1
|
Wang Y, Zhu Z, Dong H, Zhang X, Wang S, Gu B. Mitigation potential of methane emissions in China's livestock sector can reach one-third by 2030 at low cost. NATURE FOOD 2024; 5:603-614. [PMID: 38982279 DOI: 10.1038/s43016-024-01010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
The mitigation of methane (CH4) emissions from livestock production is crucial to China's carbon neutrality. Here we established a high-spatiotemporal-resolution dataset of the country's livestock CH4 emissions from 1990 to 2020 using four large-scale national livestock greenhouse gas inventory surveys. We estimate CH4 emissions to be 14.1 ± 2.0 Mt in 2020 and to increase by 13% until 2030 despite CH4 intensity per kg animal protein having decreased by 55% in the past 30 years. Approximately half of the emissions come from 13% of all Chinese counties. The technical CH4 mitigation potential is projected to be 36 ± 8% (4.4-6.9 Mt CH4) in 2030, and reducing food loss and waste could mitigate an additional 1.6 Mt of CH4. Overall, most CH4 mitigation could be achieved by increasing animal productivity and coverage of lagoon storage at carbon prices below US$100 tCO2e-1, being more cost-effective than livestock nitrous oxide mitigation in China.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiuming Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Sitong Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baojing Gu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Haider KM, Focsa C, Decuq C, Esnault B, Lafouge F, Loubet B, Petitprez D, Ciuraru R. Chemical characterization of volatile organic compounds emitted by animal manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121453. [PMID: 38875988 DOI: 10.1016/j.jenvman.2024.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
Animal manure is considered a valuable organic fertilizer due to its important nutrient content enhancing soil fertility and plant growth in agriculture. Besides its beneficial role as fertilizer, animal manure represents a significant source of volatile organic compounds (VOCs), playing a significant role in atmospheric chemistry. Understanding the composition of VOCs Understanding VOCs from animal manure is crucial for assessing their environmental impact, as they can cause air pollution, odors, and harm to human health and ecosystems. Laboratory studies enhance field measurements by providing a precise inventory of manure emissions, addressing gaps in existing literature. Both approaches complement each other in advancing our understanding of manure emissions. In this context, we conducted an experimental study involving various animal manures (cow, horse, sheep, and goat) taken from a farm in Grignon (near Paris, France). We employed atmospheric simulation chambers within a controlled laboratory environment. The analysis of VOCs involved the combination of Proton Transfer Reaction-Quadrupole ion guide-Time-of-Flight Mass Spectrometry (PTR-QiTOF-MS) and Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Using PTR-QiTOF-MS, 368 compounds were detected and quantified within the manure samples. The complementary analysis by TD-GC-MS enhanced our identification of VOCs. Our findings revealed various chemical groups of VOCs, including oxygenated compounds (e.g., ethanol, cresol, acetaldehyde, etc.), nitrogenated compounds (ammonia, trimethylamine, etc.), sulfur compounds (methanethiol, dimethyl sulfide, etc.), aromatic compounds (phenols and indoles), terpenes (isoprene, D-limonene, etc.) and halogenated compounds. Cow manure exhibited the highest VOC emission fluxes, followed by goat, sheep, and horse manures. Notably, oxygenated VOCs were dominant contributors to total VOC emission fluxes in all samples. Statistical analysis highlighted the distinct nature of cow manure emissions, characterized by oxygenated compounds and nitrogenated compounds. In addition, goat manure was isolated from the other samples with high emissions of compounds having both oxygen and nitrogen atoms in their molecular formulas (e.g., CH3NO2). The experimental dataset obtained in this study provides an inventory reference for both VOCs and their emission fluxes in animal manures. Furthermore, it highlights odorant compounds and VOCs that serve as atmospheric aerosol precursor. Future studies can explore the effectiveness of various manure treatment methods to promote sustainable agriculture practices.
Collapse
Affiliation(s)
- K M Haider
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Lille, F-59000, France; Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France.
| | - C Focsa
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Lille, F-59000, France
| | - C Decuq
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France
| | - B Esnault
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France
| | - F Lafouge
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France
| | - B Loubet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France
| | - D Petitprez
- Univ.Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Lille, F-59000, France
| | - R Ciuraru
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France.
| |
Collapse
|
3
|
Méité R, Bayer L, Martin M, Amon B, Uthes S. Modeling the environmental impacts of Asparagopsis as feed, a cow toilet and slurry acidification in two synthetic dairy farms. Heliyon 2024; 10:e29389. [PMID: 38694085 PMCID: PMC11058298 DOI: 10.1016/j.heliyon.2024.e29389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Intensive dairy farming, particularly enteric fermentation and manure management, is a major contributor to negative impacts on the local and global environment. A wide range of abatement measures has been proposed to reduce livestock-related emissions, yet the individual and combined effects of these innovations are often unknown. In this study, we performed an attributional life cycle assessment of three innovative measures modeled in two synthetic German dairy farm systems: Feeding of the seaweed Asparagopsis, installing an in-house cow toilet system, and performing on-field slurry acidification. These measures were modeled both individually and in combination to account for single and cumulative effects and compared to a reference scenario under current practices. Our results showed that feeding high levels of Asparagopsis and the combination of all three measures were most effective at reducing global warming potential (20-30 %), while only the latter mitigated eutrophication (6-9%) and acidification potential (14-17 %). The cow toilet required additional adapted manure management (separated storage and injection of urine) to effectively reduce eutrophication (8-10 %) and acidification potential (19-23 %) and to decrease global warming potential (3-4%) and abiotic depletion (4-5%). Slurry acidification slightly affected all considered environmental impact categories. All three measures involved trade-offs, either between LCA impact categories (global warming potential vs. abiotic depletion), the location of impacts (off- vs. on-farm), or the emission reduction in individual gases (ammonia vs. nitrous oxide). Measure combinations could compensate for the observed trade-offs. Our study highlights the potential of novel abatement measures but also shows the interdependencies of measures in different stages. This calls for a revisiting of current priorities in funding and legislation, which often focus on single objectives and measures (e.g. ammonia reduction) toward the preferential use of measures that are effective without driving trade-offs or improving resource efficiency.
Collapse
Affiliation(s)
- René Méité
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, Müncheberg, Germany
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Department of Agricultural Economics, Humboldt University Berlin, Berlin, Germany
| | - Lukas Bayer
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, Müncheberg, Germany
- System Dynamics Group, Department of Geography, University of Bergen, Bergen, Norway
| | - Michael Martin
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28, Stockholm, Sweden
- KTH Royal Institute of Technology, Department of Sustainable Development, Environmental Science and Engineering, Teknikringen 10B, 114 28, Stockholm, Sweden
| | - Barbara Amon
- Department Technology Assessment, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany and University of Zielona Góra, Poland
| | - Sandra Uthes
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, Müncheberg, Germany
| |
Collapse
|
4
|
Whitmee S, Green R, Belesova K, Hassan S, Cuevas S, Murage P, Picetti R, Clercq-Roques R, Murray K, Falconer J, Anton B, Reynolds T, Sharma Waddington H, Hughes RC, Spadaro J, Aguilar Jaber A, Saheb Y, Campbell-Lendrum D, Cortés-Puch M, Ebi K, Huxley R, Mazzucato M, Oni T, de Paula N, Peng G, Revi A, Rockström J, Srivastava L, Whitmarsh L, Zougmoré R, Phumaphi J, Clark H, Haines A. Pathways to a healthy net-zero future: report of the Lancet Pathfinder Commission. Lancet 2024; 403:67-110. [PMID: 37995741 DOI: 10.1016/s0140-6736(23)02466-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/24/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Sarah Whitmee
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK.
| | - Rosemary Green
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Kristine Belesova
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Syreen Hassan
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Soledad Cuevas
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Peninah Murage
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Roberto Picetti
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Romain Clercq-Roques
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Kris Murray
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Jane Falconer
- Library, Archive & Open Research Services, London School of Hygiene & Tropical Medicine, London, UK
| | - Blanca Anton
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Tamzin Reynolds
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Hugh Sharma Waddington
- Environmental Health Group, Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; London International Development Centre, London, UK
| | - Robert C Hughes
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Joseph Spadaro
- Spadaro Environmental Research Consultants (SERC), Philadelphia, PA, USA
| | | | | | | | | | - Kristie Ebi
- Center for Health and the Global Environment, Hans Rosling Center, University of Washington, Seattle, WA, USA
| | - Rachel Huxley
- C40 Cities Climate Leadership Group, New York, NY, USA
| | - Mariana Mazzucato
- Institute for Innovation and Public Purpose, University College London, London, UK
| | - Tolu Oni
- Global Diet and Activity Research Group, MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicole de Paula
- Food and Agriculture Organization of the United Nations, Rome, Italy; Women Leaders for Planetary Health, Berlin, Germany
| | - Gong Peng
- University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Aromar Revi
- Indian Institute for Human Settlements Tharangavana, Bengaluru, India
| | - Johan Rockström
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - Leena Srivastava
- Ashoka Centre for a People-centric Energy Transition, New Delhi, India
| | | | - Robert Zougmoré
- AICCRA, International Crops Research for the Semi-Arid Tropics, Bamako, Mali
| | - Joy Phumaphi
- African Leaders Malaria Alliance (ALMA), Dar es Salaam, Tanzania
| | - Helen Clark
- Helen Clark Foundation, Auckland, New Zealand
| | - Andy Haines
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
5
|
Chang F, Fabian-Wheeler E, Richard TL, Hile M. Compaction effects on greenhouse gas and ammonia emissions from solid dairy manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117399. [PMID: 36731415 DOI: 10.1016/j.jenvman.2023.117399] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Waste management practices of solid dairy manures were evaluated under controlled conditions to study gas transport and emission inside manure piles. Three applied stresses and three moisture contents were tested to represent manure conditions managed at various pile depths. A Fourier-transform infrared spectroscopy monitor measured concentrations of greenhouses gases [methane, carbon dioxide, and nitrous oxide] and ammonia as part of gas flux rate calculations. Results showed that carbon dioxide dominated the greenhouse gas emissions under all test conditions. Gas transfer, primarily diffusion, was facilitated by manure with high mechanical strength and high permeability. Gas emission rates reduced dramatically when moisture content increased in manure with high water holding capacity, while compaction treatments did not as strongly affect the gas emission rates. Results provide fundamental insights into management strategies for reducing gas emissions from solid dairy manure.
Collapse
Affiliation(s)
- Fangle Chang
- Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, 16802, USA; Ningbo Innovation Center, Zhejiang University, Ningbo, Zhejiang, 315100, China.
| | - Eileen Fabian-Wheeler
- Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, 16802, USA.
| | - Tom L Richard
- Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, 16802, USA.
| | - Michael Hile
- Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
6
|
He Z, Zhang Y, Liu X, Xu W, Hou Y, Wang H, Zhang F. Ammonia mitigation potential in an optimized crop-layer production system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156701. [PMID: 35716757 DOI: 10.1016/j.scitotenv.2022.156701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Livestock and crop production are the main sources of ammonia (NH3) emissions, which are known to degrade the air quality. Numerous studies have been conducted to explore the mitigation potential of various approaches, although few have examined the systematic NH3 emission mitigation potential when considering both crop and livestock systems based on coherent in situ measurement results. Herein, we design an optimal system wherein coupled crop and layer production systems reveal feasible approaches for significant mitigation potential at each stage of the process. Specifically, these measures involve (i) using a low crude protein (LCP) feed, (ii) composting manure with certain additives, and (iii) substituting manure with optimal fertilization in a summer maize-winter wheat cropping system. The results show that (i) LCP feed leads to a 14 % reduction in NH3 emissions at the housing stage, (ii) introducing additives during the composing stage reduces NH3 emissions by 16 %-46 %, and (iii) the NH3 reduction potential reaches 35 %-44 % at the field application stage. In the overall crop-layer system, the optimal system with the improved management strategy applied at every stage results in a 48 % and 56 % reduction in NH3 emissions for per unit eggs and grain production, respectively, relative to a traditional production system. This study confirms that NH3 emissions can be cut in half by implementing optimal crop-livestock systems with appropriate mitigation approaches. This is a feasible model that can be promoted and extended in various agricultural areas, which together with technological, policy, and economic support can enable significant mitigation potential for sustainable agriculture development.
Collapse
Affiliation(s)
- Zhilong He
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Ying Zhang
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Xuejun Liu
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Wen Xu
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Yong Hou
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Hongliang Wang
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Fusuo Zhang
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Effects of rumen undegradable protein sources on nitrous oxide, methane and ammonia emission from the manure of feedlot-finished cattle. Sci Rep 2022; 12:9166. [PMID: 35655074 PMCID: PMC9163071 DOI: 10.1038/s41598-022-13100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
The effects of sources of rumen undegradable protein (RUP) in diets on methane (CH4), nitrous oxide (N2O) and ammonia (NH3) emissions from the manure of feedlot-finished cattle were evaluated. We hypothesized that the use of different RUP sources in diets would reduce N loss via urine and contribute to reduced N2O, CH4 and NH3 emissions to the environment. Nellore cattle received different diets (18 animals/treatment), including soybean meal (SM, RDP source), by-pass soybean meal (BSM, RUP source) and corn gluten meal (CGM, RUP source). The protein source did not affect the N and C concentration in urine, C concentration in feces, and N balance (P > 0.05). The RUP sources resulted in a higher N2O emission than the RDP source (P = 0.030), while BSM resulted in a higher N2O emission than CGM (P = 0.038) (SM = 633, BSM = 2521, and CGM = 1153 g ha−2 N–N2O); however, there were no differences in CH4 and NH3 emission (P > 0.05). In conclusion, the use of RUP in diets did not affect N excretion of beef cattle or CH4 and NH3 emission from manure, but increased N2O emission from the manure.
Collapse
|
8
|
Impact of Waste Tea Litter on NH3 and CO2 Emissions during Broiler Rearing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pollution generated by livestock and poultry rearing is an important environmental issue, and gas emissions during animal production are continuously increasing. A digital rearing chamber inspection system was designed in the present study in order to examine the waste tea litter’s impact on the growth performance and harmful gas emissions, such as ammonia (NH3) and carbon dioxide (CO2), during broiler rearing. Broilers were raised without litter and with waste tea litter. According to the results, broiler growth showed little difference between the two groups during the experimental period, and it was concluded that waste tea litter had no impact on broiler growth. Meanwhile, the gas emissions of the waste tea-litter group were lower than the non-bedding-materials group. In detail, the average concentrations of NH3 and CO2 of the non-bedding-materials group were 9.33 ± 3.65 ppm and 797 ± 107 ppm, respectively; while these concentrations in the waste-tea-litter group were 1.01 ± 0.35 ppm and 713 ± 69 ppm, respectively. According to the analysis of the litter properties, it was suggested that waste tea litter can reduce the moisture content in litter, and affect microbial and urease activity due to its low carbon nitrogen ratio (C/N), weak acid, and porous structure characteristics. In conclusion, this study showed the potential of waste tea litter in NH3 and CO2 emission reduction during broiler rearing.
Collapse
|
9
|
Emissions of Gaseous Pollutants from Pig Farms and Methods for their Reduction – A Review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
Agriculture contributes significantly to anthropogenic emissions of greenhouse gases (GHG). Livestock production, including pig production, is associated with several gaseous pollutants released into the atmosphere, including carbon dioxide (CO2), methane (CH4), ammonia (NH3) and nitrous oxide (N2O). Emissions of volatile organic compounds (VOCs), including alcohols, aldehydes, and aromatic and aliphatic hydrocarbons, as well as typically odorous pollutants, are an inseparable element of raising and breeding farm animals. These emissions can degrade local and regional air quality, contribute to surface water eutrophication and acid rain, and increase the greenhouse gas footprint of the production sector. The paper is organized as follows. First, the sources and factors influencing the level of emissions from pig houses are described. Next, the effects of dietary methods (optimization of animal diets), hygienic methods (including microclimate optimization) and technological methods (application of technological solutions) for mitigating emissions from pigs are discussed.
Collapse
|
10
|
Gaseous Emissions from the Composting Process: Controlling Parameters and Strategies of Mitigation. Processes (Basel) 2021. [DOI: 10.3390/pr9101844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organic waste generation, collection, and management have become a crucial problem in modern and developing societies. Among the technologies proposed in a circular economy and sustainability framework, composting has reached a strong relevance in terms of clean technology that permits reintroducing organic matter to the systems. However, composting has also negative environmental impacts, some of them of social concern. This is the case of composting atmospheric emissions, especially in the case of greenhouse gases (GHG) and certain families of volatile organic compounds (VOC). They should be taken into account in any environmental assessment of composting as organic waste management technology. This review presents the relationship between composting operation and composting gaseous emissions, in addition to typical emission values for the main organic wastes that are being composted. Some novel mitigation technologies to reduce gaseous emissions from composting are also presented (use of biochar), although it is evident that a unique solution does not exist, given the variability of exhaust gases from composting.
Collapse
|
11
|
Li Y, Xu Y, Fu Z, Li W, Zheng L, Li M. Assessment of energy use and environmental impacts of wastewater treatment plants in the entire life cycle: A system meta-analysis. ENVIRONMENTAL RESEARCH 2021; 198:110458. [PMID: 33188763 DOI: 10.1016/j.envres.2020.110458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/27/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) play a critical role in the sustainable development of water resources due to its outstanding ability of removing pollutants from complex influent wastewater and generating clean and safe effluent. This paper innovatively adopted the meta-analysis method in view of published LCA studies to assess the energy use and environmental impacts of WWTPs during their life cycle. The search and screening process determined a useful data source with 54 LCA literatures covering 109 relevant case studies. The meta-analysis results revealed that, compared with other regions, the WWTPs in China have the higher intensity in terms of energy use, global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), photochemical oxidation (PHO), freshwater ecotoxicity potential (FETP) and terrestrial ecotoxicity potential (TETP) categories, implying that the energy conservation and emission reduction strategies are necessary to wastewater treatment industry in China. Moreover, compared with A/A/O and CASS processes, the A/O process consumes less energy and results in lower GWP and AP intensity, but affects adversely the natural water-body protection due to undesirable treatment efficiency. Furthermore, the treatment capacities of medium and large scales (i.e. 5-20 × 104 m3/d) are most reasonable sizes for WWTPs since their intensity of energy use, GWP, EP and AP are under a relatively low level. Finally, a strict effluent discharge standard is highly recommended from the perspective of protecting aquatic environment, although it leads to a higher energy consumption. The findings of this study could provide valuable references for promoting healthy and sustainable wastewater treatment industry.
Collapse
Affiliation(s)
- Ye Li
- MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Ye Xu
- MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Zhenghui Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Wei Li
- MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Lijun Zheng
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051, China.
| | - Mengran Li
- MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
12
|
Sun Y, Gu B, van Grinsven HJM, Reis S, Lam SK, Zhang X, Chen Y, Zhou F, Zhang L, Wang R, Chen D, Xu J. The Warming Climate Aggravates Atmospheric Nitrogen Pollution in Australia. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9804583. [PMID: 34268496 PMCID: PMC8254137 DOI: 10.34133/2021/9804583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/14/2021] [Indexed: 01/28/2023]
Abstract
Australia is a warm country with well-developed agriculture and a highly urbanized population. How these specific features impact the nitrogen cycle, emissions, and consequently affect environmental and human health is not well understood. Here, we find that the ratio of reactive nitrogen (N r ) losses to air over losses to water in Australia is 1.6 as compared to values less than 1.1 in the USA, the European Union, and China. Australian N r emissions to air increased by more than 70% between 1961 and 2013, from 1.2 Tg N yr-1 to 2.1 Tg N yr-1. Previous emissions were substantially underestimated mainly due to neglecting the warming climate. The estimated health cost from atmospheric N r emissions in Australia is 4.6 billion US dollars per year. Emissions of N r to the environment are closely correlated with economic growth, and reduction of N r losses to air is a priority for sustainable development in Australia.
Collapse
Affiliation(s)
- Yi Sun
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baojing Gu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Hans J. M. van Grinsven
- PBL Netherlands Environmental Assessment Agency, PO BOX 30314, 2500 GH The Hague, Netherlands
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
- University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro TR1 3HD, UK
| | - Shu Kee Lam
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Xiuying Zhang
- International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
| | - Youfan Chen
- Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Feng Zhou
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lin Zhang
- Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Rong Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Deli Chen
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Han B, Zhang W, He JZ, Chen D. Lignite ammonia adsorption and surface chemistry after dewatering. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Wu C, Yang F, Brancher M, Liu J, Qu C, Piringer M, Schauberger G. Determination of ammonia and hydrogen sulfide emissions from a commercial dairy farm with an exercise yard and the health-related impact for residents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37684-37698. [PMID: 32608005 PMCID: PMC7496066 DOI: 10.1007/s11356-020-09858-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Airborne emissions from concentrated animal feeding operations (CAFOs) have the potential to pose a risk to human health and the environment. Here, we present an assessment of the emission, dispersion, and health-related impact of ammonia and hydrogen sulfide emitted from a 300-head, full-scale dairy farm with an exercise yard in Beijing, China. By monitoring the referred gas emissions with a dynamic flux chamber for seven consecutive days, we examined their emission rates. An annual hourly emission time series was constructed on the basis of the measured emission rates and a release modification model. The health risk of ammonia and hydrogen sulfide emissions around the dairy farm was then determined using atmospheric dispersion modeling and exposure risk assessment. The body mass-related mean emission factors of ammonia and hydrogen sulfide were 2.13 kg a-1 AU-1 and 24.9 g a-1 AU-1, respectively (one animal unit (AU) is equivalent to 500 kg body mass). A log-normal distribution fitted well to ammonia emission rates. Contour lines of predicted hourly mean concentrations of ammonia and hydrogen sulfide were mainly driven by the meteorological conditions. The concentrations of ammonia and hydrogen sulfide at the fence line were below 10 μg m-3 and 0.04 μg m-3, respectively, and were 2-3 orders of magnitude lower than the current Chinese air quality standards for such pollutants. Moreover, the cumulative non-carcinogenic risks (HI) of ammonia and hydrogen sulfide were 4 orders of magnitudes lower than the acceptable risk levels (HI = 1). Considering a health risk criterion of 1E-4, the maximum distance from the farm fence line to meet this criterion was nearly 1000 m towards north-northeast. The encompassed area of the contour lines of the ambient concentration of ammonia is much larger than that of hydrogen sulfide. However, the contour lines of the ammonia health risk are analogous to those of hydrogen sulfide. In general, the ammonia and hydrogen sulfide emissions from the dairy farm are unlikely to cause any health risks for the population living in the neighborhood.
Collapse
Affiliation(s)
- Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Fan Yang
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037 China
| | - Marlon Brancher
- WG Environmental Health, Unit for Physiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Chen Qu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Martin Piringer
- Department of Environmental Meteorology, Central Institute of Meteorology and Geodynamics, Vienna, Austria
| | - Günther Schauberger
- WG Environmental Health, Unit for Physiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
15
|
Zhuang M, Shan N, Wang Y, Caro D, Fleming RM, Wang L. Different characteristics of greenhouse gases and ammonia emissions from conventional stored dairy cattle and swine manure in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137693. [PMID: 32192975 DOI: 10.1016/j.scitotenv.2020.137693] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Livestock manure emits considerable amounts of greenhouse gases (GHGs) and ammonia (NH3), inducing climate change and air pollution. However, there remains a lack of knowledge in the literature related to GHGs and NH3 emissions from the manure of various livestock species. This study reports on a field observation we conducted to analyze GHGs and NH3 emissions of solid stored manure from dairy cattle and swine, which represent the two main livestock species raised in China. Results showed that although dairy cattle manure emitted 521.9% more methane (CH4) than swine manure, they separately emitted 50.8% and 40.9% less nitrous oxide (N2O) and carbon dioxide (CO2) emissions, respectively. With respect to their global warming potential, the GHGs emission from dairy cattle manure was similar to that from swine manure. NH3 emissions from swine manure were significantly higher, namely, greater by a factor of 2.4 compared to dairy cattle manure. Differences in gas emissions between dairy cattle and swine manure can be explained by differences in the physicochemical characteristics of their manure and their associated microbiological, chemical, and physical processes that produce gas during storage periods. Based on our results, this study highlights the necessity for prospective mitigation strategies to simultaneously decrease GHGs and NH3 emissions from livestock manure. Our findings provide useful implications for understanding GHGs and NH3 emissions, which can be used to develop corresponding mitigation strategies for livestock manure management in China.
Collapse
Affiliation(s)
- Minghao Zhuang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Nan Shan
- Department of Environmental and Chemical Engineering, Tangshan University, Tangshan, Hebei 063000, China; CAAS-UNH Joint Laboratory for Sustainable Agro-Ecosystem, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingchun Wang
- CAAS-UNH Joint Laboratory for Sustainable Agro-Ecosystem, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Development Center for Science and Technology, MARA, Ministry of Agriculture Rural Affairs, Beijing 100193, China
| | - Dario Caro
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde, Denmark
| | - Rachael Marie Fleming
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Ligang Wang
- CAAS-UNH Joint Laboratory for Sustainable Agro-Ecosystem, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Chen Z, An C, Fang H, Zhang Y, Zhou Z, Zhou Y, Zhao S. Assessment of regional greenhouse gas emission from beef cattle production: A case study of Saskatchewan in Canada. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 264:110443. [PMID: 32217321 DOI: 10.1016/j.jenvman.2020.110443] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/17/2020] [Accepted: 03/14/2020] [Indexed: 05/25/2023]
Abstract
The beef cattle production has been considered as one of the largest sources of greenhouse gases (GHGs) emission. A large amount of GHGs including N2O and CH4 from enteric fermentation and manure are discharged to atmosphere during beef-production process. In addition, a substantial amount of GHGs is also emitted from many other related processes such as feed production, transportation, and energy consumption. In this study, an emission assessment model was developed to quantify the amount of regional GHGs produced from the beef cattle production process. A case study was conducted based on the beef production in Saskatchewan, Canada. The results demonstrated that the GHG emissions from the annual marketed beef cattle in Saskatchewan in 2014 were 8.52 × 109 kg CO2-eq in total and the cattle-source GHGs (enteric CH4, manure CH4, and manure N2O emission) accounted for more than 90% of the total emission. Sensitivity analysis showed that the most critical factors influencing the GHG emission included feedlot manure handling system, cattle diet, feed additives, maximum methane producing capacity (Bo), and climate (temperature, precipitation, and potential evapotranspiration). The potential impacts of climate change on GHG emission from beef cattle production in Saskatchewan were also investigated. An overall decrease in the GHG emission can be observed due to the climate change, which are 3.67%, 4.96%, and 6.63% for 2020-2039, 2040-2059, and 2060-2099, respectively.
Collapse
Affiliation(s)
- Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| | - Hanxiao Fang
- Faculty of Engineering and Applied Science, University of Regina, Regina, S4S 0A2, Canada
| | - Yunlu Zhang
- Faculty of Engineering and Applied Science, University of Regina, Regina, S4S 0A2, Canada
| | - Zhigang Zhou
- Faculty of Engineering and Applied Science, University of Regina, Regina, S4S 0A2, Canada
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
17
|
Liebe F, Liebe H, Kaessmeyer S, Sponder G, Stumpff F. The TRPV3 channel of the bovine rumen: localization and functional characterization of a protein relevant for ruminal ammonia transport. Pflugers Arch 2020; 472:693-710. [PMID: 32458085 PMCID: PMC7293678 DOI: 10.1007/s00424-020-02393-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/31/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022]
Abstract
Large quantities of ammonia (NH3 or NH4+) are absorbed from the gut, associated with encephalitis in hepatic disease, poor protein efficiency in livestock, and emissions of nitrogenous climate gasses. Identifying the transport mechanisms appears urgent. Recent functional and mRNA data suggest that absorption of ammonia from the forestomach of cattle may involve TRPV3 channels. The purpose of the present study was to sequence the bovine homologue of TRPV3 (bTRPV3), localize the protein in ruminal tissue, and confirm transport of NH4+. After sequencing, bTRPV3 was overexpressed in HEK-293 cells and Xenopus oocytes. An antibody was selected via epitope screening and used to detect the protein in immunoblots of overexpressing cells and bovine rumen, revealing a signal of the predicted ~ 90 kDa. In rumen only, an additional ~ 60 kDa band appeared, which may represent a previously described bTRPV3 splice variant of equal length. Immunohistochemistry revealed staining from the ruminal stratum basale to stratum granulosum. Measurements with pH-sensitive microelectrodes showed that NH4+ acidifies Xenopus oocytes, with overexpression of bTRPV3 enhancing permeability to NH4+. Single-channel measurements revealed that Xenopus oocytes endogenously expressed small cation channels in addition to fourfold-larger channels only observed after expression of bTRPV3. Both endogenous and bTRPV3 channels conducted NH4+, Na+, and K+. We conclude that bTRPV3 is expressed by the ruminal epithelium on the protein level. In conjunction with data from previous studies, a role in the transport of Na+, Ca2+, and NH4+ emerges. Consequences for calcium homeostasis, ruminal pH, and nitrogen efficiency in cattle are discussed.
Collapse
Affiliation(s)
- Franziska Liebe
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Hendrik Liebe
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Sabine Kaessmeyer
- Institute of Veterinary Anatomy, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Friederike Stumpff
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
18
|
Fang Q, Ma Y, Zhang X, Wei S, Hou Y. Mitigating Nitrogen Emissions From Dairy Farming Systems in China. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Sepperer T, Tondi G, Petutschnigg A, Young TM, Steiner K. Mitigation of Ammonia Emissions from Cattle Manure Slurry by Tannins and Tannin-Based Polymers. Biomolecules 2020; 10:biom10040581. [PMID: 32290040 PMCID: PMC7225981 DOI: 10.3390/biom10040581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
With the extensive use of nitrogen-based fertilizer in agriculture, ammonia emissions, especially from cattle manure, are a serious environmental threat for soil and air. The European community committed to reduce the ammonia emissions by 30% by the year 2030 compared to 2005. After a moderate initial reduction, the last report showed no further improvements in the last four years, keeping the 30% reduction a very challenging target for the next decade. In this study, the mitigation effect of different types of tannin and tannin-based adsorbent on the ammonia emission from manure was investigated. Firstly, we conducted a template study monitoring the ammonia emissions registered by addition of the tannin-based powders to a 0.1% ammonia solution and then we repeated the experiments with ready-to-spread farm-made manure slurry. The results showed that all tannin-based powders induced sensible reduction of pH and ammonia emitted. Reductions higher than 75% and 95% were registered for ammonia solution and cattle slurry, respectively, when using flavonoid-based powders. These findings are very promising considering that tannins and their derivatives will be extensively available due to the increasing interest on their exploitation for the synthesis of new-generation “green” materials.
Collapse
Affiliation(s)
- Thomas Sepperer
- Forest Products Technology and Timber Construction Department, Salzburg University of Applied Sciences, Markt 136a, Kuchl 5431, Austria; (T.S.); (A.P.)
- Salzburg Center for Smart Materials, Jakob-Haringerstraße 2a, Salzburg 5020, Austria
| | - Gianluca Tondi
- Forest Products Technology and Timber Construction Department, Salzburg University of Applied Sciences, Markt 136a, Kuchl 5431, Austria; (T.S.); (A.P.)
- Land, Environment, Agriculture and Forestry Department, University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy
- Correspondence: ; Tel.: +39-049-827-2776
| | - Alexander Petutschnigg
- Forest Products Technology and Timber Construction Department, Salzburg University of Applied Sciences, Markt 136a, Kuchl 5431, Austria; (T.S.); (A.P.)
- Salzburg Center for Smart Materials, Jakob-Haringerstraße 2a, Salzburg 5020, Austria
| | - Timothy M. Young
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996, USA;
| | - Konrad Steiner
- Höhere Bundeslehranstalt für Landwirtschaft Ursprung, Ursprungstraße 4, Elixhausen 5161, Austria;
| |
Collapse
|
20
|
Chen Y, Du Y, Liu P, Yang J, Li L, Li J. Removal of Ammonia Emissions via Reversible Structural Transformation in M(BDC) (M = Cu, Zn, Cd) Metal-Organic Frameworks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3636-3642. [PMID: 32068395 DOI: 10.1021/acs.est.9b06866] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
NH3 is the most important gaseous alkaline pollutant, which when accumulated at high concentrations can have a serious impact on animal and human health. More importantly, NH3 emissions will react with acidic pollutant gases to form particulate matter (PM2.5) in the atmosphere, which also poses a huge threat to human activities. The use of adsorbents for NH3 removal from emission sources or air is an urgent issue. However, there are difficulties in the compatibility between high adsorption capacity and recyclability for most conventional adsorbents. In this work, a structural transformation strategy using metal-organic frameworks (MOFs) is proposed for large-scale and recyclable NH3 adsorption. A series of M(BDC) (M = Cu, Zn, Cd) materials can transform into one-dimensional M(BDC)(NH3)2 after NH3 adsorption, resulting in repeatable adsorption capacities of 17.2, 14.1, and 7.4 mmol/g, respectively. These MOFs can be completely regenerated at 250 °C for 80 min with no adsorption capacity loss. Besides, breakthrough and cycle tests indicate that Cu(BDC) and Zn(BDC) show good performance in the removal of low concentrations of NH3 from the air. Overall, combining the advantages of high adsorption capacity and recyclability due to the reversible structural transformation, Cu(BDC) and Zn(BDC) can be employed as ideal adsorbent candidates for NH3 removal.
Collapse
Affiliation(s)
- Yang Chen
- Research Institute of Special Chemicals, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China
| | - Yadan Du
- Research Institute of Special Chemicals, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Puxu Liu
- Research Institute of Special Chemicals, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Jiangfeng Yang
- Research Institute of Special Chemicals, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China
| | - Libo Li
- Research Institute of Special Chemicals, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China
| | - Jinping Li
- Research Institute of Special Chemicals, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China
| |
Collapse
|
21
|
Wang Y, Liu S, Xue W, Guo H, Li X, Zou G, Zhao T, Dong H. The Characteristics of Carbon, Nitrogen and Sulfur Transformation During Cattle Manure Composting-Based on Different Aeration Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203930. [PMID: 31623089 PMCID: PMC6844082 DOI: 10.3390/ijerph16203930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the characteristics of gaseous emission (methane-CH4, carbon dioxide-CO2, nitrous oxide-N2O, nitric oxide-NO, hydrogen sulfide-H2S and sulfur dioxide-SO2) and the conservation of carbon (C), nitrogen (N), and sulfur (S) during cattle manure composting under different aeration strategies. Three aeration strategies were set as C60, C100, and I60, representing the different combinations of aeration method (continuous-C or intermittent-I) and aeration rate (60 or 100 L·min-1·m-3). Results showed that C, N, S mass was reduced by 48.8-53.1%, 29.8-35.9% and 19.6-21.9%, respectively, after the composing process. Among the three strategies, the intermittent aeration treatment I60 obtained the highest N2O emissions, resulting in the highest N loss and greenhouse gas (GHG) emissions when the GHG emissions from power consumption were not considered. Within two continuous aeration treatments, lower aeration rates in C60 caused lower CO2, N2O, NO, and SO2 emissions but higher CH4 emissions than those from C100. Meanwhile, C and N losses were also lowest in the C60 treatment. H2S emission was not detected because of the more alkaline pH of the compost material. Thus, C60 can be recommended for cattle manure composting because of its nutrient conservation and mitigation of major gas and GHG emissions.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
| | - Shanjiang Liu
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
| | - Wentao Xue
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
| | - He Guo
- Urban Construction School, Beijing City University, Beijing 100083, China.
| | - Xinrong Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA.
| | - Guoyuan Zou
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
| | - Tongke Zhao
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
22
|
Characterization of Volatile Organic Compound (VOC) Emissions from Swine Manure Biogas Digestate Storage. ATMOSPHERE 2019. [DOI: 10.3390/atmos10070411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Livestock manure is one of the major sources of volatile organic compound (VOC) emissions; however, characteristics of VOCs emitted from biogas digestate (BD) storage, which is a common manure practice, remain unclear. The objective of this study was to characterize VOC emissions during BD storage through the dynamic emission vessel method, to identify the VOC emissions that have potential odor and/or toxic effects. The results revealed the detection of 49 VOCs with seven classes, whose total concentration varied from 171.35 to 523.71 μg m−3. The key classes of the 49 VOCs included Oxygenated VOCs (OVOCs), olefins and halogenated hydrocarbons. The top four compositions, accounting for 74.38% of total VOCs (TVOCs), included ethanol, propylene, acetone and 2-butanone. The top four odorous VOCs, accounting for only 5.15% of the TVOCs, were toluene, carbon disulfide, ethyl acetate and methyl sulfide, with the concentration ranging from 13.25 to 18.06 μg m−3. Finally, 11 main hazardous air pollutant VOCs, accounting for 32.77% of the TVOCs, were propylene, 2-butanone, toluene, methyl methacrylate, etc., with the concentration ranging from 81.05 to 116.96 μg m−3. Results could contribute to filling the knowledge gaps in the characteristics of VOC emissions from biogas digestate (BD), and provide a basis for exploring mitigation strategies on odor and hazardous air pollutions.
Collapse
|
23
|
Wang Y, Xue W, Zhu Z, Yang J, Li X, Tian Z, Dong H, Zou G. Mitigating ammonia emissions from typical broiler and layer manure management - A system analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 93:23-33. [PMID: 31235054 DOI: 10.1016/j.wasman.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/11/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Broiler and layer productions are important ammonia (NH3) emission sources in the livestock industry. Here, we present the first meta-analysis and integrated assessment of NH3 emissions and mitigation potentials for typical broiler litter manure management system (MMS) and layer manure belt MMS based on data from 96 studies. A total of 10 integrated NH3 emission factors (EFs) and the NH3 mitigation efficiencies (MEs) of 14 available options were provided. The estimated NH3 emissions from the baseline scenarios of the broiler litter MMS and the layer manure belt MMS were 84.1 ± 5.9 kg AU-1 yr-1 and 53.5 ± 15.8 kg AU-1 yr-1, respectively. The NH3 mitigation for the broiler litter MMS should be focused on the in-house stage, while the mitigation in the layer manure belt MMS should be focused on the outdoor and land application stages. The recommended NH3 mitigation options for the in-house stage, the outdoor stage and the land application stage were acid scrubber (-92.5%), compost biofilter (-71.9%) and changing the manure surface application to incorporation (-83.0%), respectively. The recommended mitigation combinations of low crude protein (LCP) diet, acid scrubber, compost biofilter and manure incorporation achieved the highest NH3 mitigation efficiency from both broiler litter MMS and layer manure belt MMS, by 89.3% and 84.8%, respectively. The results of this study have important implications for developing sustainable poultry production systems from the viewpoint of NH3 mitigation. The environment issues such as the other reactive nitrogen emissions and the greenhouse gas (GHG) emissions should also be considered in the future.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100087, China
| | - Wentao Xue
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100087, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Jinfeng Yang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100087, China
| | - Xinrong Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100087, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA.
| | - Zhuang Tian
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100087, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Guoyuan Zou
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100087, China
| |
Collapse
|