1
|
Østerstrøm FF, Carter TJ, Shaw DR, Abbatt JPD, Abeleira A, Arata C, Bottorff BP, Cardoso-Saldaña FJ, DeCarlo PF, Farmer DK, Goldstein AH, Ruiz LH, Kahan TF, Mattila JM, Novoselac A, Stevens PS, Reidy E, Rosales CMF, Wang C, Zhou S, Carslaw N. Modelling indoor radical chemistry during the HOMEChem campaign. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:188-201. [PMID: 39688182 DOI: 10.1039/d4em00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In the indoor environment, occupants are exposed to air pollutants originating from continuous indoor sources and exchange with the outdoor air, with the highest concentration episodes dominated by activities performed indoors such as cooking and cleaning. Here we use the INdoor CHEMical model in Python (INCHEM-Py) constrained by measurements from the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, to investigate the impact of a bleach cleaning event and cooking on indoor air chemistry. Measurements of the concentrations of longer-lived organic and inorganic compounds, as well as measured photolysis rates, have been used as input for the model, and the modelled hydroxyl (OH) radicals, hydroperoxyl radicals, and nitrous acid (HONO) concentrations compared to the measured values. The peak modelled OH, , and HONO concentrations during cooking and cleaning activities are about 30%, 10%, and 30% higher than the observations, respectively, within experimental uncertainties. We have determined rates for the rapid loss of HONO formed through cooking activities onto a wet surface during the cleaning events and also for the subsequent slow release of HONO from the cleaned surface back into the gas-phase. Using INCHEM-Py we have also predicted peak concentrations of chlorine (Cl) atoms, (0.75-2.3) × 105 atom per cm3 at the time of cleaning. Model predictions of the Cl atom and OH radical reactivities were also explored, showing high Cl atom reactivity throughout the day, peaking around 5000-9000 s-1. The OH reactivity was found to increase from a background value close to urban outdoor levels of 20-40 s-1, to levels exceeding observations in outdoor polluted areas following cooking and cleaning activities (up to 160 s-1). This underlines the high oxidation capacity of the indoor atmospheric environment through determining the abundance of volatile organic compounds.
Collapse
Affiliation(s)
| | - Toby J Carter
- Department of Environment and Geography, University of York, York, UK.
| | - David R Shaw
- Department of Environment and Geography, University of York, York, UK.
| | | | - Andrew Abeleira
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Caleb Arata
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Brandon P Bottorff
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | | | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - James M Mattila
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Atila Novoselac
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
| | - Philip S Stevens
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, USA
| | - Emily Reidy
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - Colleen Marciel F Rosales
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, USA
| | - Chen Wang
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, UK.
| |
Collapse
|
2
|
Fu Z, Guo S, Xie HB, Zhou P, Boy M, Yao M, Hu M. A Near-Explicit Reaction Mechanism of Chlorine-Initiated Limonene: Implications for Health Risks Associated with the Concurrent Use of Cleaning Agents and Disinfectants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19762-19773. [PMID: 39231115 DOI: 10.1021/acs.est.4c04388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Limonene, a key volatile chemical product (VCP) commonly found in personal care and cleaning agents, is emerging as a major indoor air pollutant. Recently, elevated levels of reactive chlorine species during bleach cleaning and disinfection have been reported to increase indoor oxidative capacity. However, incomplete knowledge of the indoor transformation of limonene, especially the missing chlorine chemistry, poses a barrier to evaluating the environmental implications associated with the concurrent use of cleaning agents and disinfectants. Here, we investigated the reaction mechanisms of chlorinated limonene peroxy radicals (Cl-lim-RO2•), key intermediates in determining the chlorine chemistry of limonene, and toxicity of transformation products (TPs) using quantum chemical calculations and toxicology modeling. The results indicate that Cl-lim-RO2• undergoes a concerted autoxidation process modulated by RO2• and alkoxy radicals (RO•), particularly emphasizing the importance of RO• isomerization. Following this generalized autoxidation mechanism, Cl-lim-RO2• can produce low-volatility precursors of secondary organic aerosols. Toxicological findings further indicate that the majority of TPs exhibit increased respiratory toxicity, mutagenicity, and eye/skin irritation compared to limonene, presenting an occupational hazard for indoor occupants. The proposed near-explicit reaction mechanism of chlorine-initiated limonene significantly enhances our current understanding of both RO2• and RO• chemistry while also highlighting the health risks associated with the concurrent use of cleaning agents and disinfectants.
Collapse
Affiliation(s)
- Zihao Fu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Putian Zhou
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FIN-00014, Finland
| | - Michael Boy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FIN-00014, Finland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Crilley LR, Ditto JC, Lao M, Zhou Z, Abbatt JPD, Chan AWH, VandenBoer TC. Commercial kitchen operations produce a diverse range of gas-phase reactive nitrogen species. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39484695 DOI: 10.1039/d4em00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Gas-phase reactive nitrogen species (Nr) are important drivers of indoor air quality. Cooking and cleaning are significant direct sources indoors, whose emissions will vary depending on activity and materials used. Commercial kitchens experience regular high volumes of both cooking and cleaning, making them ideal study locations for exploring emission factors from these sources. Here, we present a total Nr (tNr) budget and contributions of key species NO, NO2, acidic Nr (primarily HONO) and basic Nr (primarily NH3) using novel instrumentation in a commercial kitchen over a two-week period. In general, highest tNr was observed in the morning and driven compositionally by NO, indicative of cooking events in the kitchen. The observed HONO and basic Nr levels were unexpectedly stable throughout the day, despite the dynamic and high air change rate in the kitchen. After summing the measured NOx, HONO and Nr,base fractions, there was on average 5 ppbv of Nr unaccounted for, expected to be dominated by neutral Nr species. Using co-located measurements from a proton transfer reaction mass spectrometer (PTR-MS), we propose the identities for these major Nr species from cooking and cleaning that contributed to Nr,base and the neutral fraction of tNr. When focused specifically on cooking events in the kitchen, a vast array of N-containing species was observed by the PTR-MS. Reproducibly, oxygenated N-containing class ions (C1-12H3-24O1-4N1-3), consistent with the known formulae of amides, were observed during meat cooking and may be good cooking tracers. During cleaning, an unexpectedly high level of chloramines was observed, with monochloramine dominating the profile, as emitted directly from HOCl based cleaners or through surface reactions with reduced-N species. For many species within the tNr budget, including HONO, acetonitrile and basic Nr species, we observed stable levels day and night despite the high air change rate during the day (>27 h-1). The stable levels for these species point to large surface reservoirs which act as a significant indoor source, that will be transported outdoors with ventilation.
Collapse
Affiliation(s)
| | - Jenna C Ditto
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Department of Chemistry, University of Toronto, Canada
| | - Melodie Lao
- Department of Chemistry, York University, Canada.
| | - Zilin Zhou
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | | | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Department of Chemistry, University of Toronto, Canada
| | | |
Collapse
|
4
|
Webb M, Morrison G, Baumann K, Li J, Ditto JC, Huynh HN, Yu J, Mayer K, Mael L, Vance ME, Farmer DK, Abbatt J, Poppendieck D, Turpin BJ. Dynamics of residential indoor gas- and particle-phase water-soluble organic carbon: measurements during the CASA experiment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39373709 DOI: 10.1039/d4em00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Previous time-integrated (2 h to 4 h) measurements show that total gas-phase water-soluble organic carbon (WSOCg) is 10 to 20 times higher inside homes compared to outside. However, concentration dynamics of WSOCg and total particle phase WSOC (WSOCp)-are not well understood. During the Chemical Assessment of Surfaces and Air (CASA) experiment, we measured concentration dynamics of WSOCg and WSOCp inside a residential test facility in the house background and during scripted activities. A total organic carbon (TOC) analyzer pulled alternately from a particle-into-liquid sampler (PILS) or a mist chamber (MC). WSOCg concentrations (215 ± 29 μg-C m-3) were generally 36× higher than WSOCp (6 ± 3 μg-C m-3) and 20× higher than outdoor levels. A building-specific emission factor (Ef) of 31 mg-C h-1 maintained the relatively high house WSOCg background, which was dominated by ethanol (46 μg-C m-3 to 82 μg-C m-3). When we opened the windows, WSOCg decayed slower (2.8 h-1) than the air change rate (21.2 h-1) and Ef increased (243 mg-C h-1). The response (increased Ef) suggests WSOCg concentrations are regulated by large near surface reservoirs rather than diffusion through surface materials. Cooking and ozone addition had a small impact on WSOC, whereas surface cleaning, volatile organic compound (VOC) additions, or wood smoke injections had significant impacts on WSOC concentrations. WSOCg concentration decay rates from these activities (0.4 h-1 to 4.0 h-1) were greater than the normal operating 0.24 h-1 air change rate, which is consistent with an important role for surface removal.
Collapse
Affiliation(s)
- Marc Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Karsten Baumann
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Jenna C Ditto
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Han N Huynh
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Jie Yu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Kathryn Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Liora Mael
- Department of Mechanical Engineering, Environmental Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Marina E Vance
- Department of Mechanical Engineering, Environmental Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Jonathan Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | | | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Walsh CM, Baughman NN, Ham JE, Wells JR. Factors Affecting Chlorinated Product Formation from Sodium Hypochlorite Bleach and Limonene Reactions in the Gas Phase. ACS ES&T AIR 2024; 1:1317-1328. [PMID: 39781027 PMCID: PMC11708576 DOI: 10.1021/acsestair.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
During use of sodium hypochlorite bleach, gas-phase hypochlorous acid (HOCl) and chlorine (Cl2) are released, which can react with organic compounds present in indoor air. Reactivity between HOCl/Cl2 and limonene, a common constituent of indoor air, has been observed. The purpose of this study was to characterize the chemical species generated from gas-phase reactions between HOCl/Cl2 and limonene. Gas-phase reactions were prepared in Teflon chambers housing HOCl, Cl2, and limonene. The resulting chemical products were analyzed using gas-phase preconcentration, followed by gas chromatography and high-resolution mass spectrometry. Several chlorinated products were detected, including limonene species containing one, two, and three chlorines and limonene chlorohydrin. Product concentrations and yields were estimated for the most abundant products, and greater than 80% of transformed limonene was represented in the detected products. Temporal sampling of the reactions allowed time courses to be plotted for limonene decay and chlorinated limonene product generation under different conditions, including the treatments of HOCl/Cl2, Cl2 only, high vs low relative humidity, and ± ozone. These experiments add product speciation, yield estimates, and an understanding of environmental factors affecting product formation to previous studies, further highlighting the chemical transformations initiated by sodium hypochlorite bleach in indoor air.
Collapse
Affiliation(s)
- Callee M Walsh
- Chemical and Biological Monitoring Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Notashia N Baughman
- Chemical and Biological Monitoring Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Jason E Ham
- Chemical and Biological Monitoring Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - J R Wells
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| |
Collapse
|
6
|
Salonen H, Salthammer T, Castagnoli E, Täubel M, Morawska L. Cleaning products: Their chemistry, effects on indoor air quality, and implications for human health. ENVIRONMENT INTERNATIONAL 2024; 190:108836. [PMID: 38917624 DOI: 10.1016/j.envint.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The use of cleaning and disinfecting products both at work and at home increased during the COVID-19 pandemic. Those products often include surfactants, acids/bases, carcinogens such as chloroform, and endocrine-disrupting chemicals, such as cyclosiloxanes, phthalates, and synthetic fragrances, which may cause harmful health effects among professional cleaners as well as among people exposed at home or in their workplaces. The aim of this study was to synthesize the effects of the commonly used chemical, surface cleaning and disinfecting products on indoor air quality, focusing on chemical and particulate matter pollutants, exposure, and human health in residential and public buildings. We also provide a summary of recommendations to avoid harmful exposure and suggest future research directions. PubMed, Google Scholar, Scopus, and Web of Science (WoS) were used to search the literature. Analysis of the literature revealed that the use of cleaning products and disinfectants increase occupants' exposure to a variety of harmful chemical air contaminants and to particulate matter. Occupational exposure to cleaning and disinfectant products has been linked to an increased risk of asthma and rhinitis. Residential exposure to cleaning products has been shown to have an adverse effect on respiratory health, particularly on asthma onset, and on the occurrence of asthma(-like) symptoms among children and adults. Efforts to reduce occupants' exposure to cleaning chemicals will require lowering the content of hazardous substances in cleaning products and improving ventilation during and after cleaning. Experimentally examined, best cleaning practices as well as careful selection of cleaning products can minimize the burden of harmful air pollutant exposure indoors. In addition, indirect ways to reduce exposure include increasing people's awareness of the harmfulness of cleaning chemicals and of safe cleaning practices, as well as clear labelling of cleaning and disinfecting products.
Collapse
Affiliation(s)
- Heidi Salonen
- Aalto University (Aalto), Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland; Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (WHO CC for Air Quality and Health), 2 George Street, Brisbane, QLD 4000, Australia.
| | - Tunga Salthammer
- Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (WHO CC for Air Quality and Health), 2 George Street, Brisbane, QLD 4000, Australia; Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, 38108 Braunschweig, Germany.
| | - Emmanuelle Castagnoli
- Aalto University (Aalto), Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland
| | - Martin Täubel
- Finnish Institute for Health and Welfare, Department Health Security, Environmental Health Unit, PO Box 95, FIN-70701 Kuopio, Finland
| | - Lidia Morawska
- Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (WHO CC for Air Quality and Health), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
7
|
Farmer DK, Vance ME, Poppendieck D, Abbatt J, Alves MR, Dannemiller KC, Deeleepojananan C, Ditto J, Dougherty B, Farinas OR, Goldstein AH, Grassian VH, Huynh H, Kim D, King JC, Kroll J, Li J, Link MF, Mael L, Mayer K, Martin AB, Morrison G, O'Brien R, Pandit S, Turpin BJ, Webb M, Yu J, Zimmerman SM. The chemical assessment of surfaces and air (CASA) study: using chemical and physical perturbations in a test house to investigate indoor processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 38953218 DOI: 10.1039/d4em00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (e.g., cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (e.g., gaseous ammonia or ozone) to more complex mixtures (e.g., a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity. The objectives for CASA included understanding (i) how outdoor air pollution impacts indoor air chemistry, (ii) how wildfire smoke transports and transforms indoors, (iii) how gases and particles interact with building surfaces, and (iv) how indoor environmental conditions impact indoor chemistry. Further, the combined measurements under unperturbed and experimental conditions enable investigation of mitigation strategies following outdoor and indoor air pollution events. A comprehensive suite of instruments measured different chemical components in the gas, particle, and surface phases throughout the study. We provide an overview of the test house, instrumentation, experimental design, and initial observations - including the role of humidity in controlling the air concentrations of many semi-volatile organic compounds, the potential for ozone to generate indoor nitrogen pentoxide (N2O5), the differences in microbial composition between the test house and other occupied buildings, and the complexity of deposited particles and gases on different indoor surfaces.
Collapse
Affiliation(s)
- Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | | | - Jon Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Michael R Alves
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Karen C Dannemiller
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | | | - Jenna Ditto
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Brian Dougherty
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Olivia R Farinas
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Han Huynh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Deborah Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jon C King
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
| | - Jesse Kroll
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Michael F Link
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Liora Mael
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Kathryn Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Andrew B Martin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rachel O'Brien
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Marc Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jie Yu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
8
|
Plehiers PM. Comment on "Detection of exposed phosgene in household bleach: development of a selective and cost-effective sensing tool" by S. Saha and P. Sahoo, Environ. Sci.: Processes Impacts, 2023, 25, 1144. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:791-792. [PMID: 38516873 DOI: 10.1039/d3em00483j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
In the absence of an identified source of carbon, the reported formation of phosgene from bleach powder is questioned. Interferences and confounding effects other than those investigated by the authors may have led to artifactual results.
Collapse
|
9
|
Xu L, Song S, Graham NJD, Yu W. Direct generation of DBPs from city dust during chlorine-based disinfection. WATER RESEARCH 2024; 248:120839. [PMID: 37980862 DOI: 10.1016/j.watres.2023.120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Chlorine-based disinfectants, such as sodium hypochlorite, are extensively used in our daily lives. In particular, during the recent Covid-19 pandemic and post-pandemic period, excessive amounts of chlorine-based disinfectants were used both indoors and outdoors to interrupt virus transmission. However, the interaction between disinfectants and city dust during the disinfection process has not been sufficiently evaluated. In this study, we conducted a comprehensive investigation into the intrinsic characteristics (e.g. morphology, size, elemental composition, and organic content, etc.) of dust collected from various indoor and outdoor areas. The results showed that the organic carbon content of indoor dust reached 6.14 %, with a corresponding measured dissolved organic carbon value of 4.17 ± 0.23 mg/g (normalized to the dust weight). Concentrations of regulated DBPs, resulting from the interaction between dust and NaClO, ranged from 57.78 ± 2.72 to 102.80 ± 22.63 µg/g for THMs and from 119.18 ± 6.50 to 285.14 ± 36.95 µg/g for HAAs (normalized to the dust weight). More significantly, using non-target analysis through gas chromatography quadrupole time-of-flight mass spectrometry (GC-qTOF-MS), we identified a total of 68, 89, and 87 types of halogenated DBPs from three typical indoor and outdoor sites (R-QH, C-JS, and W-BR, respectively). These unknown DBPs included compounds with higher toxicity compared to regulated DBPs. These findings highlight that city dust is a significant source of DBP generation during chlorine-based disinfection, posing potential harm to both the ecological environment and human health.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shian Song
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
10
|
Deeleepojananan C, Grassian VH. Gas-Phase and Surface-Initiated Reactions of Household Bleach and Terpene-Containing Cleaning Products Yield Chlorination and Oxidation Products Adsorbed onto Indoor Relevant Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20699-20707. [PMID: 38010858 PMCID: PMC10720375 DOI: 10.1021/acs.est.3c06656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
The use of household bleach cleaning products results in emissions of highly oxidative gaseous species, such as hypochlorous acid (HOCl) and chlorine (Cl2). These species readily react with volatile organic compounds (VOCs), such as limonene, one of the most abundant compounds found in indoor enviroments. In this study, reactions of HOCl/Cl2 with limonene in the gas phase and on indoor relevant surfaces were investigated. Using an environmental Teflon chamber, we show that silica (SiO2), a proxy for window glass, and rutile (TiO2), a component of paint and self-cleaning surfaces, act as a reservoir for adsorption of gas-phase products formed between HOCl/Cl2 and limonene. Furthermore, high-resolution mass spectrometry (HRMS) shows that the gas-phase reaction products of HOCl/Cl2 and limonene readily adsorb on both SiO2 and TiO2. Surface-mediated reactions can also occur, leading to the formation of new chlorine- and oxygen-containing products. Transmission Fourier-transform infrared (FTIR) spectroscopy of adsorption and desorption of bleach and terpene oxidation products indicates that these chlorine- and oxygen-containing products strongly adsorb on both SiO2 and TiO2 surfaces for days, providing potential sources of human exposure and sinks for additional heterogeneous reactions.
Collapse
Affiliation(s)
- Cholaphan Deeleepojananan
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| | - Vicki H. Grassian
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Jorga SD, Liu T, Wang Y, Hassan S, Huynh H, Abbatt JPD. Kinetics of hypochlorous acid reactions with organic and chloride-containing tropospheric aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1645-1656. [PMID: 37721367 DOI: 10.1039/d3em00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Chlorine plays an important role in tropospheric oxidation processes, in both marine and continental environments. Although modeling studies have explored the importance of halogen chemistry, uncertainty remains in associated chemical mechanisms and fundamental kinetics parameters. Prior kinetics measurements of multiphase halogen recycling reactions have been largely performed with dilute, bulk solutions, leaving unexplored more realistic chemical systems which have high solute concentrations and are internally mixed with both halide and organic components. Here, we address the multiphase kinetics of gaseous HOCl using an aerosol flow tube and aerosol mass spectrometer to study its reactions with particulate chloride, using atmospherically relevant particle acidity, solute concentrations, and ionic strength. We also investigate the chemistry that results when biomass burning (BB) aerosol components and chloride are internally mixed. Using pH-buffered deliquesced particles, we show that the rate constant for reaction of dissolved HOCl with H+ and Cl- at high relative humidity (RH) (80-85%) is within a factor of two of the literature value for bulk phase conditions. However, at lower RH values (60-70%) where the particles are considerably more concentrated, the rate constant for chloride loss from the particles is an order of magnitude higher. For pure organic compounds commonly found in biomass burning (BB) aerosol, such as coniferaldehyde, salicylic acid and furfural, an increase in the aerosol chlorine content occurs with HOCl exposure, indicating the formation of organochlorine species. Together, these independent findings explain results for internally mixed aerosol particles with both chloride and BB components present where we observed behavior consistent with both chloride loss and organochlorine formation occurring simultaneously upon HOCl exposure. Our results indicate that chlorine recycling via HOCl uptake by chloride-containing particles will occur in the atmosphere efficiently over a wide range of RH conditions, even when reactive organic compounds are present in the same particles as chloride. Simultaneously, formation of organochlorine compounds, which are commonly toxic, is likely occurring when reactive organic components are present.
Collapse
Affiliation(s)
- Spiro D Jorga
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Yutong Wang
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Sumaiya Hassan
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Han Huynh
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| |
Collapse
|
12
|
Masoud C, Modi M, Bhattacharyya N, Jahn LG, McPherson KN, Abue P, Patel K, Allen DT, Hildebrandt Ruiz L. High Chlorine Concentrations in an Unconventional Oil and Gas Development Region and Impacts on Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15454-15464. [PMID: 37783466 PMCID: PMC10586373 DOI: 10.1021/acs.est.3c04005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Growth in unconventional oil and gas development (UOGD) in the United States has increased airborne emissions, raising environmental and human health concerns. To assess the potential impacts on air quality, we deployed instrumentation in Karnes City, Texas, a rural area in the middle of the Eagle Ford Shale. We measured several episodes of elevated Cl2 levels, reaching maximum hourly averages of 800 ppt, the highest inland Cl2 concentration reported to date. Concentrations peak during the day, suggesting a strong local source (given the short photolysis lifetime of Cl2) and/or a photoinitiated production mechanism. Well preproduction activity near the measurement site is a plausible source of these high Cl2 levels via direct emission and photoactive chemistry. ClNO2 is also observed, but it peaks overnight, consistent with well-known nocturnal formation processes. Observations of organochlorines in the gas and particle phases reflect the contribution of chlorine chemistry to the formation of secondary pollutants in the area. Box modeling results suggest that the formation of ozone at this location is influenced by chlorine chemistry. These results suggest that UOGD can be an important source of reactive chlorine in the atmosphere, impacting radical budgets and the formation of secondary pollutants in these regions.
Collapse
Affiliation(s)
- Catherine
G. Masoud
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mrinali Modi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nirvan Bhattacharyya
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Leif G. Jahn
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kristi N. McPherson
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pearl Abue
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kanan Patel
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David T. Allen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Li J, Link MF, Pandit S, Webb MH, Mayer KJ, Garofalo LA, Rediger KL, Poppendieck DG, Zimmerman SM, Vance ME, Grassian VH, Morrison GC, Turpin BJ, Farmer DK. The persistence of smoke VOCs indoors: Partitioning, surface cleaning, and air cleaning in a smoke-contaminated house. SCIENCE ADVANCES 2023; 9:eadh8263. [PMID: 37831770 PMCID: PMC10575580 DOI: 10.1126/sciadv.adh8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Wildfires are increasing in frequency, raising concerns that smoke can permeate indoor environments and expose people to chemical air contaminants. To study smoke transformations in indoor environments and evaluate mitigation strategies, we added smoke to a test house. Many volatile organic compounds (VOCs) persisted days following the smoke injection, providing a longer-term exposure pathway for humans. Two time scales control smoke VOC partitioning: a faster one (1.0 to 5.2 hours) that describes the time to reach equilibrium between adsorption and desorption processes and a slower one (4.8 to 21.2 hours) that describes the time for indoor ventilation to overtake adsorption-desorption equilibria in controlling the air concentration. These rates imply that vapor pressure controls partitioning behavior and that house ventilation plays a minor role in removing smoke VOCs. However, surface cleaning activities (vacuuming, mopping, and dusting) physically removed surface reservoirs and thus reduced indoor smoke VOC concentrations more effectively than portable air cleaners and more persistently than window opening.
Collapse
Affiliation(s)
- Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael F. Link
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc H. Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn J. Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Lauren A. Garofalo
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Katelyn L. Rediger
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - Marina E. Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Glenn C. Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barbara J. Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Wang C, Liggio J, Wentzell JJB, Jorga S, Folkerson A, Abbatt JPD. Chloramines as an important photochemical source of chlorine atoms in the urban atmosphere. Proc Natl Acad Sci U S A 2023; 120:e2220889120. [PMID: 37459517 PMCID: PMC10372683 DOI: 10.1073/pnas.2220889120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/10/2023] [Indexed: 07/29/2023] Open
Abstract
Monochloramine, dichloramine and trichloramine (NH2Cl, NHCl2, NCl3) are measured in the ambient atmosphere, in downtown Toronto in summer (median 39, 15 and 2.8 ppt) and winter (median 11, 7.3 and 0.7 ppt). NCl3 and NHCl2 were also measured in summer (median 1.3 and 14 ppt) from a suburban Toronto location. Measurements at two locations demonstrate prevalence of chloramines in an urban atmosphere. At both sites, NCl3 exhibits a strong diel pattern with maximum values during the night, and photolytic loss with sunrise. At the downtown site, a strong positive correlation between NH2Cl and NHCl2 in the summer night indicates a common source, with daily average peak mixing ratios approaching 500 and 250 ppt, respectively. As a previously unidentified source of chlorine (Cl) atoms, we demonstrate that NCl3 photolysis contributes 49 to 82% of the total local summertime Cl production rate at different times during the day with an average noontime peak of 3.8 × 105 atoms/cm3/s, with smaller contributions from ClNO2 and Cl2. Photolysis of NH2Cl and NHCl2 may augment this Cl production rate. Our measurements also demonstrate a daytime enhancement of chloroacetone in both the summer and winter, demonstrating the importance of Cl photochemistry. The results suggest that chloramines are an important source of Cl atoms in urban areas, with potential impacts on the abundance of organic compounds, ozone, nitrogen oxides, and particulate matter. Future studies should explore the vertical gradients of chloramines and their contribution to Cl production throughout the boundary layer.
Collapse
Affiliation(s)
- Chen Wang
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - John Liggio
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ONM3H 5T4, Canada
| | - Jeremy J. B. Wentzell
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ONM3H 5T4, Canada
| | - Spiro Jorga
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | - Andrew Folkerson
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | | |
Collapse
|
15
|
Ditto JC, Crilley LR, Lao M, VandenBoer TC, Abbatt JPD, Chan AWH. Indoor and outdoor air quality impacts of cooking and cleaning emissions from a commercial kitchen. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:964-979. [PMID: 37102581 DOI: 10.1039/d2em00484d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gas and particulate emissions from commercial kitchens are important contributors to urban air quality. Not only are these emissions important for occupational exposure of kitchen staff, but they can also be vented to outdoors, causing uncertain health and environmental impacts. In this study, we chemically speciated volatile organic compounds and measured particulate matter mass concentrations in a well-ventilated commercial kitchen for two weeks, including during typical cooking and cleaning operations. From cooking, we observed a complex mixture of volatile organic gases dominated by oxygenated compounds commonly associated with the thermal degradation of cooking oils. Gas-phase chemicals existed at concentrations 2-7 orders of magnitude lower than their exposure limits, due to the high ventilation in the room (mean air change rate of 28 h-1 during operating hours). During evening kitchen cleaning, we observed an increase in the signal of chlorinated gases from 1.1-9.0 times their values during daytime cooking. Particulate matter mass loadings tripled at these times. While exposure to cooking emissions in this indoor environment was reduced effectively by the high ventilation rate, exposure to particulate matter and chlorinated gases was elevated during evening cleaning periods. This emphasizes the need for careful consideration of ventilation rates and methods in commercial kitchen environments during all hours of kitchen operation.
Collapse
Affiliation(s)
- Jenna C Ditto
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
- Department of Chemistry, University of Toronto, Toronto, Canada.
| | | | - Melodie Lao
- Department of Chemistry, York University, Toronto, Canada
| | | | | | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
- Department of Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
16
|
Souza PAF, Zhou S, Kahan TF. Hydrogen peroxide emissions from surface cleaning in a single-family residence. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:781-790. [PMID: 37005869 DOI: 10.1039/d2em00434h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High levels of reactive chemicals may be emitted to the indoor air during household surface cleaning, leading to poorer air quality and potential health hazards. Hydrogen peroxide (H2O2)-based cleaners have gained popularity in recent years, especially in times of COVID-19. Still, little is known regarding the effects of H2O2 cleaning on indoor air composition. In this work we monitored time-resolved H2O2 concentrations during a cleaning campaign in an occupied single-family residence using a cavity ring-down spectroscopy (CRDS) H2O2 analyzer. During the cleaning experiments, we investigated how unconstrained (i.e., "real-life") surface cleaning with a hydrogen peroxide solution influenced the indoor air quality of the house, and performed controlled experiments to investigate factors that could influence H2O2 levels including surface area and surface material, ventilation, and dwell time of the cleaning solution. Mean peak H2O2 concentrations observed following all surface cleaning events were 135 ppbv. The factors with the greatest effect on H2O2 levels were distance of the cleaned surface from the detector inlet, type of surface cleaned, and solution dwell time.
Collapse
Affiliation(s)
- Pedro A F Souza
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Shan Zhou
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Tara F Kahan
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
17
|
Bhattacharyya N, Tang M, Blomdahl DC, Jahn LG, Abue P, Allen DT, Corsi RL, Novoselac A, Misztal PK, Hildebrandt Ruiz L. Bleach Emissions Interact Substantially with Surgical and KN95 Mask Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6589-6598. [PMID: 37061949 DOI: 10.1021/acs.est.2c07937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mask wearing and bleach disinfectants became commonplace during the COVID-19 pandemic. Bleach generates toxic species including hypochlorous acid (HOCl), chlorine (Cl2), and chloramines. Their reaction with organic species can generate additional toxic compounds. To understand interactions between masks and bleach disinfection, bleach was injected into a ventilated chamber containing a manikin with a breathing system and wearing a surgical or KN95 mask. Concentrations inside the chamber and behind the mask were measured by a chemical ionization mass spectrometer (CIMS) and a Vocus proton transfer reaction mass spectrometer (Vocus PTRMS). HOCl, Cl2, and chloramines were observed during disinfection and concentrations inside the chamber are 2-20 times greater than those behind the mask, driven by losses to the mask surface. After bleach injection, many species decay more slowly behind the mask by a factor of 0.5-0.7 as they desorb or form on the mask. Mass transfer modeling confirms the transition of the mask from a sink during disinfection to a source persisting >4 h after disinfection. Humidifying the mask increases reactive formation of chloramines, likely related to uptake of ammonia and HOCl. These experiments indicate that masks are a source of chemical exposure after cleaning events occur.
Collapse
Affiliation(s)
- Nirvan Bhattacharyya
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mengjia Tang
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel C Blomdahl
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Leif G Jahn
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pearl Abue
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David T Allen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard L Corsi
- College of Engineering, University of California at Davis, Davis, California 95616, United States
| | - Atila Novoselac
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pawel K Misztal
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Dang M, Li M, Li J, Liu R, Guo Y, Hou K. Emissions of Formamide and Ammonia from Foam Mats: Online Measurement Based on Dopant-Assisted Photoionization TOFMS and Assessment of Their Exposure for Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5646-5654. [PMID: 36988557 DOI: 10.1021/acs.est.2c08857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Formamide has been classified as a Class 1B reproductive toxicant to children by the European Union (EU) Chemicals Agency. Foam mats are a potential source of formamide and ammonia. Online dopant-assisted atmospheric pressure photoionization time-of-flight mass spectrometry (DA-APPI-TOFMS) coupled with a Teflon environmental chamber was developed to assess the exposure risk of formamide and ammonia from foam mats to children. High levels of formamide (average 3363.72 mg/m3) and ammonia (average 1586.78 mg/m3) emissions were measured from 21 foam mats with three different raw material types: ethylene-vinyl acetate (EVA: n = 7), polyethylene (PE: n = 7), and cross-linked polyethylene (XPE: n = 7). The 28 day emission testing for the selected PE mat showed that the emissions of formamide were 2 orders of magnitude higher than the EU emission limit of 20 μg/m3, and formamide may be a permanent indoor contaminant for foam mat products during their life cycle. The exposure assessment of children aged 0.5-6 years showed that the exposure dose was approximately hundreds of mg/kg-day, and the age group of 0.5-2 years was subject to much higher dermal exposures than others. Thus, this study provided key relevant information for further studies on assessing children's exposure to indoor air pollution from foam mats.
Collapse
Affiliation(s)
- Min Dang
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Mei Li
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Jing Li
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Ruidong Liu
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yingzhe Guo
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Keyong Hou
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
19
|
Crilley LR, Lao M, Salehpoor L, VandenBoer TC. Emerging investigator series: an instrument to measure and speciate the total reactive nitrogen budget indoors: description and field measurements. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:389-404. [PMID: 36779821 DOI: 10.1039/d2em00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Reactive nitrogen species (Nr), defined here as all N-containing compounds except N2 and N2O, have been shown to be important drivers for indoor air quality. Key Nr species include NOx (NO + NO2), HONO and NH3, which are known to have detrimental health effects. In addition, other Nr species that are not traditionally measured may be important chemical actors for indoor transformations (e.g. amines). Cooking and cleaning are significant sources of Nr, whose emission will vary depending on the type of activity and materials used. Here we present a novel instrument that measures the total gas-phase reactive nitrogen (tNr) budget and key species NOx, HONO, and NH3 to demonstrate its suitability for indoor air quality applications. The tNr levels were measured using a custom-built heated platinum (Pt) catalytic furnace to convert all Nr species to NOx, called the tNr oven. The measurement approach was validated through a series of control experiments, such that quantitative measurement and speciation of the total Nr budget are demonstrated. The optimum operating conditions of the tNr oven were found to be 800 °C with a sampling flow rate of 630 cubic centimetres per minute (ccm). Oxidized nitrogen species are known to be quantitatively converted under these conditions. Here, the efficiency of the tNr oven to convert reduced Nr species to NOx was found to reach a maximum at 800 °C, with 103 ± 13% conversion for NH3 and 79-106% for selected relevant amines. The observed variability in the conversion efficiency of reduced Nr species demonstrates the importance of catalyst temperature characterization for the tNr oven. The instrument was deployed successfully in a commercial kitchen, a complex indoor environment with periods of rapidly changing levels, and shown to be able to reliably measure the tNr budget during periods of longer-lived oscillations (>20 min), typical of indoor spaces. The measured NOx, HONO and basic Nr (NH3 and amines) were unable to account for all the measured tNr, pointing to a substantial missing fraction (on average 18%) in the kitchen. Overall, the tNr instrument will allow for detailed survey(s) of the key gaseous Nr species across multiple locations and may also identify missing Nr fractions, making this platform capable of stimulating more in-depth analysis in indoor atmospheres.
Collapse
Affiliation(s)
- Leigh R Crilley
- Department of Chemistry, York University, Toronto, ON, Canada.
| | - Melodie Lao
- Department of Chemistry, York University, Toronto, ON, Canada.
| | - Leyla Salehpoor
- Department of Chemistry, York University, Toronto, ON, Canada.
| | | |
Collapse
|
20
|
Schneider SR, Lakey PSJ, Shiraiwa M, Abbatt JPD. Iodine emission from the reactive uptake of ozone to simulated seawater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:254-263. [PMID: 35838601 DOI: 10.1039/d2em00111j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The heterogeneous reaction of ozone and iodide is both an important source of atmospheric iodine and dry deposition pathway of ozone in marine environments. While the iodine generated from this reaction is primarily in the form of HOI and I2, there is also evidence of volatile organoiodide compound emissions in the presence of organics without biological activity occuring [M. Martino, G. P. Mills, J. Woeltjen and P. S. Liss, A new source of volatile organoiodine compounds in surface seawater, Geophys. Res. Lett., 2009, 36, L01609, L. Tinel, T. J. Adams, L. D. J. Hollis, A. J. M. Bridger, R. J. Chance, M. W. Ward, S. M. Ball and L. J. Carpenter, Influence of the Sea Surface Microlayer on Oceanic Iodine Emissions, Environ. Sci. Technol., 2020, 54, 13228-13237]. In this study, we evaluate our fundamental understanding of the ozonolysis of iodide which leads to gas-phase iodine emissions. To do this, we compare experimental measurements of ozone-driven gas-phase I2 formation in a flow tube to predictions made with the kinetic multilayer model for surface and bulk chemistry (KM-SUB). The KM-SUB model uses literature rate coefficients used in current atmospheric chemistry models to predict I2(g) formation in pH-buffered solutions of marine composition containing chloride, bromide, and iodide compared to solutions containing only iodide. Experimentally, I2(g) formation was found to be suppressed in solutions containing seawater levels of chloride compared to solutions containing only iodide, but the model does not predict this effect using literature rate constants. However, the model is able to predict this trend upon adjustment of two specific reaction rate constants. To more closely represent true oceanic conditions, we add an organic component to the proxy seawater solutions using material generated from Thalassiosira pseudonana phytoplankton cultures. Whereas the rate of ozone deposition is unaffected, the formation rate of I2(g) is strongly suppressed in the presence of biological organic material, indicative of a sink or reduction of reactive iodine formed during the oxidation process.
Collapse
Affiliation(s)
- Stephanie R Schneider
- Department of Chemistry, University of Toronto, 80 St. George Street Toronto, Ontario, Canada.
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine 92697, California, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine 92697, California, USA
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Angelucci AA, Crilley LR, Richardson R, Valkenburg TSE, Monks PS, Roberts JM, Sommariva R, VandenBoer TC. Elevated levels of chloramines and chlorine detected near an indoor sports complex. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:304-313. [PMID: 36484250 DOI: 10.1039/d2em00411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chloramines (NH2Cl, NHCl2, and NCl3) are toxic compounds that can be created during the use of bleach-based disinfectants that contain hypochlorous acid (HOCl) and the hypochlorite ion (OCl-) as their active ingredients. Chloramines can then readily transfer from the aqueous-phase to the gas-phase. Atmospheric chemical ionization mass spectrometry using iodide adduct chemistry (I-CIMS) made observations across two periods (2014 and 2016) at an urban background site on the University of Leicester campus (Leicester, UK). Both monochloramine (NH2Cl) and molecular chlorine (Cl2) were detected and positively identified from calibrated mass spectra during both sampling periods and to our knowledge, this is the first detection of NH2Cl outdoors. Mixing ratios of NH2Cl reached up to 2.2 and 4.0 parts per billion by volume (ppbv), with median mixing ratios of 30 and 120 parts per trillion by volume (pptv) during the 2014 and 2016 sampling periods, respectively. Levels of Cl2 were observed to reach up to 220 and 320 pptv. Analysis of the NH2Cl and Cl2 data pointed to the same local source, a nearby indoor sports complex with a swimming pool and a cleaning product storage shed. No appreciable levels of NHCl2 and NCl3 were observed outdoors, suggesting the indoor pool was not likely to be the primary source of the observed ambient chloramines, as prior measurements made in indoor pool atmospheres indicate that NCl3 would be expected to dominate. Instead, these observations point to indoor cleaning and/or cleaning product emissions as the probable source of NH2Cl and Cl2 where the measured levels provide indirect evidence for substantial amounts transported from indoors to outdoors. Our upper estimate for total NH2Cl emissions from the University of Leicester indoor sports complexes scaled for similar sports complexes across the UK is 3.4 × 105 ± 1.1 × 105 μg h-1 and 0.0017 ± 0.00034 Gg yr-1, respectively. The Cl-equivalent emissions in HCl are only an order of magnitude less to those from hazardous waste incineration and iron and steel sinter production in the UK National Atmospheric Emissions Inventory (NAEI).
Collapse
Affiliation(s)
| | - Leigh R Crilley
- Department of Chemistry, York University, Toronto, ON, Canada.
| | - Rob Richardson
- Department of Chemistry, University of Leicester, Leicester, UK.
| | | | - Paul S Monks
- Department of Chemistry, University of Leicester, Leicester, UK.
| | - James M Roberts
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
| | | | | |
Collapse
|
22
|
Stubbs AD, Lao M, Wang C, Abbatt JPD, Hoffnagle J, VandenBoer TC, Kahan TF. Near-source hypochlorous acid emissions from indoor bleach cleaning. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:56-65. [PMID: 36602445 DOI: 10.1039/d2em00405d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cleaning surfaces with sodium hypochlorite (NaOCl) bleach can lead to high levels of gaseous chlorine (Cl2) and hypochlorous acid (HOCl); these have high oxidative capacities and are linked to respiratory issues. We developed a novel spectral analysis procedure for a cavity ring-down spectroscopy (CRDS) hydrogen peroxide (H2O2) analyzer to enable time-resolved (3 s) HOCl quantification. We measured HOCl levels in a residential bathroom while disinfecting a bathtub and sink, with a focus on spatial and temporal trends to improve our understanding of exposure risks during bleach use. Very high (>10 ppmv) HOCl levels were detected near the bathtub, with lower levels detected further away. Hypochlorous acid concentrations plateaued in the room at a level that depended on distance from the bathtub. This steady-state concentration was maintained until the product was removed by rinsing. Mobile experiments with the analyzer inlet secured to the researcher's face were conducted to mimic potential human exposure to bleach emissions. The findings from mobile experiments were consistent with the spatial and temporal trends observed in the experiments with fixed inlet locations. This work provides insight on effective strategies to reduce exposure risk to emissions from bleach and other cleaning products.
Collapse
Affiliation(s)
- Annastacia D Stubbs
- Dept. of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9, Canada.
| | - Melodie Lao
- Dept. of Chemistry, York University, Toronto, Ontario, M3J 1P3, Canada.
| | - Chen Wang
- Dept. of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Jonathan P D Abbatt
- Dept. of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | | | | | - Tara F Kahan
- Dept. of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9, Canada.
| |
Collapse
|
23
|
Reidy E, Bottorff BP, Rosales CM, Cardoso-Saldaña FJ, Arata C, Zhou S, Wang C, Abeleira A, Hildebrandt Ruiz L, Goldstein AH, Novoselac A, Kahan TF, Abbatt JPD, Vance ME, Farmer DK, Stevens PS. Measurements of Hydroxyl Radical Concentrations during Indoor Cooking Events: Evidence of an Unmeasured Photolytic Source of Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:896-908. [PMID: 36603843 PMCID: PMC9850917 DOI: 10.1021/acs.est.2c05756] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 05/11/2023]
Abstract
The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NOX). Particularly high concentrations were measured during the preparation of a traditional American Thanksgiving dinner, which required the use of a gas stove and oven almost continually for 6 h. A zero-dimensional chemical model underpredicted the measured OH concentrations even during periods when direct sunlight illuminated the area near the window, which increases the rate of OH production by photolysis of HONO. Interferences with measurements of nitrogen dioxide (NO2) and ozone (O3) suggest that unmeasured photolytic VOCs were emitted during cooking events. The addition of a VOC that photolyzes to produce peroxy radicals (RO2), similar to pyruvic acid, into the model results in better agreement with the OH measurements. These results highlight our incomplete understanding of the nature of oxidation in indoor environments.
Collapse
Affiliation(s)
- Emily Reidy
- Department
of Chemistry, Indiana University, Bloomington, Indiana47405, United States
| | - Brandon P. Bottorff
- Department
of Chemistry, Indiana University, Bloomington, Indiana47405, United States
| | - Colleen Marciel
F. Rosales
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| | | | - Caleb Arata
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, California94720, United States
| | - Shan Zhou
- Department
of Chemistry, Syracuse University, Syracuse, New York13244, United States
| | - Chen Wang
- Department
of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| | - Andrew Abeleira
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado80523, United States
| | - Lea Hildebrandt Ruiz
- McKetta
Department of Chemical Engineering, University
of Texas, Austin, Texas78712, United
States
| | - Allen H. Goldstein
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, California94720, United States
| | - Atila Novoselac
- Department
of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, Texas78712, United States
| | - Tara F. Kahan
- Department
of Chemistry, Syracuse University, Syracuse, New York13244, United States
- Department
of Chemistry, University of Saskatchewan, Saskatoon, SaskatchewanS7N 5E6, Canada
| | | | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado, Boulder, Colorado80309, United States
| | - Delphine K. Farmer
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado80523, United States
| | - Philip S. Stevens
- Department
of Chemistry, Indiana University, Bloomington, Indiana47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| |
Collapse
|
24
|
Li Y, Lu Y, Wang Y, Liu L, Zhou H, Lin B, Peng Z, Yuan Y. Investigation on the effectiveness of ventilation dilution on mitigating COVID-19 patients' secondary airway damage due to exposure to disinfectants. BUILDING AND ENVIRONMENT 2023; 228:109787. [PMID: 36407877 PMCID: PMC9652096 DOI: 10.1016/j.buildenv.2022.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Chlorine-containing disinfectants are widely used in hospitals to prevent hospital-acquired severe acute respiratory syndrome coronavirus 2 infection. Meanwhile, ventilation is a simple but effective means to maintain clean air. It is essential to explore the exposure level and health effects of coronavirus disease 2019 patients' inhalation exposure to by-products of chloride-containing disinfectants under frequent surface disinfection and understand the role of ventilation in mitigating subsequent airway damage. We determined ventilation dilution performance and indoor air quality of two intensive care unit wards of the largest temporary hospital constructed in China, Leishenshan Hospital. The chloride inhalation exposure levels, and health risks indicated by interleukin-6 and D-dimer test results of 32 patients were analysed. The mean ± standard deviation values of the outdoor air change rate in the two intensive care unit wards were 8.8 ± 1.5 h-1 (Intensive care unit 1) and 4.1 ± 1.4 h-1 (Intensive care unit 2). The median carbon dioxide and fine particulate matter concentrations were 480 ppm and 19 μg/m3 for intensive care unit 1, and 567 ppm and 21 μg/m3 for intensive care unit 2, all of which were around the average levels of those in permanent hospitals (579 ppm and 21 μg/m3). Of these patients, the median (lower quartile, upper quartile) chloride exposure time and calculated dose were 26.66 (2.89, 57.21) h and 0.357 (0.008, 1.317) mg, respectively. A statistically significant positive correlation was observed between interleukin-6 and D-dimer concentrations. To conclude, ventilation helped maintain ward air cleanliness and health risks were not observed.
Collapse
Affiliation(s)
- Yifan Li
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yiran Lu
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Department of Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei 430071, China
| | - Li Liu
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei 430071, China
| | - Hao Zhou
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
- Institute for Urban Governance and Sustainable Development, Tsinghua University, Beijing 100084, China
| | - Borong Lin
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Zhiyong Peng
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei 430071, China
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yufeng Yuan
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei 430071, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
25
|
Jorga SD, Wang Y, Abbatt JPD. Reaction of HOCl with Wood Smoke Aerosol: Impacts on Indoor Air Quality and Outdoor Reactive Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1292-1299. [PMID: 36607741 DOI: 10.1021/acs.est.2c07577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High loadings of biomass burning (BB) aerosol particles from wildfire or residential heating sources can be present in both outdoor and indoor environments, where they deposit onto surfaces such as walls and furniture. These pollutants can interact with oxidants in both the aerosol and deposited forms. Hypochlorous acid (HOCl), a strong oxidant emitted during cleaning with chlorine-cleaning agents such as bleach, can attain mixing ratios of hundreds of ppbv indoors; moreover, lower mixing ratios are naturally present outdoors. Here, we report the heterogeneous reactivity of HOCl with wood smoke aerosol particles. After exposure to gas-phase HOCl, the particle chlorine content increased reaching chlorine-to-organic mass ratios of 0.07 with the chlorine covalently bound as organochlorine species, many of which are aromatic. Investigating individual potential BB components, we observed that unsaturated species such as coniferaldehyde and furfural react efficiently with HOCl. These observations indicate that organochlorine pollutants will form indoors when bleach cleaning a wildfire impacted space. The chlorine component of particles internally mixed with BB material and chloride initially increased, upon HOCl exposure, indicating that active chlorine recycling in the outdoor environment will be suppressed in the presence of BB emissions.
Collapse
Affiliation(s)
- Spiro D Jorga
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6Ontario, Canada
| | - Yutong Wang
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6Ontario, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6Ontario, Canada
| |
Collapse
|
26
|
Boecker D, Zhang Z, Breves R, Herth F, Kramer A, Bulitta C. Antimicrobial efficacy, mode of action and in vivo use of hypochlorous acid (HOCl) for prevention or therapeutic support of infections. GMS HYGIENE AND INFECTION CONTROL 2023; 18:Doc07. [PMID: 37034111 PMCID: PMC10073986 DOI: 10.3205/dgkh000433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The objective is to provide a comprehensive overview of the rapidly developing field of the current state of research on in vivo use of hypochlorous acid (HOCl) to aid infection prevention and control, including naso-pharyngeal, alveolar, topical, and systemic HOCl applications. Also, examples are provided of dedicated applications in COVID-19. A brief background of HOCl's biological and chemical specifics and its physiological role in the innate immune system is provided to understand the effect of in vivo applications in the context of the body's own physiological defense mechanisms.
Collapse
Affiliation(s)
- Dirk Boecker
- TOTO Consulting LLC, San Jose CA, USA
- *To whom correspondence should be addressed: Dirk Boecker, TOTO Consulting LLC, San Jose CA, USA, E-mail:
| | - Zhentian Zhang
- Institute for Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | | | - Felix Herth
- Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Axel Kramer
- Institut of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Clemens Bulitta
- Institut für Medizintechnik, Ostbayerische Technische Hochschule (OTH) Amberg-Weiden, Amberg-Weiden, Germany
| |
Collapse
|
27
|
Yang P, Liu J, Korshin GV, Ji Y, Lu J. New Insights into the Role of Nitrite in the Degradation of Tetrabromobisphenol S by Sulfate Radical Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17743-17752. [PMID: 36456897 DOI: 10.1021/acs.est.2c06821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol S (TBBPS) is a brominated flame retardant and a contaminant of emerging concern. Several studies found that sulfate radical (SO4•-) oxidation is effective to degrade TBBPS. Here, we demonstrate that the presence of nitrite (NO2-) at environmentally relevant levels causes dramatic changes in the kinetics and pathways of TBBPS degradation by SO4•-. Initially, NO2- suppresses the reaction by competing with TBBPS for SO4•-. At the same time, SO4•- oxidizes NO2- to form nitrogen dioxide radicals (NO2•), which actively react with some key TBBPS degradation intermediates, thus greatly altering the transformation pathway. As a result, 2,6-dibromo-4-nitrophenol (DBNP) becomes the primary TBBPS product. As TBBPS undergoes degradation, the released bromide (Br-) is oxidized by SO4•- to form bromine radicals and free bromine. These reactive bromine species immediately combine with NO2• or NO2- to form nitryl bromide (BrNO2) that in turn attacks the parent TBBPS, resulting in its accelerated degradation and increased formation of toxic nitrophenolic byproducts. These results show that nitryl halides (e.g., BrNO2 or ClNO2) are likely formed yet inadequately recognized when SO4•- is applied to remediate halogenated pollutants in the subsurface environment where NO2- is ubiquitously found. These insights further underscore the potential risks of the application of SO4•- oxidation for the remediation of halogenated compounds in realistic environmental conditions.
Collapse
Affiliation(s)
- Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing210095, China
| | - Jiating Liu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing210095, China
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington98195, United States
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
28
|
Moravek A, VandenBoer TC, Finewax Z, Pagonis D, Nault BA, Brown WL, Day DA, Handschy AV, Stark H, Ziemann P, Jimenez JL, de Gouw JA, Young CJ. Reactive Chlorine Emissions from Cleaning and Reactive Nitrogen Chemistry in an Indoor Athletic Facility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15408-15416. [PMID: 36326040 DOI: 10.1021/acs.est.2c04622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Indoor gas-phase radical sources are poorly understood but expected to be much different from outdoors. Several potential radical sources were measured in a windowless, light-emitting diode (LED)-lit room in a college athletic facility over a 2 week period. Alternating measurements between the room air and the supply air of the heating, ventilation, and air-conditioning system allowed an assessment of sources. Use of a chlorine-based cleaner was a source of several photolabile reactive chlorine compounds, including ClNO2 and Cl2. During cleaning events, photolysis rates for these two compounds were up to 0.0023 pptv min-1, acting as a source of chlorine atoms even in this low-light indoor environment. Unrelated to cleaning events, elevated ClNO2 was often observed during daytime and lost to ventilation. The nitrate radical (NO3), which is rapidly photolyzed outdoors during daytime, may persist in low-light indoor environments. With negligible photolysis, loss rates of NO3 indoors were dominated by bimolecular reactions. At times with high NO2 and O3 ventilated from outdoors, N2O5 was observed. Elevated ClNO2 measured concurrently suggests the formation through heterogeneous reactions, acting as an additional source of reactive chlorine within the athletic facility and outdoors.
Collapse
Affiliation(s)
- Alexander Moravek
- Department of Chemistry, York University, Toronto, OntarioM3J 1P3, Canada
| | | | - Zachary Finewax
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Demetrios Pagonis
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Benjamin A Nault
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Wyatt L Brown
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Douglas A Day
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Anne V Handschy
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Harald Stark
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Aerodyne Research, Inc., Billerica, Massachusetts01821, United States
| | - Paul Ziemann
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Jose L Jimenez
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Joost A de Gouw
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Cora J Young
- Department of Chemistry, York University, Toronto, OntarioM3J 1P3, Canada
| |
Collapse
|
29
|
Bottorff B, Wang C, Reidy E, Rosales C, Farmer DK, Vance ME, Abbatt JPD, Stevens P. Comparison of Simultaneous Measurements of Indoor Nitrous Acid: Implications for the Spatial Distribution of Indoor HONO Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13573-13583. [PMID: 36137564 PMCID: PMC9535926 DOI: 10.1021/acs.est.2c02196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Despite its importance as a radical precursor and a hazardous pollutant, the chemistry of nitrous acid (HONO) in the indoor environment is not fully understood. We present results from a comparison of HONO measurements from a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) and a laser photofragmentation/laser-induced fluorescence (LP/LIF) instrument during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign. Experiments during HOMEChem simulated typical household activities and provided a dynamic range of HONO mixing ratios. The instruments measured HONO at different locations in a house featuring a typical air change rate (ACR) (0.5 h-1) and an enhanced mixing rate (∼8 h-1). Despite the distance between the instruments, measurements from the two instruments agreed to within their respective uncertainties (slope = 0.85, R2 = 0.92), indicating that the lifetime of HONO is long enough for it to be quickly distributed indoors, although spatial gradients occurred during ventilation periods. This suggests that emissions of HONO from any source can mix throughout the house and can contribute to OH radical production in sunlit regions, enhancing the oxidative capacity indoors. Measurement discrepancies were likely due to interferences with the LP/LIF instrument as well as calibration uncertainties associated with both instruments.
Collapse
Affiliation(s)
- Brandon Bottorff
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Chen Wang
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School
of Environment Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Emily Reidy
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Colleen Rosales
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Air
Quality Research Center, University of California
Davis, Davis, California 95616, United States
| | - Delphine K. Farmer
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | | | - Philip
S. Stevens
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
30
|
Li T, Wang Z, Wang C, Huang J, Zhou M. Chlorination in the pandemic times: The current state of the art for monitoring chlorine residual in water and chlorine exposure in air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156193. [PMID: 35613644 PMCID: PMC9124365 DOI: 10.1016/j.scitotenv.2022.156193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/12/2023]
Abstract
During the COVID-19 pandemic, the use of chlorine-based disinfectants has surged due to their excellent performance and cost-effectiveness in intercepting the spread of the virus and bacteria in water and air. Many authorities have demanded strict chlorine dosage for disinfection to ensure sufficient chlorine residual for inactivating viruses and bacteria while not posing harmful effects to humans as well as the environment. Reliable chlorine sensing techniques have therefore become the keys to ensure a balance between chlorine disinfection efficiency and disinfection safety. Up to now, there is still a lack of comprehensive review that collates and appraises the recently available techniques from a practical point of view. In this work, we intend to present a detailed overview of the recent advances in monitoring chlorine in both dissolved and gaseous forms aiming to present valuable information in terms of method accuracy, sensitivity, stability, reliability, and applicability, which in turn guides future sensor development. Data on the analytical performance of different techniques and environmental impacts associated with the dominated chemical-based techniques are thus discussed. Finally, this study concludes with highlights of gaps in knowledge and trends for future chlorine sensing development. Due to the increasing use of chlorine in disinfection and chemical synthesis, we believe the information present in this review is a relevant and timely resource for the water treatment industry, healthcare sector, and environmental organizations.
Collapse
Affiliation(s)
- Tianling Li
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, PR China; Centre for Clean Environment and Energy, Griffith University, Gold Coast campus, QLD 4222, Australia
| | - Zhengguo Wang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, PR China
| | - Chenxu Wang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, PR China
| | - Jiayu Huang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, PR China
| | - Ming Zhou
- Centre for Clean Environment and Energy, Griffith University, Gold Coast campus, QLD 4222, Australia.
| |
Collapse
|
31
|
Hodshire AL, Carter E, Mattila JM, Ilacqua V, Zambrana J, Abbatt JPD, Abeleira A, Arata C, DeCarlo PF, Goldstein AH, Ruiz LH, Vance ME, Wang C, Farmer DK. Detailed Investigation of the Contribution of Gas-Phase Air Contaminants to Exposure Risk during Indoor Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12148-12157. [PMID: 35952310 PMCID: PMC9454252 DOI: 10.1021/acs.est.2c01381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/31/2023]
Abstract
Analytical capabilities in atmospheric chemistry provide new opportunities to investigate indoor air. HOMEChem was a chemically comprehensive indoor field campaign designed to investigate how common activities, such as cooking and cleaning, impacted indoor air in a test home. We combined gas-phase chemical data of all compounds, excluding those with concentrations <1 ppt, with established databases of health effect thresholds to evaluate potential risks associated with gas-phase air contaminants and indoor activities. The chemical composition of indoor air is distinct from outdoor air, with gaseous compounds present at higher levels and greater diversity─and thus greater predicted hazard quotients─indoors than outdoors. Common household activities like cooking and cleaning induce rapid changes in indoor air composition, raising levels of multiple compounds with high risk quotients. The HOMEChem data highlight how strongly human activities influence the air we breathe in the built environment, increasing the health risk associated with exposure to air contaminants.
Collapse
Affiliation(s)
- Anna L. Hodshire
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Ellison Carter
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80521, United States
| | - James M. Mattila
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Vito Ilacqua
- U.S.
Environmental Protection Agency, Office of Radiation and Indoor Air, Washington District of Columbia 20460, United States
| | - Jordan Zambrana
- U.S.
Environmental Protection Agency, Office of Radiation and Indoor Air, Washington District of Columbia 20460, United States
| | | | - Andrew Abeleira
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Caleb Arata
- Department
of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California 94720, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21212, United States
| | - Allen H. Goldstein
- Department
of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California 94720, United States
| | - Lea Hildebrandt Ruiz
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado Boulder, 1111 Engineering Drive, 427 UCB, Boulder, Colorado 80309, United States
| | - Chen Wang
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Delphine K. Farmer
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| |
Collapse
|
32
|
Uhde E, Salthammer T, Wientzek S, Springorum A, Schulz J. Effectiveness of air-purifying devices and measures to reduce the exposure to bioaerosols in school classrooms. INDOOR AIR 2022; 32:e13087. [PMID: 36040280 DOI: 10.1111/ina.13087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The SARS-CoV-2 pandemic, which suddenly appeared at the beginning of 2020, revealed our knowledge deficits in terms of ventilation and air pollution control. It took many weeks to realize that aerosols are the main route of transmission. The initial attempt to hold back these aerosols through textile masks seemed almost helpless, although there is sufficient knowledge about the retention capacity of fabric filters for aerosols. In the absence of a sufficient number of permanently installed heating, ventilation, and air conditioning systems, three main approaches are pursued: (a) increasing the air exchange rate by supplying fresh air, (b) using mobile air purifiers, and (c) disinfection by introducing active substances into the room air. This article discusses the feasibility of these different approaches critically. It also provides experimental results of air exchange measurements in a school classroom that is equipped with a built-in fan for supplying fresh air. With such a fan and a window tilted at the appropriate distance, an air exchange rate of 5/h can be set at a low power level and without any significant noise pollution. Heat balance calculations show that no additional heat exchanger is necessary in a normal classroom with outside temperatures above 10°C. Furthermore, a commercial mobile air purifier is studied in a chamber and a test room setup in order to examine and evaluate the efficiency of such devices against viable viruses under controlled and realistic conditions. For this purpose, bacteriophages of the type MS2 are used. Both window ventilation and air purifiers were found to be suitable to reduce the concentration of phages in the room.
Collapse
Affiliation(s)
- Erik Uhde
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| | - Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| | - Sebastian Wientzek
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| | - Annette Springorum
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| | - Jochen Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
33
|
Wang DS, Masoud CG, Modi M, Hildebrandt Ruiz L. Isoprene-Chlorine Oxidation in the Presence of NO x and Implications for Urban Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9251-9264. [PMID: 35700480 DOI: 10.1021/acs.est.1c07048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is a key indicator of urban air quality. Secondary organic aerosol (SOA) contributes substantially to the PM2.5 concentration. Discrepancies between modeling and field measurements of SOA indicate missing sources and formation mechanisms. Recent studies report elevated concentrations of reactive chlorine species in inland and urban regions, which increase the oxidative capacity of the atmosphere and serve as sources for SOA and particulate chlorides. Chlorine-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon, is known to produce SOA under pristine conditions, but the effects of anthropogenic influences in the form of nitrogen oxides (NOx) remain unexplored. Here, we investigate chlorine-isoprene reactions under low- and high-NOx conditions inside an environmental chamber. Organic chlorides including C5H11ClO3, C5H9ClO3, and C5H9ClO4 are observed as major gas- and particle-phase products. Modeling and experimental results show that the secondary OH-isoprene chemistry is significantly enhanced under high-NOx conditions, accounting for up to 40% of all isoprene oxidized and leading to the suppression of organic chloride formation. Chlorine-initiated oxidation of isoprene could serve as a source for multifunctional (chlorinated) organic oxidation products and SOA in both pristine and anthropogenically influenced environments.
Collapse
Affiliation(s)
- Dongyu S Wang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Catherine G Masoud
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mrinali Modi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Aksenov AA, Salido RA, Melnik AV, Brennan C, Brejnrod A, Caraballo-Rodríguez AM, Gauglitz JM, Lejzerowicz F, Farmer DK, Vance ME, Knight R, Dorrestein PC. The molecular impact of life in an indoor environment. SCIENCE ADVANCES 2022; 8:eabn8016. [PMID: 35749501 PMCID: PMC9232106 DOI: 10.1126/sciadv.abn8016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The chemistry of indoor surfaces and the role of microbes in shaping and responding to that chemistry are largely unexplored. We found that, over 1 month, people's presence and activities profoundly reshaped the chemistry of a house. Molecules associated with eating/cooking, bathroom use, and personal care were found throughout the entire house, while molecules associated with medications, outdoor biocides, and microbially derived compounds were distributed in a location-dependent manner. The house and its microbial occupants, in turn, also introduced chemical transformations such as oxidation and transformations of foodborne molecules. The awareness of and the ability to observe the molecular changes introduced by people should influence future building designs.
Collapse
Affiliation(s)
- Alexander A. Aksenov
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Rodolfo A. Salido
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexey V. Melnik
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Caitriona Brennan
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Asker Brejnrod
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrés Mauricio Caraballo-Rodríguez
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Julia M. Gauglitz
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Franck Lejzerowicz
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Marina E. Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Computer Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Pieter C. Dorrestein
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Wang C, Mattila JM, Farmer DK, Arata C, Goldstein AH, Abbatt JPD. Behavior of Isocyanic Acid and Other Nitrogen-Containing Volatile Organic Compounds in The Indoor Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7598-7607. [PMID: 35653434 DOI: 10.1021/acs.est.1c08182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Isocyanic acid (HNCO) and other nitrogen-containing volatile chemicals (organic isocyanates, hydrogen cyanide, nitriles, amines, amides) were measured during the House Observation of Microbial and Environmental Chemistry (HOMEChem) campaign. The indoor HNCO mean mixing ratio was 0.14 ± 0.30 ppb (range 0.012-6.1 ppb), higher than outdoor levels (mean 0.026 ± 0.15 ppb). From the month-long study, cooking and chlorine bleach cleaning are identified as the most important human-related sources of these nitrogen-containing gases. Gas oven cooking emits more isocyanates than stovetop cooking. The emission ratios HNCO/CO (ppb/ppm) during stovetop and oven cooking (mean 0.090 and 0.30) are lower than previously reported values during biomass burning (between 0.76 and 4.6) and cigarette smoking (mean 2.7). Bleach cleaning led to an increase of the HNCO mixing ratio of a factor of 3.5 per liter of cleaning solution used; laboratory studies indicate that isocyanates arise via reaction of nitrogen-containing precursors, such as indoor dust. Partitioned in a temperature-dependent manner to indoor surface reservoirs, HNCO was present at the beginning of HOMEChem, arising from an unidentified source. HNCO levels are higher at the end of the campaign than the beginning, indicative of occupant activities such as cleaning and cooking; however the direct emissions of humans are relatively minor.
Collapse
Affiliation(s)
- Chen Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology and Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, 518055, China
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - James M Mattila
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Caleb Arata
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
36
|
Chung I, Ryu H, Yoon SY, Ha JC. Health effects of sodium hypochlorite: review of published case reports. Environ Anal Health Toxicol 2022; 37:e2022006-0. [PMID: 35500889 PMCID: PMC9058106 DOI: 10.5620/eaht.2022006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
Sodium hypochlorite is widely used as the main component of cleaners and has an excellent bleaching and sterilizing effect in living and medical environments. In addition to bleaching, it is used for wastewater treatment and for sterilization in food factories, and also for disinfectants during the COVID-19 pandemic. This study analyzed reports of the health effects of sodium hypochlorite and classified them by toxicity along the exposure pathway. Most case reports described the health effects of acute high-concentration exposure, with a common case being dental exposure, mainly during treatment.
Collapse
Affiliation(s)
- Insung Chung
- Department of Occupational and Environmental Medicine, Keimyung University School of Medicine, Daegu,
Republic of Korea
- Correspondence:
| | - Hyeseung Ryu
- Department of Occupational and Environment Medicine, Keimyung University Dongsan Medical Center, Daegu,
Korea
| | - Seong-Yong Yoon
- Deptment of Occupational & Environmental Medicine, Soonchunhyang University School of Medicine, Gumi,
Republic of Korea
| | - Jea Chul Ha
- Department of Occupational and Environmental Medicine, Keimyung University School of Medicine, Daegu,
Republic of Korea
| |
Collapse
|
37
|
Or VW, Alves MR, Wade M, Schwab S, Corsi RL, Grassian VH. Nanoscopic Study of Water Uptake on Glass Surfaces with Organic Thin Films and Particles from Exposure to Indoor Cooking Activities: Comparison to Model Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1594-1604. [PMID: 35061386 DOI: 10.1021/acs.est.1c06260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water uptake by thin organic films and organic particles on glass substrates at 80% relative humidity was investigated using atomic force microscopy-infrared (AFM-IR) spectroscopy. Glass surfaces exposed to kitchen cooking activities show a wide variability of coverages from organic particles and organic thin films. Water uptake, as measured by changes in the volume of the films and particles, was also quite variable. A comparison of glass surfaces exposed to kitchen activities to model systems shows that they can be largely represented by oxidized oleic acid and carboxylate groups on long and medium hydrocarbon chains (i.e., fatty acids). Overall, we demonstrate that organic particles and thin films that cover glass surfaces can take up water under indoor-relevant conditions but that the water content is not uniform. The spatial heterogeneity of the changes in these aged glass surfaces under dry (5%) and wet (80%) conditions is quite marked, highlighting the need for studies at the nano- and microscale.
Collapse
Affiliation(s)
- Victor W Or
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Michael R Alves
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Michael Wade
- Department of Civil, Architectural and Environmental Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah Schwab
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Richard L Corsi
- Department of Civil, Architectural and Environmental Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- College of Engineering, University of California, Davis, Davis, California 95616, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
38
|
Mattila JM, Arata C, Abeleira A, Zhou Y, Wang C, Katz EF, Goldstein AH, Abbatt JPD, DeCarlo PF, Vance ME, Farmer DK. Contrasting Chemical Complexity and the Reactive Organic Carbon Budget of Indoor and Outdoor Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:109-118. [PMID: 34910454 DOI: 10.1021/acs.est.1c03915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reactive organic carbon (ROC) comprises a substantial fraction of the total atmospheric carbon budget. Emissions of ROC fuel atmospheric oxidation chemistry to produce secondary pollutants including ozone, carbon dioxide, and particulate matter. Compared to the outdoor atmosphere, the indoor organic carbon budget is comparatively understudied. We characterized indoor ROC in a test house during unoccupied, cooking, and cleaning scenarios using various online mass spectrometry and gas chromatography measurements of gaseous and particulate organics. Cooking greatly impacted indoor ROC concentrations and bulk physicochemical properties (e.g., volatility and oxidation state), while cleaning yielded relatively insubstantial changes. Additionally, cooking enhanced the reactivities of hydroxyl radicals and ozone toward indoor ROC. We observed consistently higher median ROC concentrations indoors (≥223 μg C m-3) compared to outdoors (54 μg C m-3), demonstrating that buildings can be a net source of reactive carbon to the outdoor atmosphere, following its removal by ventilation. We estimate the unoccupied test house emitted 0.7 g C day-1 from ROC to outdoors. Indoor ROC emissions may thus play an important role in air quality and secondary pollutant formation outdoors, particularly in urban and suburban areas, and indoors during the use of oxidant-generating air purifiers.
Collapse
Affiliation(s)
- James M Mattila
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Caleb Arata
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Andrew Abeleira
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yong Zhou
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Chen Wang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Erin F Katz
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Peter F DeCarlo
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
39
|
Zhou S, Kahan TF. Spatiotemporal characterization of irradiance and photolysis rate constants of indoor gas-phase species in the UTest house during HOMEChem. INDOOR AIR 2022; 32:e12964. [PMID: 34854500 DOI: 10.1111/ina.12966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/14/2021] [Indexed: 05/25/2023]
Abstract
We made intensive measurements of wavelength-resolved spectral irradiance in a test house during the HOMEChem campaign and report diurnal profiles and two-dimensional spatial distribution of photolysis rate constants (J) of several important indoor photolabile gases. Results show that sunlight entering through windows, which was the dominant source of ultraviolet (UV) light in this house, led to clear diurnal cycles, and large time- and location-dependent variations in local gas-phase photochemical activity. Local J values of several key indoor gases under direct solar illumination were 1.8-7.4 times larger-and more strongly dependent on time, solar zenith angle, and incident angle of sunlight relative to the window-than under diffuse sunlight. Photolysis rate constants were highly spatially heterogeneous and fast photochemical reactions in the gas phase were generally confined to within tens of cm of the region that were directly sunlit. Opening windows increased UV photon fluxes by 3 times and increased predicted local hydroxyl radical (OH) concentrations in the sunlit region by 4.5 times to 3.2 × 107 molec cm-3 due to higher J values and increased contribution from O3 photolysis. These results can be used to improve the treatment of photochemistry in indoor chemistry models and are a valuable resource for future studies that use the publicly available HOMEChem measurements.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
40
|
Gerlach M, Monninger S, Schleier D, Hemberger P, Goettel JT, Braunschweig H, Fischer I. Photoelectron Photoion Coincidence Spectroscopy of NCl 3 and NCl 2. Chemphyschem 2021; 22:2164-2167. [PMID: 34390518 PMCID: PMC8596423 DOI: 10.1002/cphc.202100537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Indexed: 12/02/2022]
Abstract
We investigate NCl3 and the NCl2 radical by photoelectron‐photoion coincidence spectroscopy using synchrotron radiation. The mass selected threshold photoelectron spectrum (ms‐TPES) of NCl3 is broad and unstructured due to the large geometry change. An ionization energy of 9.7±0.1 eV is estimated from the spectrum and supported by computations. NCl2 is generated by photolysis at 213 nm from NCl3 and its ms‐TPES shows an extended vibrational progression with a 90 meV spacing that is assigned to the symmetric N−Cl stretching mode in the cation. An adiabatic ionization energy of 9.94 ± 0.02 eV is determined.
Collapse
Affiliation(s)
- Marius Gerlach
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sophie Monninger
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Domenik Schleier
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI), 5232, Villigen, Switzerland
| | - James T Goettel
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
41
|
Arata C, Misztal PK, Tian Y, Lunderberg DM, Kristensen K, Novoselac A, Vance ME, Farmer DK, Nazaroff WW, Goldstein AH. Volatile organic compound emissions during HOMEChem. INDOOR AIR 2021; 31:2099-2117. [PMID: 34272904 DOI: 10.1111/ina.12906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 05/15/2023]
Abstract
Quantifying speciated concentrations and emissions of volatile organic compounds (VOCs) is critical to understanding the processes that control indoor VOC dynamics, airborne chemistry, and human exposures. Here, we present source strength profiles from the HOMEChem study, quantifying speciated VOC emissions from scripted experiments (with multiple replicates) of cooking, cleaning, and human occupancy and from unperturbed baseline measurements of the building and its contents. Measurements using a proton transfer reaction time-of-flight mass spectrometer were combined with tracer-based determinations of air-change rates to enable mass-balance-based calculations of speciated, time-resolved VOC source strengths. The building and its contents were the dominant emission source into the house, with large emissions of acetic acid, methanol, and formic acid. Cooking emissions were greater than cleaning emissions and were dominated by ethanol. Bleach cleaning generated high emissions of chlorinated compounds, whereas natural product cleaning emitted predominantly terpenoids. Occupancy experiments showed large emissions of siloxanes from personal care products in the morning, with much lower emissions in the afternoon. From these results, VOC emissions were simulated for a hypothetical 24-h period, showing that emissions from the house and its contents make up nearly half of total indoor VOC emissions.
Collapse
Affiliation(s)
- Caleb Arata
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Pawel K Misztal
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Yilin Tian
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
- Baseline Environmental Consulting, Emeryville, California, USA
| | - David M Lunderberg
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Kasper Kristensen
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Atila Novoselac
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
| |
Collapse
|
42
|
Li Q, Fu X, Peng X, Wang W, Badia A, Fernandez RP, Cuevas CA, Mu Y, Chen J, Jimenez JL, Wang T, Saiz-Lopez A. Halogens Enhance Haze Pollution in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13625-13637. [PMID: 34591460 PMCID: PMC8529710 DOI: 10.1021/acs.est.1c01949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Severe and persistent haze events in northern China, characterized by high loading of fine aerosol especially of secondary origin, negatively impact human health and the welfare of ecosystems. However, current knowledge cannot fully explain the formation of this haze pollution. Despite field observations of elevated levels of reactive halogen species (e.g., BrCl, ClNO2, Cl2, HBr) at several sites in China, the influence of halogens (particularly bromine) on haze pollution is largely unknown. Here, for the first time, we compile an emission inventory of anthropogenic bromine and quantify the collective impact of halogens on haze pollution in northern China. We utilize a regional model (WRF-Chem), revised to incorporate updated halogen chemistry and anthropogenic chlorine and bromine emissions and validated by measurements of atmospheric pollutants and halogens, to show that halogens enhance the loading of fine aerosol in northern China (on average by 21%) and especially its secondary components (∼130% for secondary organic aerosol and ∼20% for sulfate, nitrate, and ammonium aerosols). Such a significant increase is attributed to the enhancement of atmospheric oxidants (OH, HO2, O3, NO3, Cl, and Br) by halogen chemistry, with a significant contribution from previously unconsidered bromine. These results show that higher recognition of the impact of anthropogenic halogens shall be given in haze pollution research and air quality regulation.
Collapse
Affiliation(s)
- Qinyi Li
- Department
of Atmospheric Chemistry and Climate, Institute of Physical Chemistry
Rocasolano, CSIC, Madrid 28006, Spain
| | - Xiao Fu
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Institute
of Environment and Ecology, Tsinghua Shenzhen International Graduate
School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Peng
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Weihao Wang
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Alba Badia
- Institute
of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona (UAB), Barcelona 08193, Spain
| | - Rafael P. Fernandez
- Department
of Atmospheric Chemistry and Climate, Institute of Physical Chemistry
Rocasolano, CSIC, Madrid 28006, Spain
- Institute
for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza M5502JMA, Argentina
| | - Carlos A. Cuevas
- Department
of Atmospheric Chemistry and Climate, Institute of Physical Chemistry
Rocasolano, CSIC, Madrid 28006, Spain
| | - Yujing Mu
- Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Jianmin Chen
- Department
of Environmental Science and Engineering, Fudan University, Institute of Atmospheric Sciences, Shanghai 200433, China
| | - Jose L. Jimenez
- Cooperative
Institute for Research in Environmental Sciences and Department of
Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Tao Wang
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Alfonso Saiz-Lopez
- Department
of Atmospheric Chemistry and Climate, Institute of Physical Chemistry
Rocasolano, CSIC, Madrid 28006, Spain
| |
Collapse
|
43
|
Koksoy Vayisoglu S, Oncu E. The use of cleaning products and its relationship with the increasing health risks during the COVID-19 pandemic. Int J Clin Pract 2021; 75:e14534. [PMID: 34129746 PMCID: PMC8420600 DOI: 10.1111/ijcp.14534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The present study aimed to determine the factors affecting the use of cleaning products at the home environment and the frequency of problems during the coronavirus disease-19 (COVID-19) pandemic. MATERIALS AND METHODS This cross-sectional research was performed online between 30 August 2020 and 15 September 2020. The population of the study consisted of adults aged between 18 and 80 years, affected by the COVID-19 pandemic. Data collection forms (introductory information and risk perception form and cleaning products usage characteristics form) were shared through Web2 tools. The questionnaire study was completed with 674 participants between the ages of 18 and 80 years in Turkey. Descriptive statistics and classification tree were used in the analysis of the data. Statistical significance was accepted as P ≤ .01 in all analyses. RESULTS During the pandemic period compared with the pre-pandemic period, it was observed that the frequency of cleaning (69.3%) and the amount of cleaning product usage (74.2%) increased significantly and the frequency of problems related to the use of cleaning products was found as 46.9%. The most commonly reported problems were skin disturbances (68%) and shortness of breath (23%). It was determined that the history of contact with the COVID-19 patient, the perceived risk of COVID-19 infection and risky cleaning behaviour were predictive in determining the risk of experiencing problems related to cleaning products. The amount of bleach consumed per month among who did experience problems was higher than those who did not experience problems and was associated with the perceived risk of COVID-19 infection. CONCLUSION In the COVID-19 pandemic, human beings have been found to increase the frequency of cleaning and using cleaning products. In order to reduce the negative effects of chemicals used for cleaning on human and environmental health, the trainings to be given by the teams providing primary healthcare services can be effective as well as general education activities for community groups.
Collapse
Affiliation(s)
| | - Emine Oncu
- Department of Public Health NursingNursing FacultyMersin UniversityMersinTurkey
| |
Collapse
|
44
|
Morrow JB, Packman AI, Martinez KF, Van Den Wymelenberg K, Goeres D, Farmer DK, Mitchell J, Ng L, Hazi Y, Schoch-Spana M, Quinn S, Bahnfleth W, Olsiewski P. Critical Capability Needs for Reduction of Transmission of SARS-CoV-2 Indoors. Front Bioeng Biotechnol 2021; 9:641599. [PMID: 34660544 PMCID: PMC8513777 DOI: 10.3389/fbioe.2021.641599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Coordination of efforts to assess the challenges and pain points felt by industries from around the globe working to reduce COVID-19 transmission in the indoor environment as well as innovative solutions applied to meet these challenges is mandatory. Indoor infectious viral disease transmission (such as coronavirus, norovirus, influenza) is a complex problem that needs better integration of our current knowledge and intervention strategies. Critical to providing a reduction in transmission is to map the four core technical areas of environmental microbiology, transmission science, building science, and social science. To that end a three-stage science and innovation Summit was held to gather information on current standards, policies and procedures applied to reduce transmission in built spaces, as well as the technical challenges, science needs, and research priorities. The Summit elucidated steps than can be taken to reduce transmission of SARS-CoV-2 indoors and calls for significant investments in research to enhance our knowledge of viral pathogen persistence and transport in the built environment, risk assessment and mitigation strategy such as processes and procedures to reduce the risk of exposure and infection through building systems operations, biosurveillance capacity, communication form leadership, and stakeholder engagement for optimal response. These findings reflect the effective application of existing knowledge and standards, emerging science, and lessons-learned from current efforts to confront SARS-CoV-2.
Collapse
Affiliation(s)
- Jayne B. Morrow
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Integrated Bioscience and Built Environment Consortium (IBEC), Sanford, FL, United States
| | - Aaron I. Packman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Kenneth F. Martinez
- Integrated Bioscience and Built Environment Consortium (IBEC), Sanford, FL, United States
- HWC Inc., Washington, DC, United States
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, College of Design, Institute for Health in the Built Environment, University of Oregon, Eugene, OR, United States
| | - Darla Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Jade Mitchell
- Department of Biosystems Engineering, Michigan State University, East Lansing, MI, United States
| | - Lisa Ng
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yair Hazi
- HWC Inc., Washington, DC, United States
| | - Monica Schoch-Spana
- Johns Hopkins Center for Health Security, John Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sandra Quinn
- Department of Family Science and Center for Health Equity, School of Public Health, University of Maryland, College Park, MD, United States
| | - William Bahnfleth
- Department of Architectural Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Paula Olsiewski
- Johns Hopkins Center for Health Security, John Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
- Alfred P. Sloan Foundation, New York, NY, United States
| |
Collapse
|
45
|
Collins DB, Farmer DK. Unintended Consequences of Air Cleaning Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12172-12179. [PMID: 34464124 DOI: 10.1021/acs.est.1c02582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Amplified interest in maintaining clean indoor air associated with the airborne transmission risks of SARS-CoV-2 have led to an expansion in the market for commercially available air cleaning systems. While the optimal way to mitigate indoor air pollutants or contaminants is to control (remove) the source, air cleaners are a tool for use when absolute source control is not possible. Interventions for indoor air quality management include physical removal of pollutants through ventilation or collection on filters and sorbent materials, along with chemically reactive processes that transform pollutants or seek to deactivate biological entities. This perspective intends to highlight the perhaps unintended consequences of various air cleaning approaches via indoor air chemistry. Introduction of new chemical agents or reactive processes can initiate complex chemistry that results in the release of reactive intermediates and/or byproducts into the indoor environment. Since air cleaning systems are often continuously running to maximize their effectiveness and most people spend a vast majority of their time indoors, human exposure to both primary and secondary products from air cleaners may represent significant exposure risk. This Perspective highlights the need for further study of chemically reactive air cleaning and disinfection methods before broader adoption.
Collapse
Affiliation(s)
- Douglas B Collins
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
46
|
Lou J, Wang W, Lu H, Wang L, Zhu L. Increased disinfection byproducts in the air resulting from intensified disinfection during the COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126249. [PMID: 34119971 PMCID: PMC8158349 DOI: 10.1016/j.jhazmat.2021.126249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 05/04/2023]
Abstract
Intensified use of disinfectants to control COVID-19 could unintentionally increase the disinfection byproducts (DBPs) in the environment. In indoor spaces, it is critical to determine the optimal disinfection practice to prevent the spread of the virus while keeping DBPs at relatively low levels in the air. The formation of DBPs exceed 0.1 μg/mg while hypochlorite dosed at >10 mg/m3. The total DBP concentrations in highly disinfected places (100-200 mg/m3 hypochlorite) were as high as 66.8 μg/m3, and the Hazard Index (HI) was up to 0.84, and both values were much higher than those in less disinfected places (<10 mg/m3 hypochlorite). Taking into account the HI, formation yields and the origin of the DBPs, we recommended 10 mg/m3 as the suggested hypochlorite dose to minimize DBPs generation during routine disinfection for controlling the coronavirus. DBPs in indoor air could be eliminated by ventilation, reducing the usage of personal care products, and wiping the solid surface with water before or after disinfection. These results highlighted the necessity to control air-borne DBPs and their associated health risks arising from intensified disinfection, and will guide the further development of evidence-based regulation on DBP exposure during disinfection and improve public health protection.
Collapse
Affiliation(s)
- Jinxiu Lou
- Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Wang
- Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Finewax Z, Pagonis D, Claflin MS, Handschy AV, Brown WL, Jenks O, Nault BA, Day DA, Lerner BM, Jimenez JL, Ziemann PJ, de Gouw JA. Quantification and source characterization of volatile organic compounds from exercising and application of chlorine-based cleaning products in a university athletic center. INDOOR AIR 2021; 31:1323-1339. [PMID: 33337567 DOI: 10.1111/ina.12781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 05/15/2023]
Abstract
Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder. Using a Vocus Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (Vocus PTR-TOF), an Aerodyne Gas Chromatograph (GC), an Iodide-Chemical Ionization Time-of-Flight Mass Spectrometer (I-CIMS), and Picarro cavity ringdown spectrometers, we alternated measurements between the weight room and supply air, allowing for determination of VOC, NH3 , H2 O, and CO2 emission rates per person (emission factors). Human-derived emission factors were higher than previous studies of measuring indoor air quality in rooms with individuals at rest and correlated with increased CO2 emission factors. Emission factors from personal care products (PCPs) were consistent with previous studies and typically decreased throughout the day. In addition, N-chloraldimines were observed in the gas phase after the exercise equipment was cleaned with a dichlor solution. The chloraldimines likely originated from reactions of free amino acids with HOCl on gym surfaces.
Collapse
Affiliation(s)
- Zachary Finewax
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Demetrios Pagonis
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | | | - Anne V Handschy
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Wyatt L Brown
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Olivia Jenks
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Benjamin A Nault
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Douglas A Day
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | | | - Jose L Jimenez
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Paul J Ziemann
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Joost A de Gouw
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| |
Collapse
|
48
|
Ha Y, Koo Y, Kwon JH. Personal Passive Air Samplers for Chlorinated Gases Generated from the Use of Consumer Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18178940. [PMID: 34501528 PMCID: PMC8430877 DOI: 10.3390/ijerph18178940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
Various chlorine-based disinfectants are being used during the COVID-19 pandemic; however, only a few studies on exposure to harmful gases resulting from the use of these disinfectants exist. Previously, we developed a personal passive air sampler (PPAS) to estimate the exposure level to chlorine gas while using chlorinated disinfectants. Herein, we investigated the color development of the passive sampler corresponding to chlorine exposure concentration and time, which allows the general population to easily estimate their gas exposure levels. The uptake and reaction rate of PPAS are also explained, and the maximum capacity of the sampler was determined as 1.8 mol of chlorine per unit volume (m3) of the passive sampler. Additionally, the effects of disinfectant types on the gas exposure level were successfully assessed using passive samplers deployed in a closed chamber. It is noteworthy that the same level of chlorine gas is generated from liquid household bleach regardless of dilution ratios, and we confirmed that the chlorine gas can diffuse out from a gel-type disinfectant. Considering that this PPAS reflects reactive gas removal, individual working patterns, and environmental conditions, this sampler can be successfully used to estimate personal exposure levels of chlorinated gases generated from disinfectants.
Collapse
|
49
|
Dewey HM, Jones JM, Keating MR, Budhathoki-Uprety J. Increased Use of Disinfectants During the COVID-19 Pandemic and Its Potential Impacts on Health and Safety. ACS CHEMICAL HEALTH & SAFETY 2021. [DOI: 10.1021/acs.chas.1c00026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hannah M. Dewey
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jaron M. Jones
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Mike R. Keating
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
50
|
Spatial and temporal scales of variability for indoor air constituents. Commun Chem 2021; 4:110. [PMID: 36697551 PMCID: PMC9814873 DOI: 10.1038/s42004-021-00548-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Historically air constituents have been assumed to be well mixed in indoor environments, with single point measurements and box modeling representing a room or a house. Here we demonstrate that this fundamental assumption needs to be revisited through advanced model simulations and extensive measurements of bleach cleaning. We show that inorganic chlorinated products, such as hypochlorous acid and chloramines generated via multiphase reactions, exhibit spatial and vertical concentration gradients in a room, with short-lived ⋅OH radicals confined to sunlit zones, close to windows. Spatial and temporal scales of indoor constituents are modulated by rates of chemical reactions, surface interactions and building ventilation, providing critical insights for better assessments of human exposure to hazardous pollutants, as well as the transport of indoor chemicals outdoors.
Collapse
|