1
|
Ihn Y, Cho Y, Lee I, Oh JS, Moon HB, Choi K. Thyroid and neurobehavioral effects of DiNP on GH3 cells and larval zebrafish (Danio rerio). CHEMOSPHERE 2024; 362:142593. [PMID: 38866335 DOI: 10.1016/j.chemosphere.2024.142593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Diisononyl phthalate (DiNP) has been used to replace bis(2-ethylhexyl) phthalate (DEHP) and is frequently found in the environment and humans. DiNP is reported for its anti-androgenic activity; however, little is known about its effects on thyroid function and neurodevelopment. In the present study, the thyroid disruption and neurobehavioral alteration potential of DiNP and its major metabolites were assessed in a rat pituitary carcinoma cell line (GH3) and embryo-larval zebrafish (Danio rerio). In GH3 cells, exposure to DiNP and its metabolites not only increased proliferation but also induced transcriptional changes in several target genes, which were different from those observed with DEHP exposure. In larval fish, a 5-day exposure to DiNP caused significant increases in thyroid hormone levels, following a similar pattern to that reported for DEHP exposure. Following exposure to DiNP, the activity of the larval fish decreased, and neurodevelopment-related genes, such as c-fos, elavl3, and mbp, were down-regulated. These changes are generally similar to those observed for DEHP. Up-regulation of gap43 and down-regulation of elavl3 gene, which are important for both thyroid hormone production and neurodevelopment, respectively, support the potential for both thyroid and behavioral disruption of DiNP. Overall, these results emphasize the need to consider the adverse thyroid and neurodevelopmental effects in developing regulations for DEHP-replacing phthalates.
Collapse
Affiliation(s)
- Yunchul Ihn
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Yoojin Cho
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Jin-Su Oh
- Department of Marine Sciences and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Li X, Zheng N, Zhang W, An Q, Ji Y, Chen C, Wang S, Peng L. Comprehensive assessment of phthalates in indoor dust across China between 2007 and 2019: Benefits from regulatory restrictions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123147. [PMID: 38101532 DOI: 10.1016/j.envpol.2023.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/18/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
China is the largest producer and consumer of phthalates in the world. However, it remains unclear whether China's phthalate restrictions have alleviated indoor phthalate pollution. We extracted the concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) in indoor dust at 2762 sites throughout China between 2007 and 2019 from the published literature. Based on these data, we investigated the effects of phthalate restrictions and environmental factors on the temporal-spatial distribution and sources of phthalates and estimated human exposure and risk of phthalates. The results revealed that the mean concentrations of phthalates in indoor dust throughout China decreased in the following order: DEHP > DBP > DIBP > DMP > DEP > BBP. The concentrations of six phthalates were generally higher in northern and central-western China than in southern regions. BBP and DEHP concentrations decreased by 73.5% and 17.9%, respectively, from 2007 to 2019. Sunshine was a critical environmental factor in reducing phthalate levels in indoor dust. Polyvinyl chloride materials, personal care products, building materials, and furniture were the primary sources of phthalates in indoor dust. The phthalates in indoor dust posed the most significant threat to children and older adults. This study provides a picture of phthalate pollution, thus supporting timely and effective policies and legislation.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Andvik C, Bories P, Harju M, Borgå K, Jourdain E, Karoliussen R, Rikardsen A, Routti H, Blévin P. Phthalate contamination in marine mammals off the Norwegian coast. MARINE POLLUTION BULLETIN 2024; 199:115936. [PMID: 38154171 DOI: 10.1016/j.marpolbul.2023.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Phthalates are used in plastics, found throughout the marine environment and have the potential to cause adverse health effects. In the present study, we quantified blubber concentrations of 11 phthalates in 16 samples from stranded and/or free-living marine mammals from the Norwegian coast: the killer whale (Orcinus orca), sperm whale (Physeter macrocephalus), long-finned pilot whale (Globicephala melas), white-beaked dolphin (Lagenorhynchus albirostris), harbour porpoise (Phocoena phocoena), and harbour seal (Phoca vitulina). Five compounds were detected across all samples: benzyl butyl phthalate (BBP; in 50 % of samples), bis(2-ethylhexyl) phthalate (DEHP; 33 %), diisononyl phthalate (DiNP; 33 %), diisobutyl phthalate (DiBP; 19 %), and dioctyl phthalate (DOP; 13 %). Overall, the most contaminated individual was the white-beaked dolphin, whilst the lowest concentrations were measured in the killer whale, sperm whale and long-finned pilot whale. We found no phthalates in the neonate killer whale. The present study is important for future monitoring and management of these toxic compounds.
Collapse
Affiliation(s)
- Clare Andvik
- Department of Biosciences, University of Oslo, Norway.
| | - Pierre Bories
- INRS, Eau Terre Environnement center, Quebec City, Canada
| | - Mikael Harju
- The Climate and Environmental Research Institute NILU, Fram Centre, Tromsø, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Norway
| | - Eve Jourdain
- Department of Biosciences, University of Oslo, Norway; Norwegian Orca Survey, Andenes, Norway
| | | | - Audun Rikardsen
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | | |
Collapse
|
5
|
Li X, Zheng N, Yu Y, Zhang W, Sun S, An Q, Li Z, Ji Y, Wang S, Shi Y, Li W. Individual and combined effects of phthalate metabolites on eczema in the United States population. ENVIRONMENTAL RESEARCH 2024; 240:117459. [PMID: 37914015 DOI: 10.1016/j.envres.2023.117459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Phthalates might trigger immune dysregulation. The relationship between a phthalate mixture exposure and eczema remains unclear. To address this research gap, four statistical models were used to investigate the individual, combined, and interaction relationships between monoesters of phthalates (MPAEs) and eczema, including the logistic regression, weighted quantile sum regression (WQS), quantile g computation (qg-computation), and bayesian kernel machine regression (BKMR). Moreover, subgroup analyses were performed by sex and age. After adjusting for all covariates, the logistic regression model suggested a positive correlation between mono-(3-carboxypropyl) phthalate (MCPP) and eczema. Subgroup analysis suggested that the effect of the MPAEs on eczema was predominantly present in men and children. In the WQS model, the joint effect of 11 MPAEs on eczema was marginally significant [odds ratio = 1.36, 95% confidence interval: 0.97-1.90]. Moreover, a positive association was observed between the combined exposure to 11 MPAEs and eczema in the BKMR model. MCPP and mono-(carboxynonyl) phthalate were the most substantial risk factors based on the results of WQS and qg-computation models. The exposure to a mixture of MPAEs may lead to an elevated prevalence of eczema in the United States population, with men and children being particularly vulnerable to their effects.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China.
| | - Yan Yu
- Department of Dermatology, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Zimeng Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Ying Shi
- Department of Dermatology, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wanlei Li
- Department of Dermatology, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
6
|
Stanfield Z, Setzer RW, Hull V, Sayre RR, Isaacs KK, Wambaugh JF. Characterizing Chemical Exposure Trends from NHANES Urinary Biomonitoring Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17009. [PMID: 38285237 PMCID: PMC10824265 DOI: 10.1289/ehp12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Xenobiotic metabolites are widely present in human urine and can indicate recent exposure to environmental chemicals. Proper inference of which chemicals contribute to these metabolites can inform human exposure and risk. Furthermore, longitudinal biomonitoring studies provide insight into how chemical exposures change over time. OBJECTIVES We constructed an exposure landscape for as many human-exposure relevant chemicals over as large a time span as possible to characterize exposure trends across demographic groups and chemical types. METHODS We analyzed urine data of nine 2-y cohorts (1999-2016) from the National Health and Nutrition Examination Survey (NHANES). Chemical daily intake rates (in milligrams per kilogram bodyweight per day) were inferred, using the R package bayesmarker, from metabolite concentrations in each cohort individually to identify exposure trends. Trends for metabolites and parents were clustered to find chemicals with similar exposure patterns. Exposure variation by age, gender, and body mass index were also assessed. RESULTS Intake rates for 179 parent chemicals were inferred from 151 metabolites (96 measured in five or more cohorts). Seventeen metabolites and 44 parent chemicals exhibited fold-changes ≥ 10 between any two cohorts (deltamethrin, di-n -octyl phthalate, and di-isononyl phthalate had the greatest exposure increases). Di-2-ethylhexyl phthalate intake began decreasing in 2007, whereas both di-isobutyl and di-isononyl phthalate began increasing shortly before. Intake for four parabens was markedly higher in females, especially reproductive-age females, compared with males and children. Cadmium and arsenobetaine exhibited higher exposure for individuals > 65 years of age and lower for individuals < 20 years of age. DISCUSSION With appropriate analysis, NHANES indicates trends in chemical exposures over the past two decades. Decreases in exposure are observable as the result of regulatory action, with some being accompanied by increases in replacement chemicals. Age- and gender-specific variations in exposure were observed for multiple chemicals. Continued estimation of demographic-specific exposures is needed to both monitor and identify potential vulnerable populations. https://doi.org/10.1289/EHP12188.
Collapse
Affiliation(s)
- Zachary Stanfield
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - R. Woodrow Setzer
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Victoria Hull
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Risa R. Sayre
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Kristin K. Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - John F. Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
7
|
Cohen-Eliraz L, Ornoy A, Ein-Mor E, Bar-Nitsan M, Pilowsky Peleg T, Calderon-Margalit R. Prenatal exposure to phthalates and emotional/behavioral development in young children. Neurotoxicology 2023; 98:39-47. [PMID: 37536470 DOI: 10.1016/j.neuro.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Endocrine disrupting chemicals (EDCs) such as phthalates, found in our daily environment, are nowadays suggested to be associated with adverse outcomes. Prenatal exposure was found associated with neurodevelopmental complications such as behavioral difficulties in school age children. AIM To explore the association between intrauterine exposure to phthalates and emotional/behavioral development of 24 months old toddlers. METHODS Women were recruited at 11-18 weeks of gestation and provided spot urine samples, analyzed for phthalate metabolites (DEHP, DiNP, MBzBP). Offspring were examined at 24 months of age, using standard maternal report, regarding developmental and behavioral problems (CBCL, ASQ-3, HOME questionnaires) (N = 158). To explore the associations between metabolite levels and developmental outcomes, multivariate GLM analysis (General Linear Model) was used according to tertiles and developmental scores on each developmental outcome. RESULTS Associations of Di-(2-ethylhexyl) phthalate (DEHP) maternal exposure with behavioral-developmental outcomes were found only in boys. Compared with boys with lower DEHP maternal exposure, boys with high DEHP maternal exposure had lower developmental score in personal social abilities in the ASQ-3 questionnaire (50.68 + 8.06 and 44.14 + 11.02, high and low DEHP, respectively, p = 0.03), and more internalizing problems (for example, emotionally reactive score in high and low DEHP: 53.77 + 7.41 and 50.50 + 1.19, respectively, p = 0.029; anxious or depressed score: 53.38 + 5.01 and 50.75 + 1.34, respectively, p = 0.009; and somatic complaints scores 64.03 + 10.1 and 55.84 + 7.84, respectively, p = 0.003), and externalizing problems (49.28 + 8.59 and 43.33 + 9.11, respectively, p = 0.039). No differences were found in the development and behavior problems between high and low DEHP maternal exposure level in girls. CONCLUSION Maternal DEHP metabolite concentrations measured in first trimester urine was associated with children's emotional/behavioral developmental problems in 24-months old boys, supporting accumulating evidence of DEHP as a potentially harming chemical and call for environmental attention.
Collapse
Affiliation(s)
- Liron Cohen-Eliraz
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Asher Ornoy
- Department of Medical Neurobiology Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eliana Ein-Mor
- Hadassah-Hebrew University, Braun School of Public Health, P.O. Box 12272, Jerusalem 91120, Israel
| | - Moriah Bar-Nitsan
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tammy Pilowsky Peleg
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel; The Neuropsychological Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Ronit Calderon-Margalit
- Hadassah-Hebrew University, Braun School of Public Health, P.O. Box 12272, Jerusalem 91120, Israel
| |
Collapse
|
8
|
Lyu Z, Harada KH, Kim S, Fujitani T, Hitomi T, Pan R, Park N, Fujii Y, Kho Y, Choi K. Temporal trends in bisphenol exposures and associated health risk among Japanese women living in the Kyoto area from 1993 to 2016. CHEMOSPHERE 2023; 316:137867. [PMID: 36642136 DOI: 10.1016/j.chemosphere.2023.137867] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bisphenols, and especially bisphenol A, are widely used as components of epoxy resins and polycarbonate. Widespread detection and potential health risks have led to bisphenol A being replaced by other alternatives, including structurally similar bisphenol analogs. Several bisphenol analogs are suspected to have similar adverse health consequences. This study examined the temporal trends in bisphenol exposure among a group of Japanese women from 1993 to 2016, and assessed the associated health risks. METHODS We used archived single spot urine samples of healthy Japanese women living in the Kyoto area (n = 133) collected in 1993, 2000, 2003, 2009, 2011, and 2016. We measured the concentrations of 10 bisphenols in these samples. RESULTS A sharp increase in the detection rates of bisphenol F was observed after 2000. There was a distinct downward trend in urinary bisphenol A concentrations and an upward trend in bisphenol E concentrations after 2009. While the hazard index for all measured bisphenols was below 1 in all subjects, bisphenol F was determined as the most important risk driver after 2000, rather than bisphenol A. DISCUSSION Trends of decreasing bisphenol A and increasing bisphenol E exposure especially after 2011, along with no significant change in the sum of all bisphenol analogs in urine, provide clear evidence that bisphenol A has been replaced by other bisphenols in the study population. We found no significant change in the total exposure to bisphenols during the study period. Bisphenol F might become the most important bisphenol in terms of risk, while cumulative risks due to all bisphenol exposure were deemed insignificant. Considering the accumulating evidence indicating adverse effects at lower exposure levels, further studies are warranted to assess exposure and risk from bisphenol A analogs.
Collapse
Affiliation(s)
- Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan.
| | - Sungmin Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Rui Pan
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan; Department of Global Environmental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nayoun Park
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Wang CW, Cheng PK, Ponnusamy VK, Chiang HC, Chang WT, Huang PC. Exposure Characteristics and Cumulative Risk Assessment for Phthalates in Children Living near a Petrochemical Complex. TOXICS 2023; 11:57. [PMID: 36668784 PMCID: PMC9865072 DOI: 10.3390/toxics11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND School-aged children living near plastics-producing factories may have higher risk of exposure to phthalates released during the manufacturing processes. OBJECTIVES We aimed to investigate the urinary concentrations of phthalate metabolites in school-aged children living near a petrochemical complex and estimate the cumulative risk of phthalate exposure. METHODS We used a well-established cohort (Taiwan Petrochemical Complex Cohort for Children, TPE3C) of school-aged children (6-13 years old) living near polyvinyl chloride (PVC) and vinyl chloride monomer (VCM) factories in central Taiwan from October 2013 to September 2014. A total of 257 children were included from five elementary schools: Syu-Cuo Branch (n = 58, school A, ~0.9 km), Feng-An (n = 40, school B, ~2.7 km), Ciao-Tou (n = 58, school C, ~5.5 km), Mai-Liao (n = 37, school D, ~6.9 km), and Lung-Feng (n = 57, school E, ~8.6 km). We analyzed 11 metabolites of seven phthalates (including di-2-ethylhexyl phthalate (DEHP) and di-n-butyl phthalate (DnBP)) in urine. Daily intakes (DIs) were compared with acceptable intake levels to calculate the hazard quotient (HQ) for individual phthalates, and the cumulative risk for each child was assessed using a hazard index (HI), which was the sum of the the individual HQs. RESULTS The geometric mean and proportion of participants with HIs exceeding one for hepatic (HIhep) and reproductive (HIrep) effects were 0.33 (13.2%) and 0.24 (7.8%), respectively. The major contributors to phthalate exposure risk were DEHP, di-iso-butyl phthalate (DiBP) and DnBP in all children. Moreover, we observed a U shaped distribution of DEHP exposure by school distance from the PVC and VCM factories (school A: 7.48 μg/kg/day and school E: 80.44 μg/kg/day). This may be due to emissions (closest) and and being located downwind of PVC scrap incineration (farthest). CONCLUSIONS Our findings suggest that children living near a petrochemical complex were at a greater risk of phthalate exposure than normal school-aged children and that phthalate exposure was mainly attributed to DEHP, DiBP and DnBP. In addition, inhalation may have been a risk factor for people living near to PVC and VCM factories.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 701, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 701, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 701, Taiwan
| | - Po-Keng Cheng
- Department of Finance and Cooperative Management, National Taipei University, New Taipei City 237, Taiwan
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Che Chiang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
| | - Po-Chin Huang
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 701, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
| |
Collapse
|
10
|
Cattaneo I, Kalian AD, Di Nicola MR, Dujardin B, Levorato S, Mohimont L, Nathanail AV, Carnessechi E, Astuto MC, Tarazona JV, Kass GEN, Liem AKD, Robinson T, Manini P, Hogstrand C, Price PS, Dorne JLCM. Risk Assessment of Combined Exposure to Multiple Chemicals at the European Food Safety Authority: Principles, Guidance Documents, Applications and Future Challenges. Toxins (Basel) 2023; 15:40. [PMID: 36668860 PMCID: PMC9861867 DOI: 10.3390/toxins15010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Human health and animal health risk assessment of combined exposure to multiple chemicals use the same steps as single-substance risk assessment, namely problem formulation, exposure assessment, hazard assessment and risk characterisation. The main unique feature of combined RA is the assessment of combined exposure, toxicity and risk. Recently, the Scientific Committee of the European Food Safety Authority (EFSA) published two relevant guidance documents. The first one "Harmonised methodologies for the human health, animal health and ecological risk assessment of combined exposure to multiple chemicals" provides principles and explores methodologies for all steps of risk assessment together with a reporting table. This guidance supports also the default assumption that dose addition is applied for combined toxicity of the chemicals unless evidence for response addition or interactions (antagonism or synergism) is available. The second guidance document provides an account of the scientific criteria to group chemicals in assessment groups using hazard-driven criteria and prioritisation methods, i.e., exposure-driven and risk-based approaches. This manuscript describes such principles, provides a brief description of EFSA's guidance documents, examples of applications in the human health and animal health area and concludes with a discussion on future challenges in this field.
Collapse
Affiliation(s)
- Irene Cattaneo
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Alexander D. Kalian
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | - Matteo R. Di Nicola
- Unit of Dermatology, IRCCS San Raffaele Hospital, Via Olgettin 60, 20132 Milan, Italy
| | - Bruno Dujardin
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Sara Levorato
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Luc Mohimont
- Plant Health and Pesticide Residues Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Alexis V. Nathanail
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Edoardo Carnessechi
- iDATA Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Maria Chiara Astuto
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Jose V. Tarazona
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - George E. N. Kass
- Chief Scientist Office, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Antoine K. Djien Liem
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Tobin Robinson
- Plant Health and Pesticide Residues Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Paola Manini
- Feed and Contaminants Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Christer Hogstrand
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | - Paul S. Price
- Retired United States Environmental Protection Agency (US EPA), 6408 Hoover Trail Road S.W., Cedar Rapids, IA 52404, USA
| | - Jean Lou C. M. Dorne
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| |
Collapse
|
11
|
Li R, Zhan W, Ren J, Zhang F, Huang X, Ma Y. Temporal trends in risk of bisphenol A, benzophenone-3 and triclosan exposure among U.S. children and adolescents aged 6-19 years: Findings from the National Health and Nutrition Examination Survey 2005-2016. ENVIRONMENTAL RESEARCH 2023; 216:114474. [PMID: 36202243 DOI: 10.1016/j.envres.2022.114474] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phenolic compounds with potential adverse health effects are gradually being replaced. Little is known about the potential health risks of BPA, BP3, and TCS exposure in children and adolescents aged 6-19 years in the United States. OBJECTIVES To determine trends and rates of change in hazard indices (HI) for three phenolics in U.S. children and adolescents for BPA, BP3, TCS, and to assess changes in gender, race/ethnicity, age, and potential health risks. METHODS Metabolic biomonitoring data from field-collected urine samples from the National Health and Nutrition Examination Survey (NHANES) were utilized. Daily intake of three phenols (bisphenol A, benzophenone-3, and triclosan) between 2005 and 2016 in children and adolescents were obtained. Cumulative risk indicators, including hazard quotient (HQ), hazard index (HI), and maximum cumulative ratio (MCR), were used for the health risk assessment of the three phenols. RESULTS During this period, the change in LSGM HI was -2.9% per cycle [95% Cl: (-3.7%, -2.2%)], and the percentage of participants with HI > 0.1 decreased from 15.6% to 10.5%. Children (6-11 years) had higher mean HI values than adolescents (12-19 years), while female had higher LSGM HI values than male. MCR values were generally low and negatively correlated with HI. However, the average value of MCR increased from 1.722 to 2.107 during this period. CONCLUSION Exposure to phenolics among U.S. children and adolescents has changed in recent decades. However, gaps in data limit the interpretation of trends but legislative activity and advocacy campaigns by nongovernmental organizations may play a role in changing trends. Moreover, there are growing concerns about the potential health risks associated with exposure to multiple phenols in children and adolescents.
Collapse
Affiliation(s)
- Ruiqiang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Wenqiang Zhan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xin Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
12
|
Liu Y, Guo Z, Zhu R, Gou D, Jia PP, Pei DS. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120673. [PMID: 36400143 DOI: 10.1016/j.envpol.2022.120673] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Di-2-Ethylhexyl Phthalate (DEHP) is often used as an additive in polyvinyl chloride (PVC) to give plastics flexibility, which makes DEHP widely used in food packaging, daily necessities, medical equipment, and other products. However, due to the unstable combination of DEHP and polymer, it will migrate to the environment in the materials and eventually contact the human body. It has been recorded that low-dose DEHP will increase neurotoxicity in the nervous system, and the human health effects of DEHP have been paid attention to because of the extensive exposure to DEHP and its high absorption during brain development. In this study, we review the evidence that DEHP exposure is associated with neurodevelopmental abnormalities and neurological diseases based on human epidemiological and animal behavioral studies. Besides, we also summarized the oxidative damage, apoptosis, and signal transduction disorder related to neurobehavioral abnormalities and nerve injury, and described the potential mechanisms of neurotoxicity caused by DEHP. Overall, we found exposure to DEHP during the critical developmental period will increase the risk of neurobehavioral abnormalities, depression, and autism spectrum disorders. This effect is sex-specific and will continue to adulthood and even have an intergenerational effect. However, the research results on the sex-dependence of DEHP neurotoxicity are inconsistent, and there is a lack of systematic mechanisms research as theoretical support. Future investigations need to be carried out in a large-scale population and model organisms to produce more consistent and convincing results. And we emphasize the importance of mechanism research, which can enhance the understanding of the environmental and human health risks of DEHP exposure.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Stanfield Z, Setzer RW, Hull V, Sayre RR, Isaacs KK, Wambaugh JF. Bayesian inference of chemical exposures from NHANES urine biomonitoring data. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:833-846. [PMID: 35978002 PMCID: PMC9979158 DOI: 10.1038/s41370-022-00459-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Knowing which environmental chemicals contribute to metabolites observed in humans is necessary for meaningful estimates of exposure and risk from biomonitoring data. OBJECTIVE Employ a modeling approach that combines biomonitoring data with chemical metabolism information to produce chemical exposure intake rate estimates with well-quantified uncertainty. METHODS Bayesian methodology was used to infer ranges of exposure for parent chemicals of biomarkers measured in urine samples from the U.S population by the National Health and Nutrition Examination Survey (NHANES). Metabolites were probabilistically linked to parent chemicals using the NHANES reports and text mining of PubMed abstracts. RESULTS Chemical exposures were estimated for various population groups and translated to risk-based prioritization using toxicokinetic (TK) modeling and experimental data. Exposure estimates were investigated more closely for children aged 3 to 5 years, a population group that debuted with the 2015-2016 NHANES cohort. SIGNIFICANCE The methods described here have been compiled into an R package, bayesmarker, and made publicly available on GitHub. These inferred exposures, when coupled with predicted toxic doses via high throughput TK, can help aid in the identification of public health priority chemicals via risk-based bioactivity-to-exposure ratios.
Collapse
Affiliation(s)
- Zachary Stanfield
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - R Woodrow Setzer
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Victoria Hull
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, 37830, USA
| | - Risa R Sayre
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Kristin K Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
14
|
Pirard C, Charlier C. Urinary levels of parabens, phthalate metabolites, bisphenol A and plasticizer alternatives in a Belgian population: Time trend or impact of an awareness campaign? ENVIRONMENTAL RESEARCH 2022; 214:113852. [PMID: 35820649 DOI: 10.1016/j.envres.2022.113852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
A human biomonitoring study was carried out in 2015 within an adult population living in Liege (Belgium). Some phthalate metabolites and parabens were measured in the urine of 252 participants, and information were collected about their food habits, life styles and home environment to identify some predictors of exposure. Concomitantly, an awareness campaign was initiated by the Provincial Authorities of Liege and spread over 2 years. Three years later (2018), 92 of the initial participants provided again urine samples, and the levels of phthalate metabolites, phthalate substitute (DINCH), parabens, bisphenol-A and bisphenol alternatives (bisphenol-S, -F, -Z, -P) were determined and compared to those obtained in 2015 to assess time trends. In 2015, methyl- and ethylparaben were the most abundant parabens (P50 = 9.12 μg/L and 1.1 μg/L respectively), while propyl- and butylparaben were sparsely detected. Except for mono-2-ethylhexyl phthalate and 6-OH-mono-propyl-heptyl phthalate, all other targeted phthalate metabolites were positively quantified in most of the urine samples (between 89 and 98%) with median concentrations ranging between 2.7 μg/L and 21.3 μg/L depending on the metabolite. The multivariate regression models highlighted some significant associations between urinary phthalate metabolite or paraben levels and age, rural or urban character of the residence place, and the use of some personal care products. However, all determination coefficients were weak meaning that the usual covariates included in the models only explained a small part of the variance. Between 2015 and 2018, levels of parabens and phthalate metabolites significantly decreased (from 1.3 to 2.5 fold) except for monoethyl phthalate which seemed to remain quite constant. Contrariwise, all bisphenol alternatives and DINCH metabolites were measured in higher concentrations in 2018 vs 2015 while BPA levels did not differ significantly. However, it was not feasible to unequivocally highlight an impact of the awareness campaign on the exposure levels of the population.
Collapse
Affiliation(s)
- Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULiege), CHU (B35), 4000, Liege, Belgium.
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULiege), CHU (B35), 4000, Liege, Belgium
| |
Collapse
|
15
|
Liu H, Wang Y, Kannan K, Liu M, Zhu H, Chen Y, Kahn LG, Jacobson MH, Gu B, Mehta-Lee S, Brubaker SG, Ghassabian A, Trasande L. Determinants of phthalate exposures in pregnant women in New York City. ENVIRONMENTAL RESEARCH 2022; 212:113203. [PMID: 35358547 PMCID: PMC9232940 DOI: 10.1016/j.envres.2022.113203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 05/17/2023]
Abstract
Previous studies have provided data on determinants of phthalates in pregnant women, but results were disparate across regions. We aimed to identify the food groups and demographic factors that predict phthalate exposure in an urban contemporary pregnancy cohort in the US. The study included 450 pregnant women from the New York University Children's Health and Environment Study in New York City. Urinary concentrations of 22 phthalate metabolites, including metabolites of di-2-ethylhexylphthalate (DEHP), were determined at three time points across pregnancy by liquid chromatography coupled with tandem mass spectrometry. The Diet History Questionnaire II was completed by pregnant women at mid-pregnancy to assess dietary information. Linear mixed models were fitted to examine determinants of urinary phthalate metabolite concentrations. Using partial-linear single-index (PLSI) models, we assessed the major contributors, among ten food groups, to phthalate exposure. Metabolites of DEHP and its ortho-phthalate replacement, diisononyl phthalate (DiNP), were found in >90% of the samples. The sum of creatinine-adjusted DiNP metabolite concentrations was higher in older and single women and in samples collected in summer. Hispanic and non-Hispanic Black women had lower urinary concentrations of summed metabolites of di-n-octyl phthalate (DnOP), but higher concentrations of low molecular weight phthalates compared with non-Hispanic White women. Each doubling of grain products consumed was associated with a 20.9% increase in ∑DiNP concentrations (95%CI: 4.5, 39.9). PLSI models revealed that intake of dried beans and peas was the main dietary factor contributing to urinary ∑DEHP, ∑DiNP, and ∑DnOP levels, with contribution proportions of 76.3%, 35.8%, and 27.4%, respectively. Urinary metabolite levels of phthalates in pregnant women in NYC varied by age, marital status, seasonality, race/ethnicity, and diet. These results lend insight into the major determinants of phthalates levels, and may be used to identify exposure sources and guide interventions to reduce exposures in susceptible populations.
Collapse
Affiliation(s)
- Hongxiu Liu
- Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China; Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Mengling Liu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Hongkai Zhu
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yu Chen
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Melanie H Jacobson
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Gu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Shilpi Mehta-Lee
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sara G Brubaker
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA
| |
Collapse
|
16
|
Lyu Z, Harada KH, Kim S, Fujitani T, Cao Y, Hitomi T, Fujii Y, Kho Y, Choi K. Exposure to phthalate esters in Japanese females in Kyoto, Japan from 1993 to 2016: Temporal trends and associated health risks. ENVIRONMENT INTERNATIONAL 2022; 165:107288. [PMID: 35588674 DOI: 10.1016/j.envint.2022.107288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are used as plasticizers in many products used in daily life worldwide. Due to industrial and economic developments, exposure among general population to phthalates may vary geographically and temporally. However, studies are lacking for investigating temporal changes in phthalate exposure in the Japanese population. In the present study, the temporal trends in exposure to various phthalates were assessed among a group of Japanese adult female population over 1993-2016 and derived associated risks. For this purpose, urine samples of healthy Japanese females in Kyoto, Japan (N = 132) collected in 1993, 2000, 2003, 2009, 2011, and 2016, were employed and measured for the concentrations of 18 phthalate metabolites. Over this period, the detection rates of mono(3-carboxypropyl) phthalate (MCPP) and monoisobutyl phthalate (MiBP) decreased, and the geometric means of the urinary concentrations of mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) showed a significant decreasing trend. Cumulative risk due to exposure to dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBP), and di-2-ethylhexyl phthalate (DEHP) showed a dramatic decrease only between 1993 and 2000. The maximum hazard quotient (HQM) was attributed to DEHP in most subjects regardless of sampling year. This study showed the temporal trend of the exposure of Japanese females to several phthalate esters over two decades. As of the late 2010's, DEHP was still the predominant component of phthalate ester exposure in the population. The HI value, however, indicates that direct risk due to phthalate exposure was unlikely among the studied population.
Collapse
Affiliation(s)
- Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan.
| | - Sungmin Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Yang Cao
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Lee I, Pälmke C, Ringbeck B, Ihn Y, Gotthardt A, Lee G, Alakeel R, Alrashed M, Tosepu R, Jayadipraja EA, Tantrakarnapa K, Kliengchuay W, Kho Y, Koch HM, Choi K. Urinary Concentrations of Major Phthalate and Alternative Plasticizer Metabolites in Children of Thailand, Indonesia, and Saudi Arabia, and Associated Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16526-16537. [PMID: 34846872 DOI: 10.1021/acs.est.1c04716] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phthalates are widely used in consumer products and are well-known for adverse endocrine outcomes. Di-(2-ethylhexyl) phthalate (DEHP), one of the most extensively used phthalates, has been rapidly substituted with alternative plasticizers in many consumer products. The aim of this study was to assess urinary phthalate and alternative plasticizer exposure and associated risks in children of three Asian countries with different geographical, climate, and cultural characteristics. Children were recruited from elementary schools of Saudi Arabia (n = 109), Thailand (n = 104), and Indonesia (n = 89) in 2017-2018, and their urine samples were collected. Metabolites of major phthalates and alternative plasticizers were measured in the urine samples by HPLC-MS/MS. Urinary metabolite levels differed substantially between the three countries. Metabolite levels of diisononyl phthalate (DiNP), diisodecyl phthalate (DiDP), di(2-ethylhexyl) terephthalate (DEHTP), and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) were the highest in Saudi children: Median urinary concentrations of oxo-MiNP, OH-MiDP, 5cx-MEPTP, and OH-MINCH were 8.3, 8.4, 128.0, and 2.9 ng/mL, respectively. Urinary DEHP metabolite concentrations were the highest in the Indonesian children. The hazard index (HI) derived for the plasticizers with antiandrogenicity based reference doses (RfDAA) was >1 in 86%, 80%, and 49% of the Saudi, Indonesian, and Thai children, respectively. DEHP was identified as a common major risk driver for the children of all three countries, followed by DnBP and DiBP depending on the country. Among alternative plasticizers, urinary DEHTP metabolites were detected at levels comparable to those of DEHP metabolites or higher among the Saudi children, and about 4% of the Saudi children exceeded the health based human biomonitoring (HBM)-I value. Priority plasticizers that were identified among the children of three countries warrant refined exposure assessment for source identification and relevant exposure reduction measures.
Collapse
Affiliation(s)
- Inae Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Benedikt Ringbeck
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Yunchul Ihn
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Alexandra Gotthardt
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Gowoon Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Raid Alakeel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - May Alrashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Medical and Molecular Genetics Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramadhan Tosepu
- Department of Environmental Health, Faculty of Public Health, University of Halu Oleo, Kendari 93232, Indonesia
| | | | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi 10400, Thailand
| | - Wissanupong Kliengchuay
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi 10400, Thailand
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Pollock T, Karthikeyan S, Walker M, Werry K, St-Amand A. Trends in environmental chemical concentrations in the Canadian population: Biomonitoring data from the Canadian Health Measures Survey 2007-2017. ENVIRONMENT INTERNATIONAL 2021; 155:106678. [PMID: 34118655 DOI: 10.1016/j.envint.2021.106678] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Ten years of nationally representative biomonitoring data collected between 2007 and 2017 are available from the Canadian Health Measures Survey (CHMS). These data establish baseline environmental chemical concentrations in the general population. Here we sought to evaluate temporal trends in environmental chemical exposures in the Canadian population by quantifying changes in biomarker concentrations measured in the first five two-year cycles of the CHMS. We identified 39 chemicals that were measured in blood or urine in at least three cycles and had detection rates over 50% in the Canadian population. We calculated geometric mean concentrations for each cycle using the survey weights provided. We then conducted analyses of variance to test for linear trends over all cycles. We also calculated the percent difference in geometric means between the first and most recent cycle measured. Of the 39 chemicals examined, we found statistically significant trends across cycles for 21 chemicals. Trends were decreasing for 19 chemicals from diverse chemical groups, including metals and trace elements, phenols and parabens, organophosphate pesticides, per- and polyfluoroalkyl substances, and plasticizers. Significant reductions in chemical concentrations included di-2-ethylhexyl phthalate (DEHP; 75% decrease), perfluorooctane sulfate (PFOS; 61% decrease), perfluorooctanoic acid (PFOA; 58% decrease), dimethylphosphate (DMP; 40% decrease), lead (33% decrease), and bisphenol A (BPA; 32% decrease). Trends were increasing for two pyrethroid pesticide metabolites, including a 110% increase between 2007 and 2017 for 3-phenoxybenzoic acid (3-PBA). No significant trends were observed for the remaining 18 chemicals that included arsenic, mercury, fluoride, acrylamide, volatile organic compounds, and polycyclic aromatic hydrocarbons. National biomonitoring data indicate that concentrations, and therefore exposures, have decreased for many priority chemicals in the Canadian population. Concentrations for other chemical groups have not changed or have increased, although average concentrations remain below thresholds of concern derived from human exposure guidance values. Continued collection of national biomonitoring data is necessary to monitor trends in exposures over time.
Collapse
Affiliation(s)
- Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | | | - Mike Walker
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Kate Werry
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Routti H, Harju M, Lühmann K, Aars J, Ask A, Goksøyr A, Kovacs KM, Lydersen C. Concentrations and endocrine disruptive potential of phthalates in marine mammals from the Norwegian Arctic. ENVIRONMENT INTERNATIONAL 2021; 152:106458. [PMID: 33677245 DOI: 10.1016/j.envint.2021.106458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
This study investigated concentrations of phthalates (diesters of phthalic acids) in blubber/adipose tissue of blue whales (Balaenoptera musculus), fin whales (Balaenoptera physalus), bowhead whales (Balaena mysticetus) and polar bears (Ursus maritimus) sampled in the Svalbard Archipelago (extending westward in the case of bowhead whales). Additionally, total concentrations (free and conjugated forms) of eight phthalate monoester metabolites were analysed in plasma of polar bears. Bis(2-ethylhexyl) phthalate (DEHP) was the only phthalate quantified among the 12 phthalates investigated. This compound was present in 6/7 fin whale samples, 4/7 blue whale samples, 2/5 bowhead whale samples and 1/12 polar bear samples. DEHP concentrations ranged from <20-398 ng/g wet weight. Phthalate metabolites, mono-n-butyl phthalate and monoisobutyl phthalate, were found in low concentrations (<1.2 ng/mL) in some of the polar bear samples. In vitro reporter gene assays were used to assess transcriptional activity of fin whale peroxisome proliferator-activated receptor gamma (PPARG), glucocorticoid receptor (GR) and the thyroid hormone receptor beta (THRB) by DEHP and diisononyl phthalate (DiNP). Due to the high degree of similarity of the ligand binding domain in the THRB and PPARG among whales, polar bears and humans, the transactivation results also apply for these species. DEHP showed both agonistic and antagonistic effects towards whale THRB at considerably higher concentrations than measured in the study animals; DiNP was a weak agonist of whale THRB. No significant agonistic or antagonistic effects were detected for DEHP or DiNP for whale PPARG, whereas DEHP and DiNP decreased basal luciferase activity mediated by whale GR at several test concentrations. In conclusion, DEHP was detected in the blubber of marine mammals from the Norwegian Arctic and it appears to have potential to modulate the transcriptional activity of whale THRB, but current DEHP concentrations do not modulate the function of the studied nuclear receptors in adipose tissue of blue whales, fin whales, bowhead whales or polar bears sampled from the Norwegian Arctic.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway.
| | - Mikael Harju
- Norwegian Institute for Air Research, Fram Centre, N-9296 Tromsø, Norway
| | | | - Jon Aars
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | - Amalie Ask
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | - Anders Goksøyr
- University of Bergen, Department of Biological Sciences, N-5020 Bergen, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | | |
Collapse
|
20
|
Price P. Interindividual Variation in Source-Specific Doses is a Determinant of Health Impacts of Combined Chemical Exposures. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2020; 40:2572-2583. [PMID: 32671861 PMCID: PMC7818457 DOI: 10.1111/risa.13550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
All individuals are exposed to multiple chemicals from multiple sources. These combined exposures are a concern because they may cause adverse effects that would not occur from an exposure recieved from any single source. Studies of combined chemical exposures, however, have found that the risks posed by such combined exposures are almost always driven by exposures from a few chemicals and sources and frequently by a single chemical from a single source. Here, a series of computer simulations of combined exposures are used to investigate when multiple sources of chemicals drive the largest risks in a population and when a single chemical from a single source is responsible for the largest risks. The analysis found that combined exposures drive the largest risks when the interindividual variation of source-specific doses is small, moderate-to-high correlations occur between the source-specific doses, and the number of sources affecting an individual varies across individuals. These findings can be used to identify sources with the greatest potential to cause combined exposures of concern.
Collapse
Affiliation(s)
- Paul Price
- Office of Research and DevelopmentUnited States Environmental Protection AgencyWashingtonDCUSA
| |
Collapse
|
21
|
Lyden GR, Barrett ES, Sathyanarayana S, Bush NR, Swan SH, Nguyen RH. Pregnancy intention and phthalate metabolites among pregnant women in The Infant Development and Environment Study cohort. Paediatr Perinat Epidemiol 2020; 34:736-743. [PMID: 32249967 PMCID: PMC7541656 DOI: 10.1111/ppe.12674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preconception life style and health play a pivotal role in positively impacting the health of a pregnancy, and this includes the reduction of exposure to endocrine-disrupting chemicals such as phthalates. We have previously demonstrated that women planning a pregnancy with assisted reproductive technology (ART) have lower phthalate metabolite concentrations than their non-ART-using counterparts. OBJECTIVE To determine whether women who intended to become pregnant had lower phthalate metabolite concentrations than those who had an unintended pregnancy, or whether change in phthalate exposure across pregnancy differed between these two groups. METHODS A total of 721 women enrolled in The Infant Development and Environment Study (TIDES), a multicentre US prospective pregnancy cohort; 513 (71%) indicated their pregnancy was planned. Urine samples from first- and third-trimester visits were analysed for 10 specific-gravity-adjusted, natural-log-transformed phthalate metabolites. Simple and multivariable linear regression, adjusting for centre, race, age, income, marital status, and parity, were employed to determine whether phthalate metabolite concentrations differed by pregnancy intention. RESULTS In bivariate analyses, the geometric mean concentrations of all first-trimester and most third-trimester phthalates were higher in women with unplanned pregnancies. However, after covariate adjustment, only first-trimester monoisobutyl phthalate (MiBP) remained associated with pregnancy intention, and the association changed direction such that unplanned pregnancies had lower MiBP concentrations (ß -0.18, 95% CI -0.35, -0.02). CONCLUSIONS We did not find evidence of a difference in phthalate exposure between pregnancy planners and non-planners.
Collapse
Affiliation(s)
- Grace R. Lyden
- University of Minnesota School of Public Health, Division of Biostatistics, Minneapolis, MN, USA
| | - Emily S. Barrett
- Rutgers School of Public Health, Department of Epidemiology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Sheela Sathyanarayana
- University of Washington School of Public Health, Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| | - Nicole R. Bush
- University of California, San Francisco, Department of Psychiatry, Department of Pediatrics, San Francisco, CA, USA
| | - Shanna H. Swan
- Mount Sinai School of Medicine, Division of Preventive Medicine and Community Health, New York, NY, USA
| | - Ruby H.N. Nguyen
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, USA
| |
Collapse
|
22
|
Schwedler G, Rucic E, Koch HM, Lessmann F, Brüning T, Conrad A, Schmied-Tobies MI, Kolossa-Gehring M. Metabolites of the substitute plasticiser Di-(2-ethylhexyl) terephthalate (DEHTP) in urine of children and adolescents investigated in the German Environmental Survey GerES V, 2014–2017. Int J Hyg Environ Health 2020; 230:113589. [DOI: 10.1016/j.ijheh.2020.113589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 10/24/2022]
|
23
|
Benson NU, Fred-Ahmadu OH. Occurrence and distribution of microplastics-sorbed phthalic acid esters (PAEs) in coastal psammitic sediments of tropical Atlantic Ocean, Gulf of Guinea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139013. [PMID: 32416503 DOI: 10.1016/j.scitotenv.2020.139013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 05/23/2023]
Abstract
Baseline microplastic pollution and the occurrence, spatial distribution and ecological risk of microplastic-sorbed phthalate esters (PAEs) in littoral sandflat sediments of the Gulf of Guinea were investigated. A total of 150 sediment samples were collected using a 0.5 × 0.5 × 0.2 m quadrant placed along designated high, drift and current waterlines at five (5) beaches. Analysis for 6 PAEs-sorbed to microplastics (MPs) was carried out using gas chromatography - mass spectrometry (GC-MS). Microplastic particles (1-5 mm) were identified visually and FTIR spectroscopy was also used for identification. The MPs distribution was variably heterogenous with a total of 3424 particles per m2 found within the drift and high waterlines across all sites. Results indicated fragments as the dominant microplastic type compared to pellets and fibres. Polyethylene terephthalate was the major polymer type and accounted for a weighted average of 41% of the total plastics, followed by polystyrene (28%), and polypropylene (21%). The ∑6PAEs concentration ranged from BDL to 164.09 mg/kg dw, dominated by di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DnBP), and dimethyl phthalate. The preliminary ecological risk assessment of PAEs in the microplastic fraction, RQmp, showed DEHP and DnBP may present medium to high biological risks to marine organisms, suggesting that future study of PAEs in total sediment versus the MP fraction might be useful to refine ecological risk assessments. Land-based anthropogenic activities are primary sources of MPs, whereas oceanographic peculiarities of the area constitute the major distribution driving force.
Collapse
Affiliation(s)
- Nsikak U Benson
- Department of Chemistry, Covenant University, Km 10 Idiroko Road, Ota, Nigeria.
| | | |
Collapse
|
24
|
Sugeng EJ, Symeonides C, O'Hely M, Vuillermin P, Sly PD, Vijayasarathy S, Thompson K, Pezic A, Mueller JF, Ponsonby AL. Predictors with regard to ingestion, inhalation and dermal absorption of estimated phthalate daily intakes in pregnant women: The Barwon infant study. ENVIRONMENT INTERNATIONAL 2020; 139:105700. [PMID: 32361062 DOI: 10.1016/j.envint.2020.105700] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to phthalate chemicals, used in consumer product plastics, occurs throughout the day. Phthalate levels in pregnant women are associated with offspring health effects including obesity and neurodevelopmental problems. Knowledge of predictors of exposure is necessary in order to effectively reduce phthalate exposure. The present study aims to identify predictors of phthalate levels in Australian pregnant women from the Barwon Infant study birth cohort. Maternal urine samples from 841 women were analyzed for phthalate metabolites. Maternal diet and food preparation practices, use of volatile household products, household characteristics and personal care product use were assessed with questionnaires. All maternal urine contained phthalate metabolites. Maternal prenatal high-fat milk consumption was associated with higher benzyl butyl phthalate (BBzP) (p < 0.001), and bis(2-ethylhexyl) phthalate (DEHP) (p = 0.0023). Higher phthalate levels were associated with consumption of tinned food (fish and tomatoes). Diethyl phthalate (DEP) levels were significantly higher when women reported using air freshener (35% increase, p = 0.01), aerosols (40% increase, p = 0.005), hair treatment chemicals (28% increase, p = 0.031), and chlorine (34% increase, p = 0.009) compared to no use. Maternal phthalate levels did not vary by reported plastic avoidance during pregnancy. The study showed that phthalate exposure is ubiquitous and increased by multiple factors. Future intervention studies to reduce phthalate levels among pregnant women will need to take into account the variety of sources identified in this study.
Collapse
Affiliation(s)
- Eva J Sugeng
- Department of Environment and Health, Vrije Universiteit, Amsterdam, the Netherlands
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; Deakin University, Geelong, Victoria, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; Deakin University, Geelong, Victoria, Australia; Barwon Health, Geelong, Victoria, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Soumini Vijayasarathy
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Kristie Thompson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Angela Pezic
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Apel P, Kortenkamp A, Koch HM, Vogel N, Rüther M, Kasper-Sonnenberg M, Conrad A, Brüning T, Kolossa-Gehring M. Time course of phthalate cumulative risks to male developmental health over a 27-year period: Biomonitoring samples of the German Environmental Specimen Bank. ENVIRONMENT INTERNATIONAL 2020; 137:105467. [PMID: 32036120 DOI: 10.1016/j.envint.2020.105467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 05/12/2023]
Abstract
In several human biomonitoring surveys, changes in the usage patterns of phthalates have come to light, but their influence on the risks associated with combined exposures is insufficiently understood. Based on the largest study to date, the 27-year survey of urinary phthalate metabolite levels in 24-hour urine samples from the German Environmental Specimen Bank, we present a deep analysis of changing phthalate exposures on mixture risks. This analysis adopts the Hazard Index (HI) approach based on the five phthalates DBP, DIBP, BBP, DEHP and DINP. Calculations of the hazard index for each study participant included updated phthalate reference doses for anti-androgenicity (RfDAAs) that take account of new evidence of phthalates' developmental toxicity. The Maximum Cumulative Ratio (MCR) approach was used to establish whether a subject's combined exposure was dominated by one phthalate or was influenced by several phthalates simultaneously. Generally, over the years there was a shift towards lower HIs and higher MCRs, reflecting an increased complexity of the combined exposures. The decade from 1988 to about 1999 was characterised by rather high HIs of between 3 and 7 (95th percentile) which were driven by exposure to DBP and DEHP, often exceeding their single acceptable exposures. Traditional single phthalate risk assessments would have underestimated these risks by up to 50%. From 2006 onwards, no study participant experienced exposures above acceptable levels for a single phthalate, but combined exposures were still in excess of HI = 1. From 2011 onwards most individuals stayed below HI = 1. In interpreting these results, we caution against the use of HI = 1 as an acceptable limit and develop proposals for improved and more realistic mixture risk assessments that take account of co-exposures to other anti-androgenic substances also capable of disrupting the male reproductive system. From this perspective, we regard HIs between 0.1 and 0.2 as more appropriate for evaluating combined phthalate exposures. Assessed against lowered HIs of 0.1 - 0.2, the combined phthalate exposures of most study participants exceeded acceptable levels in all study years, including 2015. Continued monitoring efforts for phthalate combinations are required to provide the basis for appropriate risk management measures.
Collapse
Affiliation(s)
- Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany.
| | - Andreas Kortenkamp
- Brunel University London, Department of Life Sciences, College of Health and Life Sciences, Kingston Lane, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Nina Vogel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Maria Rüther
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Andre Conrad
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | | |
Collapse
|
26
|
Refined reference doses and new procedures for phthalate mixture risk assessment focused on male developmental toxicity. Int J Hyg Environ Health 2020; 224:113428. [DOI: 10.1016/j.ijheh.2019.113428] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
|
27
|
Schwedler G, Rucic E, Lange R, Conrad A, Koch HM, Pälmke C, Brüning T, Schulz C, Schmied-Tobies MIH, Daniels A, Kolossa-Gehring M. Phthalate metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017. Int J Hyg Environ Health 2020; 225:113444. [PMID: 32058939 DOI: 10.1016/j.ijheh.2019.113444] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023]
Abstract
During the population representative German Environmental Survey of Children and Adolescents (GerES V, 2014-2017) 2256 first-morning void urine samples from 3 to 17 years old children and adolescents were analysed for 21 metabolites of 11 different phthalates (di-methyl phthalate (DMP), di-ethyl phthalate (DEP), butylbenzyl phthalate (BBzP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), di-cyclohexyl phthalate (DCHP), di-n-pentyl phthalate (DnPeP), di-(2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DiNP), di-iso-decyl phthalate (DiDP) and di-n-octyl phthalate (DnOP)). Metabolites of DMP, DEP, BBzP, DiBP, DnBP, DEHP, DiNP and DiDP were found in 97%-100% of the participants, DCHP and DnPeP in 6%, and DnOP in none of the urine samples. Geometric means (GM) were highest for metabolites of DiBP (MiBP: 26.1 μg/L), DEP (MEP: 25.8 μg/L), DnBP (MnBP: 20.9 μg/L), and DEHP (cx-MEPP: 11.9 μg/L). For all phthalates but DEP, GMs were consistently higher in the 3-5 years old children than in the 14-17 years old adolescents. For DEHP, the age differences were most pronounced. All detectable phthalate biomarker concentrations were positively associated with the levels of the respective phthalate in house dust. In GerES V we found considerably lower phthalate biomarker levels than in the preceding GerES IV (2003-2006). GMs of biomarker levels in GerES V were only 18% (BBzP), 23% (MnBP), 23% (DEHP), 29% (MiBP) and 57% (DiNP) of those measured a decade earlier in GerES IV. However, some children and adolescents still exceeded health-based guidance values in the current GerES V. 0.38% of the participants had levels of DnBP, 0.08% levels of DEHP and 0.007% levels of DiNP which were higher than the respective health-based guidance values. Accordingly, for these persons an impact on health cannot be excluded with sufficient certainty. The ongoing and substantial exposure of vulnerable children and adolescents to many phthalates confirms the need of a continued monitoring of established phthalates, whether regulated or not, as well as of potential substitutes. With this biomonitoring approach we provide a picture of current individual and cumulative exposure developments and body burdens to phthalates, thus providing support for timely and effective chemicals policies and legislation.
Collapse
Affiliation(s)
| | - Enrico Rucic
- German Environment Agency (UBA), Berlin, Germany
| | - Rosa Lange
- German Environment Agency (UBA), Berlin, Germany
| | - André Conrad
- German Environment Agency (UBA), Berlin, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | | | | | - Anja Daniels
- German Environment Agency (UBA), Berlin, Germany
| | | |
Collapse
|
28
|
Kortenkamp A. Which chemicals should be grouped together for mixture risk assessments of male reproductive disorders? Mol Cell Endocrinol 2020; 499:110581. [PMID: 31525431 DOI: 10.1016/j.mce.2019.110581] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/14/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
Abstract
There is concern about cumulative exposures to compounds that disrupt male sexual differentiation in foetal life, leading to irreversible effects in adulthood, including declines in semen quality, testes non-descent, malformations of the penis and testis cancer. Traditional chemical-by-chemical risk assessment approaches cannot capture the likely cumulative health risks. Past efforts of focusing on combinations of phthalates, a subgroup of chemicals suspected of contributing to these risks, do not go far enough, as they ignore the contribution of other types of chemicals. With the aim of providing criteria for the inclusion of additional chemicals in mixture risks assessments for male reproductive health, this paper examines the mechanisms of action of various chemicals capable of disrupting male sexual differentiation. An Adverse Outcome Pathway (AOP) network for malformations of the male reproductive system is constructed that includes new findings about the role of disruptions of prostaglandin signalling. This network is used to identify pathways that converge at critical nodal points to produce down-stream adverse effects. From this knowledge, combinations of chemicals with different mechanisms of action are predicted that should result in cumulative effects. These predictions are then mapped against evidence from experimental mixture studies with relevant combinations. From the outcome of this analysis it is concluded that cumulative assessment groups for male reproductive health risks should not only include phthalates but also comprise androgen receptor (AR) antagonists, chemicals capable of disrupting steroid synthesis, InsL3 production, prostaglandin signalling and co-planar polychlorinated dibenzo-dioxins together with other dioxin-like compounds. This list goes far beyond what has been suggested previously. A minimum set of chemicals to be assessed together with phthalates includes pesticides such as vinclozolin, prochloraz, procymidone, linuron, the pain killers paracetamol, aspirin and ibuprofen, pharmaceuticals such as finasteride, ketoconazole, and the lipid-lowering drug simvastin, poly-chlorinated dibenzo-dioxins and other dioxin-like pollutants and phenolics such as bisphenol A and butylparaben. AOP network analyses are essential to overcome difficulties in establishing groupings of chemicals for mixture risk assessments that derive from a narrow focus on mechanisms and modes of action.
Collapse
Affiliation(s)
- Andreas Kortenkamp
- Brunel University London, Institute of Environment, Health and Societies, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
29
|
Tang Z, Chai M, Cheng J, Wang Y, Huang Q. Occurrence and Distribution of Phthalates in Sanitary Napkins from Six Countries: Implications for Women's Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13919-13928. [PMID: 31694371 DOI: 10.1021/acs.est.9b03838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemicals in feminine hygiene products can exert adverse health effects as a result of strong absorptive capacity of the vagina and vulva. However, little information is available on phthalates in sanitary napkins. We measured the concentrations of 15 phthalates in sanitary napkins collected from six countries and found total concentrations in the range of 1733-11942 ng/g. Di(isobutyl)phthalate (DiBP), bis(2-ethylhexyl)phthalate (DEHP), and di-n-butyl phthalate (DnBP) were the dominant congeners, representing a median of 27.3, 26.7, and 20.4% of the total median phthalate concentrations across all countries, respectively. The phthalates likely originated mainly from the introduction in the manufacturing process, and some may have been from the use of plastic or paper materials. The estimated intake (at the 90th percentile) of DiBP, DnBP, and DEHP from sanitary napkins approximately represented 6.35-23.6, 3.35-9.90, and 1.06-9.57%, respectively, of the total exposure, indicating that sanitary napkins are a relevant source of exposure to these chemicals. The calculated health risks of phthalates in sanitary napkins were generally low, but the carcinogenic risks in some samples exceeded acceptable levels. More research is required to investigate the contaminations in sanitary napkins and those associated with risks to women.
Collapse
Affiliation(s)
- Zhenwu Tang
- College of Life and Environmental Sciences , Minzu University of China , Beijing 100081 , China
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Miao Chai
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Jiali Cheng
- Key Laboratory of Trace Element Nutrition of the National Health Commission, National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , China
| | - Yuwen Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| |
Collapse
|
30
|
Li J, Qian X, Zhao H, Zhou Y, Xu S, Li Y, Xiang L, Shi J, Xia W, Cai Z. Determinants of exposure levels, metabolism, and health risks of phthalates among pregnant women in Wuhan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109657. [PMID: 31526923 DOI: 10.1016/j.ecoenv.2019.109657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Concerns on minimizing health risks of phthalates have been raised due to their widespread exposure and well-documented endocrine disrupting properties, but the determinants of levels, metabolism, and health risks of phthalate exposures have not been thoroughly characterized among the Chinese population, particularly pregnant women. The metabolites of five phthalates were analyzed: diethyl (DEP), diisobutyl (DiBP), di-n-butyl (DnBP), di-(2-ethylhexyl) (DEHP), and benzyl butyl phthalate (BBzP) were analyzed in urine samples collected from 946 mothers in Wuhan during 2014-2015. We applied linear mixed models to investigate the relationships between biomarkers (e.g., urinary concentrations of phthalate metabolites, phthalates, and ratios of metabolites) and factors including sampling seasons and epidemiological characteristics. We calculated estimated daily intake (EDI) using average phthalate concentrations over three trimesters and hazard index (HI) by dividing EDI by tolerance daily intake. About 24.9% of participants were at health risks with HI > 1. The largest health risks were driven by one specific phthalate (DnBP or DEHP). We observed lower urinary levels of phthalate metabolites in winter. Elevated levels were found in mothers with higher education levels or those employed. Mothers who got pregnant on purpose had lower phthalate concentrations than those got pregnant by accident. More recent exposure to phthalates was observed among groups of mothers giving birth to girls, or those who got excessive gestational weight gain. Younger mothers were more susceptible to phthalate exposure. This repeated measurement study suggests that the intervention should be taken to limit application and production of DnBP and DEHP, and highlights that typical demographic factors should be taken into account in demographic studies.
Collapse
Affiliation(s)
- Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jingchun Shi
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
31
|
Silva MJ, Wong LY, Samandar E, Preau JL, Jia LT, Calafat AM. Exposure to di-2-ethylhexyl terephthalate in the U.S. general population from the 2015-2016 National Health and Nutrition Examination Survey. ENVIRONMENT INTERNATIONAL 2019; 123:141-147. [PMID: 30529838 PMCID: PMC7917578 DOI: 10.1016/j.envint.2018.11.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Di-2-ethylhexyl terephthalate (DEHTP) is used as a replacement plasticizer for other phthalates, including di-2-ethylhexyl phthalate (DEHP). Use of consumer products containing DEHTP may result in human exposure to DEHTP. OBJECTIVE To assess exposure to DEHTP in a nationally representative sample of the U.S. general population 3 years and older from the 2015-2016 National Health and Nutrition Examination Survey (NHANES). METHOD We quantified two DEHTP metabolites, mono-2-ethyl-5-hydroxyhexyl terephthalate (MEHHTP) and mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP) in 2970 urine samples by using online solid-phase extraction coupled with isotope dilution-high-performance liquid chromatography-tandem mass spectrometry. We used linear regression to examine associations between MEHHTP and MECTPP and several parameters including age, sex, race/ethnicity, and household income. We also compared the MEHHTP and MECPTP results to those of their corresponding DEHP metabolite analogs, namely mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) and mono-2-ethyl-5-carboxypentyl phthalate (MECPP). RESULTS The weighted detection frequencies were 96% (MEHHTP) and 99.9% (MECPTP); urinary concentrations of the two metabolites correlated significantly (Pearson correlation coefficient = 0.89, p < 0.0001). MECPTP concentrations were higher than MEHHTP in all age, sex, race/ethnicity groups examined. Furthermore, MECPTP adjusted geometric mean (GM) concentrations were significantly higher in samples collected in the evening than in the morning or afternoon. Females had significantly higher adjusted GM concentrations of MEHHTP and MECPTP than males. We observed no significant associations between the adjusted GM concentrations of the metabolites and race/ethnicity. Both metabolite adjusted GM concentrations increased significantly with household income, and decreased significantly with age. Only household income was significantly associated with the concentrations of MECPP, but not of MEHHP, the two DEHP metabolites. The adjusted GM of the [MEHHTP]:[MECPTP] molar concentrations ratio increased with age, and was significantly higher in samples collected in the morning than in those collected in the afternoon or evening. CONCLUSIONS Exposure to DEHTP is widespread in the U.S. general population 3 years and older. These data represent the first U.S. population-based representative background exposure to DEHTP.
Collapse
Affiliation(s)
- Manori J Silva
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, United States of America
| | - Lee-Yang Wong
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, United States of America
| | - Ella Samandar
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, United States of America
| | - James L Preau
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, United States of America
| | - Lily T Jia
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, United States of America
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, United States of America.
| |
Collapse
|