominates at higher pH.
Collapse
Affiliation(s)
- Honglong Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, PR China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
3
|
Gu M, Liu L, Yu G, Huang J. Deeper Defluorination and Mineralization of a Novel PFECA (C7 HFPO-TA) in Vacuum UV/Sulfite: Unique Mechanism of H/OCF 3 Exchange. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15288-15297. [PMID: 37747133 DOI: 10.1021/acs.est.3c03308] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
C7 HFPO-TA is a newly identified alternative to PFOA, which possesses a unique structure fragment (CF3O-CF(CF3)-). In this study, we evaluated the chemical reactivity of C7 HFPO-TA in advanced oxidation and reduction processes for the first time, which revealed a series of unexpected transformation mechanisms. The results showed that reductive degradation based on hydrated electrons (eaq-) was more feasible for the degradation of C7 HFPO-TA. For oxidative degradation, the branched -CF3 at the α-position carbon posed as the spatial hindrance, shielding the attack of SO4•- to -COO-. The synergistic effects of HO•/eaq- and direct photolysis led to deeper defluorination and mineralization of C7 HFPO-TA in the vacuum UV/sulfite (VUV/SF) process. We identified a unique H/OCF3 exchange that converted the CF3O-CF(CF3)- into H-CF(CF3)- directly, and the SO3•- involved mechanism of C7 HFPO-TA for the first time. We revealed the branched -CF3 connected to the same carbon next to the CF3O- group affected the C-O bond cleavage site, preferring the H/OCF3 exchange pathway. The defluorination of C7 HFPO-TA was compared with PFOA and three PFECAs in the VUV/SF process, which was highly dependent on structures. Degradation kinetics, theoretical calculations, and products' analysis provided an in-depth perspective on the degradation mechanisms and pathways of C7 HFPO-TA.
Collapse
Affiliation(s)
- Mengbin Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| | - Liquan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| |
Collapse
|
4
|
Chen S, Zhao Z, Cui F, Liu B. Comparative study of UV/chlorine and VUV/chlorine as ultrafiltration membrane pretreatment techniques: Performance, mechanisms and DBPs formation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132249. [PMID: 37567139 DOI: 10.1016/j.jhazmat.2023.132249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Membrane fouling, primarily resulting from natural organic matter (NOM) widely existing in water sources, has always been a chief hindrance for the prevalent application of ultrafiltration (UF). Thus, vacuum ultraviolet (VUV)/chlorine process was proposed as a strategy for UF membrane fouling control and ultraviolet (UV)/chlorine process was used for comparison. VUV/chlorine process exhibited more excellent performance on NOM removal than UV/chlorine process. [HO•]ss and [Cl•]ss were calculated as 1.26 × 10-13 and 3.06 × 10-14 M, respectively, and ClO• might not exist under the conditions of 0.08 mM chlorine and 30 min VUV irradiation. [HO•]ss, [Cl•]ss and [ClO•]ss were not available and the formation of reactive radicals was unsustainable in UV/chlorine system. Moreover, VUV/chlorine pretreatment also showed better performance on the reversible and irreversible membrane fouling control than UV/chlorine pretreatment. The dominated fouling mechanism in the final stage of filtration was cake filtration. Additionally, the amount of detected disinfection by-products (DBPs) in VUV/chlorine system was significantly lower than that in UV/chlorine system. During subsequent chlorination disinfection, the yield of DBPs with VUV/chorine pretreatment was higher than that with UV/chlorine pretreatment. VUV/chlorine pretreatment could effectively control DBPs formation when the pretreatment time was extended to 120 min. In summary, VUV/chlorine system presented a most excellent performance on membrane fouling control, NOM degradation and DBPs control.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Bingyan Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
5
|
Mojiri A, Zhou JL, Ozaki N, KarimiDermani B, Razmi E, Kasmuri N. Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes. CHEMOSPHERE 2023; 330:138666. [PMID: 37068615 DOI: 10.1016/j.chemosphere.2023.138666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), one of the main categories of emerging contaminants, are a family of fluorinated organic compounds of anthropogenic origin. PFAS can endanger the environment and human health because of their wide application in industries, long-term persistence, unique properties, and bioaccumulation potential. This study sought to explain the accumulation of different PFAS in water bodies. In aquatic environments, PFAS concentrations range extensively from <0.03 (groundwater; Melbourne, Australia) to 51,000 ng/L (Groundwater, Sweden). Additionally, bioaccumulation of PFAS in fish and water biota has been stated to range from 0.2 (Burbot, Lake Vättern, Sweden) to 13,900 ng/g (Bluegill samples, U.S.). Recently, studies have focused on PFAS removal from aqueous solutions; one promising technique is advanced oxidation processes (AOPs), including microwaves, ultrasound, ozonation, photocatalysis, UV, electrochemical oxidation, the Fenton process, and hydrogen peroxide-based and sulfate radical-based systems. The removal efficiency of PFAS ranges from 3% (for MW) to 100% for UV/sulfate radical as a hybrid reactor. Therefore, a hybrid reactor can be used to efficiently degrade and remove PFAS. Developing novel, efficient, cost-effective, and sustainable AOPs for PFAS degradation in water treatment systems is a critical area of research.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Bahareh KarimiDermani
- Department of Geological Sciences, Hydrogeology, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Elham Razmi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
6
|
Popova SA, Matafonova GG, Batoev VB. Dual-wavelength UV degradation of bisphenol A and bezafibrate in aqueous solution using excilamps (222, 282 nm) and LED (365 nm): yes or no synergy? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:39-52. [PMID: 36747332 DOI: 10.1080/10934529.2023.2172270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Dual-wavelength ultraviolet (DWUV) irradiation can lead to a synergistic effect in terms of accelerated degradation of emerging organic contaminants in aqueous media. This study compared the kinetics of single-wavelength and DWUV degradation of bisphenol A (BPA) and bezafibrate (BZF) in model aqueous solution using KrCl (222 nm), XeBr (282 nm) excilamps and LED (365 nm). Three novel dual combinations (222 + 282, 222 + 365 and 282 + 365 nm) were examined toward the potential synergy in direct photolysis and advanced oxidation processes (AOPs) using potassium persulfate and hydrogen peroxide. Kinetic comparison showed that the time- and fluence-based synergy did not occur in the dual combinations selected. Meanwhile, the single-wavelength UV treatment using KrCl excilamp was found to be highly efficient for degradation of target contaminants. At a given dosage of oxidants, the UV/S2O82- process exhibited higher performance than the UV/H2O2 one, attaining higher degradation rates and requiring lower UV fluences for 90% removal. This study demonstrates that the catalyst-free UV/S2O82- process using KrCl excilamp has a high potential for efficient removal of such organic contaminants from real waters with low turbidity.
Collapse
Affiliation(s)
- S A Popova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management SB RAS, Ulan-Ude, Russia
| | - G G Matafonova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management SB RAS, Ulan-Ude, Russia
| | - V B Batoev
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management SB RAS, Ulan-Ude, Russia
| |
Collapse
|
7
|
Lu Z, Ling Y, Sun W, Liu C, Mao T, Ao X, Huang T. Antibiotics degradation by UV/chlor(am)ine advanced oxidation processes: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119673. [PMID: 35760199 DOI: 10.1016/j.envpol.2022.119673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are emerging contaminants in aquatic environments which pose serious risks to the ecological environment and human health. Advanced oxidation processes (AOPs) based on ultraviolet (UV) light have good application prospects for antibiotic degradation. As new and developing UV-AOPs, UV/chlorine and derived UV/chloramine processes have attracted increasing attention due to the production of highly reactive radicals (e.g., hydroxyl radical, reactive chlorine species, and reactive nitrogen species) and also because they can provide long-lasting disinfection. In this review, the main reaction pathways of radicals formed during the UV/chlor (am)ine process are proposed. The degradation efficiency, influencing factors, generation of disinfection by-products (DBPs), and changes in toxicity that occur during antibiotic degradation by UV/chlor (am)ine are reviewed. Based on the statistics and analysis of published results, the effects caused by energy consumption, defined as electrical energy per order (EE/O), increase in the following order: UV/chlorine < UV/peroxydisulfate (PDS)< UV/H2O2 < UV/persulfate (PS) < 265 nm and 285 nm UV-LED/chlorine (EE/O). Some inherent problems that affect the UV/chlor (am)ine processes and prospects for future research are proposed. The use of UV/chlor (am)ine AOPs is a rich field of research and has promising future applications, and this review provides a theoretical basis for that.
Collapse
Affiliation(s)
- Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanchen Ling
- School of Environment, Tsinghua University, Beijing, 100084, China; Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Chaoran Liu
- Beijing Waterworks Group Co., LTD, Beijing, 100031, China
| | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; MW Technologies, Inc., London, Ontario, Canada
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tianyin Huang
- Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
8
|
Wang Y, Zhang P, Lyu L, Li T, Hu C. Preferential Destruction of Micropollutants in Water through a Self-Purification Process with Dissolved Organic Carbon Polar Complexation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10849-10856. [PMID: 35861715 DOI: 10.1021/acs.est.2c03354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Removing micropollutants in real water is a scientific challenge due to primary dissolved organic carbon (DOC) and high energy consumption of current technologies. Herein, we develop a self-purification process for the preferential destruction of various micropollutants in municipal wastewater, raw drinking water, and ultrapure water with humic acid (HA) driven by the surface microelectronic field of Fe0-FeyCz/Fex-GZIF-8-rGO without any additional input. It was verified that a strongly polar complex consisting of an electron-rich HA/DOC area and an electron-poor micropollutant area was formed between HA/DOC and micropollutants, promoting more electrons of micropollutants in the adsorbed complex to delocalizing to electron-rich Fe species area and be trapped by O2, which resulted in their surface cleavage and hydrolyzation preferentially. The higher micropollutant degradation efficiency observed in real wastewaters was due to the greater complex polarity of DOC. Moreover, the electron transfer process ensured the stability of the surface microelectronic field and continuous water purification. Our findings provide a new insight into low-energy combined-micropollution water treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peng Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lai Lyu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
9
|
Xiao ZY, Huang N, Wang Q, Wang WL, Wu QY, Hu HY. Advanced oxidation of dodecyl dimethyl benzyl ammonium chloride by VUV/UV/chlorine: Synergistic effect, radicals, and degradation pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Zhang YL, Wang WL, Lee MY, Yang ZW, Wu QY, Huang N, Hu HY. Promotive effects of vacuum-UV/UV (185/254 nm) light on elimination of recalcitrant trace organic contaminants by UV-AOPs during wastewater treatment and reclamation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151776. [PMID: 34800442 DOI: 10.1016/j.scitotenv.2021.151776] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The use of vacuum-UV/UV (185/254 nm) for trace organic contaminants (TOrCs) elimination during wastewater treatments has attracted much attention. Advanced oxidation processes which combine VUV/UV and additional oxidants (vacuum-UV/UV-based advanced oxidation processes, VUV/UV-AOPs) provide a promising method for eliminating recalcitrant and toxic TOrCs for wastewater reclamation. Researches in this area are increasing but the promoting effects, mechanisms, and influencing factors have not been well summarized. A comprehensive discussion of the limitations of this technique and future research directions is needed. VUV/UV-AOPs have considerable synergistic effects by increasing usage of VUV/UV photons and the oxidant, which increases radical generation. In terms of elimination kinetics, VUV/UV-AOPs outperform conventional UV-AOPs and VUV/UV processes in most cases; a 1.2-87.7-fold increase of the fluence-based kinetic constant is achieved. In terms of energy efficiency per order (EE/O) of TOrCs elimination, the EE/O of VUV/UV-AOPs only accounts for 4% of UV-AOPs and 63% of VUV/UV. However, VUV/UV-AOPs still need to be further investigated. Firstly, although VUV and UV processes have similar radical formation pathways, limited information is available on the quantum yields of photolysis and radical formation of oxidants under VUV irradiation. Secondly, optimization of VUV/UV-AOPs operating conditions, especially oxidant dosage and water-flow patterns, is needed. Thirdly, VUV/UV-AOPs are significantly inhibited by organic and inorganic matters, but the mechanisms of inhibition on VUV/UV scattering, radical quenching, and radical conversion are not well understood. Such inhibition suggests that the use of VUV/UV-AOPs would be limited to relatively clear water treatment, e.g., reverse osmosis effluent for potable water reuse and ultrapure water production. Related research is needed to establish a clearer scheme for VUV/UV-AOPs in terms of the spatial distribution of radical species in the VUV/UV irradiation system and the relevant optimization method for promoting oxidation performance.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Min-Yong Lee
- Department of Environmental Resources Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Zheng-Wei Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong-Ying Hu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China; Environmental Simulation and Pollution Control State Key Joint Laboratory, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China.
| |
Collapse
|
11
|
Zhan L, Li W, Liu L, Han T, Li M, Qiang Z. Degradation of micropolluants in flow-through VUV/UV/H 2O 2 reactors: Effects of H 2O 2 dosage and reactor internal diameter. J Environ Sci (China) 2021; 110:28-37. [PMID: 34593192 DOI: 10.1016/j.jes.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
The degradation of atrazine (ATZ), sulfamethoxazole (SMX) and metoprolol (MET) in flow-through VUV/UV/H2O2 reactors was investigated with a focus on the effects of H2O2 dosage and reactor internal diameter (ID). Results showed that the micropollutants were degraded efficiently in the flow-through VUV/UV/H2O2 reactors following the pseudo first-order kinetics (R2 > 0.92). However, the steady-state assumption (SSA) kinetic model being vital in batch reactors was found invalid in flow-through reactors where fluid mixing was less sufficient. With the increase of H2O2 dosage, the ATZ removal efficiency remained almost constant while the SMX and MET removal was enhanced to different extents, which could be explained by the different reactivities of the pollutants towards HO•. A larger reactor ID resulted in lower degradation rate constants for all the three pollutants on account of the lower average fluence rate, but the change in energy efficiency was much more complicated. In reality, the electrical energy per order (EEO) of the investigated VUV/UV/H2O2 treatments ranged between 0.14-0.20, 0.07-0.14 and 0.09-0.26 kWh/m3/order for ATZ, SMX and MET, respectively, with the lowest EEO for each pollutant obtained under varied H2O2 dosages and reactor IDs. This study has demonstrated the efficiency of VUV/UV/H2O2 process for micropollutant removal and the inadequacy of the SSA model in flow-through reactors, and elaborated the influential mechanisms of H2O2 dosage and reactor ID on the reactor performances.
Collapse
Affiliation(s)
- Lumeng Zhan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C 1985, Denmark; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Li Liu
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C 1985, Denmark; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Westerhoff P, Alvarez PJ, Kim J, Li Q, Alabastri A, Halas NJ, Villagran D, Zimmerman J, Wong MS. Utilizing the Broad Electromagnetic Spectrum and Unique Nanoscale Properties for Chemical-Free Water Treatment. Curr Opin Chem Eng 2021; 33:100709. [PMID: 34804780 PMCID: PMC8597955 DOI: 10.1016/j.coche.2021.100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clean water is critical for drinking, industrial processes, and aquatic organisms. Existing water treatment and infrastructure are chemically-intensive and based on nearly century-old technologies that fail to meet modern large and decentralized communities. The next-generation of water processes can transition from outdated technologies by utilizing nanomaterials to harness energy from across the electromagnetic spectrum, enabling electrified and solar-based technologies. The last decade was marked by tremendous improvements in nanomaterial design, synthesis, characterization, and assessment of material properties. Realizing the benefits of these advances requires placing greater attention on embedding nanomaterials onto and into surfaces within reactors and applying external energy sources. This will allow nanomaterial-based processes to replace Victorian-aged, chemical intensive water treatment technologies.
Collapse
Affiliation(s)
- Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Pedro J.J. Alvarez
- Civil and Environmental Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX 77005
| | - Jaehong Kim
- Department of Chemical and Environmental Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Qilin Li
- Civil and Environmental Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX 77005
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX 77005
| | - Naomi J. Halas
- Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Department of Physics and Astronomy, Department of Chemistry, Rice University, Houston, Texas 77005
| | - Dino Villagran
- Department of Chemistry and Biochemistry, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Julie Zimmerman
- School of the Environment, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, CT 06511, USA
| | - Michael S. Wong
- Department of Chemical and Biomolecular Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, Texas 77005, United States
| |
Collapse
|
13
|
Wu Z, Yang L, Tang Y, Qiang Z, Li M. Dimethoate degradation by VUV/UV process: Kinetics, mechanism and economic feasibility. CHEMOSPHERE 2021; 273:129724. [PMID: 33524761 DOI: 10.1016/j.chemosphere.2021.129724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/13/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Vacuum ultraviolet/ultraviolet (VUV/UV) process has been applied to water treatment recently, but little is known about its efficacy and mechanism for pesticide degradation. This study investigated the degradation kinetics and mechanism of a typical organophosphorus pesticide, dimethoate (DMT) by VUV/UV, and then the economic feasibility was assessed. DMT degradation followed well the pseudo-first-order reaction kinetics at an initial concentration of ≤5.0 mg L-1. DMT was degraded by 97.8% after 10 min of VUV/UV exposure (VUV fluence = 12 mJ cm-2), whereas by only 5.2% after 10 min of UV exposure (UV fluence = 156 mJ cm-2). The apparent quantum yield of DMT degradation by VUV/UV was determined to be 0.19, and at most 50.7% of hydroxyl radicals (HO•) generated from VUV photolysis of water could be utilized for DMT degradation. As the pH increased from 5.0 to 9.0, the DMT degradation rate decreased from 0.43 to 0.23 min-1. DMT degradation pathways in the VUV/UV process were proposed based on identified organic intermediates and inorganic ions. SO42- was first released due to HO• attack on the SP bond of DMT, which governed the DMT degradation efficiency; while the release of PO43- was pertinent to the DMT mineralization efficiency. DMT solution toxicity was significantly reduced after VUV/UV treatment. An electrical energy-per-order (EEO) value of 0.57 kWh m-3 Order-1 demonstrated the economic feasibility of the VUV/UV process for DMT removal in small-scale drinking water treatment.
Collapse
Affiliation(s)
- Zhengdi Wu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Laxiang Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; School of Food and Chemical Engineering, Shaoyang University, No. 28, Lane 3, Shaoshui West Road, Shaoyang, 422900, China
| | - Yubin Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Papagiannaki D, Medana C, Binetti R, Calza P, Roslev P. Effect of UV-A, UV-B and UV-C irradiation of glyphosate on photolysis and mitigation of aquatic toxicity. Sci Rep 2020; 10:20247. [PMID: 33219238 PMCID: PMC7679408 DOI: 10.1038/s41598-020-76241-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
The active herbicide ingredient glyphosate [N-(phosphonomethyl)glycine] is frequently detected as a contaminant in groundwater and surface waters. This study investigated effects of UV-A (365 nm), UV-B (302 nm) and UV-C (254 nm) irradiation of glyphosate in water on photolysis and toxicity to aquatic organisms from different trophic levels. A test battery with bacteria (Bacillus subtilis, Aliivibrio fischeri), a green microalga (Raphidocelis subcapitata), and a crustacean (Daphnia magna) was used to assess biological effect of glyphosate and bioactive transformation products before and after UV irradiation (4.7-70 J/cm2). UV-C irradiation at 20 J/cm2 resulted in a 2-23-fold decrease in toxicity of glyphosate to aquatic test organisms. UV-B irradiation at 70 J/cm2 caused a twofold decrease whereas UV-A did not affect glyphosate toxicity at doses ≤ 70 J/cm2. UV-C irradiation of glyphosate in drinking water and groundwater with naturally occurring organic and inorganic constituents showed comparable or greater reduction in toxicity compared to irradiation in deionized water. High-resolution mass spectrometry analyses of samples after UV-C irradiation showed > 90% decreases in glyphosate concentrations and the presence of multiple transformation products. The study suggests that UV mediated indirect photolysis can decrease concentrations of glyphosate and generate less toxic products with decreased overall toxicity to aquatic organisms.
Collapse
Affiliation(s)
| | - Claudio Medana
- Dipartimento di Biotechnologie Molecolari e Scienze della Salute, Università di Torino, Torino, Italy
| | - Rita Binetti
- Società Metropolitana Acque Torino S.p.A.-Centro Ricerche, Torino, Italy
| | - Paola Calza
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Peter Roslev
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
15
|
Wen D, Li W, Lv J, Qiang Z, Li M. Methylene blue degradation by the VUV/UV/persulfate process: Effect of pH on the roles of photolysis and oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:121855. [PMID: 32204952 PMCID: PMC7127383 DOI: 10.1016/j.jhazmat.2019.121855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/23/2019] [Accepted: 12/08/2019] [Indexed: 05/21/2023]
Abstract
This study investigated methylene blue (MB) degradation by the vacuum-ultraviolet/ultraviolet/persulfate (VUV/UV/PS) process using a mini-fluidic VUV/UV photoreaction system. Results show that MB degradation by the VUV/UV/PS process was significantly higher than that of the conventional UV/PS process, as the VUV photolysis of H2O and PS generated more reactive oxygen species (ROSs). HO• and SO4•-, identified as the main ROSs, were mostly consumed by dissolved organic carbon and Cl‒ in real waters, respectively. Additionally, the impacts of solution pH and the concentrations of PS, humic acid, and inorganic ions (HCO3‒, Cl‒, NO3‒, SO42‒, Fe(II), and Fe(III)) were systematically evaluated. The solution pH significantly affected the photon absorption distributions, as well as the contributions of photolysis and oxidation to MB degradation, resulting in different variations in the degradation rate constant and total organic carbon removal ratio with increasing solution pH. At all tested pH levels (3.0-11.0), particularly under acidic conditions, HO and SO4- were two predominant contributors to MB degradation, while VUV and UV photolysis contributed more when the solution pH increased. This study provides a highly efficient process for organic pollutant removal, which could be applied in water treatment.
Collapse
Affiliation(s)
- Dong Wen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Jinrong Lv
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China.
| |
Collapse
|
16
|
Li M, Sun M, Dong H, Zhang J, Su Y, Qiang Z. Enhancement of micropollutant degradation in UV/H 2O 2 process via iron-containing coagulants. WATER RESEARCH 2020; 172:115497. [PMID: 31986395 DOI: 10.1016/j.watres.2020.115497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
The low molar absorption coefficient of H2O2 limits the ultraviolet (UV)/H2O2 process, making it a desirable target to enhance the UV/H2O2 process for organic micropollutant degradation. Therefore, this study investigated the impact of iron-containing coagulants (Fe-coagulants) on micropollutant degradation by UV/H2O2 process. Three typical Fe-coagulants (i.e., polymeric ferric sulfate, polymeric aluminum ferric sulfate, and FeCl3) exhibited the enhancement of sulfamethazine degradation during the UV/H2O2 process. The maximum increasing ratio of the degradation rate constant reached 40%. The pH and Fe-coagulant concentration effects, as well as residual H2O2 were examined. The principal mechanism of micropollutant degradation enhancement via the Fe-coagulants was the photo-Fenton-like reaction between Fe(III) on the Fe-coagulant surface and H2O2 under UV irradiation. Then the influence of Fe-coagulant particle size was discussed. Smaller particles (<0.22 μm), with a lower iron content, a larger specific surface area, and a stronger optical scattering effect, exhibited a greater enhancement on the UV/H2O2 process as compared with larger particles (>0.22 μm). Finally, the enhancement effect of the Fe-coagulants was verified on two water samples from a water treatment plant, which were either pre-coagulation or sand filtered samples. This study explored an existing heterogeneous catalysis process in drinking water treatment, which provides additional information for coagulant selection and improvements to the treatment process for micropollutant removal.
Collapse
Affiliation(s)
- Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Mengdi Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Jun Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; School of Architectural, Surveying and Mapping Engineering, Jiangxi University of Science and Technology, 86 Hong-qi Road, Ganzhou 341000, Jiangxi, China
| | - Yingjia Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; School of Architectural, Surveying and Mapping Engineering, Jiangxi University of Science and Technology, 86 Hong-qi Road, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
17
|
Dubowski Y, Alfiya Y, Gilboa Y, Sabach S, Friedler E. Removal of organic micropollutants from biologically treated greywater using continuous-flow vacuum-UV/UVC photo-reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7578-7587. [PMID: 31885065 DOI: 10.1007/s11356-019-07399-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/12/2019] [Indexed: 05/05/2023]
Abstract
Despite growing apprehension regarding the fate of organic micropollutants (MPs) of emerging concern, little attention has been paid to their presence in domestic greywater, where they mainly originate from personal care products. Many MPs are not fully removed in conventional greywater treatments and require additional treatment. Vacuum-UV radiation (VUV) can generate ·OH in situ, via water photolysis, initiating advanced oxidation process (AOP) without any chemical addition. Despite growing interest in VUV-based AOP, its performance in real-life grey- or wastewater matrices has hardly been investigated. The present study investigates the removal of triclosan (TCS) and oxybenzone (BP3), common antibacterial and UV-filter MPs, in deionized water (DIW) and in treated greywater (TGW) using combined UVC/VUV or UVC only radiation in a continuous-flow reactor. Degradation kinetics of these MPs and their transformation products (TPs) were addressed, as well as bacterial growth inhibition of the resulting reactor's effluent. In DIW, MP degradation was much faster under the combined UVC/VUV irradiation. In TGW, the combined radiation successfully removed both MPs but at lower efficiency than in DIW, as particles and dissolved organic matter (DOM) acted as radical scavengers. Filtration and partial DOM removal prior to irradiation improved the process efficiency and reduced energy requirements under the combined radiation (from 1.6 and 167 to 1.1 and 6.0 kWh m-3·ּorder-1 for TCS and BP3, respectively). VUV radiation also reduced TP concentrations in the effluent. As a result, bacterial growth inhibition of triclosan solution irradiated by VUC/VUV was lower than that irradiated by UVC light alone, for UV dose > 120 mJ cm-2.
Collapse
Affiliation(s)
- Yael Dubowski
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Yuval Alfiya
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yael Gilboa
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sara Sabach
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eran Friedler
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Liu H, Zhang B, Li Y, Fang Q, Hou Z, Tian S, Gu J. Effect of Radical Species and Operating Parameters on the Degradation of Sulfapyridine Using a UV/Chlorine System. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huaying Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Biaojun Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qi Fang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhichao Hou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Junjie Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
19
|
Zhang Y, Xiao Y, Zhang Y, Lim TT. UV direct photolysis of halogenated disinfection byproducts: Experimental study and QSAR modeling. CHEMOSPHERE 2019; 235:719-725. [PMID: 31279122 DOI: 10.1016/j.chemosphere.2019.06.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
UV direct photolysis has been used as a promising process to remove halogenated disinfection byproducts (DBPs) generated in water. In this study, experimental studies and modeling approaches were applied to investigate the UV direct photolysis rate constants for 40 kinds of halogenated DBPs. The fluence-based pseudo-first-order rate constants for the removal of halogenated DBPs under UV photolysis spanned more than 2 orders of magnitude, with a range of (0.23-29.84) × 10-4 cm2 mJ-1. DBPs with higher number of halogenated substituents featured higher photolysis rate constants. The degradation efficiencies of DBPs were also affected by the species of halogen substituents, which followed the trend of iodo- > bromo- > chloro- DBPs. A quantitative structure-activity relationship (QSAR) model was established on the basis of the observed degradation rate constant values, which contained a quantum-chemical descriptor (ELUMO-EHOMO) and a molecular descriptor (Eta_C). The calculated parameters of the developed model indicated its good robustness and high reliability. The developed QSAR model can predict the degradation rate constants for DBPs within factors of 1/3 to 3. The model was validated using application domain and visualized in a Williams plot. The selected descriptors for QSAR model can explain the reaction mechanism for UV direct photolysis.
Collapse
Affiliation(s)
- Yiqing Zhang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yongjun Xiao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Yicheng Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Teik-Thye Lim
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
20
|
Yang L, Zhang Z. Degradation of six typical pesticides in water by VUV/UV/chlorine process: Evaluation of the synergistic effect. WATER RESEARCH 2019; 161:439-447. [PMID: 31228663 DOI: 10.1016/j.watres.2019.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Vacuum ultraviolet/ultraviolet/chlorine (VUV/UV/chlorine) is considered a novel advanced oxidation process (AOP), but little is known about its kinetics for pollutant degradation in water treatment. This study investigated the degradation of six typical pesticides, namely dimethoate (DMT), atrazine (ATZ), prometon (PMT), propoxur (PPX), bromacil (BRM) and propachlor (PPC), by VUV/UV/chlorine. The results show that all pesticides were rapidly degraded by VUV/UV/chlorine with a high removal efficiency of over 95% after 60 s. The pesticide degradation fitted well with pseudo-first-order reaction kinetics and a significant synergistic effect was observed during the VUV/UV/chlorine process. The synergistic factor (FV/U/Cl) for DMT, ATZ, PMT, PPX, BRM and PPC were determined to be 1.75, 1.70, 2.06, 1.57, 2.84 and 1.61, respectively, indicating a synergistic improvement of 57%-184% for all pesticides. As hydroxyl radical (HO•) transformed into reactive chlorine species (RCSs), the contribution ratio of RCSs for the pesticide degradation was much higher than that of HO• in the VUV/UV/chlorine process, thus causing the synergistic effect. Solution pH ranging from 5.0 to 10.0 had various influence on the pesticide degradation by VUV/UV/chlorine. As initial concentration of free chlorine increased from 0 to 0.25 mM, the apparent rate constants of the pesticides kept on increasing while the FV/U/Cl first increased and reached the highest value, and decreased afterwards. The formation of nitrite was significantly inhibited during the degradation of all pesticides by VUV/UV/chlorine. It suggests that VUV/UV/chlorine is a promising AOP for the pesticide degradation in water treatment.
Collapse
Affiliation(s)
- Laxiang Yang
- College of Food and Chemical Engineering, Shaoyang University, No. 28, Lane 3, Shaoshui West Road, Shaoyang, 422000, Hunan, China.
| | - Zhenhua Zhang
- College of Food and Chemical Engineering, Shaoyang University, No. 28, Lane 3, Shaoshui West Road, Shaoyang, 422000, Hunan, China
| |
Collapse
|
21
|
Li M, Li W, Wen D, Bolton JR, Blatchley ER, Qiang Z. Micropollutant Degradation by the UV/H 2O 2 Process: Kinetic Comparison among Various Radiation Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5241-5248. [PMID: 30920806 DOI: 10.1021/acs.est.8b06557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Kinetic comparisons of micropollutant degradation by ultraviolet (UV) based advanced oxidation processes among various radiation sources are an important issue, yet this is still a challenge at present. This study investigated comparatively the kinetics of sulfamethazine (SMN) degradation by the UV/H2O2 process among three representative radiation sources, including low-pressure mercury UV (LPUV, monochromatic), medium-pressure mercury UV (MPUV, polychromatic), and vacuum UV(VUV)/UV (dual wavelengths causing different reaction mechanisms) lamps. Experiments were conducted with a newly developed mini-fluidic MPUV photoreaction system and a previously developed mini-fluidic VUV/UV photoreaction system. Measured and modeled results both indicate that the photon fluence-based SMN degradation rate constant ( kp') followed a descending order of VUV/UV/H2O2 > MPUV/H2O2 (200-300 nm) > LPUV/H2O2, and the kp' of the MPUV lamp was dependent on the wavelength range selected for photon fluence calculation. Analysis of potential errors revealed that a shorter effective path-length could have a lower error, and the maximum errors for the MPUV/H2O2 and LPUV/H2O2 processes in this study were 7.7% and 18.2%, respectively. This study has developed a new method for kinetic comparisons of micropollutant degradation by UV-AOPs among various radiation sources at bench-scale, which provides useful reference to practical applications.
Collapse
Affiliation(s)
- Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
- Lyles School of Civil Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
| | - Dong Wen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
| | - James R Bolton
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Ernest R Blatchley
- Lyles School of Civil Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
- Division of Environmental & Ecological Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
| |
Collapse
|
22
|
Li M, Li W, Bolton JR, Blatchley ER, Qiang Z. Organic Pollutant Degradation in Water by the Vacuum-Ultraviolet/Ultraviolet/H 2O 2 Process: Inhibition and Enhancement Roles of H 2O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:912-918. [PMID: 30548062 DOI: 10.1021/acs.est.8b05831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A vacuum-ultraviolet/ultraviolet (VUV/UV) mercury lamp was found to be a highly efficient radiation source for UV-based advanced oxidation processes (AOPs). If this lamp could enhance the UV/H2O2 process, it would be very attractive. Hence, we have investigated sulfamethazine (SMN) degradation by the VUV/UV/H2O2 process based on a bench-scale mini-fluidic VUV/UV photoreaction system (MVPS), a pilot reactor, and a model analysis. At high [SMN]0 in the MVPS, the apparent SMN degradation rate constant ( k'app) increased with increasing H2O2 dose, while at low [SMN]0, k'app decreased with increasing H2O2 dose; this behavior was unexpected. Meanwhile, at low [SMN]0 in a pilot reactor, H2O2 induced just a slight enhancement in the VUV/UV/H2O process. A numerical simulation of the process suggested that for an integrated AOP (i.e., VUV/UV/H2O2) consisting of various component AOPs, H2O2 could inhibit the component AOPs with HO* that did not originate from H2O2 (e.g., VUV photolysis of water). The apparent H2O2 role in the integrated AOPs was dependent on the contribution comparison between component AOPs that involved HO* that did or did not originate from H2O2. These results revealed important information regarding the application of the VUV/UV/H2O2 process in water treatment.
Collapse
Affiliation(s)
- Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
| | - James R Bolton
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | | | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
| |
Collapse
|