1
|
Zhou Y, Wan X, Lei M, Chen T. Arsenic release during groundwater recharge and effects of coexisting ions in a typical inland basin with high arsenic concentration: Modeling and batch experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175359. [PMID: 39122042 DOI: 10.1016/j.scitotenv.2024.175359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Groundwater recharge is a viable solution to groundwater overexploitation. However, the injection of recharge water may break the dissolution balance and induce the release of trace elements especially arsenic (As), which has been identified in river deltas. Only a few studies have been conducted in inland basins with high As concentration, high pH, and low Eh. Aiming to analyze As release with groundwater recharge in inland high-As regions and determine the effects of coexisting ions in recharge water, this study established PHase Equilibria Calculation (PHREEQC) models using rainwater and groundwater data from three inland sedimentary basins with slow groundwater flow in semi-arid regions. The simulations fitted with the batch experiments, achieving an R-squared (R2) of 0.98. The coexisting ions in the recharge water significantly affected As release during recharge. Ca2+ inhibited the release of total arsenic (Total-As) by increasing the surface charge of iron oxides. NO3- inhibited Total-As release by promoting the conversion of trivalent As into pentavalent As. Conversely, HCO3- facilitated As release by competing with arsenate for adsorption sites. On the basis of the modeling and batch experiment results, Total-As release with groundwater recharge was predicted. The results indicated that the high Ca2+ concentration in the recharge water inhibited the As release by 83.5 %, which can be used as a strategy to control As release during groundwater recharge in high-As inland basins.
Collapse
Affiliation(s)
- Yanru Zhou
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhao Z, Lou W, Zhong D, Shi Y, Zhang F, Wang L, Wu X, Sheng A, Chen J. Time-varying contributions of Fe II and Fe III to As V immobilization under anoxic/oxic conditions: The impacts of biochar and dissolved organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175241. [PMID: 39098410 DOI: 10.1016/j.scitotenv.2024.175241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Engineering black carbon (e.g. biochar) has been widely found in natural environments due to natural processes and extensive applications in engineering systems, and could influence the geochemical processes of coexisting arsenic (AsV) and FeII, especially when they are exposed to oxic conditions. Here, we studied time-varying kinetics and efficiencies of AsV immobilization by solid-phase FeII (FeIIsolid) and FeIII (FeIIIsolid) in FeII-AsV-biochar systems under both anoxic and oxic conditions at pH 7.0, with focuses on the effects of biochar surface and biochar-derived dissolved organic carbon (DOC). Under anoxic conditions, FeII could rapidly immobilize AsV via co-adsorption onto biochar surfaces, which also serves as the dominant pathway of AsV immobilization at the initial stage of reaction (0-5 min) under oxic conditions at high biochar concentrations. Subsequently, with increasing biochar concentrations, FeIIIsolid precipitation from aqueous FeII (FeIIaq) oxidation (5-60 min) starts to play an important role in AsV immobilization but in decreased efficiencies of AsV immobilization per unit iron. In the following stage (60-300 min), FeIIsolid oxidation is suppressed and leads to AsV release into solutions at >1.0 g·L-1 biochar. The decreasing efficiency of AsV immobilization over time is attributed to the gradual release of DOC into solution from biochar particles, which significantly inhibit AsV immobilization when FeIIIsolid is generated from FeIIsolid oxidation in the vicinity of biochar surfaces. Specifically, 4.06 mg·L of biochar-derived DOC can completely inhibit the immobilization of AsV in the 100 μM FeII system under oxic conditions. The findings are crucial to comprehensively understand and predict the behavior of FeII and AsV with coexisting engineering black carbon in natural environments.
Collapse
Affiliation(s)
- Zezhou Zhao
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Lou
- Hunan Provincial Engineering Research Center for Resource Recovery and Safe Disposal of Industrial Solid Waste, Hunan Heqing Environmental Technology Company Limited, Changsha 410032, China
| | - Delai Zhong
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yao Shi
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fengjiao Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linling Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohui Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anxu Sheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jing Chen
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Han Z, Yang J, Yan Y, Zhao C, Wan X, Ma C, Shi H. Quantifying the impact of factors on soil available arsenic using machine learning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124572. [PMID: 39029859 DOI: 10.1016/j.envpol.2024.124572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Arsenic (As) can accumulate in edible plant parts and thus pose a serious threat to human health. Identifying the contributions of various factors to soil available As is crucial for evaluating environmental risks. However, research quantitatively assessing the importance of soil properties on available As is scarce. In this study, we utilized 442 datasets covering total As, available As, and properties of farmland soils. The five machine learning models were employed to predict soil available As content, and the model with the best predictive performance was selected to calculate the importance of soil properties on available As and interpret the model results. The Random Forest model exhibited the best predictive performance, with R2 for the test set of dryland and paddy fields being 0.83 and 0.82 respectively, while also outperforming other machine learning models in terms of accuracy. Concurrently, evaluating the contribution of soil properties to soil available As revealed that increases in soil total arsenic, pH, organic matter (OM), and cation exchange capacity (CEC) led to higher soil available As content. Among these factors, soil total As had the greatest impact, followed by CEC. The influence of pH on soil available As was greater in dryland compared to OM, while in paddy fields, it was smaller than OM (p < 0.01). Sensitivity analysis results indicated that reducing soil total As content had the greatest effect on available As. In both dryland and paddy field soils, reducing soil total As had the most pronounced effect on available As, leading to reductions of 10.09% and 8.48%, respectively. Therefore, prioritizing the regulation of soil total As and CEC is crucial in As contamination management practices to alter As availability in farmland soils.
Collapse
Affiliation(s)
- Zhaoyang Han
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yunxian Yan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Zhao
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Xiaoming Wan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 45000, China
| | - Huading Shi
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| |
Collapse
|
4
|
Liu N, Gao R, Guo J, Fu L, Xue B, Ma K, Lin C. Mechanisms of calcium-mediated As(V) immobilization by undissolved and dissolved biochar in saline-alkali environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122775. [PMID: 39388816 DOI: 10.1016/j.jenvman.2024.122775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
The environmental impact of arsenic (As) pollution has been a focal point within environmental science. In arsenic-polluted saline-alkali environment, the addition of exogenous biochar can affect the morphological transformation of As both through direct and indirect mechanisms, with calcium ions (Ca(II)) playing a crucial role. This study investigates the immobilization mechanisms of undissolved biochar (UOB) and dissolved biochar (DOB) on As(V) in the absence and presence of Ca(II) under alkaline conditions and aerobic atmosphere. While UOB and DOB alone are insufficient for As(V) immobilization, their combined action in the presence of Ca(II) achieves remarkable immobilization rates of 91.9% and 98.1%, respectively. Precipitation of calcium arsenate is identified as the primary immobilization pathway in both the UOB-Ca(II)-As(V) and DOB-Ca(II)-As(V) systems. Furthermore, Ca(II) acts as a mediator for As(V) immobilization through the formation of ternary UOB/DOB-Ca-As complexes, which are corroborated by Density Functional Theory (DFT) analysis from a microscopic perspective. Notably, the synergistic immobilization of As by DOB and newly generated CaCO3 in DOB-Ca(II)-As(V) system is highlighted. Additionally, the increase in Ca(II) concentration (0-100 mM) and solution pH (9.0-12.0) both significantly enhance the immobilization of As(V). An increase in the dosage of UOB (0.4-4 g/L) reduces the immobilization of As(V), while effect of the DOB concentration is insignificant. This study provides new insights into how the release of two biochar fractions into a typical Ca(II)-rich saline-alkali environment may alter the fate and transport of As species.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Ruili Gao
- School of Agriculture, Ningxia University, Yinchuan, 750021, PR China.
| | - Jingjing Guo
- School of Agriculture, Ningxia University, Yinchuan, 750021, PR China
| | - Longwei Fu
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, PR China
| | - Bin Xue
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, PR China
| | - Kun Ma
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, PR China
| | - Chen Lin
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, PR China
| |
Collapse
|
5
|
Qu H, Ding K, Ao M, Ye Z, Liu T, Hu Z, Cao Y, Morel JL, Baker AJM, Tang Y, Qiu R, Wang S. New insights into the controversy of reactive mineral-controlled arsenopyrite dissolution and arsenic release. WATER RESEARCH 2024; 262:122051. [PMID: 39024668 DOI: 10.1016/j.watres.2024.122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Serious arsenic (As) contaminations could commonly result from the oxidative dissolution of As-containing sulfide minerals, such as arsenopyrite (FeAsS). Pyrite (Py) and calcite (Cal) are two typically co-existing reactive minerals and represent different geological scenarios. Previous studies have shown that a high proportion of Py can generate a stronger galvanic effect and acid dissolution, thereby significantly promoting the release of arsenic. However, this conclusion overlooks calcite's antagonistic effect on the release of As in the natural environment. That antagonistic effect could remodel the linear relationship of pyrite on the oxidative dissolution of arsenopyrite, thus altering the environmental risk of As. We examined As release from arsenopyrite along a gradient of Py to Cal molar ratios (Py:Cal). The results showed that the lowest As release from arsenopyrite was surprisingly found in co-existing Py and Cal systems than in the singular Cal system, let alone in the singular Py system. This phenomenon indicated an interesting possibility of Py assistance to Cal inhibition of As release, though Py has always been regarded as a booster, also evidenced in this research, for As release from arsenopyrite. In singular systems of Py and Cal, As continued to be released for 60 days. However, in co-existing Py and Cal systems, As was released non-linearly in three stages over time: initial release (0-1 Day), immobilization (1-15 Days), and subsequent re-release (>15 Days). This is a new short-term natural attenuation stage for As, but over time, this stage gradually collapses. During the re-release stage (> 15 Days), a higher molar ratio of Py:Cal (increasing from 1:9 to 9:1) results in a lower rate constant k (mg·L-1·h-1) of As release (range from 0.0011 to 0.0002), and a higher abundance of secondary minerals formed (up to 26 mg/g goethite and hematite at Py: Cal=9:1). This demonstrates that increasing the Py:Cal molar ratio results in the formation of more secondary minerals which compensate for the higher potential antagonistic mechanisms generated by pyrites, such as acid dissolution and galvanic effect. These results explain the mechanisms of the high-risk characteristics of As both in acidic mine drainage and karst aquifers and discover the lowest risk in pyrite and calcite co-existing regions. Moreover, we emphasize that reactive minerals are important variables that can't be ignored in predicting As pollution in the future.
Collapse
Affiliation(s)
- Haojie Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ming Ao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zekai Ye
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Taicong Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zunhe Hu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jean-Louis Morel
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
| | - Alan J M Baker
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; School of BioSciences, The University of Melbourne, Parkville VIC3010, Australia
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Zhang Y, Xie X, Sun S, Wang Y. Coupled redox cycling of arsenic and sulfur regulates thioarsenate enrichment in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173776. [PMID: 38862046 DOI: 10.1016/j.scitotenv.2024.173776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
High‑arsenic groundwater is influenced by a combination of processes: reductive dissolution of iron minerals and formation of secondary minerals, metal complexation and redox reactions of organic matter (OM), and formation of more migratory thioarsenate, which together can lead to significant increases in arsenic concentration in groundwater. This study was conducted in a typical sulfur- and arsenic-rich groundwater site within the Datong Basin to explore the conditions of thioarsenate formation and its influence on arsenic enrichment in groundwater using HPLC-ICPMS, hydrogeochemical modeling, and fluorescence spectroscopy. The shallow aquifer exhibited a highly reducing environment, marked by elevated sulfide levels, low concentrations of Fe(II), and the highest proportion of thioarsenate. In the middle aquifer, an optimal ∑S/∑As led to the presence of significant quantities of thioarsenate. In contrast, the deep aquifer exhibited low sulfide and high Fe(II) concentration, with arsenic primarily originating from dissolved iron minerals. Redox fluctuations in the sediment driven by sulfur‑iron minerals generated reduced sulfur, thereby facilitating thioarsenate formation. OM played a crucial role as an electron donor for microbial activities, promoting iron and sulfate reduction processes and creating conditions conducive to thioarsenate formation in reduced and high‑sulfur environments. Understanding the process of thioarsenate formation and the influencing factors is of paramount importance for comprehending the migration and redistribution of arsenic in groundwater systems.
Collapse
Affiliation(s)
- Yuyao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China.
| | - Shutang Sun
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
7
|
Li J, Ma H, Chen X, Yu Y, Xia X, Zhao W, Li D, Zhao Q, Wei L. Integrating HYDRUS-2D and Bayesian Networks for simulating long-term sludge land application: Uncovering heavy metal mobility and pollution risk in the soil-groundwater environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134803. [PMID: 38850931 DOI: 10.1016/j.jhazmat.2024.134803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The release of sludge-derived heavy metals (HMs) to soil and their subsequent migration into groundwater poses a significant challenge for safe and low-carbon sludge land application. This study developed a predictive framework to simulate 60-year sludge land application, evaluating the risk of HMs pollution in the soil-groundwater environment and assessing the influence of soil and water properties. HYDRUS-2D simulations revealed that highly mobile Cu, Ni, and Zn penetrated a 10 m soil layer over a 60-year period, contributing to groundwater pollution. In contrast, Cr was easily sequestered within the topsoil layer after 5-years continuous operation. The non-equilibrium parameter α could serve as an indicator for assessing their potential risk. Furthermore, the limited soil adsorption sites for Pb (f = 0.02772) led to short-term (1-year) groundwater pollution at a 0.5 m-depth. Bayesian Networks model outcomes indicated that humic-like organics crucially influenced HMs transformation, enhancing the desorption of Cd, Cu, Ni, Pb, and Zn, while inhibiting the desorption for Cr. Additionally, electrical conductivity promoted the release of most HMs, in contrast to the Mn mineralogy in soil. This study bridges the gap between the macro-level HMs migration trends and the micro-level adsorption-desorption characteristics, providing guidance for the safe land application of sewage sludge. ENVIRONMENTAL IMPLICATION: This study introduces a framework integrating HYDRUS-2D simulations with Bayesian Networks to assess the risks of groundwater pollution by heavy metals (HMs) over a 60-year sludge application. Sludge-derived Cu, Ni, and Zn are found to penetrate soil up to 10 m and exceed safety limits, with the non-equilibrium parameter α serving as an indicator for pollution risk. The importance of nutrients from sludge-amended soil for the transformation of HMs in the subsurface environment highlights the need for enhanced sludge management, specifically through more detailed regulation of nutrient composition. These findings contribute to developing precise strategies for the long-term sludge land application.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwei Chen
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China; China Construction Eighth Engineering Division Corp., LTD, 200112, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Songliao Aquatic Environment (Ministry of Education), Jilin Jianzhu University, Changchun 130118, China.
| |
Collapse
|
8
|
Ilgen AG, Borguet E, Geiger FM, Gibbs JM, Grassian VH, Jun YS, Kabengi N, Kubicki JD. Bridging molecular-scale interfacial science with continuum-scale models. Nat Commun 2024; 15:5326. [PMID: 38909017 PMCID: PMC11193788 DOI: 10.1038/s41467-024-49598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
Solid-water interfaces are crucial for clean water, conventional and renewable energy, and effective nuclear waste management. However, reflecting the complexity of reactive interfaces in continuum-scale models is a challenge, leading to oversimplified representations that often fail to predict real-world behavior. This is because these models use fixed parameters derived by averaging across a wide physicochemical range observed at the molecular scale. Recent studies have revealed the stochastic nature of molecular-level surface sites that define a variety of reaction mechanisms, rates, and products even across a single surface. To bridge the molecular knowledge and predictive continuum-scale models, we propose to represent surface properties with probability distributions rather than with discrete constant values derived by averaging across a heterogeneous surface. This conceptual shift in continuum-scale modeling requires exponentially rising computational power. By incorporating our molecular-scale understanding of solid-water interfaces into continuum-scale models we can pave the way for next generation critical technologies and novel environmental solutions.
Collapse
Affiliation(s)
- Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, La Jolla, CA, 92093, USA
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, GA, 30302, USA
| | - James D Kubicki
- Department of Earth, Environmental and Resource Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
9
|
Liu Z, Yang Q, Zhu P, Liu Y, Tong X, Cao T, Tomson MB, Alvarez PJJ, Zhang T, Chen W. Cr(VI) Reduction and Sequestration by FeS Nanoparticles Formed in situ as Aquifer Material Coating to Create a Regenerable Reactive Zone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7186-7195. [PMID: 38598770 DOI: 10.1021/acs.est.3c10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Remediation of large and dilute plumes of groundwater contaminated by oxidized pollutants such as chromate is a common and difficult challenge. Herein, we show that in situ formation of FeS nanoparticles (using dissolved Fe(II), S(-II), and natural organic matter as a nucleating template) results in uniform coating of aquifer material to create a regenerable reactive zone that mitigates Cr(VI) migration. Flow-through columns packed with quartz sand are amended first with an Fe2+ solution and then with a HS- solution to form a nano-FeS coating on the sand, which does not hinder permeability. This nano-FeS coating effectively reduces and immobilizes Cr(VI), forming Fe(III)-Cr(III) coprecipitates with negligible detachment from the sand grains. Preconditioning the sand with humic or fulvic acid (used as model natural organic matter (NOM)) further enhances Cr(VI) sequestration, as NOM provides additional binding sites of Fe2+ and mediates both nucleation and growth of FeS nanoparticles, as verified with spectroscopic and microscopic evidence. Reactivity can be easily replenished by repeating the procedures used to form the reactive coating. These findings demonstrate that such enhancement of attenuation capacity can be an effective option to mitigate Cr(VI) plume migration and exposure, particularly when tackling contaminant rebound post source remediation.
Collapse
Affiliation(s)
- Zhenhai Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qihong Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Panpan Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Xin Tong
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tianchi Cao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Mason B Tomson
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
10
|
Wang Z, Guo H, Adimalla N, Pei J, Zhang Z, Liu H. Co-occurrence of arsenic and fluoride in groundwater of Guide basin in China: Genesis, mobility and enrichment mechanism. ENVIRONMENTAL RESEARCH 2024; 244:117920. [PMID: 38109955 DOI: 10.1016/j.envres.2023.117920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Endemic arsenic poisoning and fluorosis caused by primary high arsenic (As) and high fluoride (F-) groundwater have become one of the most serious environmental geological problems faced by the international society. High As and high F- groundwater exists in Neogene confined aquifers in Guide basin, with concentrations of 355 μg/L and 5.67 mg/L, respectively, and showing a co-occurrence phenomenon of As and F- in the groundwater. This poses a double threat to the health of tens of thousands of local residents. In this study, based on the systematic collection of groundwater and borehole sediment samples, analysis of hydrochemistry and isotope indexes, combined with laboratory tests, purpose of this study is to reveal the migration rule and co-enrichment mechanism of As and F- in aquifers, and finally establish a hydrogeochemical conceptual model of the enrichment process of As and F-. The main conclusions are as follows: hydrochemical type of unconfined and confined groundwater in Guide basin is Ca-Na-HCO3 and Na-Cl-HCO3 type, respectively. Main minerals in sediments are quartz and plagioclase. Concentrations of As and F- are lower in unconfined groundwater, but higher in confined groundwater, and which show a gradual increasing trend along the groundwater flow path. The mineralization of natural organic matter in confined aquifer causes iron and manganese oxide minerals containing As to dissolve gradually, which leads to the gradual release of As into groundwater. Large amount of HCO3- produced by mineralization of organic matter precipitate with Ca2+ in groundwater, resulting in reduction of Ca2+ content, promoting the dissolution of fluoride-containing minerals such as fluorite (CaF2), and continuously releasing F- into groundwater. Meanwhile, competitive adsorption reactions in confined aquifers causes more As and F- to be released from mineral surface into groundwater, which gradually migrate and accumulate along groundwater flow. Finally, it is established that a conceptual model for the formation of high As and F- groundwater in the confined aquifer of Guide basin. The research results not only help to improve our understanding of the formation and evolution of groundwater with high As and F- with similar geological background, but also provide scientific basis for rational development and utilization of groundwater, and prevention and control of chronic As and F- poisoning in local and similar areas.
Collapse
Affiliation(s)
- Zhen Wang
- School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, Jiangxi, 330032, China
| | - Huaming Guo
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Narsimha Adimalla
- School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, Jiangxi, 330032, China
| | - Junling Pei
- School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, Jiangxi, 330032, China
| | - Zhuo Zhang
- Tianjin Center, China Geological Survey, Tianjin, 300170, China
| | - Haiyan Liu
- School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, Jiangxi, 330032, China
| |
Collapse
|
11
|
Wen J, Tang X, Wang M, Mu L, Hao W, Weng J, Gao Z, Hu X. Regulation and mechanism of pyrite and humic acid on the toxicity of arsenate in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168980. [PMID: 38040366 DOI: 10.1016/j.scitotenv.2023.168980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Pyrite and humic acid are common substances in nature, and the combined effects of pyrite and humic acid on arsenic phytotoxicity are more widespread in the actual environments than that of a single substance, but have received less attention. In this study, the interaction between pyrite and humic acid in arsenate solution was studied, and the effects of pyrite and humic acid on plant toxicity of arsenate were evaluated. The results showed that arsenate + pyrite + fulvic acid (V-PF) treatment immobilized more arsenic by forming chemical bonds such as AsS and Fe-As-O and reduced the migration of arsenic to plants. Compared to the arsenate + fulvic acid (VF), arsenate + pyrite (VP) and arsenate (V) group, the inorganic arsenic content of lettuce leaves in the V- PF group was reduced by 19.8 %, 13.4 % and 13.4 %, respectively. In addition, the V-PF group increased the absorption of Ca, Fe and Cu in plant roots, and improved the activity of superoxide dismutase (SOD) in plant leaves. Compared to the VF group, SOD and MDA in the V-PF group increased by 34.1 % in 30 days and decreased by 47.3 % in 40 days, respectively. The biomass of lettuce in V-PF group was increased by 29.3 % compared with that in VF group on day 50. The protein content of the V-PF group was 58.3 % higher than that of the VF group and 23.1 % higher than that of the VP group. Furthermore, metabolomics analysis showed that the V-PF group promoted glycolysis by up-regulating glyoxylic acid and dicarboxylic acid metabolism, thus reducing carbohydrate accumulation. Phosphocreatine metabolism was also up-regulated, which decreased the oxidative damage in lettuce induced by arsenic. This study will provide new ideas for scientifically and rationally assessing the ecological environmental risks of arsenic and regulating its toxicity.
Collapse
Affiliation(s)
- Jingyu Wen
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Xin Tang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Mengyuan Wang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.
| | - Weidan Hao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Jingxian Weng
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Ziwei Gao
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| |
Collapse
|
12
|
Ahmad A, van Genuchten CM. Deep-dive into iron-based co-precipitation of arsenic: A review of mechanisms derived from synchrotron techniques and implications for groundwater treatment. WATER RESEARCH 2024; 249:120970. [PMID: 38064786 DOI: 10.1016/j.watres.2023.120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/25/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The co-precipitation of Fe(III) (oxyhydr)oxides with arsenic (As) is one of the most widespread approaches to treat As-contaminated groundwater in both low- and high-income settings. Fe-based co-precipitation of As occurs in a variety of conventional and decentralized treatment schemes, including aeration and sand filtration, ferric chloride addition and technologies based on controlled corrosion of Fe(0) (i.e., electrocoagulation). Despite its ease of deployment, Fe-based co-precipitation of As entails a complex series of chemical reactions that often occur simultaneously, including electron-transfer reactions, mineral nucleation, crystal growth, and As sorption. In recent years, the growing use of sophisticated synchrotron-based characterization techniques in water treatment research has generated new detailed and mechanistic insights into the reactions that govern As removal efficiency. The purpose of this critical review is to synthesize the current understanding of the molecular-scale reaction pathways of As co-precipitation with Fe(III), where the source of Fe(III) can be ferric chloride solutions or oxidized Fe(II) sourced from natural Fe(II) in groundwater, ferrous salts or controlled Fe(0) corrosion. We draw primarily on the mechanistic knowledge gained from spectroscopic and nano-scale investigations. We begin by describing the least complex reactions relevant in these conditions (Fe(II) oxidation, Fe(III) polymerization, As sorption in single-solute systems) and build to multi-solute systems containing common groundwater ions that can alter the pathways of As uptake during Fe(III) co-precipitation (Ca, Mg bivalent cations; P, Si oxyanions). We conclude the review by providing a perspective on critical knowledge gaps remaining in this field and new research directions that can further improve the understanding of As removal via Fe(III) co-precipitation.
Collapse
Affiliation(s)
- A Ahmad
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden; SIBELCO, Ankerpoort NV, Op de Bos 300, 6223 EP, Maastricht, the Netherlands
| | - C M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark.
| |
Collapse
|
13
|
Gao Y, Luo Y, Pan Z, Zeng Z, Fan W, Hu J, Zhang Z, Ma J, Zhou Y, Ma J. Comparative study of Fe(II)/sulfite, Fe(II)/PDS and Fe(II)/PMS for p-arsanilic acid treatment: Efficient organic arsenic degradation and contrasting total arsenic removal. WATER RESEARCH 2024; 249:120967. [PMID: 38070343 DOI: 10.1016/j.watres.2023.120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
As a widely used feed additives, p-arsanilic acid (p-AsA) frequently detected in the environment poses serious threats to aquatic ecology and water security due to its potential in releasing more toxic inorganic arsenic. In this work, the efficiency of Fe(II)/sulfite, Fe(II)/PDS and Fe(II)/PMS systems in p-AsA degradation and simultaneous arsenic removal was comparatively investigated for the first time. Efficient p-AsA abatement was achieved in theses Fe-based systems, while notable discrepancy in total arsenic removal was observed under identical acidic condition. By using chemical probing method, quenching experiments, isotopically labeled water experiments, p-AsA degradation was ascribed to the combined contribution of high-valent Fe(IV) and SO4•-in these Fe(II)-based system. In particular, the relative contribution of Fe(IV) and SO4•- in the Fe(II)/sulfite system was highly dependent on the molar ratio of [Fe(II)] and [sulfite]. Negligible arsenic removal was observed in the Fe(II)/sulfite and Fe(II)/PDS systems, while ∼80% arsenic was removed in the Fe(II)/PMS system under identical acidic condition. This interesting phenomenon was due to that ferric precipitation only occurred in the Fe(II)/PMS system. As(V) was further removed via adsorption onto the iron precipitate or the formation of ferric arsenate-sulfate compounds, which was confirmed by particle diameter measurements, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Through tuning solution pH, complete removal of total arsenic could achieve in all three systems. Among these three Fe-based technologies, the hybrid oxidation-coagulation Fe(II)/PMS system demonstrated potential superiority for arsenic immobilization by not requiring pH adjustment for coagulation and facilitating the in-situ generation of ferric arsenate-sulfate compounds with comparably low solubility levels like scorodite. These findings would deepen the understanding of these three Fe-based Fenton-like technologies for decontamination in water treatment.
Collapse
Affiliation(s)
- Yuan Gao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yun Luo
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhao Pan
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhu Zeng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenxia Fan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyu Hu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhong Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ma
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Zhao Y, Zhang X, Jian Z, Gong Y, Meng X. Effect of landfill leachate on arsenic migration and transformation in shallow groundwater systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5032-5042. [PMID: 38148459 DOI: 10.1007/s11356-023-31629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
Arsenic contamination of groundwater has affected human health and environmental safety worldwide. Hundreds of millions of people in more than 100 countries around the world are directly or indirectly troubled by arsenic-contaminated groundwater. In addition, arsenic contamination of groundwater caused by leakage of leachate from municipal solid waste landfills has occurred in some countries and regions, which has attracted widespread attention. Understanding how domestic waste landfill leachate affects the arsenic's migration and transformation in shallow groundwater is crucial for accurate assessment of the distribution and ecological hazards of arsenic in groundwater. Based on literature review, this study systematically summarized and discussed the basic characteristics of landfill leachate, the mechanism of arsenic pollution in groundwater, and the effect of landfill leachate on the migration and transformation of arsenic in groundwater. Combined with relevant research findings and practical experience, countermeasures and suggestions to limit the impact of landfill leachate on the migration and transformation of arsenic in groundwater are put forward.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhiqiang Jian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yaping Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoguang Meng
- Center for Environmental Systems, Department of Civil, Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
15
|
Etesami H, Jeong BR, Maathuis FJM, Schaller J. Exploring the potential: Can arsenic (As) resistant silicate-solubilizing bacteria manage the dual effects of silicon on As accumulation in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166870. [PMID: 37690757 DOI: 10.1016/j.scitotenv.2023.166870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Rice (Oryza sativa L.) cultivation in regions marked by elevated arsenic (As) concentrations poses significant health concerns due to As uptake by the plant and its subsequent entry into the human food chain. With rice serving as a staple crop for a substantial share of the global population, addressing this issue is critical for food security. In flooded paddy soils, where As availability is pronounced, innovative strategies to reduce As uptake and enhance agricultural sustainability are mandatory. Silicon (Si) and Si nanoparticles have emerged as potential candidates to mitigate As accumulation in rice. However, their effects on As uptake exhibit complexity, influenced by initial Si levels in the soil and the amount of Si introduced through fertilization. While low Si additions may inadvertently increase As uptake, higher Si concentrations may alleviate As uptake and toxicity. The interplay among existing Si and As availability, Si supplementation, and soil biogeochemistry collectively shapes the outcome. Adding water-soluble Si fertilizers (e.g., Na2SiO3 and K2SiO3) has demonstrated efficacy in mitigating As toxicity stress in rice. Nonetheless, the expense associated with these fertilizers underscores the necessity for low cost innovative solutions. Silicate-solubilizing bacteria (SSB) resilient to As hold promise by enhancing Si availability by accelerating mineral dissolution within the rhizosphere, thereby regulating the Si biogeochemical cycle in paddy soils. Promoting SSB could make cost-effective Si sources more soluble and, consequently, managing the intricate interplay of Si's dual effects on As accumulation in rice. This review paper offers a comprehensive exploration of Si's nuanced role in modulating As uptake by rice, emphasizing the potential synergy between As-resistant SSB and Si availability enhancement. By shedding light on this interplay, we aspire to shed light on an innovative attempt for reducing As accumulation in rice while advancing agricultural sustainability.
Collapse
Affiliation(s)
| | - Byoung Ryong Jeong
- Division of Applied Life Science, Graduate School, Gyeongsang National University, Republic of Korea 52828
| | | | - Jörg Schaller
- "Silicon Biogeochemistry" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
16
|
Zeng L, Yan C, Yang F, Zhen Z, Yang J, Chen J, Huang Y, Xiao Y, Zhang W. The Effects and Mechanisms of pH and Dissolved Oxygen Conditions on the Release of Arsenic at the Sediment-Water Interface in Taihu Lake. TOXICS 2023; 11:890. [PMID: 37999542 PMCID: PMC10675530 DOI: 10.3390/toxics11110890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
The pH and dissolved oxygen (DO) conditions are important environmental factors that control the migration of arsenic (As) at the sediment-water interface. This study investigates the distribution differences of reactive iron, manganese, and arsenic at the sediment-water interface under anaerobic and aerobic conditions at different pH levels. The strong buffering capacity of sediment to water pH results in a shift towards neutral pH values in the overlying water under different initial pH conditions. The level of DO becomes a key factor in the release of As from sediment, with lower DO environments exhibiting higher release quantities and rates of As compared to high DO environments. Under low DO conditions, the combined effects of ion exchange and anaerobic reduction lead to the most significant release of As, particularly under pH 9.5 conditions. The formation of amorphous ferrous sulfide compounds under low DO conditions is a significant factor contributing to increased arsenic concentration in the interstitial water. Therefore, the re-migration of endogenous arsenic in shallow lake sediments should consider the combined effects of multiple driving forces.
Collapse
Affiliation(s)
- Liqing Zeng
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (F.Y.); (Z.Z.)
| | - Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (F.Y.); (Z.Z.)
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (F.Y.); (Z.Z.)
| | - Jiaming Yang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Jielun Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Yujie Huang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Yuhui Xiao
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Wen Zhang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| |
Collapse
|
17
|
Yao Y, Ma K, Li S, Zhang Y, Zhang Z, Fang F, Lin Y, Yin L, Sun L, Zhang C. Dissolved organic matter and Fe/Mn enhance the combination and transformation of As in Lake Chaohu Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119425. [PMID: 39492388 DOI: 10.1016/j.jenvman.2023.119425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
The phenomenon of algal blooms resulting from lake eutrophication has the potential to increase the concentration of dissolved organic matter (DOM) and consequently influence the environmental behaviour of arsenic (As). In the subtropical region, the interplay between DOM, Fe/Mn and As becomes complex as Fe/Mn-rich substances from soils and sediments enter eutrophic lakes. The mechanisms by which DOM-Fe/Mn interactions affect the transformation of As species remain uncertain. Therefore, the Chaohu Lake Basin was selected as a representative case study site to investigate the levels of DOM, As, Fe and Mn in the water and to establish their associations. In addition, the interaction mechanism between DOM-Fe/Mn and As was investigated by elucidating the transformation behaviour of DOM-Fe/Mn on As species in a controlled laboratory environment. The results showed that in cases where the coexistence of Fe and Mn concentrations was relatively low (e.g. Fe < ∼0.5 mg/L and Mn < ∼0.6 mg/L), the concentration of As in water would increase proportionally with the simultaneous increase of both Fe and Mn concentrations (As < 5 μg/L). However, when the concentration of either Fe or Mn reached 10 mg/L, the proportion of As complexed by DOM increased significantly, reaching 99.73% and 99.66%, respectively. In the configuration of a metallic bridge, the elements Fe and Mn act as connectors between negatively charged DOM and As, thereby increasing the adsorption capacity of DOM for As. The alcohol and alkene functional groups present on the DOM-Fe/Mn surface show a preference for binding with free species of As in aqueous environments. In addition, the reductive groups on the surface of DOM not only directly convert As(V) to As(III), but also facilitate the reduction of Fe(III) to Fe(II), resulting in the indirect conversion of As(V) to As(III). Thus, this study provides a comprehensive understanding of the transport and transformation processes of arsenic in subtropical eutrophic lakes.
Collapse
Affiliation(s)
- Youru Yao
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Kang Ma
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Zhiming Zhang
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Fengman Fang
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Yuesheng Lin
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Lian Sun
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Chonghong Zhang
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| |
Collapse
|
18
|
Zang Y, Wang M, Shohag MJI, Lu L, He T, Liao C, Zhang Z, Chen J, You X, Zhao Y, Wei Y, Tian S. Biochar performance for preventing cadmium and arsenic accumulation, and the health risks associated with mustard (Brassica juncea) grown in co-contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115216. [PMID: 37421894 DOI: 10.1016/j.ecoenv.2023.115216] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Cadmium (Cd) and arsenic (As) in co-contaminated soil can enter the human body harming health via the food chain, such as vegetables. Biochar derived from waste has been used to reduce heavy metal uptake by plant, but long-term effects of biochar under Cd and As co-contaminated soil needs to be investigated. A following mustard (Brassica juncea) was grown on co-contaminated soil amended with different raw materials of biochar including biochars pyrolyzed by lignite coal (LCB), rice straw (RSB), silkworm excrement (SEB), and sugar refinery sludge (SSB). The results showed that compared to the control, Cd and As contents of mustard shoot in SSB treatment decreased by 45-49% and 19-37% in two growing seasons, respectively, which was the most effective among 4 biochars. This probably due to SSB owns more abundant Fe-O functional groups. Biochar also altered the microbial community composition, specifically SSB increased proteobacteria abundance by 50% and 80% in the first and second growing seasons, thereby promoted the simultaneous immobilization of Cd and As in soils which may reduce the potential risks to humans. In summary, considering the long-term effects and security of SSB application on mustard, not only is it an effective waste recycle option, but it should also be promoted as a promising approach for safe vegetable production in Cd and As co-contaminated soils.
Collapse
Affiliation(s)
- Yili Zang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; MOE Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Min Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - M J I Shohag
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Tieguang He
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, Guangxi, China
| | - Changjun Liao
- Guangxi Bossco Enviromental Protection Technology Co., Ltd, Nanning 53007, China
| | - Zengyu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiancheng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoshuang You
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yihan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Feng F, Jiang Y, Jia Y, Lian X, Shang C, Zhao M. Exogenous-organic-matter-driven mobilization of groundwater arsenic. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100243. [PMID: 36896144 PMCID: PMC9989647 DOI: 10.1016/j.ese.2023.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The potential release capacity of arsenic (As) from sediment was evaluated under a high level of exogenous organic matter (EOM) with both bioreactive and chemically reactive organic matters (OMs). The OMs were characterized by FI, HIX, BIX, and SUVA254 fluorescence indices showing the biological activities were kept at a high level during the experimental period. At the genus level, Fe/Mn/As-reducing bacteria (Geobacter, Pseudomonas, Bacillus, and Clostridium) and bacteria (Paenibacillus, Acidovorax, Delftia, and Sphingomonas) that can participate in metabolic transformation using EOM were identified. The reducing condition occurs which promoted As, Fe, and Mn releases at very high concentrations of OM. However, As release increased during the first 15-20 days, followed by a decline contributed by secondary iron precipitation. The degree of As release may be limited by the reactivity of Fe (hydro)oxides. The EOM infiltration enhances As and Mn releases in aqueous conditions causing the risk of groundwater pollution, which could occur in specific sites such as landfills, petrochemical sites, and managed aquifer recharge projects.
Collapse
Affiliation(s)
- Fan Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yongfeng Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinying Lian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changjian Shang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Meng Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
20
|
Tang X, Wen J, Mu L, Gao Z, Weng J, Li X, Hu X. Regulation of arsenite toxicity in lettuce by pyrite and glutamic acid and the related mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162928. [PMID: 36934948 DOI: 10.1016/j.scitotenv.2023.162928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Compared with the effect of a single substance on arsenic plant toxicity, the effect of coexisting pyrite and natural organic matter can better reflect actual environmental conditions. In this study, the interaction between pyrite and glutamic acid in arsenite solution was explored, the influence of pyrite and glutamic acid on arsenite plant toxicity was evaluated, and the metabolic regulation mechanism of pyrite and glutamic acid on the arsenite phytotoxic effect was clarified by metabolomics analysis. Combined pyrite and glutamic acid treatment fixed more arsenic by forming chemical bonds such as AsS, AsO, and As-O-OH in culture solution and reduced inorganic arsenic levels in plants. Compared with glutamic acid alone and pyrite alone, the combined treatment reduced the inorganic arsenic concentration in plants by 4.7 % and 40.0 %, respectively. The combined treatment limited plant ROS accumulation and maintained the leaf chlorophyll content by increasing SOD synthesis. Compared with the effect of As(III) alone, the chlorophyll content increased by 15.1-21.0 % on average under the combined treatment. The combined treatment promoted the absorption of Ca, Cu, Fe, Mo and Zn in lettuce, enhanced plant adaptation to As(III) and significantly improved plant nutritional quality. Compared with glutamic acid alone, the combined treatment increased the VC, fiber and protein contents by 128.9 %, 202.8 % and 36.7 %, respectively. Metabolomics analysis indicated that in the combined treatment group, the upregulation of tyrosine, pyruvate and N metabolism increased the plant chlorophyll content. The upregulation of S metabolism increases VC synthesis in plants and inhibits ROS accumulation, thus maintaining normal plant growth and development. The upregulation of glutathione and glycine metabolism enhances plant stress resistance. This study will provide a new way to scientifically and rationally evaluate the ecological risk of arsenic and regulate its toxicity.
Collapse
Affiliation(s)
- Xin Tang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Jingyu Wen
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China.
| | - Ziwei Gao
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Jingxian Weng
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| |
Collapse
|
21
|
Wang S, Liao P, Cen L, Cheng H, Liu Q. Biochar Promotes Arsenopyrite Weathering in Simulated Alkaline Soils: Electrochemical Mechanism and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37224024 DOI: 10.1021/acs.est.2c09874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Oxidation dissolution of arsenopyrite (FeAsS) is one of the important sources of arsenic contamination in soil and groundwater. Biochar, a commonly used soil amendment and environmental remediation agent, is widespread in ecosystems, where it participates in and influences the redox-active geochemical processes of sulfide minerals associated with arsenic and iron. This study investigated the critical role of biochar on the oxidation process of arsenopyrite in simulated alkaline soil solutions by a combination of electrochemical techniques, immersion tests, and solid characterizations. Polarization curves indicated that the elevated temperature (5-45 °C) and biochar concentration (0-1.2 g·L-1) accelerated arsenopyrite oxidation. This is further confirmed by electrochemical impedance spectroscopy, which showed that biochar substantially reduced the charge transfer resistance in the double layer, resulting in smaller activation energy (Ea = 37.38-29.56 kJ·mol-1) and activation enthalpy (ΔH* = 34.91-27.09 kJ·mol-1). These observations are likely attributed to the abundance of aromatic and quinoid groups in biochar, which could reduce Fe(III) and As(V) as well as adsorb or complex with Fe(III). This hinders the formation of passivation films consisting of iron arsenate and iron (oxyhydr)oxide. Further observation found that the presence of biochar exacerbates acidic drainage and arsenic contamination in areas containing arsenopyrite. This study highlighted the possible negative impact of biochar on soil and water, suggesting that the different physicochemical properties of biochar produced from different feedstock and under different pyrolysis conditions should be taken into account before large-scale applications to prevent potential risks to ecology and agriculture.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ling Cen
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongguang Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qingyou Liu
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
22
|
Yang Y, Wang Q, Xue J, Tian S, Du Y, Xie X, Gan Y, Deng Y, Wang Y. Organic matter degradation and arsenic enrichment in different floodplain aquifer systems along the middle reaches of Yangtze River: A thermodynamic analysis. WATER RESEARCH 2023; 239:120072. [PMID: 37207456 DOI: 10.1016/j.watres.2023.120072] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Geogenic arsenic (As) contaminated groundwater has been widely accepted associating with dissolved organic matter (DOM) in aquifers, but the underlying enrichment mechanism at molecular-level from a thermodynamic perspective is poorly evidenced. To fill this gap, we contrasted the optical properties and molecular compositions of DOM coupled with hydrochemical and isotopic data in two floodplain aquifer systems with significant As variations along the middle reaches of Yangtze River. Optical properties of DOM indicate that groundwater As concentration is mainly associated with terrestrial humic-like components rather than protein-like components. Molecular signatures show that high As groundwater has lower H/C ratios, but greater DBE, AImod, and NOSC values. With the increase of groundwater As concentration, the relative abundance of CHON3 formulas gradually decreased while that of CHON2 and CHON1 increased, indicating the importance of N-containing organics in As mobility, which is also evidenced by nitrogen isotope and groundwater chemistry. Thermodynamic calculation demonstrated that organic matter with higher NOSC values preferentially favored the reductive dissolution of As-bearing Fe(III) (hydro)oxides minerals and thus promoted As mobility. These findings could provide new insights to decipher organic matter bioavailability in As mobilization from a thermodynamical perspective and are applicable to similar geogenic As-affected floodplain aquifer systems.
Collapse
Affiliation(s)
- Yijun Yang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Qian Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Jiangkai Xue
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, PR China
| | - Shuhang Tian
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Yao Du
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Yiqun Gan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Yamin Deng
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China.
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| |
Collapse
|
23
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
24
|
Cao X, He W, Fan M, He W, Shi Y, An T, Chen X, Zhang Z, Liu F, Zhao Y, Zhou P, Chen C, He J. Novel insights into source apportionment of dissolved organic matter in aquifer affected by anthropogenic groundwater recharge: Applicability of end-member mixing analysis based optical indices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160885. [PMID: 36526179 DOI: 10.1016/j.scitotenv.2022.160885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The composition and main sources of dissolved organic matter (DOM) in groundwater may change significantly under long-term anthropogenic groundwater recharge (AGR); however, the impact of AGR on quantitative sources of groundwater DOM has seldom been reported. This study evaluated the applicability of optical indices combined with mixing stable isotope analysis in R (MixSIAR) in end-member mixing analysis (EMMA) of groundwater DOM. Fluorescent indices, including C1%, C2%, and C3%, were more sensitive to AGR than other absorbance indices, as indicated by the significant difference between the dominant area of artificial groundwater recharged by surface water and the dominant area of natural groundwater recharged by atmospheric precipitation (NGRP). BIX-C1% was selected as the optimal dual index after the screening protocol of groundwater DOM for EMMA. Our results showed that DOM in the aquifer was mainly subject to autochthonous DOM and the contribution of background groundwater to AGRSW and NGRP groundwater accounted for 36.15% ± 32.41% and 55.46% ± 37.17% (p < 0.05), respectively. Therefore, AGR significantly changed the native DOM in the groundwater. In allochthonous sources of DOM, sewage and surface water contributed 29.54% ± 24.87% and 21.32% ± 28.08%, and 24.79% ± 15.56% and 15.21% ± 14.20% to AGRSW and NGRP groundwater, respectively. The contribution of surface water to AGRSW groundwater was significantly higher than that to NGRP groundwater (p < 0.05), indicating that AGR introduced significantly more DOM from surface water to groundwater. This study provides novel insights into the quantitative source apportionment of DOM in groundwater under long-term AGR, which will facilitate the environmental risk assessment of present AGR measures and the sustainable management of clean water.
Collapse
Affiliation(s)
- Xu Cao
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei He
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| | - Mengqing Fan
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Yuanyuan Shi
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| | - Tongyan An
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| | - Xiaorui Chen
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhanhao Zhang
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fei Liu
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yi Zhao
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Pengpeng Zhou
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Cuibai Chen
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jiangtao He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
25
|
Hao C, Sun X, Peng Y, Xie B, He K, Wang Y, Liu M, Fan X. Geochemical impact of dissolved organic matter on antimony mobilization in shallow groundwater of the Xikuangshan antimony mine, Hunan Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160292. [PMID: 36414049 DOI: 10.1016/j.scitotenv.2022.160292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) is widely used in aquatic systems to control the environmental fate of As. However, similar to the behavior of As, Sb mobilization driven by DOM is poorly understood. A total of 25 samples were collected from shallow groundwater in the Xikuangshan mine to compare the spectroscopic characteristics and chemical properties of DOM between high- and low-Sb groundwater and to determine the roles of DOM in Sb mobility. The concentrations of Sb and DOM varied from 0.003 to 18.402 mg/L (mean: 3.407 mg/L) and 0.38 to 9.90 mg/L (mean: 2.49 mg/L), respectively. The DOM of the D3x4 water was primarily dominated by terrestrial and microbial humic-like and fulvic acid substances, with a relatively small contribution of tryptophan-like components. Complexing agents, competitive adsorption, and photopromoted oxidation under sunlight were considered as the formation mechanisms for DOM-controlled Sb(V)-dominated Sb species in D3x4 water. The weakly alkaline and oxidizing conditions, and the presence of Fe hydroxides facilitated the promotion of Sb(V) concentration. The findings of this study further enhance our understanding of the Sb migration mechanism in oxic groundwater.
Collapse
Affiliation(s)
- Chunming Hao
- North China Institute of Science and Technology, Hebei 065201, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Anhui 234000, PR China.
| | - Ximeng Sun
- North China Institute of Science and Technology, Hebei 065201, PR China
| | - Yingao Peng
- Institute of Disaster Prevention, Hebei 065201, PR China
| | - Bing Xie
- North China Institute of Science and Technology, Hebei 065201, PR China
| | - Kaikai He
- North China Institute of Science and Technology, Hebei 065201, PR China
| | - Yantang Wang
- North China Institute of Science and Technology, Hebei 065201, PR China
| | - Min Liu
- North China Institute of Science and Technology, Hebei 065201, PR China
| | - Xing Fan
- North China Institute of Science and Technology, Hebei 065201, PR China.
| |
Collapse
|
26
|
Wang X, Shu Z, He H, Zhou M, Lu X, Wang J, Zhang L, Pan Z, Wang Z. Arsenopyrite dissolution in circumneutral oxic environments: The effect of pyrophosphate and dissolved Mn(III). WATER RESEARCH 2023; 230:119595. [PMID: 36642031 DOI: 10.1016/j.watres.2023.119595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The oxidative dissolution of As from arsenopyrite, one important arsenic mineral in reducing conditions, poses an environmental hazard to natural aquatic systems. The dissolution of arsenopyrite occurs slowly due to the surface precipitates of iron oxides in circumneutral oxic environments. However, the presence of natural ligands and coexisting metals may change the release of Fe species, which would be of critical importance to the dissolution of arsenopyrite. Here, we investigated the oxidative dissolution of arsenopyrite induced by pyrophosphate (PP) and dissolved Mn(III) species as a natural occurring Mn species with strong complexation affinity to PP. With the presence of PP, the formation of Fe(II)-PP complexes and its rapid oxidation to dissolved Fe(III)-PP species resulted in a substantial increase in the generation of hydroxyl radicals (•OH) under ambient dark conditions, contributing to faster dissolution of arsenopyrite and higher percentage of As(V) in the dissolved products. Dissolved Mn(III), though considered as an extra oxidant besides oxygen, unexpectedly acted as a radical scavenger for •OH and inhibited the production of As(V). Moreover, the oxidation of sulfur species differed in the two systems as significant formation of thiosulfate was observed with the presence of PP, which did not occur in the system with dissolved Mn(III). Overall, the effects of dissolved Mn(III) and PP on the dissolution of arsenopyrite and the subsequent transformation of Fe, As and S species have important implications for disentangling the interactions among these metastable elements, and for assessing their transport and environmental impacts in aquatic systems.
Collapse
Affiliation(s)
- Xingxing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zhipeng Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Haohua He
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Ming Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xiaohan Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Jiajia Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai, China.
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
27
|
Zou Q, Wei H, Chen Z, Ye P, Zhang J, Sun M, Huang L, Li J. Soil particle size fractions affect arsenic (As) release and speciation: Insights into dissolved organic matter and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130100. [PMID: 36334574 DOI: 10.1016/j.jhazmat.2022.130100] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Soil particle size fractions (PSFs) are important for arsenic (As) partitioning, migration, and speciation transformation. However, information is lacking about the environmental fate of As and its distribution on different PSFs. In the present study, two types of soils from mining areas were divided into four PSFs, including coarse sand (2-0.25 mm), fine sand (0.25-0.05 mm), silt (0.05-0.002 mm), and clay (< 0.002 mm) fractions. The results showed that As was enriched in the coarse sand, which was primarily affected by the content of organic carbon (OC), followed by iron (Fe), aluminum (Al), and manganese (Mn) (hydr)oxides. The elevated total As (TAs), As(III), organic As, Fe(II), and dissolved organic carbon (DOC) concentrations were mainly originated from the clay fraction. The intensified humification degree of DOM and promoted bacterial metabolism related to As/iron bioreduction were also exhibited in the clay fractions. The dynamics of As fractions in soils indicated the potential formation of secondary minerals and re-adsorption of As in the PSFs. The highest abundances of arrA, arsC, arsM, and Geo genes were found in the clay fraction, implying that the clay fraction potentially released more As, including As(III) and organic As. Results from the correlation analysis showed that elevated DOC concentrations promoted the catabolic responses of iron-reducing microorganisms and triggered microbial As detoxification. Overall, this study provides valuable information and guidance for the remediation of As-contaminated soils.
Collapse
Affiliation(s)
- Qi Zou
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China; State Environmental Protection Key Laboratory of Water Environment Simulation and Pollution Control, Guangzhou 510535, China
| | - Hang Wei
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China; State Environmental Protection Key Laboratory of Water Environment Simulation and Pollution Control, Guangzhou 510535, China
| | - Zhiliang Chen
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China.
| | - Ping Ye
- Anhui University of Science and Technology, Huainan 510303, China
| | - Jianqiang Zhang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Mengqiang Sun
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Ling Huang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Jing Li
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
28
|
Yuan C, Wei Y, Xu X, Cao X. Transport and transformation of arsenic in coastal aquifer at the scenario of seawater intrusion followed by managed aquifer recharge. WATER RESEARCH 2023; 229:119440. [PMID: 36462261 DOI: 10.1016/j.watres.2022.119440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Release of contaminants from aquifers at the coastal area is of increasing concern, but remains unclear due to the complex groundwater dynamics and hydrochemistry. Specifically, frequently occurring seawater intrusion and the subsequent engineering measures of managed aquifer recharge (MAR) could alter the groundwater regime, which might affect the fate and behaviors of contaminants. In this work, we investigated the transport and transformation of arsenic (As) in the coastal aquifer at the scenario of seawater intrusion followed by the injection-based MAR process. Results showed that seawater intrusion induced 10.3% more release of aqueous As in aquifers, which was attributed to the competitive desorption as a result of elevated anion concentration and pH, and the reduction of As(V) to As(III) due to the reduced redox potential and enriched As-reducing bacteria. Furthermore, seawater intrusion inhibited the recrystallization of iron (hydr)oxides and instead facilitated its conversion to iron sulfide with lower affinity to As. The subsequent MAR introduced oxygenated recharge water into aquifers and increased the redox potential, leading to the dissolution of iron sulfide followed by formation of amorphous iron (hydr)oxides. However, the competitive desorption of As with rich HCO3- under increased pH dominated continuous increase in the aquifer aqueous As during MAR process. A constructed numerical model for describing As transport based on the experimental data showed that As transported along the interface between seawater and freshwater, and MAR enhanced the release of As and expanded the spread range of As. Our findings reveal that both seawater intrusion and subsequent MAR could cause the release, transport, and transformation of As, which provides new insight on the understanding of geochemical process of As in coastal aquifers.
Collapse
Affiliation(s)
- Chengpeng Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiang Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China; Shanghai Engineering Research Center for Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Ghosh D, Donselaar ME. Predictive geospatial model for arsenic accumulation in Holocene aquifers based on interactions of oxbow-lake biogeochemistry and alluvial geomorphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158952. [PMID: 36150597 DOI: 10.1016/j.scitotenv.2022.158952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The identification of arsenic-contamination hotspots in alluvial aquifers is a global-scale challenge. The collection and inventory of arsenic concentration datasets in the shallow-aquifer domain of affected alluvial basins is a tedious and slow process, given the magnitude of the problem. Recent research demonstrates that oxbow-lake biogeochemistry in alluvial plains, mobilization of geogenic arsenic, and accumulation in geomorphologically well-defined areas are interacting processes that determine arsenic-contamination locations. This awareness provides a tool to identify potential arsenic-hotspots based on geomorphological similarity, and thus contribute to a more robust and targeted arsenic mitigation approach. In the present study, a conceptual predictive geospatial model is proposed for the accumulation of dissolved arsenic as a function of interaction of oxbow-lake biogeochemistry and alluvial geomorphology. A comprehensive sampling campaign in and around two oxbow lakes in the Jamuna River Basin, West Bengal (India) provided water samples of the oxbow-lake water column for analysis of dissolved organic matter (DOM) and microbial communities, and groundwater samples from tube wells in point bars and fluvial levees bordering the oxbow lakes for analysis of the geospatial distribution of arsenic in the aquifer. Results show that abundant natural and anthropogenic (faecal-derived) recalcitrant organic matter like coprostanols and sterols in clay-plug sediment favours microbial (heterotrophs, enteric pathogens) metabolism and arsenic mobilization. Arsenic concentrations in the study area are highest (averaging 505 μg/L) in point-bar aquifers geomorphologically enclosed by partially sediment-filled oxbow lakes, and much lower (averaging 121 μg/L) in wells of levee sands beyond the oxbow-lake confinement. The differences reflect variations in groundwater recharge efficiency as result of the porosity and permeability anisotropy in the alluvial geomorphological elements, where arsenic-rich groundwater is trapped in point-bars enclosed by oxbow-lake clays and, by contrast, levee ridges are not confined on all sides, resulting in a more efficient aquifer flushing and decrease of arsenic concentrations.
Collapse
Affiliation(s)
- Devanita Ghosh
- Sanitary Engineering Section, Water Management Department, Delft University of Technology, the Netherlands; Laboratory of Biogeochem-mystery, Centre for Earth Sciences, Indian Institute of Science, Bangalore, India.
| | - Marinus Eric Donselaar
- Department of Geoscience and Engineering, Delft Univ. of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands; Department of Earth and Environmental Sciences, Division of Geology, KU Leuven, Celestijnenlaan 200E, B-3001 Leuven, Belgium
| |
Collapse
|
30
|
Wang J, Liu Y, Luo W, Wang X, Liao R, Yu S, Hong M, Zhao C, Yang B, Liu Y, Liu X, Qiu G. Inhibition of humic acid on copper pollution caused by chalcopyrite biooxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158200. [PMID: 36049690 DOI: 10.1016/j.scitotenv.2022.158200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Humic acid has the advantages of wide source, easy availability and environmental friendliness, which may be a good choice for inhibiting chalcopyrite biooxidation and alleviating copper pollution. However, there are few researches on the inhibitory effect and mechanism of humic acid on the biooxidation of chalcopyrite. In order to fill this knowledge gap, this study proposed and validated a novel method for inhibiting chalcopyrite biooxidation by means of humic acid. The results showed that the biooxidation of chalcopyrite could be effectively inhibited by humic acid, which consequently decreased the release of copper ions. Humic acid with a concentration of 120 ppm had the best inhibitory effect, which reduced the biooxidation efficiency of chalcopyrite from 40.7 ± 0.5 % to 29.3 ± 0.8 %. This in turn suggested that humic acid could effectively suppress the pollution of copper under these conditions. The analysis results of solution parameters, mineral surface morphology, mineral phases and element composition showed that humic acid inhibited the growth of Acidithiobacillus ferrooxidans, promoted the formation of jarosite and intensified the passivation of chalcopyrite, which effectively hindered the biooxidation of chalcopyrite, and would help to alleviate the pollution of copper.
Collapse
Affiliation(s)
- Jun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Yuling Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Wen Luo
- Department of Dermatology, The First Hospital of Changsha, Changsha, China
| | - Xingxing Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Rui Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Shichao Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Maoxin Hong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Chunxiao Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Baojun Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|
31
|
Varner TS, Kulkarni HV, Nguyen W, Kwak K, Cardenas MB, Knappett PSK, Ojeda AS, Malina N, Bhuiyan MU, Ahmed KM, Datta S. Contribution of sedimentary organic matter to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: The Meghna river, Bangladesh. CHEMOSPHERE 2022; 308:136289. [PMID: 36058378 DOI: 10.1016/j.chemosphere.2022.136289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Elevated dissolved arsenic (As) concentrations in the shallow aquifers of Bangladesh are primarily caused by microbially-mediated reduction of As-bearing iron (Fe) (oxy)hydroxides in organic matter (OM) rich, reducing environments. Along the Meghna River in Bangladesh, interactions between the river and groundwater within the hyporheic zone cause fluctuating redox conditions responsible for the formation of a Fe-rich natural reactive barrier (NRB) capable of sequestering As. To understand the NRB's impact on As mobility, the geochemistry of riverbank sediment (<3 m depth) and the underlying aquifer sediment (up to 37 m depth) was analyzed. A 24-hr sediment-water extraction experiment was performed to simulate interactions of these sediments with oxic river water. The sediment and the sediment-water extracts were analyzed for inorganic and organic chemical parameters. Results revealed no differences between the elemental composition of riverbank and aquifer sediments, which contained 40 ± 12 g/kg of Fe and 7 ± 2 mg/kg of As, respectively. Yet the amounts of inorganic and organic constituents extracted were substantially different between riverbank and aquifer sediments. The water extracted 6.4 ± 16.1 mg/kg of Fe and 0.03 ± 0.02 mg/kg of As from riverbank sediments, compared to 154.0 ± 98.1 mg/kg of Fe and 0.55 ± 0.40 mg/kg of As from aquifer sediments. The riverbank and aquifer sands contained similar amounts of sedimentary organic matter (SOM) (17,705.2 ± 5157.6 mg/kg). However, the water-extractable fraction of SOM varied substantially, i.e., 67.4 ± 72.3 mg/kg in riverbank sands, and 1330.3 ± 226.6 mg/kg in aquifer sands. Detailed characterization showed that the riverbank SOM was protein-like, fresh, low molecular weight, and labile, whereas SOM in aquifer sands was humic-like, older, high molecular weight, and recalcitrant. During the dry season, oxic conditions in the riverbank may promote aerobic metabolisms, limiting As mobility within the NRB.
Collapse
Affiliation(s)
- Thomas S Varner
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - Harshad V Kulkarni
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - William Nguyen
- Department of Geological Sciences, The University of Texas at Austin, TX, 78712, USA
| | - Kyungwon Kwak
- Department of Geology and Geophysics, Texas A&M University, College Station, TX, 77843, USA
| | - M Bayani Cardenas
- Department of Geological Sciences, The University of Texas at Austin, TX, 78712, USA
| | - Peter S K Knappett
- Department of Geology and Geophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ann S Ojeda
- Department of Geosciences, Auburn University, Auburn, AL, 36849, USA
| | - Natalia Malina
- Department of Geosciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Kazi M Ahmed
- Department Geology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saugata Datta
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
32
|
Ning X, Wang S, Long S, Li L, Dong S, Nan Z. The role of Fe-oxidizing bacteria (FeOB) and organic matters in As removal in the heavy-polluted arid soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114126. [PMID: 36183429 DOI: 10.1016/j.ecoenv.2022.114126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The bio-remediation of As-polluted farmlands in the arid area is seldomly reported. This study aimed at understanding the impact of DOM, Fe-oxides, and FeOB biogeochemical processes on As remediation. The approaches used included: FeOB strain Pseudomonas flavescens LZU-3; Batch-experiment. Our results showed that all FeOB tested effectively immobilized As (>95%) during microbial mineralization; DOM play an important role in the reduction of Fe(III)(hydr)oxides and As(V); Less-crystallized ferrihydrite transform to more-crystallized goethite and secondary minerals; Under the reaction of FeOB and DOM, the As-Fe-OM ternary compound were formed, containing N, S, C and O functional group; The addition of OM can clearly reduce soil Eh, promoting dissolution of As in bound to iron oxides, co-precipitation of the amorphous iron oxide in Fe(III)-OM-FeOB, closely related to As in bound to insoluble organics and sulfides and mineral residues, which plays an important role in controlling the mobilization of As. This study provides controlling of As transportation and transformation in the As-DOM-Bio-Fe ternary system as As-remediation technology in the arid soil.
Collapse
Affiliation(s)
- Xiang Ning
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, the People's Republic of China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, the People's Republic of China.
| | - Song Long
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, the People's Republic of China
| | - Longrui Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, the People's Republic of China
| | - Suhang Dong
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, the People's Republic of China
| | - Zhongren Nan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, the People's Republic of China
| |
Collapse
|
33
|
Hu E, Liu M, Wang F, Lv B, Wu J. Effects of phosphate, silicate, humic acid, and calcium on the release of As(V) co-precipitated with Fe(III) and Fe(II) during aging. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129478. [PMID: 35999734 DOI: 10.1016/j.jhazmat.2022.129478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/01/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The effects of phosphate (P), silicate (Si), humic acid (HA), and calcium (Ca) on the release of As(V) co-precipitated with Fe(III) and Fe(II) during aging were investigated. As(V) in synthetic groundwater could be efficiently removed by both Fe(III) and Fe(II) processes. The addition of P remarkably decreased As(V) removal efficiency while no obvious release of As(V) during aging was observed. Si and HA reduced As(V) removal to a less extent than P but caused notable As(V) release during aging. FTIR spectra and particle size of the precipitates before and after aging indicated that As(V) release in the presence of Si was due to the serious structural transformation and particle aggregation of the precipitates during aging. While for HA, As(V) release was caused by sorption of HA on the precipitates and dissolution of the precipitates by HA. The addition of Ca partially counteracted the adverse impacts of P, Si, and HA and promoted As(V) removal efficiency but had limited inhibitory effect on As(V) release as it induced more serious particle aggregation during aging. The results demonstrated that the release of As(V) caused by Si and HA should be considered when using Fe coagulation for in-situ treatment of As(V) contaminated groundwater.
Collapse
Affiliation(s)
- Erdan Hu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China
| | - Meichen Liu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China
| | - Feng Wang
- Hangzhou Urban & Rural Construction Design Institute Co., Ltd, Hangzhou, China
| | - Bosheng Lv
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jun Wu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
34
|
Chen HR, Zhang DR, Li Q, Nie ZY, Pakostova E. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization. WATER RESEARCH 2022; 223:118957. [PMID: 35970106 DOI: 10.1016/j.watres.2022.118957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Mining activities expose sulfidic minerals including arsenopyrite (FeAsS) to acid mine drainage (AMD). The subsequent release of toxic arsenic (As) can have great negative implications for the environment and human health. This study investigated the evolution of secondary products and As speciation transformations during arsenopyrite bio-oxidation in AMD collected from a polymetallic mine. Immobilization of the As solubilized via arsenopyrite bio-oxidation using red mud (RM) was also studied. The results show that the high ionic strength (concentrations of dissolved Fe3+, SO42-, and Ca2+ reached values up to 0.75, 3.38, and 0.35 g/L, respectively) and redox potential (up to +621 mV) of AMD (caused primarily by Fe3+) enhanced the dissolution of arsenopyrite. A high [Fe]aq/[As]aq ratio in the AMD favored the precipitation of tooeleite during arsenopyrite bio-oxidation, and the formation of other poorly crystalline products such as schwertmannite and amorphous ferric arsenate also contributed to As immobilization. Bacterial cells served as important nucleation sites for the precipitation of mineral phases. Arsenopyrite completely dissolved after 12 days of bio-oxidation in AMD and the [As]aq (mainly present as As(III)) reached 1.92 g/L, while a greater [As]aq was observed in a basal salts medium (BSM) assay (reaching 3.02 g/L). An RM addition significantly promoted As(III) immobilization, with final [As(III)]aq decreasing to 0.16 and 1.43 g/L in AMD and BSM assays respectively. No oxidation of As(III) was detected during the immobilization process. These findings can help predict As release from arsenopyrite on contact with AMD and, on a broader scale, assist in designing remediation and treatment strategies to mitigate As contamination in mining.
Collapse
Affiliation(s)
- Hong-Rui Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Duo-Rui Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Zhen-Yuan Nie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Eva Pakostova
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
35
|
Jun YS, Zhu Y, Wang Y, Ghim D, Wu X, Kim D, Jung H. Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation. Annu Rev Phys Chem 2022; 73:453-477. [PMID: 35113740 DOI: 10.1146/annurev-physchem-082720-100947] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces and expand by monomeric growth, oriented attachment, and phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can determine their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical and nonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and the growth of nanoparticles. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Ying Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Deoukchen Ghim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Xuanhao Wu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut;
| | - Doyoon Kim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Haesung Jung
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, South Korea;
| |
Collapse
|
36
|
Wu X, Rigby K, Huang D, Hedtke T, Wang X, Chung MW, Weon S, Stavitski E, Kim JH. Single-Atom Cobalt Incorporated in a 2D Graphene Oxide Membrane for Catalytic Pollutant Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1341-1351. [PMID: 34964609 DOI: 10.1021/acs.est.1c06371] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We introduce a new graphene oxide (GO)-based membrane architecture that hosts cobalt catalysts within its nanoscale pore walls. Such an architecture would not be possible with catalysts in nanoscale, the current benchmark, since they would block the pores or alter the pore structure. Therefore, we developed a new synthesis procedure to load cobalt in an atomically dispersed fashion, the theoretical limit in material downsizing. The use of vitamin C as a mild reducing agent was critical to load Co as dispersed atoms (Co1), preserving the well-stacked 2D structure of GO layers. With the addition of peroxymonosulfate (PMS), the Co1-GO membrane efficiently degraded 1,4-dioxane, a small, neutral pollutant that passes through nanopores in single-pass treatment. The observed 1,4-dioxane degradation kinetics were much faster (>640 times) than the kinetics in suspension and the highest among reported persulfate-based 1,4-dioxane destruction. The capability of the membrane to reject large organic molecules alleviated their effects on radical scavenging. Furthermore, the advanced oxidation also mitigated membrane fouling. The findings of this study present a critical advance toward developing catalytic membranes with which two distinctive and complementary processes, membrane filtration and advanced oxidation, can be combined into a single-step treatment.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Kali Rigby
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Dahong Huang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Tayler Hedtke
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Myoung Won Chung
- School of Health and Environmental Science, Korea University, Seoul 02841, Republic of Korea
| | - Seunghyun Weon
- School of Health and Environmental Science, Korea University, Seoul 02841, Republic of Korea
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
37
|
Aftabtalab A, Rinklebe J, Shaheen SM, Niazi NK, Moreno-Jiménez E, Schaller J, Knorr KH. Review on the interactions of arsenic, iron (oxy)(hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. CHEMOSPHERE 2022; 286:131790. [PMID: 34388870 DOI: 10.1016/j.chemosphere.2021.131790] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
High concentrations of arsenic (As) in groundwater threaten the environment and public health. Geogenically, groundwater As contamination predominantly occurs via its mobilization from underground As-rich sediments. In an aquatic ecosystem, As is typically driven by several underlying processes, such as redox transitions, microbially driven reduction of iron (Fe) oxide minerals, and release of associated As. Notably, dissolved As mobilized from soils and sediments exhibits high affinity for dissolved organic matter (DOM). Thus, high DOM concentrations can increase As mobility. Therefore, it is crucial to understand the complex interactions and biogeochemical cycling of As, DOM, and Fe oxides. This review collates knowledge regarding the fate of As in multicomponent As-DOM-Fe systems, including ternary complexes involving both Fe and DOM. Additionally, the release mechanisms of As from sediments into groundwater in the presence of both Fe and DOM have been discussed. The mechanisms of As mobilization/sorption at the solid-water interface can be affected by negatively charged DOM competing for sorption sites with As on Fe (oxy)(hydr)oxides and may be further modified by other anionic ubiquitous species such as phosphate, silicic acid, or sulfur. This review emphasizes the need for a comprehensive understanding of the impact of DOM, Fe oxides, and related biogeochemical processes on As mobilization to aquifers. The review identifies important knowledge gaps that may aid in developing applicable practices for preventing the spread of As contamination in aquatic resources and traditional soil management practices.
Collapse
Affiliation(s)
- Adeleh Aftabtalab
- Ecohydrology & Biogeochemistry Group, Institute of Landscape Ecology, FB 14 Geosciences, University of Münster, Germany.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| | - Klaus-Holger Knorr
- Ecohydrology & Biogeochemistry Group, Institute of Landscape Ecology, FB 14 Geosciences, University of Münster, Germany.
| |
Collapse
|
38
|
Wu J, Liang J, Björn LO, Li J, Shu W, Wang Y. Phosphorus-arsenic interaction in the 'soil-plant-microbe' system and its influence on arsenic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149796. [PMID: 34464787 DOI: 10.1016/j.scitotenv.2021.149796] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Elevated arsenic (As) in soil is of public concern due to the carcinogenicity. Phosphorus (P) strongly influences the adsorption, absorption, transport, and transformation of As in the soil and in organisms due to the similarity of the chemical properties of P and As. In soil, P, particularly inorganic P, can release soil-retained As (mostly arsenate) by competing for adsorption sites. In plant and microbial systems, P usually reduces As (mainly arsenate) uptake and affects As biotransformation by competing for As transporters. The intensity and pattern of PAs interaction are highly dependent on the forms of As and P, and strongly influenced by various biotic and abiotic factors. An understanding of the PAs interaction in 'soil-plant-microbe' systems is of great value to prevent soil As from entering the human food chain. Here, we review PAs interactions and the main influential factors in soil, plant, and microbial subsystems and their effects on the As release, absorption, transformation, and transport in the 'soil-plant-microbe' system. We also analyze the application potential of P fertilization as a control for As pollution and suggest the research directions that need to be followed in the future.
Collapse
Affiliation(s)
- Jingwen Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jieliang Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lars Olof Björn
- Department of Biology, Lund University, Lund SE-22362, Sweden
| | - Jintian Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wensheng Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yutao Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
39
|
Zhang DR, Chen HR, Xia JL, Nie ZY, Zhang RY, Schippers A, Shu WS, Qian LX. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation. WATER RESEARCH 2021; 203:117539. [PMID: 34407485 DOI: 10.1016/j.watres.2021.117539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Red mud (RM) as waste of industrial aluminum production is piling up in huge ponds. RM could be a cost-effective adsorbent for heavy metals, but adsorption is vulnerable to pH changes, metal ions speciation and the occurrence of iron bearing minerals. In this study, the precipitation and elemental speciation transformation relevant to arsenic fate in responding to the addition of RM during arsenopyrite bio-oxidation by Sulfobacillus thermosulfidooxidans was investigated. The results show that the addition of RM significantly changed the arsenic precipitation and the solution chemistry and thus affected the arsenopyrite bio-oxidation and arsenic fate. An addition of a small amount (≤ 4 g/L) of RM substantially promoted arsenopyrite bio-oxidation with formation of SiO2 @ (As, Fe, Al, Si) spherical nanoparticles that can enhance the stability of the immobilized arsenic. The SiO2-based spherical nanoparticles precipitate was mainly composed of jarosites, amorphous ferric arsenate and crystalline scorodite, and its formation were controlled by Fe3+ concentration and solution pH. An addition of increased amount of RM (≥ 6 g/L) resulted in a significant increase of the solution pH and a decrease in the Fe2+ bio-oxidation activity, and spherical nanoparticles were not formed. Consequently, the dissolution of arsenopyrite was inhibited and the release of arsenic was blocked. This study suggests the applicability of RM in mitigation of arsenic pollution from bio-oxidation of As-bearing sulfide minerals.
Collapse
Affiliation(s)
- Duo-Rui Zhang
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hong-Rui Chen
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jin-Lan Xia
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Zhen-Yuan Nie
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Rui-Yong Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources, Stilleweg 2, Hannover 30655, Germany
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li-Xiong Qian
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Pham VD, Fatimah MS, Sasaki A, Duong VH, Pham KL, Susan P, Watanabe T. Seasonal variation and source identification of heavy metal(loid) contamination in peri-urban farms of Hue city, Vietnam. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116813. [PMID: 33725533 DOI: 10.1016/j.envpol.2021.116813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
This study focused on the seasonal variation and source identification of heavy metals (HMs) while considering effects of municipal wastewater (MWW) in peri-urban farms of Hue city, central Vietnam. Moreover, associated non-carcinogenic and carcinogenic health risks from consuming vegetables containing HMs were also assessed considering the hazard quotient and cancer risk, respectively. Therefore, concentrations of Fe, Mn, Zn, Cu, Cr, Cd, Pb, and As were determined in irrigation water, soil, and lettuce samples collected during dry and wet seasons from one upstream site where irrigation water has no impact on MWW as well as from two downstream sites in farms on the outskirt of the city. Although irrigation water and soil in the same farms were not polluted as strongly, lettuce samples were polluted with Cd, Zn, and Pb. Furthermore, levels of soil Cu and As and HMs (except for Cu) in lettuce in the wet season were significantly higher (p < 0.05) than those in the dry season, indicating the impact of MWW with seasonal change. The health risk assessment via lettuce consumption demonstrated an unacceptable carcinogenic risk owing to Cd and a cumulative non-carcinogenic risk owing to selected HMs in the lettuce, while all other risks were negligible. Correlation and principal component analyses were performed to identify HM sources, indicating that Cu, Zn, Cd, Pb, Cr, and As in irrigation water and soil could have anthropogenic sources (e.g., untreated MWW, fertilizer use); meanwhile, irrigation-water and soil Fe, Mn, As, and Cr could originate from non-anthropogenic sources (e.g., parent materials weathering). This study revealed that rapid urbanization together with high precipitation leading to urban floods in Hue city was a significant factor spreading HMs in agricultural farms, suggesting the importance of wastewater treatment system, which can reduce the HM load in the city to protect the local food production.
Collapse
Affiliation(s)
- Viet-Dung Pham
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan.
| | - Mila-Siti Fatimah
- Faculty of Agriculture, Gadjah Mada University, Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Atsushi Sasaki
- Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa City, Yamagata, 992-8510, Japan
| | - Van-Hieu Duong
- Faculty of Environmental Science, Hue University of Sciences, 77 Nguyen Hue St., Hue City, Viet Nam
| | - Khac-Lieu Pham
- Faculty of Environmental Science, Hue University of Sciences, 77 Nguyen Hue St., Hue City, Viet Nam
| | - Praise Susan
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| |
Collapse
|
41
|
Wang S, Zheng K, Li H, Feng X, Wang L, Liu Q. Arsenopyrite weathering in acidic water: Humic acid affection and arsenic transformation. WATER RESEARCH 2021; 194:116917. [PMID: 33609907 DOI: 10.1016/j.watres.2021.116917] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Arsenopyrite is a common metal sulfide mineral and weathers readily in the open environment, releases As, and pollutes the surrounding environment. Humic acid (HA) is ubiquitous in soils, sediments and waters, and contains various functional groups and complex with arsenic, iron and other metal ions that affect the weathering behavior of arsenopyrite. Because As, iron, and HA are redox-active compounds, electrochemical techniques, including polarization curves, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), were used to fundamentally investigate the weathering process and mechanism of arsenopyrite over a wide range of environmental relevant conditions. Polarization curves showed higher HA concentrations (0-1000 mg•L-1), higher temperatures (5-35°C) or acidities (pH 1.0-7.0) promoted arsenopyrite weathering; there was a linear relationship between the corrosion current density (icorr), temperature (T) and acidity (pH): icorr = -3691.2/T + 13.942 and icorr = -0.2445pH + 2.2125, respectively. Arsenopyrite weathering readily occurred in the presence of HA as confirmed by its activation energy of 24.1 kJ•mol-1, and EIS measurements confirmed that the kinetics were controlled by surface reaction as confirmed by decreased double layer resistance. CV and surface characterization (FTIR and XPS) showed that arsenopyrite initially oxidized to S0, As(III) and Fe2+, then S0 and Fe2+ were ultimately converted into SO42- and Fe3+, while As(III) oxidized to As(V). Furthermore, the carboxyl (-COOH) and phenolic (-OH) of HA could bind with As(III)/(V) and Fe3+ via a ligand exchange mechanism forming As(III)/(V)-HA and As(III)/(V)-Fe-HA complexes that hinders the formation of FeAsO4 and decreases the bioavailability of As. Findings gained from this study are valuable for the understanding of the fate and transport of As in acidic conditions, and have powerful implications for the remediation and management of As-bearing sites affected by mining activities.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kai Zheng
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Heping Li
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaonan Feng
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Luying Wang
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qingyou Liu
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
42
|
Tian X, Wang D, Chai G, Zhang J, Zhao X. Does biochar inhibit the bioavailability and bioaccumulation of As and Cd in co-contaminated soils? A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143117. [PMID: 33143920 DOI: 10.1016/j.scitotenv.2020.143117] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/31/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Biochar, an effective and low-cost amendment for immobilizing heavy metals, has been extensively studied. However, the simultaneous inhibition effects of biochar on the plant uptake for arsenic (As) and cadmium (Cd) in co-contaminated soils are still ambiguous due to their distinct environmental behaviors. A meta-analysis was conducted to quantitatively assess the effects using 1030 individual observations from 52 articles. On average, biochar application significantly decreased the bioavailability of Cd in soils by 50.12%, while slightly increased the bioavailability of As in soils by 2.39%. The more instructive result is that biochar application could also simultaneously reduce the concentration of As and Cd in plants by 25.48% and 38.66%, respectively. The orders of the decreased percentage of As and Cd in various tissues were root < stem< leaf < grain, and root < leaf < stem < grain, respectively. According to the analysis of critical factors, manure biochar, low pyrolysis temperature (at <400 °C), low application rate (<2%), and high SOC (>30 g/kg) were more conducive to reduce the bioaccumulation of As and Cd simultaneously in co-contaminated soils. Pristine and modified biochar could inhibit As and Cd accumulation in crops, but their efficiencies need to be further improved to ensure the safety of crop productions. Overall, the meta-analysis suggests that biochar has the potential to remedy the As and Cd co-contaminated soils.
Collapse
Affiliation(s)
- Xiaosong Tian
- College of Resources and Environment, Southwest University, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Guanqun Chai
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jinzhong Zhang
- College of Resources and Environment, Southwest University, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China
| | - Xiulan Zhao
- College of Resources and Environment, Southwest University, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China.
| |
Collapse
|
43
|
Qiao W, Guo H, He C, Shi Q, Zhao B. Unraveling roles of dissolved organic matter in high arsenic groundwater based on molecular and optical signatures. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124702. [PMID: 33296763 DOI: 10.1016/j.jhazmat.2020.124702] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is a crucial controlling factor in mobilizing arsenic. However, direct delineations of DOM regarding both optical properties and molecular signatures were rarely conducted in high-arsenic groundwater. Here, both groundwater and surface water were taken from the Hetao Basin, China, to decipher DOM properties with both optical spectrophotometer and Fourier transform ion cyclotron resonance mass spectrometry. The tryptophan-like component (C4) was averagely less than 30% in groundwater DOM, being positively associated with high H/C-ratio molecules (H/C > 1.2) and mainly grouped as highly unsaturated and phenolic compounds and aliphatic compounds. Other three humic-like components (C1, C2, C3) had positive associations with low H/C-ratio molecules (H/C < 1.2), which mainly consisted of highly unsaturated and phenolic compounds, polyphenols, and polycyclic aromatics. Groundwater arsenic concentrations were positively correlated with humic-like, low H/C-ratio, and recalcitrant organic compounds, which may be the consequence of labile organic matter degradation. The degradation caused Fe(III) oxide reduction and mobilized the solid arsenic. In addition, high abundances of these recalcitrant organic compounds in high-arsenic groundwater may contribute to arsenic enrichment via electron shuttling, competition for surface sites, and complexation process. It suggested that groundwater proxies would be either the result or the cause of biogeochemical processes in aquifers.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Bo Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
44
|
Fakhreddine S, Prommer H, Scanlon BR, Ying SC, Nicot JP. Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer Recharge: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2208-2223. [PMID: 33503373 DOI: 10.1021/acs.est.0c07492] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Population growth and climate variability highlight the need to enhance freshwater security and diversify water supplies. Subsurface storage of water in depleted aquifers is increasingly used globally to alleviate disparities in water supply and demand often caused by climate extremes including floods and droughts. Managed aquifer recharge (MAR) stores excess water supplies during wet periods via infiltration into shallow underlying aquifers or direct injection into deep aquifers for recovery during dry seasons. Additionally, MAR can be designed to improve recharge water quality, particularly in the case of soil aquifer treatment and riverbank filtration. While there are many potential benefits to MAR, introduction of recharge water can alter the native geochemical and hydrological conditions in the receiving aquifer, potentially mobilizing toxic, naturally occurring (geogenic) contaminants from sediments into groundwater where they pose a much larger threat to human and ecosystem health. On the basis of the present literature, arsenic poses the most widespread challenge at MAR sites due to its ubiquity in subsurface sediments and toxicity at trace concentrations. Other geogenic contaminants of concern include fluoride, molybdenum, manganese, and iron. Water quality degradation threatens the viability of some MAR projects with several sites abandoning operations due to arsenic or other contaminant mobilization. Here, we provide a critical review of studies that have uncovered the geochemical and hydrological mechanisms controlling mobilization of arsenic and other geogenic contaminants at MAR sites worldwide, including both infiltration and injection sites. These mechanisms were evaluated based on site-specific characteristics, including hydrological setting, native aquifer geochemistry, and operational site parameters (e.g., source of recharge water and recharge/recovery cycling). Observed mechanisms of geogenic contaminant mobilization during MAR via injection include shifting redox conditions and, to a lesser extent, pH-promoted desorption, mineral solubility, and competitive ligand exchange. The relative importance of these mechanisms depends on various site-specific, operational parameters, including pretreatment of injection water and duration of injection, storage, and recovery phases. This critical review synthesizes findings across case studies in various geochemical, hydrological, and operational settings to better understand controls on arsenic and other geogenic contaminant mobilization and inform the planning and design of future MAR projects to protect groundwater quality. This critical review concludes with an evaluation of proposed management strategies for geogenic contaminants and identification of knowledge gaps regarding fate and transport of geogenic contaminants during MAR.
Collapse
Affiliation(s)
- Sarah Fakhreddine
- Bureau of Economic Geology, University of Texas at Austin, Austin, Texas 78758, United States
| | - Henning Prommer
- CSIRO Land and Water, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6913, Australia
| | - Bridget R Scanlon
- Bureau of Economic Geology, University of Texas at Austin, Austin, Texas 78758, United States
| | - Samantha C Ying
- Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Jean-Philippe Nicot
- Bureau of Economic Geology, University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
45
|
Zheng Y, He W, Li B, Hur J, Guo H, Li X. Refractory Humic-like Substances: Tracking Environmental Impacts of Anthropogenic Groundwater Recharge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15778-15788. [PMID: 33216533 DOI: 10.1021/acs.est.0c04561] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To unravel the crucial components of natural organic matter that respond to the process of anthropogenic groundwater recharge (AGR) from different recharge water sources, dissolved organic matter (DOM) and base-extractable particulate organic matter (POM) in groundwater and surface water were analyzed using excitation-emission matrix spectroscopy coupled with parallel factor analysis (EEM-PARAFAC). The EEM and traditional spectral indices of samples show that the fluorescent intensity, molecular weight, and humification degree of the DOM were relatively higher than those of the POM, and the groundwater in the reclaimed water recharge area (RWRA) was more contaminated than in the south-to-north water recharge area (SNWRA). PARAFAC analysis indicates that the DOM was dominated by an allochthonous humic-like substance (C1), whereas the POM was dominated by tryptophan-like substances associated with microbial activity (C2). Partitioning of PARAFAC components between DOM and POM showed that the humic-like substances (C1 and C4) were more likely to be distributed into a dissolved phase compared to the protein-like substances (C2 and C3), which suggested the potential use of C1 and C4 as a tracking indicator. In particular, the clear gradient distributions along both the hydrogeological profile and different aquifer systems in terms of the concentration and composition of C1 also discriminated between the RWRA and SNWRA with regard to the effects of various AGRs on the groundwater. The association between C1 and water-quality indicators revealed by principal component analysis further indicated that refractory humic-like substances would track the environmental impacts of intentional AGR processes.
Collapse
Affiliation(s)
- Yaxin Zheng
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Binghua Li
- Department of Water Resources, Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Huaming Guo
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiaomeng Li
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
46
|
Wu X, Lee B, Jun YS. Interfacial and Activation Energies of Environmentally Abundant Heterogeneously Nucleated Iron(III) (Hydr)oxide on Quartz. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12119-12129. [PMID: 32786556 DOI: 10.1021/acs.est.0c03160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Poorly crystalline iron(III) (hydr)oxide nanoparticles are ubiquitous in environmental systems and play a crucial role in controlling the fate and transport of contaminants. Yet, the thermodynamic and kinetic parameters, e.g., the effective interfacial (α') and apparent activation (Ea) energies, of iron(III) (hydr)oxide nucleation on earth-abundant mineral surfaces have not been determined, which hinders an accurate prediction of iron(III) (hydr)oxide formation and its interactions with other toxic or reactive ions. Here, for the first time, we report experimentally obtained α' and Ea for iron(III) (hydr)oxide nucleation on quartz mineral surfaces by employing a flow-through, time-resolved grazing incidence small-angle X-ray scattering (GISAXS). GISAXS enabled the in situ detection of iron(III) (hydr)oxide nucleation rates under different supersaturations (σ, achieved by varying pH 3.3-3.6) and temperatures (12-35 °C). By quantitative analyses based on classical nucleation theory, α' was obtained to be 34.6 mJ/m2 and Ea was quantified as 32.8 kJ/mol. The fundamental thermodynamic and kinetic parameters obtained here will advance our fundamental understanding of the surface chemistry and nucleation behavior of iron(III) (hydr)oxides in subsurface and water treatment systems as well as their effects on the fate and transport of pollutants in natural and engineered water systems. The in situ flow-through GISAXS method can also be adapted to quantify thermodynamic and kinetic parameters at interfaces for many important solid-liquid environmental systems.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|