1
|
Liu S, Jassby D, Mandler D, Schäfer AI. Differentiation of adsorption and degradation in steroid hormone micropollutants removal using electrochemical carbon nanotube membrane. Nat Commun 2024; 15:9524. [PMID: 39496594 DOI: 10.1038/s41467-024-52730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/20/2024] [Indexed: 11/06/2024] Open
Abstract
The growing concern over micropollutants in aquatic ecosystems motivates the development of electrochemical membrane reactors (EMRs) as a sustainable water treatment solution. Nevertheless, the intricate interplay among adsorption/desorption, electrochemical reactions, and byproduct formation within EMR complicates the understanding of their mechanisms. Herein, the degradation of micropollutants using an EMR equipped with carbon nanotube membrane are investigated, employing isotope-labeled steroid hormone micropollutant. The integration of high-performance liquid chromatography with a flow scintillator analyzer and liquid scintillation counting techniques allows to differentiate hormone removal by concurrent adsorption and degradation. Pre-adsorption of hormone is found not to limit its subsequent degradation, attributed to the rapid adsorption kinetics and effective mass transfer of EMR. This analytical approach facilitates determining the limiting factors affecting the hormone degradation under variable conditions. Increasing the voltage from 0.6 to 1.2 V causes the degradation dynamics to transition from being controlled by electron transfer rates to an adsorption-rate-limited regime. These findings unravels some underlying mechanisms of EMR, providing valuable insights for designing electrochemical strategies for micropollutant control.
Collapse
Affiliation(s)
- Siqi Liu
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
2
|
Adewuyi A, Li Q. Per- and polyfluoroalkyl substances contamination of drinking water sources in Africa: Pollution sources and possible treatment methods. CHEMOSPHERE 2024; 365:143368. [PMID: 39306102 DOI: 10.1016/j.chemosphere.2024.143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Despite the detection of poly- and perfluorinated alkyl substances (PFAS) in the water system in Africa, the effort towards mitigating PFAS in water in Africa needs to be better understood. Therefore, this review evaluated the contamination status and mitigation methods for handling PFAS-contaminated water systems in Africa. The findings revealed the presence of PFAS in wastewater treatment plant (WWTP) effluents, surface water and commercially available bottled and tap water in African countries. The concentration of PFAS in drinking water sources reviewed ranged from < limits of quantification to 778 ng L-1. The sources of PFAS in water systems in Africa are linked to uncontrolled importation of PFAS-containing products, WWTP effluents and inappropriate disposal of PFAS-containing materials. The information on treatment methods for PFAS-contaminated water systems is scanty. Unfortunately, the treatment method is challenged by poor water research infrastructure and facilities, lack of awareness, poor research funding and weak legislation; however, adsorption and membrane technology seem favourable for removing PFAS from water systems in Africa. It is essential to focus on monitoring and assessing drinking water quality in Africa to reduce the disease burden that this may cause. Most African countries' currently implemented water treatment facilities cannot efficiently remove PFAS during treatment. Therefore, governments in Africa need to fund more research to develop an efficient water treatment technique that is sustainable in Africa.
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria; Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, 77005, USA.
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, 77005, USA; NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, 6100 Main Street, Houston, 77005, USA; Department of Materials Science and Nano Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| |
Collapse
|
3
|
Chi H, Ma J, Duan R, Wang A, Qiao Y, Wang W, Li C. Modulating crystal facets of photoanodes for photoelectrocatalytic scalable degradation of fluorinated pharmaceuticals in wastewater. WATER RESEARCH 2024; 262:122101. [PMID: 39032329 DOI: 10.1016/j.watres.2024.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Fluorinated pharmaceuticals pollution has become an ever-increasing environmental concern due to its negative impacts. Photoelectrocatalytic (PEC) degradation system is a desirable approach to tackle the pollution problems. However, photogenerated charge separation and interfacial mass transfer are the main bottlenecks for improving the PEC degradation performance. Herein, we report a TiO2 photoanode with tuned (101)/(110) facets in situ grown on a Ti mesh substrate for PEC degradation of fluorinated pharmaceuticals. The exposure of (101) facets facilitates efficient photogenerated charge separation and the desorption of generated •OH radical. Besides, the three-dimensional (3D) architecture of photoanode promotes macroscopic mass transfer. This system performed complete defluorination of 5-fluorouracil and more than 75 % total organic carbon (TOC) removal efficiency. The apparent reaction rate constant of high (101) facet-exposed TiO2 grown on Ti mesh is up to 6.96 h-1, 6‒fold faster than that of photoanode with low (101) facet-exposed TiO2 grown on Ti foil. It is demonstrated that a large-sized PEC system of 1200 cm2 can degrade 100 L of synthetic fluorinated pharmaceutical wastewater with more than 80 % elimination efficiency. This work showcases the facet and substrate modulated strategy of fabricating high-performed photoanode for PEC wastewater purification.
Collapse
Affiliation(s)
- Haibo Chi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiangping Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruizhi Duan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Aoqi Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yafei Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Yang K, Ma J, Li W, He W, Zu D, Yang W, Zhang Z, Yang Z. Energy-efficient treatment of refractory industrial effluent using flow-through electrochemical processes: Oxidation mechanisms and reduction of chlorinated byproducts. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134737. [PMID: 38805813 DOI: 10.1016/j.jhazmat.2024.134737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
While flow-through anodic oxidation (FTAO) technique has demonstrated high efficiency to treat various refractory waste streams, there is an increasing concern on the secondary hazard generation thereby. In this study, we developed an integrated system that couples FTAO and cathodic reduction processes (termed FTAO-CR) for sustainable treatment of chlorine-laden industrial wastewater. Among four common electrode materials (i.e., Ti4O7, β-PbO2, RuO2, and SnO2-Sb), RuO2 flow-through anode exhibited the best pollutant removal performance and relatively low ClO3 and ClO4 yields. Because of the significant scavenging effect of Cl- in real wastewater treatment, the direct electron transfer process played a dominant role in contaminant degradation for both active and nonactive anodes though active species (i.e., active chlorine) were involved in the subsequent transformation of the organic matter. A continuous FTAO-CR system was then constructed for simultaneous COD removal and organic and inorganic chlorinated byproduct control. The quality of the treated effluent could meet the national discharge permit limit at low energy cost (∼4.52 kWh m3 or ∼0.035 kWh g1-COD). Results from our study pave the way for developing novel electrochemical platforms for the purification of refractory waste streams whilst minimizing the secondary pollution.
Collapse
Affiliation(s)
- Kui Yang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Weiting He
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Daoyuan Zu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wenjian Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifeng Yang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
5
|
Wu H, Wang J, Du E, Guo H. Comparative analysis of UV-initiated ARPs for degradation of the emerging substitute of perfluorinated compounds: Does defluorination mean the sole factor? JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134687. [PMID: 38805816 DOI: 10.1016/j.jhazmat.2024.134687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Due to the increasing attention for the residual of per- and polyfluorinated compounds in environmental water, Sodium p-Perfluorous Nonenoxybenzenesulfonate (OBS) have been considered as an alternative solution for perfluorooctane sulfonic acid (PFOS). However, recent detections of elevated OBS concentrations in oil fields and Frontal polymerization foams have raised environmental concerns leading to the decontamination exploration for this compound. In this study, three advanced reduction processes including UV-Sulfate (UV-SF), UV-Iodide (UV-KI) and UV-Nitrilotriacetic acid (UV-NTA) were selected to evaluate the removal for OBS. Results revealed that hydrated electrons (eaq-) dominated the degradation and defluorination of OBS. Remarkably, the UV-KI exhibited the highest removal rate (0.005 s-1) and defluorination efficiency (35 %) along with the highest concentration of eaq- (K = -4.651). Despite that nucleophilic attack from eaq- on sp2 carbon and H/F exchange were discovered as the general mechanism, high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS) analysis with density functional theory (DFT) calculations revealed the diversified products and routes. Intermediates with lowest fluorine content for UV-KI were identified, the presence nitrogen-containing intermediates were revealed in the UV-NTA. Notably, the nitrogen-containing intermediates displayed the enhanced toxicity, and the iodine poly-fluorinated intermediates could be a potential-threat compared to the superior defluorination performance for UV-KI.
Collapse
Affiliation(s)
- Han Wu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Rekik H, Arab H, Pichon L, El Khakani MA, Drogui P. Per-and polyfluoroalkyl (PFAS) eternal pollutants: Sources, environmental impacts and treatment processes. CHEMOSPHERE 2024; 358:142044. [PMID: 38648982 DOI: 10.1016/j.chemosphere.2024.142044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become a growing environmental concern due to their tangible impacts on human health. However, due to the large number of PFAS compounds and the analytical difficulty to identify all of them, there are still some knowledge gaps not only on their impact on human health, but also on how to manage them and achieve their effective degradation. PFAS compounds originate from man-made chemicals that are resistant to degradation because of the presence of the strong carbon-fluorine bonds in their chemical structure. This review consists of two parts. In the first part, the environmental effects of fluorinated compound contamination in water are covered with the objective to highlight how their presence in the environment adversely impacts the human health. In the second part, the focus is put on the different techniques available for the degradation and/or separation of PFAS compounds in different types of waters. Examples of removal/treatment of PFAS present in either surface or ground water are presented.
Collapse
Affiliation(s)
- Hela Rekik
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada
| | - Hamed Arab
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada
| | - Loick Pichon
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada.
| |
Collapse
|
7
|
Shi L, Leng C, Zhou Y, Yuan Y, Liu L, Li F, Wang H. A review of electrooxidation systems treatment of poly-fluoroalkyl substances (PFAS): electrooxidation degradation mechanisms and electrode materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42593-42613. [PMID: 38900403 DOI: 10.1007/s11356-024-34014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The prevalence of polyfluoroalkyls and perfluoroalkyls (PFAS) represents a significant challenge, and various treatment techniques have been employed with considerable success to eliminate PFAS from water, with the ultimate goal of ensuring safe disposal of wastewater. This paper first describes the most promising electrochemical oxidation (EO) technology and then analyses its basic principles. In addition, this paper reviews and discusses the current state of research and development in the field of electrode materials and electrochemical reactors. Furthermore, the influence of electrode materials and electrolyte types on the deterioration process is also investigated. The importance of electrode materials in ethylene oxide has been widely recognised, and therefore, the focus of current research is mainly on the development of innovative electrode materials, the design of superior electrode structures, and the improvement of efficient electrode preparation methods. In order to improve the degradation efficiency of PFOS in electrochemical systems, it is essential to study the oxidation mechanism of PFOS in the presence of ethylene oxide. Furthermore, the factors influencing the efficacy of PFAS treatment, including current density, energy consumption, initial concentration, and other parameters, are clearly delineated. In conclusion, this study offers a comprehensive overview of the potential for integrating EO technology with other water treatment technologies. The continuous development of electrode materials and the integration of other water treatment processes present a promising future for the widespread application of ethylene oxide technology.
Collapse
Affiliation(s)
- Lifeng Shi
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Chunpeng Leng
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China
| | - Yunlong Zhou
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yue Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Lin Liu
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Fuping Li
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China
| | - Hao Wang
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China.
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China.
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China.
| |
Collapse
|
8
|
Li M, Cen P, Huang L, Yan J, Zhou S, Yeung KL, Mo CH, Zhang H. Iron complex regulated synergistic effect between the current and peroxymonosulfate enhanced ultrafast oxidation of perfluorooctanoic acid via free radical dominant electrochemical reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134155. [PMID: 38552391 DOI: 10.1016/j.jhazmat.2024.134155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Iron complex regulated electrochemical reaction was triggered for revealing the reaction mechanism, degradation pathway, and applied potential of perfluorooctanoic acid (PFOA). The increased PMS concentrations, electrode spacing, and current density significantly enhanced PFOA elimination, with current density exhibiting a relatively strong interdependency to PFOA complete mineralization. The synergy between PMS and electrochemical reactions greatly accelerated PFOA decomposition by promoting the generation of key reaction sites, such as those for PMS activation and electrochemical processes, under various conditions. Furthermore, density functional theory calculations confirmed that the reciprocal transformation of Fe2+ and Fe3+ complexes was feasible under the electrochemical effect, further promoting the generation of active sites. The developed electrochemical oxidation with PMS reaction (EO/PMS) system can rapidly decompose and mineralize PFOA while maintaining strong tolerance to changing water matrices and organic and inorganic ions. Overall, it holds promise for use in treating and purifying wastewater containing PFOA.
Collapse
Affiliation(s)
- Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China.
| | - Peitong Cen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Guizhou University, 2708 Huaxi Road, Guiyang 550025, PR China
| | - King Lun Yeung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Jin H, Xu X, Liu R, Wu X, Chen X, Chen D, Zheng X, Zhao M, Yu Y. Electro-oxidation of Ibuprofen using carbon-supported SnO x-CeO x flow-anodes: The key role of high-valent metal. WATER RESEARCH 2024; 252:121229. [PMID: 38324989 DOI: 10.1016/j.watres.2024.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx-CeOx/carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx-CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx, thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx-CeOx/CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx-CeOx/CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx-CeOx/CB.
Collapse
Affiliation(s)
- Huachang Jin
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaozhi Xu
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Renlan Liu
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaobo Wu
- Ecological Environment Protection Administrative Law Enforcement Team of Rui'an City, Wenzhou, Zhejiang 325035, China
| | - Xueming Chen
- College of Environmental and Resources Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dongzhi Chen
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xiangyong Zheng
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Min Zhao
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Yang Yu
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
10
|
Zeng W, Zhang H, Zhao J, Wang J, Bai L, Li G, Liang H. Synergistic roles of oxidation and self-aggregation in efficient ultrafiltration membrane fouling alleviation using a flow-through Sb-SnO 2 anode during wastewater reclamation. WATER RESEARCH 2024; 249:121003. [PMID: 38086205 DOI: 10.1016/j.watres.2023.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
The application of ultrafiltration (UF) in wastewater reclamation alleviates the demand for limited water supplies. However, the membrane fouling caused by the effluent organic matter (EfOM) becomes a major obstacle for UF application. In this study, a pre-oxidation strategy for UF using a Sb-SnO2 (ATO) anode in flow-through mode was proposed with the hopes to improve the performance of UF during wastewater reclamation. The results indicated that this flow-through ATO (FA) anode significantly outperformed a boron-doped diamond (BDD) anode in terms of EfOM degradation and membrane fouling control. It is noteworthy that apart from oxidation, the self-aggregation behavior of foulants was also involved in the mechanisms of membrane fouling mitigation. On the one hand, FA pre-oxidation relieved the burden of membrane fouling by decomposing the macromolecular EfOM into small molecular organic matter, and even mineralizing it. The effective destruction of unsaturated EfOM by FA pre-oxidation made a remarkable contribution to fouling mitigation due to the strong correlation between the total fouling index and UV254. On the other hand, the surface morphology of membrane and interface properties of foulants revealed the self-aggregation behavior of foulants. FA pre-oxidation made the foulants aggregate spontaneously and reduced the potential of forming a dense cake layer on the membrane surface, which was conductive for water permeation. Overall, FA pre-oxidation proved to be a feasible and chemical-free option for UF pretreatment to simultaneously produce high-quality reused water and alleviate membrane fouling during wastewater reclamation.
Collapse
Affiliation(s)
- Weichen Zeng
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han Zhang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Zhao
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinlong Wang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Langming Bai
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guibai Li
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Zhang K, Wang R, Wang H, Li M, Zhao P, Wang Y, Wang B, Shi H, Zhang W, Gao S, Huang Q. Electrooxidation of chlorophene and dichlorophen by reactive electrochemical membrane: Key determining factors of removal efficiency. ENVIRONMENTAL RESEARCH 2024; 241:117612. [PMID: 37951380 DOI: 10.1016/j.envres.2023.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
This study systematically investigated the variable main electrooxidation mechanism of chlorophene (CP) and dichlorophen (DCP) with the change of reaction conditions at Ti4O7 anode operated in batch and reactive electrochemical membrane (REM) modes. Significant degradation of CP and DCP was observed, that is, CP exhibited greater removal efficiency in batch mode at 0.5-3.5 mA cm-2 and REM operation (0.5 mA cm-2) with a permeate flow rate of 0.85 cm min-1 under the same reaction conditions, while DCP exhibited a faster degradation rate with the increase of current density in REM operation. Density functional theory (DFT) simulation and electrochemical performance tests indicated that the electrooxidation efficiency of CP and DCP in batch mode was primarily affected by the mass transfer rates. And the removal efficiency when anodic potentials were less than 1.7 V vs SHE in REM operation was determined by the activation energy for direct electron transfer (DET) reaction, however, the adsorption function of CP and DCP on the Ti4O7 anode became a dominant factor in determining the degradation efficiency with the further increase of anodic potential due to the disappeared activation barrier. In addition, the degradation pathways of CP and DCP were proposed according to intermediate products identification and frontier electron densities (FEDs) calculation, the acute toxicity of CP and DCP were also effectively decreased during both batch and REM operations.
Collapse
Affiliation(s)
- Kehao Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruifeng Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hailong Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou, 450001, China
| | - Mingliang Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou, 450001, China
| | - Pengbo Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yaye Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Beibei Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, United States
| |
Collapse
|
12
|
Du H, Cheng T, Chu W, Wei X, Chen X, Liu B, Hur K, Dong S. Simultaneous modulation of CHO cell cytotoxicity, turbidity, and DOC by coagulation with or without pre-oxidation in water from the Pearl River Delta region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166840. [PMID: 37690763 DOI: 10.1016/j.scitotenv.2023.166840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Coagulation with or without pre-oxidation are important drinking water treatment processes. However, the efficacy of these processes in mitigating water toxicity remains unknown. To further improve drinking water safety, we employed water from the Pearl River Delta region of southern China to investigate a treatment approach consisting of coagulation with or without pre-oxidation to simultaneously modulate health-relevant cytotoxicity to CHO cells, on top of the conventional foci of turbidity and dissolved organic carbon (DOC) during water treatment. Three coagulants (two aluminum-based and one iron-based salts) and three pre-oxidants (ozone, permanganate, and peroxymonosulfate) were studied. For coagulation without pre-oxidation, intermediate coagulant doses and pH reached optimum cytotoxicity to CHO cells, turbidity, and DOC control simultaneously. Introducing oxidants reduced cytotoxicity to CHO cells significantly, enhanced by increasing oxidant concentrations and pre-oxidation duration. The cytotoxicity to CHO cells mitigation capabilities of three pre-oxidants were: ozone > peroxymonosulfate > potassium permanganate. Modulation of water cytotoxicity to CHO cells was mostly attributable to controlling DOC (specifically humic-acid like substances, tyrosine, tryptophan). However, the addition of pre-oxidants led to significant shifts in water cytotoxicity to CHO cells forcing drivers, rendering humic-acid like substances the sole decisive cytotoxicity-inducing fluorophores. For the first time, 'sweet spots' were identified to simultaneously monitor cytotoxicity to CHO cells alongside turbidity and DOC. These methods better modulate water cytotoxicity to CHO cells without sacrificing conventional water treatment goals while shedding light onto the mechanisms behind.
Collapse
Affiliation(s)
- Hongyu Du
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianle Cheng
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiaohong Chen
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
| | - Bingjun Liu
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
| | - Kyu Hur
- 3-2-9 Yushima, Bunkyo Ward, Tokyo 113-0034, Japan
| | - Shengkun Dong
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China.
| |
Collapse
|
13
|
Yang K, Zhang X, Zu D, Zhou H, Ma J, Yang Z. Shifting Emphasis from Electro- to Catalytically Active Sites: Effects of Pore Size of Flow-Through Anodes on Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20421-20430. [PMID: 37971949 DOI: 10.1021/acs.est.3c07448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A flow-through anode has demonstrated high efficiency for micropollutant abatement in water purification. In addition to developing novel electrode materials, a rational design of its porous structure is crucial to achieve high electrooxidation kinetics while sustaining a low cost for flow-through operation. However, our knowledge of the relationship between the pore structure and its performance is still incomplete. Therefore, we systematically explore the effect of pore size (with a median from 4.7 to 49.4 μm) on the flow-through anode efficiency. Results showed that when the pore size was <26.7 μm, the electrooxidation kinetics was insignificantly improved, but the permeability declined dramatically. Traditional empirical evidence from hydrodynamic modeling and electrochemical tests indicated that a flow-through anode with a smaller pore size (e.g., 4.7 μm) had a high mass transfer capability and large electroactive area. However, this did not further accelerate the micropollutant removal. Combining an overpotential distribution model and an imprinting method has revealed that the reactivity of a flow-through anode is related to the catalytically active volume/sites. The rapid overpotential decay as a function of depth in the anode would offset the merits arising from a small pore size. Herein, we demonstrate an optimal pore size distribution (∼20 μm) of typical flow-through anodes to maximize the process performance at a low energy cost, providing insights into the design of advanced flow-through anodes in water purification applications.
Collapse
Affiliation(s)
- Kui Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xinyuan Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Daoyuan Zu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
14
|
Han BC, Liu JS, Bizimana A, Zhang BX, Kateryna S, Zhao Z, Yu LP, Shen ZZ, Meng XZ. Identifying priority PBT-like compounds from emerging PFAS by nontargeted analysis and machine learning models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122663. [PMID: 37783416 DOI: 10.1016/j.envpol.2023.122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
As traditional per and polyfluoroalkyl substances (PFAS) are phased out, emerging PFAS are being developed and widely used. However, little is known about their properties, including persistence, bioaccumulation, and toxicity (PBT). Screening for emerging PFAS relies on available chemical inventory databases. Here, we compiled a database of emerging PFAS obtained from nontargeted analysis and assessed their PBT properties using machine learning models, including qualitative graph attention networks, Insubria PBT Index and quantitative EAS-E Suite, VEGA, and ProTox-II platforms. Totally 282 homologues (21.8% of emerging PFAS) were identified as PBT based on the combined qualitative and quantitative prediction, in which 140 homologues were detected in industrial and nonbiological/biological samples, belong to four categories, i.e. modifications of perfluoroalkyl carboxylic acids, perfluoroalkane sulfonamido substances, fluorotelomers and modifications of perfluoroalkyl sulfonic acids. Approximately 10.1% of prioritized emerging PFAS were matched to chemical vendors and 19.6% to patents. Aqueous film-forming foams and fluorochemical factories are the predominant sources for prioritized emerging PFAS. The database and screening results can update the assessment related to legislative bodies such as the US Toxic Substances Control Act and the Stockholm Convention. The combined qualitative and quantitative machine learning models can provide a methodological tool for prioritizing other emerging organic contaminants.
Collapse
Affiliation(s)
- Bao-Cang Han
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jin-Song Liu
- College of Advanced Materials Engineering, Jiaxing Nanhu University. 572 South Yuexiu Road, Jiaxing, 314001, Zhejiang Province, China
| | - Aaron Bizimana
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bo-Xuan Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Sukhodolska Kateryna
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Yu
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Zhong-Zeng Shen
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
15
|
Hakizimana I, Zhao X, Wang C, Zhang C. Efficient multi-stage electrochemical flow-through system for refractory organic pollutant treatment: Kinetics, mass transfer, and thermodynamic analysis. CHEMOSPHERE 2023; 344:140405. [PMID: 37827465 DOI: 10.1016/j.chemosphere.2023.140405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Improving the kinetics rate and mass transfer is essential for expanding the potential of electrochemical technologies in wastewater treatment. The electrochemical flow-through configuration promises a high oxidation efficiency and low energy consumption. We aimed to provide a thorough understanding of the enhanced kinetics, mass transfer, and thermodynamic parameters during the degradation of amoxicillin (AMX) in a multi-stage flow-through (MSFT) system using porous Ti-ENTA/SnO2-Sb anodes. All operating conditions strongly influenced the kinetics of AMX degradation and followed pseudo-first-order rate kinetic model (R2 > 0.85), with the highest kobs of 0.228 min-1 at high temperature (318 K). In comparison to the flow-by mode, the AMX removal rate in the three-stage flow-through mode was greatly enhanced by 70%, exhibiting the superior capacity of a porous anode. This system exhibited outstanding performance regarding the high kinetics rate and mass transfer rate (km), which increased by factors of 3.46 and 10.74, respectively, obtained in the flow-by mode. It also revealed that •OH generation was 5.64 times higher, and the EE/O was 19.89-fold lower than those in flow-by mode. Temperature plays a vital role in the reaction process, and thermodynamic features found the positive enthalpy (ΔHo) of +27.06 kJ mol-1, signifying the process was endothermic. A Hatta number (Ha) of >0.02 at all temperatures proved this finding, confirming an undeniable role in mass transfer. Finally, these findings reveal the system's performance and offer the possibility of establishing a multi-stage flow-through for wastewater treatment.
Collapse
Affiliation(s)
- Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
16
|
Tian F, Qiao J, Zheng W, Lei Y, Jiang S, Liu Y. Flow-through electrochemical organophosphorus degradation and phosphorus recovery: The essential role of chlorine radical. ENVIRONMENTAL RESEARCH 2023; 236:116867. [PMID: 37573819 DOI: 10.1016/j.envres.2023.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Phosphorus scarcity and the deleterious ecological impact of the release of organophosphorus pesticides have emerged as critical global issues. Previous research has shown the ability of electrochemistry to induce the precipitation of calcium phosphate from phosphorus-laden wastewater to recover the phosphorus. The current study presents a flow-through electrochemical system consisting of a column-shaped electrochemical reactor, a tubular stainless-steel (SS) cathode, and a titanium suboxides (TiSO) anode. This system simultaneously oxidizes tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and recycles phosphates. The influence of current density, flow rate, and initial calcium ions concentration were examined under continuous flow operation. To enhance the electrochemical reactor's performance, we elevated the current density from 5 to 30 mA cm-2, which caused the phosphorus recovery efficiency to increase from 37% to 72% within 120 min, accompanied by an enhancement of the THPS mineralization efficiency from 57% to 90%. These improvements were likely due to the higher yield of reactive species chloride species (Cl•) formed at the TiSO anode and the higher local pH at the cathode. By investigating the formation of Cl• at the TiSO anode, we found that THPS mineralization exceeded 75% in the presence of NaCl at a current density of 20 mA cm-2. The demonstrated performance of the flow-through electrochemical system should enable the utilization of anodic oxidation-cathodic precipitation for the recovery of phosphorus from organophosphorus-contaminated wastewater.
Collapse
Affiliation(s)
- Fengguo Tian
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Jianzhi Qiao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Wentian Zheng
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yang Lei
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengtao Jiang
- College of Life Science, Taizhou University, Taizhou, 318000, China.
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| |
Collapse
|
17
|
Qiu Z, Chu C, Wang K, Shen J, Zhu X, Kamran MA, Chen B. Sequential anodic oxidation and cathodic electro-Fenton in the Janus electrified membrane for reagent-free degradation of pollutants. WATER RESEARCH 2023; 246:120674. [PMID: 37857008 DOI: 10.1016/j.watres.2023.120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Electrified membrane technologies have recently demonstrated high potential in tackling water pollution, yet their practical applications are challenged by relying on large precursor doses. Here, we developed a Janus porous membrane (JPEM) with synergic direct oxidation by Magnéli phase Ti4O7 anode and electro-Fenton reactions by CuFe2O4 cathode. Organic pollutants were first directly oxidized on the Ti4O7 anode, where the extracted electrons from pollutants were transported to the cathode for electro-Fenton production of hydroxyl radical (·OH). The cathodic ·OH further enhanced the mineralization of organic pollutant degradation intermediates. With the sequential anodic and cathodic oxidation processes, the reagent-free JPEM showed competitive performance in rapid degradation (removal rate of 0.417 mg L-1 s-1) and mineralization (68.7 % decrease in TOC) of sulfamethoxazole. The JPEM system displayed general performance to remove phenol, carbamazepine, and perfluorooctanoic acid. The JPEM runs solely on electricity and oxygen that is comparable to that of PEM relies on large precursor doses and, therefore, operation friendly and environmental sustainability. The high pollutant removal and mineralization achieved by rational design of the reaction processes sheds light on a new approach for constructing an efficient electrified membrane.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jianjian Shen
- Dqchance. Science and Technology co Ltd, Hangzhou 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Muhammad Aqeel Kamran
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Zhejiang 311400, China.
| |
Collapse
|
18
|
Duan X, Ning Z, Wang W, Li Y, Zhao X, Liu L, Li W, Chang L. Y-mediated optimization of 3DG-PbO 2 anode for electrochemical degradation of PFOS. BMC Chem 2023; 17:146. [PMID: 37891592 PMCID: PMC10612263 DOI: 10.1186/s13065-023-01057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In our previous study, the three-dimensional graphene-modified PbO2 (3DG-PbO2) anode was prepared for the effective degradation of perfluorooctanesulfonat (PFOS) by the electrochemical oxidation process. However, the mineralization efficiency of PFOS at the 3DG-PbO2 anode still needs to be further improved due to the recalcitrance of PFOS. Thus, in this study, the yttrium (Y) was doped into the 3DG-PbO2 film to further improve the electrochemical activity of the PbO2 anode. To optimize the doping amount of Y, three Y and 3DG codoped PbO2 anodes were fabricated with different Y3+ concentrations of 5, 15, and 30 mM in the electroplating solution, which were named Y/3DG-PbO2-5, Y/3DG-PbO2-15 and Y/3DG-PbO2-30, respectively. The results of morphological, structural, and electrochemical characterization revealed that doping Y into the 3DG-PbO2 anode further refined the β-PbO2 crystals, increased the oxygen evolution overpotential and active sites, and reduced the electron transfer resistance, resulting in a superior electrocatalytic activity. Among all the prepared anodes, the Y/3DG-PbO2-15 anode exhibited the best activity for electrochemical oxidation of PFOS. After 120 min of electrolysis, the TOC removal efficiency was 80.89% with Y/3DG-PbO2-15 anode, greatly higher than 69.13% with 3DG-PbO2 anode. In addition, the effect of operating parameters on PFOS removal was analyzed by response surface, and the obtained optimum values of current density, initial PFOS concentration, pH, and Na2SO4 concentration were 50 mA/cm2, 12.21 mg/L, 5.39, and 0.01 M, respectively. Under the optimal conditions, the PFOS removal efficiency reached up to 97.16% after 40 min of electrolysis. The results of the present study confirmed that the Y/3DG-PbO2 was a promising anode for electrocatalytic oxidation of persistent organic pollutants.
Collapse
Affiliation(s)
- Xiaoyue Duan
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Ziqi Ning
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Weiyi Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yitong Li
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Liyue Liu
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Wenqian Li
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| |
Collapse
|
19
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
20
|
Wang Y, Ji Y, Li K, Huang Q. Foam fractionation and electrochemical oxidation for the treatment of per- and polyfluoroalkyl substances (PFAS) in environmental water samples. CHEMOSPHERE 2023; 339:139615. [PMID: 37499808 DOI: 10.1016/j.chemosphere.2023.139615] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Treatment of waters contaminated by per- and polyfluoroalkyl substances (PFAS) in large volumes remains a challenge to date. Treatment trains comprising separation and destruction technologies are promising to manage PFAS contamination. Foam fractionation (FF) and electrochemical oxidation (EO) are two cost-effective technologies for PFAS separation and destruction, respectively. This work systematically explored the performance of a treatment train of FF followed by EO (FF-EO) for treating PFAS in environmental water samples. For each treatment step, the dependence of the treatment performance on operational factors and other variables were analyzed statistically. The statistical analysis revealed PFAS enrichment and removal depend significantly on PFAS carbon chain length, solution conductivity, and PFAS concentration. Whether FF-EO treatment costs less energy than direct EO without FF mainly relies upon PFAS carbon chain length and TOC content in the sample. Both correlations were found to be linear. For all environmental water samples in this study, FF-EO is more energy-efficient than EO alone.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Yuqing Ji
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Ke Li
- College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
21
|
Sun Y, Lu D, Zhang H, Liu G, Hu Y, Xie H, Ma J. Titanium Oxide Electrocatalytic Membrane Filtration: "Two Faces" of Oxygen Vacancies in Generation and Transformation of Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13226-13235. [PMID: 37602728 DOI: 10.1021/acs.est.3c03177] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Oxygen vacancies are crucial to the production of reactive oxygen species (ROS) in the metal oxide electrocatalytic membrane (MOx EM) process. Here, using cathodic TiOx EM as a model, we thoroughly reveal the roles of oxygen vacancies in ROS generation and transformation. Oxygen vacancies significantly promote H2O2 and •OH production at low concentrations (increment <35%) but inhibit their production at high concentrations (increment >35%). Electrochemical analysis discloses that the enhancement of ROS production profits from the acceleration of charge transfer kinetics by both bulk and surface oxygen vacancies, whereas we attribute the decline in ROS production to the strong adsorption of ROS by surface oxygen vacancies. It is strongly supported by theoretical calculations that reveal the promoted adsorption of *OOH and *OH by oxygen vacancies, which intensifies the capture and scavenging of H2O2 and •OH. Moreover, the gradual increase of interaction time between ROS and oxygen vacancies (from ∼1 to ∼5 s) notably reduces the generation and transformation efficiency of ROS, further highlighting the detrimental impact of oxygen vacancies. In summary, oxygen vacancies show "two faces" toward ROS generation and transformation, acting as ROS promoters at low concentrations but inhibitors at high concentrations. A medium oxygen vacancy concentration is preferred for ROS production, thus causing impressive pollutant removal (>95% removal of bisphenol A within 1.2-1.5 s at 360-440 LMH). This study provides guidance on regulating ROS generation and transformation by manipulating the oxygen vacancy concentration to enhance the decontamination efficiency of MOx EMs.
Collapse
Affiliation(s)
- Yinkun Sun
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Guanjin Liu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Yichao Hu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
22
|
Guan S, Cheng Y, Hao L, Yoshida H, Tarashima C, Zhan T, Itoi T, Qiu T, Lu Y. Oxygen vacancies induced band gap narrowing for efficient visible-light response in carbon-doped TiO 2. Sci Rep 2023; 13:14105. [PMID: 37644040 PMCID: PMC10465500 DOI: 10.1038/s41598-023-39523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
The band gap of rutile TiO2 has been narrowed, via the formation of oxygen vacancies (OVs) during heat treatment in carbon powder (cHT) with embedding TiO2 coatings. The narrowed band gap efficiently improves the visible light response of TiO2 coatings, to further enhance the visible-light-driven photocatalytic activity. The change in OVs during cHT has been studied by manipulation of cHT temperature and time. The effect of OVs on the band structure of nonstoichiometric TiO2-x has been further calculated by first-principles calculations. With raising the temperature, SEM images show that the nano-size fiber-like structure forms on the surface of TiO2 coatings, and the amount of the fiber-like structure significantly increases and their size changes from nano to micro under 800 °C, contributing to cause an increase in accessible surface area. The UV-Vis results reveal that the band gap of TiO2 has been narrowed during cHT, due to the formed oxygen vacancies. The XPS results further confirm that the formation of surface defects including OVs, and the XPS depth profile further shows the decreased relative amount of O whereas increased relative amount of carbon. Notably, after cHT for TiO2 coatings, the photocatalytic activity first increases then decreases with raising the temperature, achieving approximately 3 times at 850 °C. The first-principles calculation suggest that the OVs in TiO2 coatings with localized electrons could facilitate the band gap narrowing, further favoring to enhance the photocatalytic activity under visible light.
Collapse
Affiliation(s)
- Sujun Guan
- Research Center for Space System Innovation, Tokyo University of Science, Chiba, Japan
| | - Yanling Cheng
- Beijing Key Laboratory of Biomass Waste Resource Utilization, Beijing Union University, Beijing, China.
| | - Liang Hao
- College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China
| | | | - Chiaki Tarashima
- Research Center for Space System Innovation, Tokyo University of Science, Chiba, Japan
| | - Tianzhuo Zhan
- Bio-Nano Electronics Research Centre, Toyo University, Saitama, Japan
| | - Takaomi Itoi
- Graduate School and Faculty of Engineering, Chiba University, Chiba, Japan
| | - Tangbin Qiu
- Graduate School and Faculty of Engineering, Chiba University, Chiba, Japan
| | - Yun Lu
- Graduate School and Faculty of Engineering, Chiba University, Chiba, Japan.
| |
Collapse
|
23
|
Mukherjee P, Sathiyan K, Zidki T, Nadagouda MN, Sharma VK. Electrochemical degradation of per- and poly-fluoroalkyl substances in the presence of natural organic matter. Sep Purif Technol 2023; 325:124639. [PMID: 39498147 PMCID: PMC11534010 DOI: 10.1016/j.seppur.2023.124639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS), a contentious group of highly fluorinated, persistent, and potentially toxic chemicals, have been associated with human health risks. Currently, treatment processes that destroy PFAS are challenged by transforming these contaminants into additional toxic substances that may have unknown impacts on human health and the environment. Electrochemical oxidation (EO) is a promising method for scissoring long-chain PFAS, especially in the presence of natural organic matter (NOM), which interferes with most other treatment approaches used to degrade PFAS. The EO method can break the long-chain PFAS compound into short-chain analogs. The underlying mechanisms that govern the degradation of PFAS by electrochemical processes are presented in this review. The state-of-the-art anode and cathode materials used in electrochemical cells for PFAS degradation are overviewed. Furthermore, the reactor design to achieve high PFAS destruction is discussed. The challenge of treating PFAS in water containing NOM is elucidated, followed by EO implementation to minimize the influence of NOM on PFAS degradation. Finally, perspectives related to maximizing the readiness of EO technology and optimizing process parameters for the degradation of PFAS are briefly discussed.
Collapse
Affiliation(s)
- Poulami Mukherjee
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
- Department of Chemical Sciences and the Centers for Radical Reactions and material research, Ariel University, Ariel 4077625, Israel
| | - Krishnamoorthy Sathiyan
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Tomer Zidki
- Department of Chemical Sciences and the Centers for Radical Reactions and material research, Ariel University, Ariel 4077625, Israel
| | - Mallikarjuna N. Nadagouda
- United States Environmental Protection Agency, Office of Research & Development, Center for Environmental Solutions & Emergency Response, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Virender K. Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
24
|
Ma Q, Gao J, Moussa B, Young J, Zhao M, Zhang W. Electrosorption, Desorption, and Oxidation of Perfluoroalkyl Carboxylic Acids (PFCAs) via MXene-Based Electrocatalytic Membranes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294711 DOI: 10.1021/acsami.3c03991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MXenes exhibit excellent conductivity, tunable surface chemistry, and high surface area. Particularly, the surface reactivity of MXenes strongly depends on surface exposed atoms or terminated groups. This study examines three types of MXenes with oxygen, fluorine, and chlorine as respective terminal atoms and evaluates their electrosorption, desorption, and oxidative properties. Two perfluorocarboxylic acids (PFCAs), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) are used as model persistent micropollutants for the tests. The experimental results reveal that O-terminated MXene achieves a significantly higher adsorption capacity of 215.9 mg·g-1 and an oxidation rate constant of 3.9 × 10-2 min-1 for PFOA compared to those with F and Cl terminations. Electrochemical oxidation of the two PFCAs (1 ppm) with an applied potential of +6 V in a 0.1 M Na2SO4 solution yields >99% removal in 3 h. Moreover, PFOA degrades about 20% faster than PFBA on O-terminated MXene. The density functional theory (DFT) calculations reveal that the O-terminated MXene surface yielded the highest PFOA and PFBA adsorption energy and the most favorable degradation pathway, suggesting the high potential of MXenes as highly reactive and adsorptive electrocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Qingquan Ma
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jianan Gao
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Botamina Moussa
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joshua Young
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mengqiang Zhao
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
25
|
Wang P, Chu G, Gao G, Li F, Ren Y, Ding Y, Gu Y, Jiang W, Zhang X. Efficient Electrochemical Oxidation of Chloramphenicol by Novel Reduced TiO 2 Nanotube Array Anodes: Kinetics, Reaction Parameters, Degradation Pathway and Biotoxicity Forecast. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113971. [PMID: 37297106 DOI: 10.3390/ma16113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The key component of electrochemical advanced oxidation technology are high-efficiency anodes, and highly efficient and simple-to-prepare materials have generated a lot of interest. In this study, novel self-supported Ti3+-doped titanium dioxide nanotube arrays (R-TNTs) anodes were successfully prepared by a two-step anodic oxidation and straightforward electrochemical reduction technique. The electrochemical reduction self-doping treatment produced more Ti3+ sites with stronger absorption in the UV-vis region, a band gap reduction from 2.86 to 2.48 ev, and a significant increase in electron transport rate. The electrochemical degradation effect of R-TNTs electrode on chloramphenicol (CAP) simulated wastewater was investigated. At pH = 5, current density of 8 mA cm-2, electrolyte concentration of 0.1 M sodium sulfate (Na2SO4), initial CAP concentration of 10 mg L-1, CAP degradation efficiency exceeded 95% after 40 min. In addition, molecular probe experiments and electron paramagnetic resonance (EPR) tests revealed that the active species were mainly •OH and SO4-, among which •OH played a major role. The CAP degradation intermediates were discovered using high-performance liquid chromatography-mass spectrometry (HPLC-MS), and three possible degradation mechanisms were postulated. In cycling experiments, the R-TNTs anode demonstrated good stability. The R-TNTs prepared in this paper were an anode electrocatalytic material with high catalytic activity and stability, which could provide a new approach for the preparation of electrochemical anode materials for difficult-to-degrade organic compounds.
Collapse
Affiliation(s)
- Pengqi Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guangyi Chu
- Jinan Water & Wastewater Monitoring Center, Jinan 250353, China
| | - Guangfei Gao
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fengchun Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yi Ren
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yue Ding
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
26
|
Zeng W, Zhang H, Wu R, Liu L, Li G, Liang H. Environment-friendly and efficient electrochemical degradation of sulfamethoxazole using reduced TiO 2 nanotube arrays-based Ti membrane coated with Sb-SnO 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130642. [PMID: 36580775 DOI: 10.1016/j.jhazmat.2022.130642] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
This study focused on the preparation, characterization, and sulfamethoxazole (SMX) removal performance of the SnO2-coated reactive electrochemical membrane (REM). This REM was fabricated by loading SnO2 on the reduced TiO2 nanotube arrays (RTNA)-based Ti membrane (TM). Regarding the dopant for SnO2, Sb was more effective in boosting the electrocatalytic activity than Bi, and the energy consumption for Sb-SnO2-coated REM (TM/RTNA/ATO) was lower than Bi-SnO2-coated REM (TM/RTNA/BTO). As for the internal layer, RTNA provided TM/RTNA/ATO with more electroactive surface areas and prolonged the service lifetime. Compared with batch mode, the SMX removal efficiency in flow-through mode was increased up to 8.4-fold. The SMX degradation performances were also affected by fluid velocity, current density, initial SMX concentration, and electrolyte concentration. The synergistic effects of •OH oxidation and direct electron transfer were responsible for the effective removal of SMX. TM/RTNA/ATO was proved to be stable and durable by multi-cycle and accelerated lifetime tests. Its extensive applicability was verified with high removal efficiencies of SMX in the surface water and wastewater effluent. These results demonstrate the promise of TM/RTNA/ATO for water treatment applications.
Collapse
Affiliation(s)
- Weichen Zeng
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han Zhang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Wu
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen 518021, China
| | - Luming Liu
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen 518021, China
| | - Guibai Li
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
27
|
Pan Z, Xin H, Xu R, Wang P, Fan X, Song Y, Song C, Wang T. Carbon electrochemical membrane functionalized with flower cluster-like FeOOH catalyst for organic pollutants decontamination. J Colloid Interface Sci 2023; 640:588-599. [PMID: 36878076 DOI: 10.1016/j.jcis.2023.02.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Decorating active catalysts on the reactive electrochemical membrane (REM) is an effective way to further improve its decontamination performance. In this work, a novel carbon electrochemical membrane (FCM-30) was prepared through coating FeOOH nano catalyst on a low-cost coal-based carbon membrane (CM) through facile and green electrochemical deposition. Structural characterizations demonstrated that the FeOOH catalyst was successfully coated on CM, and it grew into a flower cluster-like morphology with abundant active sites when the deposition time was 30 min. The nano FeOOH flower clusters can obviously boost the hydrophilicity and electrochemical performance of FCM-30, which enhance its permeability and bisphenol A (BPA) removal efficiency during the electrochemical treatment. Effects of applied voltages, flow rates, electrolyte concentrations and water matrixes on BPA removal efficiency were investigated systematically. Under the operation condition of 2.0 V applied voltage and 2.0 mL·min-1 flow rate, FCM-30 can achieve the high removal efficiency of 93.24% and 82.71% for BPA and chemical oxygen demand (COD) (71.01% and 54.89% for CM), respectively, with only a low energy consumption (EC) of 0.41 kWh·kgCOD-1, which can be ascribed to the enhancement on OH yield and direct oxidation ability by the FeOOH catalyst. Moreover, this treatment system also exhibits good reusability and can be adopted on different water background as well as different pollutants.
Collapse
Affiliation(s)
- Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Hong Xin
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Ruisong Xu
- School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian 116024, China.
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China.
| | - Tonghua Wang
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China; School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian 116024, China.
| |
Collapse
|
28
|
Sivagami K, Sharma P, Karim AV, Mohanakrishna G, Karthika S, Divyapriya G, Saravanathamizhan R, Kumar AN. Electrochemical-based approaches for the treatment of forever chemicals: Removal of perfluoroalkyl and polyfluoroalkyl substances (PFAS) from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160440. [PMID: 36436638 DOI: 10.1016/j.scitotenv.2022.160440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical based approaches for the treatment of recalcitrant water borne pollutants are known to exhibit superior function in terms of efficiency and rate of treatment. Considering the stability of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are designated as forever chemicals, which generating from various industrial activities. PFAS are contaminating the environment in small concentrations, yet exhibit severe environmental and health impacts. Electro-oxidation (EO) is a recent development that treats PFAS, in which different reactive species generates at anode due to oxidative reaction and reductive reactions at the cathode. Compared to water and wastewater treatment methods those being implemented, electrochemical approaches demonstrate superior function against PFAS. EO completely mineralizes (almost 100 %) non-biodegradable organic matter and eliminate some of the inorganic species, which proven as a robust and versatile technology. Electrode materials, electrolyte concentration pH and the current density applying for electrochemical processes determine the treatment efficiency. EO along with electrocoagulation (EC) treats PFAS along with other pollutants from variety of industries showed highest degradation of 7.69 mmol/g of PFAS. Integrated approach with other processes was found to exhibit improved efficiency in treating PFAS using several electrodes boron-doped diamond (BDD), zinc, titanium and lead based with efficiency the range of 64 to 97 %.
Collapse
Affiliation(s)
- K Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| | - Pranshu Sharma
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Ansaf V Karim
- Environmental Science and Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubli 580031, India.
| | - S Karthika
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - G Divyapriya
- Swiss Government Excellence Postdoctoral Scholar, Multi-Scale Robotics Lab (MSRL), Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - R Saravanathamizhan
- Department of Chemical Engineering, A.C. College of Technology, Anna University, India
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
29
|
Meegoda JN, Bezerra de Souza B, Casarini MM, Kewalramani JA. A Review of PFAS Destruction Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16397. [PMID: 36554276 PMCID: PMC9778349 DOI: 10.3390/ijerph192416397] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 05/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of highly toxic emerging contaminants that have caught the attention of both the public and private sectors due to their adverse health impacts on society. The scientific community has been laboriously working on two fronts: (1) adapting already existing and effective technologies in destroying organic contaminants for PFAS remediation and (2) developing new technologies to remediate PFAS. A common characteristic in both areas is the separation/removal of PFASs from other contaminants or media, followed by destruction. The widely adopted separation technologies can remove PFASs from being in contact with humans; however, they remain in the environment and continue to pose health risks. On the other hand, the destructive technologies discussed here can effectively destroy PFAS compounds and fully address society's urgent need to remediate this harmful family of chemical compounds. This review reports and compare widely accepted as well as emerging PFAS destruction technologies. Some of the technologies presented in this review are still under development at the lab scale, while others have already been tested in the field.
Collapse
Affiliation(s)
- Jay N. Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
30
|
Londhe K, Lee CS, McDonough CA, Venkatesan AK. The Need for Testing Isomer Profiles of Perfluoroalkyl Substances to Evaluate Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15207-15219. [PMID: 36314557 PMCID: PMC9670843 DOI: 10.1021/acs.est.2c05518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Many environmentally relevant poly-/perfluoroalkyl substances (PFASs) including perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) exist in different isomeric (branched and linear) forms in the natural environment. The isomeric distribution of PFASs in the environment and source waters is largely controlled by the source of contamination and varying physicochemical properties imparted by their structural differences. For example, branched isomers of PFOS are relatively more reactive and less sorptive compared to the linear analogue. As a result, the removal of branched and linear PFASs during water treatment can vary, and thus the isomeric distribution in source waters can influence the overall efficiency of the treatment process. In this paper, we highlight the need to consider the isomeric distribution of PFASs in contaminated matrices while designing appropriate remediation strategies. We additionally summarize the known occurrence and variation in the physicochemical properties of PFAS isomers influencing their detection, fate, toxicokinetics, and treatment efficiency.
Collapse
Affiliation(s)
- Kaushik Londhe
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- New
York State Center for Clean Water Technology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Cheng-Shiuan Lee
- New
York State Center for Clean Water Technology, Stony Brook University, Stony
Brook, New York 11794, United States
- Research
Center for Environmental Changes, Academia
Sinica, Taipei 115, Taiwan
| | - Carrie A. McDonough
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Arjun K. Venkatesan
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- New
York State Center for Clean Water Technology, Stony Brook University, Stony
Brook, New York 11794, United States
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
31
|
Pan Z, Xu S, Xin H, Yuan Y, Xu R, Wang P, Yan X, Fan X, Song C, Wang T. High performance polypyrrole coated carbon-based electrocatalytic membrane for organic contaminants removal from aqueous solution. J Colloid Interface Sci 2022; 626:283-295. [DOI: 10.1016/j.jcis.2022.06.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022]
|
32
|
Kumar A, Barbhuiya NH, Singh SP. Magnéli phase titanium sub-oxides synthesis, fabrication and its application for environmental remediation: Current status and prospect. CHEMOSPHERE 2022; 307:135878. [PMID: 35932919 DOI: 10.1016/j.chemosphere.2022.135878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Sub-stoichiometric titanium oxide, also called titanium suboxides (TSO), had been a focus of research for many decades with a chemical composition of TinO2n-1 (n ≥ 1). It has a unique oxygen-deficient crystal structure which provides it an outstanding electrical conductivity and high corrosion resistance similar to ceramic materials. High electrical conductivity and ability to sustain in adverse media make these phases a point of attention for researchers in energy storage and environmental remediation applications. The Magnéli phase-based reactive electroconductive membranes (REM) and electrodes have demonstrated the electrochemical oxidation of pollutants in the water in flow-through and flow by configuration. Additionally, it has also shown its potential for visible light photochemical degradation as well. This review attempts to summarize state of the art in various Magnéli phases materials synthesis routes and their electrochemical and photochemical ability for environmental application. The manuscript introduces the Magnéli phase, its crystal structure, and catalytic properties, followed by the recent development in synthesis methods from diverse titanium sources, notably TiO2 through thermal reduction. The various fabrication methods for Magnéli phase-base REMs and electrodes have also been summarized. Furthermore, the article discussed the environmental remediations via electrochemical and photochemical advanced oxidation processes. Additionally, the hybrid technology with REMs and electrodes is used to counter membrane biofouling and develop electrochemical sensing devices for the pollutants. The Magnéli phase materials have a bright future for both electrochemical and photochemical advanced oxidation of emerging contaminants in water and wastewater treatment.
Collapse
Affiliation(s)
- Ashish Kumar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Najmul H Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
33
|
Mechanistic study of electrooxidation of coexisting chloramphenicol and natural organic matter: Performance, DFT calculation and removal route. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Wang Y, Li L, Huang Q. Electrooxidation of per- and polyfluoroalkyl substances in chloride-containing water on surface-fluorinated Ti 4O 7 anodes: Mitigation and elimination of chlorate and perchlorate formation. CHEMOSPHERE 2022; 307:135877. [PMID: 35931258 DOI: 10.1016/j.chemosphere.2022.135877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Electrooxidation (EO) has been shown effective in degrading per- and polyfluoroalkyl substances (PFASs) in water, but concurrent formation of chlorate and perchlorate in the presence of chloride is of concern due to their toxicity. This study examined EO treatment of three representative PFASs, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and 6:2 fluorotelomer sulfonate (6:2 FTS), in chloride-containing solutions on pristine and surface-fluorinated Ti4O7 anodes having different percentage of surface fluorination. The experiment results indicate that surface fluorination of Ti4O7 anodes slightly inhibited PFAS degradation, while significantly decreased the formation of chlorate and perchlorate. Further studies with spectroscopic and electrochemical characterizations and density functional theory (DFT) computation reveal the mechanisms of the impact on EO performance by anode fluorination. In particular, chlorate and perchlorate formation were fully inhibited when fluorinated Ti4O7 anode was used in reactive electrochemical membrane (REM) under a proper anodic potential range (<3.0 V vs Standard Hydrogen Electrode), resulting from slower intermediate reaction steps and short residence time of the REM system. The results of this study provide a basis for design and optimization of modified Ti4O7 anodes for efficient EO treatment of PFAS while limiting chlorate and perchlorate formation.
Collapse
Affiliation(s)
- Yaye Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, United States
| | - Lei Li
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, United States
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, United States.
| |
Collapse
|
35
|
Chen Z, Wang X, Feng H, Chen S, Niu J, Di G, Kujawski D, Crittenden JC. Electrochemical Advanced Oxidation of Perfluorooctanoic Acid: Mechanisms and Process Optimization with Kinetic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14409-14417. [PMID: 36173643 DOI: 10.1021/acs.est.2c02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) are promising technologies for perfluorooctanoic acid (PFOA) degradation, but the mechanisms and preferred pathways for PFOA mineralization remain unknown. Herein, we proposed a plausible primary pathway for electrochemical PFOA mineralization using density functional theory (DFT) simulations and experiments. We neglected the unique effects of the anode surface and treated anodes as electron sinks only to acquire a general pathway. This was the essential first step toward fully revealing the primary pathway applicable to all anodes. Systematically exploring the roles of valence band holes (h+), hydroxyl radicals (HO•), and H2O, we found that h+, whose contribution was previously underestimated, dominated PFOA mineralization. Notably, the primary pathway did not generate short-chain perfluoroalkyl carboxylic acids (PFCAs), which were previously thought to be the main degradation intermediates, but generated other polyfluorinated alkyl substances (PFASs) that were rapidly degraded upon formation. Also, we developed a simplified kinetic model, which considered all of the main processes (mass transfer with electromigration included, surface adsorption/desorption, and oxidation on the anode surface), to simulate PFOA degradation in EAOPs. Our model can predict PFOA concentration profiles under various current densities, initial PFOA concentrations, and flow velocities.
Collapse
Affiliation(s)
- Zefang Chen
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Hualiang Feng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Guanglan Di
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, P. R. China
| | - David Kujawski
- Refinery Water Engineering & Associates, Hydrocarbon Processing Water & Waste Technology, Inc., 15634 Wallisville Road, Houston, Texas 77042, United States
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| |
Collapse
|
36
|
Formation of chlorate and perchlorate during electrochemical oxidation by Magnéli phase Ti 4O 7 anode: inhibitory effects of coexisting constituents. Sci Rep 2022; 12:15880. [PMID: 36151096 PMCID: PMC9508142 DOI: 10.1038/s41598-022-19310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Formation of chlorate (ClO3−) and perchlorate (ClO4−) as by-products in electrooxidation process has raised concern. In the present study, the formation of ClO3− and ClO4− in the presence of 1.0 mM Cl− on boron doped diamond (BDD) and Magneli phase titanium suboxide (Ti4O7) anodes were evaluated. The Cl− was transformed to ClO3− (temporal maximum 276.2 μM) in the first 0.5 h on BDD anodes with a constant current density of 10 mA cm2, while approximately 1000 μM ClO4− was formed after 4.0 h. The formation of ClO3− on the Ti4O7 anode was slower, reaching a temporary maximum of approximately 350.6 μM in 4.0 h, and the formation of ClO4− was also slower on the Ti4O7 anode, taking 8.0 h to reach 780.0 μM. Compared with the BDD anode, the rate of ClO3− and ClO4− formation on the Ti4O7 anode were always slower, regardless of the supporting electrolytes used in the experiments, including Na2SO4, NaNO3, Na2B4O7, and Na2HPO4. It is interesting that the formation of ClO4− during electrooxidation was largely mitigated or even eliminated, when methanol, KI, and H2O2 were included in the reaction solutions. The mechanism of the inhibition on Cl− transformation by electrooxidation was explored.
Collapse
|
37
|
Yang K, Lin H, Jiang J, Ma J, Yang Z. Enhanced electrochemical oxidation of tetracycline and atrazine on SnO2 reactive electrochemical membranes by low-toxic bismuth, cerium doping. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Li C, Wang Y, Wang Y, Wang Z, Huang Q. Electrochemical oxidation combined with UV irradiation for synergistic removal of perfluorooctane sulfonate (PFOS) in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129091. [PMID: 35569375 DOI: 10.1016/j.jhazmat.2022.129091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The effect of electrochemical degradation on Magnéli phase Ti4O7 anode combined with UV irradiation on the removal of PFOS was systematically evaluated in the present study. A synergistic effect of electrolysis and UV irradiation rather than a simple additive effect for PFOS degradation was demonstrated experimentally and theoretically. The short wavelength irradiation within 400 nm is the main contribution to enhance the electrochemical degradation of PFOS, while the initial pH of the solution has little effect on the PFOS degradation. The increase of current density accelerates the removal of PFOS either by electrolysis treatment or the joint process. The time-dependent density functional theory (TD-DFT) calculation indicates that the synergistic effect of the electrolysis and UV irradiation is most likely due to the involvement of the excited PFOS induced under UV irradiation in the electrochemical reaction. This study provides the first mechanistic explanation for the electrochemical degradation of PFOS enhanced by UV irradiation.
Collapse
Affiliation(s)
- Chenguang Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Yifei Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| | - Yaye Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States.
| |
Collapse
|
39
|
Mo Y, Zhang L, Zhao X, Li J, Wang L. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129162. [PMID: 35643008 DOI: 10.1016/j.jhazmat.2022.129162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Research efforts have recently been directed at developing electrically conductive membranes (EMs) for pressure-driven membrane separation processes to remove effectively the highly toxic pollutants from water. EMs serve as both the filter and the electrode during filtration. With the assistance of a power supply, EMs can considerably improve the toxic pollutant removal efficiency and even realize chemical degradation to reduce their toxicity. Organic-inorganic composite EMs and inorganic EMs show remarkable differences in characteristics, removal mechanisms, and application situations. Understanding their differences is highly important to guide the future design of EMs for specific pollutant removal from water. However, reviews concerning the differences between composite and inorganic EMs are still lacking. In this review, we summarize the classifications, fabrication techniques, and characteristics of composite and inorganic EMs. We also elaborate on the removal mechanisms and performances of EMs toward recalcitrant organic pollutants and toxic inorganic ions in water. The comparison between composite and inorganic EMs is emphasized particularly in terms of the membrane characteristics (pore size, permeability, and electrical conductivity), application situations, and underlying removal mechanisms. Finally, the energy consumption and durability of EMs are evaluated, and future perspectives are presented.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
40
|
Li M, Jin YT, Cao DY, Yang LL, Yan JF, Zhang ZX, Liu Z, Huang LW, Zhou SQ, Cheng JL, Zhao Q, Zhao HM, Feng NX, Mo CH. Efficient decomposition of perfluorooctane sulfonate by electrochemical activation of peroxymonosulfate in aqueous solution: Efficacy, reaction mechanism, active sites, and application potential. WATER RESEARCH 2022; 221:118778. [PMID: 35752093 DOI: 10.1016/j.watres.2022.118778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical oxidation method is a promising technology for the degradation of perfluorooctane sulfonate (PFOS). However, the elimination processes of PFOS are still unknown, including the electron transfer pathway, key reactive sites, and degradation mechanism. Here, we fabricated diatomite and cerium (Ce) co-modified Sb2O3 (D-Ce/Sb2O3) anode to realize efficient degradation of PFOS via peroxymonosulfate (PMS) activation. The transferred electron and the generated hydroxyl radical (•OH) can high-effectively decompose PFOS. The electron can be rapidly transferred from the highest occupied molecular orbital of the PFOS to the lowest unoccupied molecular orbital of the PMS via the D-Ce/Sb2O3 driven by a potential energy difference under electrochemical process. The active site of Ce-O in the D-Ce/Sb2O3 can greatly reduce the migration distance of the electron and the •OH, and thus improving the catalytic activity for degrading various organic micropollutants with high stability. In addition, the electrochemical process shows strong resistance and tolerance to the changing pH, inorganic ions, and organic matter. This study offers insights into the electron transfer pathway and PMS activation mechanism in PFOS removal via electrochemical oxidation, paving the way for its potential application in water purification.
Collapse
Affiliation(s)
- Meng Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China; College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yu-Ting Jin
- College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Dan-Yang Cao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Ling-Ling Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jian-Fang Yan
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zhao-Xin Zhang
- Thrust of Sustainable Energy & Environment, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511458, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China
| | - Long-Wei Huang
- College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Shao-Qi Zhou
- College of Resources and Environmental Engineering, Guizhou University, 2708 Huaxi Road, Guiyang 550025, PR China.
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Qinglan Zhao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China.
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
41
|
Wang S, Pei S, Zhang J, Huang J, You S. Flow-through electrochemical removal of benzotriazole by electroactive ceramic membrane. WATER RESEARCH 2022; 218:118454. [PMID: 35447419 DOI: 10.1016/j.watres.2022.118454] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Benzotriazole (BTA) is a widely used anticorrosive additive that is of endurance, bioaccumulation and toxicity, and BTA industrial wastewater treatment remains a challenge. This study reports efficient electrochemical removal of BTA by titanium oxide (TiSO) electroactive ceramic membrane (ECM), indicated by 98.1% removal at current density of 20 mA∙cm-2 and permeate flux of 692 LHM under cathode-to-anode flow pattern (1 h). Electrochemical analysis demonstrated the pH-dependent formation of anti-corrosive BTA film on the TiSO anode, which was responsible for improved BTA removal for cathode-to-anode (CA) flow pattern compared with that for anode-to-cathode (AC). The modelling results showed the CA flow pattern to be more favourable for BTA oxidation mediated by electro-generated •OH by preventing the formation of deactivation film via creating an alkaline boundary layer at the anode/electrolyte interface. Intermediates and essential active sites were identified by using experimental analysis and theoretical density functional theory (DFT) calculations, thereby the most likely degradation pathways were underlined. Toxicity analysis revealed remarkable decrease in oral rat LD50 values and bioaccumulation factor during electrochemical degradation of BTA. This study provides a proof-in-concept demonstration of effective removal for anti-corrosive emerging pollutants by TiSO-ECM under flow-through pattern.
Collapse
Affiliation(s)
- Shengli Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Shuzhao Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Junqiang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.
| |
Collapse
|
42
|
Das S, Ronen A. A Review on Removal and Destruction of Per- and Polyfluoroalkyl Substances (PFAS) by Novel Membranes. MEMBRANES 2022; 12:662. [PMID: 35877866 PMCID: PMC9325267 DOI: 10.3390/membranes12070662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are anthropogenic chemicals consisting of thousands of individual species. PFAS consists of a fully or partly fluorinated carbon-fluorine bond, which is hard to break and requires a high amount of energy (536 kJ/mole). Resulting from their unique hydrophobic/oleophobic nature and their chemical and mechanical stability, they are highly resistant to thermal, chemical, and biological degradation. PFAS have been used extensively worldwide since the 1940s in various products such as non-stick household items, food-packaging, cosmetics, electronics, and firefighting foams. Exposure to PFAS may lead to health issues such as hormonal imbalances, a compromised immune system, cancer, fertility disorders, and adverse effects on fetal growth and learning ability in children. To date, very few novel membrane approaches have been reported effective in removing and destroying PFAS. Therefore, this article provides a critical review of PFAS treatment and removal approaches by membrane separation systems. We discuss recently reported novel and effective membrane techniques for PFAS separation and include a detailed discussion of parameters affecting PFAS membrane separation and destruction. Moreover, an estimation of cost analysis is also included for each treatment technology. Additionally, since the PFAS treatment technology is still growing, we have incorporated several future directions for efficient PFAS treatment.
Collapse
Affiliation(s)
| | - Avner Ronen
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel;
| |
Collapse
|
43
|
Xie J, Zhang C, Waite TD. Hydroxyl radicals in anodic oxidation systems: generation, identification and quantification. WATER RESEARCH 2022; 217:118425. [PMID: 35429884 DOI: 10.1016/j.watres.2022.118425] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Anodic oxidation has emerged as a promising treatment technology for the removal of a broad range of organic pollutants from wastewaters. Hydroxyl radicals are the primary species generated in anodic oxidation systems to oxidize organics. In this review, the methods of identifying hydroxyl radicals and the existing debates and misunderstandings regarding the validity of experimental results are discussed. Consideration is given to the methods of quantification of hydroxyl radicals in anodic oxidation systems with particular attention to approaches used to compare the electrochemical performance of different anodes. In addition, we describe recent progress in understanding the mechanisms of hydroxyl radical generation at the surface of most commonly used anodes and the utilization of hydroxyl radical in typical electrochemical reactors. This review shows that the key challenges facing anodic oxidation technology are related to i) the elimination of mistakes in identifying hydroxyl radicals, ii) the establishment of an effective hydroxyl radical quantification method, iii) the development of cost effective anode materials with high corrosion resistance and high electrochemical activity and iv) the optimization of electrochemical reactor design to maximise the utilization efficiency of hydroxyl radicals.
Collapse
Affiliation(s)
- Jiangzhou Xie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province, 214206, P.R. China.
| |
Collapse
|
44
|
Li W, Xiao R, Xu J, Lin H, Yang K, Li W, He K, Tang L, Chen J, Wu Y, Lv S. Interface engineering strategy of a Ti 4O 7 ceramic membrane via graphene oxide nanoparticles toward efficient electrooxidation of 1,4-dioxane. WATER RESEARCH 2022; 216:118287. [PMID: 35334338 DOI: 10.1016/j.watres.2022.118287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Although Ti4O7 ceramic membrane has been recognized as one of the most promising anode materials for electrochemical advanced oxidation process (EAOP), it suffers from relatively low hydroxyl radical (•OH) production rate and high charge-transfer resistance that restricted its oxidation performance of organic pollutants. Herein, we reported an effective interface engineering strategy to develop a Ti4O7 reactive electrochemical membrane (REM) doped by graphene oxide nanoparticles (GONs), GONs@Ti4O7 REM, via strong GONs-O-Ti bonds. Results showed that 1% (wt%) GON doping on Ti4O7 REM significantly reduced the charge-transfer resistance from 73.87 to 8.42 Ω compared with the pristine Ti4O7 REM, and yielded •OH at 2.5-2.8 times higher rate. The 1,4-dioxane (1,4-D) oxidation rate in batch experiments by 1%GONs@Ti4O7 REM was 1.49×10-2 min-1, 2 times higher than that of the pristine Ti4O7 REM (7.51×10-3 min-1) and similar to that of BDD (1.79×10-2 min-1). The 1%GONs@Ti4O7 REM exhibited high stability after a polarization test of 90 h at 80 mA/cm2, and within 15 consecutive cycles, its oxidation performance was stable (95.1-99.2%) with about 1% of GONs lost on the REM. In addition, REM process can efficiently degrade refractory organic matters in the groundwater and landfill leachate, the total organic carbon was removed by 54.5% with a single-pass REM. A normalized electric energy consumption per log removal of 1,4-D (EE/O) was observed at only 0.2-0.6 kWh/m3. Our results suggested that chemical-bonded interface engineering strategy using GONs can facilitate the EAOP performance of Ti4O7 ceramic membrane with outstanding reactivity and stability.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Runlin Xiao
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jiale Xu
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kuanchang He
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Longxiang Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Chen
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yiping Wu
- Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
45
|
Maqbool T, Ly QV, He K, Cui L, Zhang Y, Sun M, Zhang Z. Reactive electrochemical ceramic membrane for effective removal of high concentration humic acid: Insights of different performance and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Wang SD, He LX, Zhou L, Xian SD, Liu JH. Electrochemical activation of peroxymonosulfate with titanium suboxide anode for 4-chlorophenol degradation: Influencing factors, kinetics, and degradation mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Ren L, Ma J, Chen M, Qiao Y, Dai R, Li X, Wang Z. Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater. iScience 2022; 25:104342. [PMID: 35602955 PMCID: PMC9117875 DOI: 10.1016/j.isci.2022.104342] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The increasing occurrence of micropollutants in water and wastewater threatens human health and ecological security. Electrocatalytic membrane (EM), a new hybrid water treatment platform that integrates membrane separation with electrochemical technologies, has attracted extensive attention in the removal of micropollutants from water and wastewater in the past decade. Here, we systematically review the recent advances of EM for micropollutant removal from water and wastewater. The mechanisms of the EM for micropollutant removal are first introduced. Afterwards, the related membrane materials and operating conditions of the EM are summarized and analyzed. Lastly, the challenges and future prospects of the EM in research and applications are also discussed, aiming at a more efficient removal of micropollutants from water and wastewater.
Collapse
Affiliation(s)
- Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mei Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yiwen Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Corresponding author
| |
Collapse
|
48
|
Li M, Jin YT, Yan JF, Liu Z, Feng NX, Han W, Huang LW, Li QK, Yeung KL, Zhou SQ, Mo CH. Exploration of perfluorooctane sulfonate degradation properties and mechanism via electron-transfer dominated radical process. WATER RESEARCH 2022; 215:118259. [PMID: 35294910 DOI: 10.1016/j.watres.2022.118259] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Polyfluoroalkyl and perfluoroalkyl chemicals (PFCs) widely used in lubricants, surfactant, textiles, paper coatings, cosmetics, and fire-fighting foams can release a large deal of organics contaminants into wastewater and pose great risks to the health of humans and eco-environments. Although advanced oxidation processes can effectively deconstruct various organic contaminants via reactive radicals, the stable structure of PFCs makes it difficult to be degraded. Here, we confirm that electrochemical oxidation process coupled with peroxymonosulfate (PMS) reaction can efficiently destroy stable structure of PFCs via electron transfer and meanwhile completely degrade PFCs via generated active radicals. We further studies via capturing and scavenging radicals, and DFT calculations find that electron hydroxyl radials play a dominant role in degrading PFCs. Based on the calculations of adsorption energy and molecular orbital energy we further demonstrate that many active sites on the surface of Ti4O7 (1 0 4) plane can rapidly take part in electrochemical reaction for generating radials and removing organic contaminants. These results give a promising insight towards high-effective and deep degradation of PFCs via electrochemical reaction coupled with advanced oxidation processes, as well as providing guidance and technical support for the remove of multiple organic contaminants.
Collapse
Affiliation(s)
- Meng Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR. China
| | - Yu-Ting Jin
- School of Environmental and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
| | - Jian-Fang Yan
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR. China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei Han
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR. China
| | - Long-Wei Huang
- School of Environmental and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
| | - Qin-Ke Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - King-Lun Yeung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR. China; Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR. China.
| | - Shao-Qi Zhou
- School of Environmental and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China; College of Resources and Environmental Engineering, Guizhou University, 2708 Huaxi Road, Guiyang 550025, PR China..
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
49
|
Zeng W, Liang H, Zhang H, Luo X, Lin D, Li G. Efficient electrochemical oxidation of sulfamethoxazole by a novel reduced TiO2 nanotube arrays-based flow-through electrocatalytic membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Ly QV, He K, Maqbool T, Sun M, Zhang Z. Exploring the potential application of hybrid permonosulfate/reactive electrochemical ceramic membrane on treating humic acid-dominant wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|