1
|
McGill L, Sleugh T, Petrik C, Schiff K, McLaughlin K, Aluwihare L, Semmens B. The persistent DDT footprint of ocean disposal, and ecological controls on bioaccumulation in fishes. Proc Natl Acad Sci U S A 2024; 121:e2401500121. [PMID: 39467121 DOI: 10.1073/pnas.2401500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Globally, ocean dumping of chemical waste is a common method of disposal and relies on the assumption that dilution, diffusion, and dispersion at ocean scales will mitigate human exposure and ecosystem impacts. In southern California, extensive dumping of agrochemical waste, particularly chlorinated hydrocarbon contaminants such as DDT, via sewage outfalls and permitted offshore barging occurred for most of the last century. This study compiled a database of existing sediment and fish DDT measurements to examine how this unique legacy of regional ocean disposal translates into the contemporary contamination of the coastal ocean. We used spatiotemporal modeling to derive continuous estimates of sediment DDT contamination and show that the spatial signature of disposal (i.e., high loadings near historic dumping sites) is highly conserved in sediments. Moreover, we demonstrate that the proximity of fish to areas of high sediment loadings explained over half of the variation in fish DDT concentrations. The relationship between sediment and fish contamination was mediated by ecological predictors (e.g., species, trophic ecology, habitat use), and the relative influence of each predictor was context-dependent, with habitat exhibiting greater importance in heavily contaminated areas. Thus, despite more than half a century since the cessation of industrial dumping in the region, local ecosystem contamination continues to mirror the spatial legacy of dumping, suggesting that sediment can serve as a robust predictor of fish contamination, and general ecological characteristics offer a predictive framework for unmeasured species or locations.
Collapse
Affiliation(s)
- Lillian McGill
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Toni Sleugh
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Colleen Petrik
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Kenneth Schiff
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626
| | - Karen McLaughlin
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626
| | - Lihini Aluwihare
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Brice Semmens
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
2
|
Wardiani FE, Dong CD, Chen CW, Liu TK, Hsu ZP, Lam SS, Wang LC. Characterizing persistent organic pollutants in seawater at a multifunctional international harbor influenced by industrial riverbank activities. MARINE POLLUTION BULLETIN 2024; 209:117213. [PMID: 39489051 DOI: 10.1016/j.marpolbul.2024.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The objective of this study is to comprehensively characterize persistent organic pollutants (POPs) in seawater at Kaohsiung Harbor, focusing on their concentrations, partitioning behaviors, and profiles in both particle and liquid phases. We analyzed 100 L seawater for each sample, finding total dioxin-like toxicity (PCDD/Fs + PCBs + PBDD/Fs) ranging from 0.00936 to 0.167 pg WHO-TEQ/L, with PCDD/Fs accounting for 68 % of total toxicity. POPs predominantly appeared in the particle phase, observed in over 80 % of samples, except for PCBs. The observed correlations between particulate matter (PM) and chlorinated POPs at sites receiving river effluents suggest shared pollution sources. The liquid partition of PCDD/Fs, PCBs, and PBDEs in the seawater shows an inverse relationship with log Kow and a direct proportionality with solubility, particularly above 0.1 μg/L. Furthermore, PBDEs in seawater can transform into PBDD/Fs upon UV light exposure, highlighting another potential pathway for the persistence and spread of these harmful contaminants in the environment. These findings emphasize the need for field-based investigations to assess PBDF formation in aquatic environments and underscore the importance of stronger mitigation strategies, including better wastewater treatment and stricter discharge regulations to reduce POPs in marine ecosystems.
Collapse
Affiliation(s)
- Fefi Eka Wardiani
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ta-Kang Liu
- Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, Tainan, Taiwan
| | - Zhi-Ping Hsu
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Lin-Chi Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Liu A, Qu C, Zhang J, Sun W, Shi C, Lima A, De Vivo B, Huang H, Palmisano M, Guarino A, Qi S, Albanese S. Screening and optimization of interpolation methods for mapping soil-borne polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169498. [PMID: 38154632 DOI: 10.1016/j.scitotenv.2023.169498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
There is yet no scientific consensus, and for now, on how to choose the optimal interpolation method and its parameters for mapping soil-borne organic pollutants. Take the polychlorinated biphenyls (PCBs) for instance, we present the comparison of some classic interpolation methods using a high-resolution soil monitoring database. The results showed that empirical Bayesian kriging (EBK) has the highest accuracy for predicting the total PCB concentration, while root mean squared error (RMSE) in inverse distance weighting (IDW) is among the highest in these interpolation methods. The logarithmic transformation of non-normally distributed data contributed to enhance considerably the semivariogram for modeling in kriging interpolation. The increasing of search neighborhood reduced IDW's RMSE, but slightly affected in ordinary kriging (OK), while both of them resulted in over smooth of prediction map. The existence of outliers made the difference between two points increase sharply, and thereby weakening spatial autocorrelation and decreasing the accuracy. As predicted error increased continuously, the prediction accuracy of different interpolation methods reached unanimity gradually. The attempt of the assisted interpolation algorithm did not significantly improve the prediction accuracy of the IDW method. This study constructed a standardized workflow for interpolation, which could reduce human error to reach higher interpolation accuracy for mapping soil-borne PCBs.
Collapse
Affiliation(s)
- Ao Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Wen Sun
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Changhe Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Annamaria Lima
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Naples 80125, Italy
| | - Benedetto De Vivo
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China; Pegaso On-Line University, Naples 80132, Italy
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Maurizio Palmisano
- Experimental Research Center, National Research Council, Benevento 82100, Italy
| | - Annalise Guarino
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Naples 80125, Italy
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Stefano Albanese
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
4
|
Sokołowski A, Mordec M, Caban M, Øverjordet IB, Wielogórska E, Włodarska-Kowalczuk M, Balazy P, Chełchowski M, Lepoint G. Bioaccumulation of pharmaceuticals and stimulants in macrobenthic food web in the European Arctic as determined using stable isotope approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168557. [PMID: 37979847 DOI: 10.1016/j.scitotenv.2023.168557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Although pharmaceuticals are increasingly detected in abiotic matrices in the Arctic, the accumulation of drugs in the resident biota and trophic transfer have not been yet examined. This study investigated the behaviour of several pharmaceuticals in the rocky-bottom, macrobenthic food web in the coastal zone of Isfjorden (western Spitsbergen) using stable isotope analyses (SIA) coupled with liquid chromatography-mass spectrometry (LC-MS/MS). Across 16 macroalgal and invertebrate species the highest average concentration was measured for ciprofloxacin (CIP) (on average 60.3 ng g-1 dw) followed by paracetamol (PCT) (51.3 ng g-1 dw) and nicotine (NIC) (37.8 ng g-1 dw). The biomagnification potential was assessed for six target compounds of 13 analytes detected that were quantified with a frequency > 50 % in biological samples. The trophic magnification factor (TMF) ranged between 0.3 and 2.8, and was significant for NIC and CIP. TMF < 1.0 for NIC (0.3; confidence interval, CI 0.1-0.5) indicated that the compound does not accumulate with trophic position. The dilution of pharmaceutical residues in the food web may result from limited intake with dietary route, poor assimilation efficiency and high biotransformation rates in benthic invertebrates. TMF for CIP (2.8, CI 1.2-6.4) suggests trophic magnification, a phenomenon observed previously for several antibiotics in freshwater food webs. Trophic transfer therefore plays a role in controlling concentration of CIP in the Arctic benthic communities and should be considered in environmental risk assessment. Biomagnification potential of diclofenac (DIC; 0.9, CI 0.5-1.7), carbamazepine (CBZ; 0.4, CI 0.1-2.1), caffeine (CAF; 0.9, CI 0.5-1.9) and PCT (1.3, CI 0.7-2.7) was not evident due to large 95 % confidence of their TMFs. This study provides the first evidence of drug bioaccumulation in the Arctic food web and indicates that behaviour of pharmaceuticals varies among target compounds.
Collapse
Affiliation(s)
- Adam Sokołowski
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Marlena Mordec
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- University of Gdańsk, Faculty of Chemistry, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | | | - Maria Włodarska-Kowalczuk
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Piotr Balazy
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Maciej Chełchowski
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Gilles Lepoint
- Université de Liège, UR FOCUS, Laboratory of Trophic and Isotope Ecology (LETIS), allée du six Août 11, 4000 Liège 1, Belgium
| |
Collapse
|
5
|
Guo X, Lv M, Song L, Ding J, Man M, Fu L, Song Z, Li B, Chen L. Occurrence, Distribution, and Trophic Transfer of Pharmaceuticals and Personal Care Products in the Bohai Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21823-21834. [PMID: 38078887 DOI: 10.1021/acs.est.3c06522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in environments has aroused global concerns; however, minimal information is available regarding their multimedia distribution, bioaccumulation, and trophic transfer in marine environments. Herein, we analyzed 77 representative PPCPs in samples of surface and bottom seawater, surface sediments, and benthic biota from the Bohai Sea. PPCPs were pervasively detected in seawater, sediments, and benthic biota, with antioxidants being the most abundant PPCPs. PPCP concentrations positively correlated between the surface and bottom water with a decreasing trend from the coast to the central oceans. Higher PPCP concentrations in sediment were found in the Yellow River estuary, and the variations in the physicochemical properties of PPCPs and sediment produced a different distribution pattern of PPCPs in sediment from seawater. The log Dow, but not log Kow, showed a linear and positive relationship with bioaccumulation and trophic magnification factors and a parabolic relationship with biota-sediment accumulation factors. The trophodynamics of miconazole and acetophenone are reported for the first time. This study provides novel insights into the multimedia distribution and biomagnification potential of PPCPs and suggests that log Dow is a better indicator of their bioaccumulation and trophic magnification.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihua Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Baoquan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
6
|
Bogevik AS, Puvanendran V, Vorkamp K, Burgerhout E, Hansen Ø, Fernández-Míguez M, Krasnov A, Afanasyev S, Høst V, Ytteborg E. Long-Term Influence of PCB- and PBDE-Spiked Microplastic Spheres Fed through Rotifers to Atlantic Cod ( Gadus morhua) Larvae. Int J Mol Sci 2023; 24:10326. [PMID: 37373473 DOI: 10.3390/ijms241210326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Omnipresent microplastics (MPs) in marine ecosystems are ingested at all trophic levels and may be a vector for the transfer of persistent organic pollutants (POPs) through the food web. We fed rotifers polyethylene MPs (1-4 µm) spiked with seven congeners of polychlorinated biphenyls (PCBs) and two congeners of polybrominated diphenyl ethers (PBDEs). In turn, these rotifers were fed to cod larvae from 2-30 days post-hatching (dph), while the control groups were fed rotifers without MPs. After 30 dph, all the groups were fed the same feed without MPs. Whole-body larvae were sampled at 30 and 60 dph, and four months later the skin of 10 g juveniles was sampled. The PCBs and PBDEs concentrations were significantly higher in MP larvae compared to the control larvae at 30 dph, but the significance dissipated at 60 dph. Expression of stress-related genes in cod larvae at 30 and 60 dph showed inconclusive minor random effects. The skin of MP juveniles showed disrupted epithelial integrity, fewer club cells and downregulation of a suite of genes involved in immunity, metabolism and the development of skin. Our study showed that POPs were transferred through the food web and accumulated in the larvae, but that the level of pollutants decreased once the exposure was ceased, possibly related to growth dilution. Considering the transcriptomic and histological findings, POPs spiked to MPs and/or MPs themselves may have long-term effects in the skin barrier defense system, immune response and epithelium integrity, which may potentially reduce the robustness and overall fitness of the fish.
Collapse
Affiliation(s)
| | | | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | | | - Øyvind Hansen
- Nofima, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway
| | | | | | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez 44, 194223 Saint-Petersburg, Russia
| | - Vibeke Høst
- Nofima, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway
| | | |
Collapse
|
7
|
Li B, Wang J, Hu G, Liu X, Yu Y, Cai D, Ding P, Li X, Zhang L, Xiang C. Bioaccumulation Behavior and Human Health Risk of Polybrominated Diphenyl Ethers in a Freshwater Food Web of Typical Shallow Lake, Yangtze River Delta. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2671. [PMID: 36768037 PMCID: PMC9916311 DOI: 10.3390/ijerph20032671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) have been commonly found in aquatic ecosystems. Many studies have elucidated the bioaccumulation and biomagnification of PBDEs in seas and lakes, yet few have comprehensively evaluated the bioaccumulation, biomagnification, and health risks of PBDEs in shallow lakes, and there is still limited knowledge of the overall effects of biomagnification and the health risks to aquatic organisms. METHODS In this study, a total of 154 samples of wild aquatic organism and environmental samples were collected from typical shallow lakes located in the Yangtze River Delta in January 2020. The concentrations of PBDEs were determined by an Agilent 7890 gas chromatograph coupled and an Agilent 5795 mass spectrometer (GC/MS) and the bioaccumulation behavior of PBDEs was evaluated in 23 aquatic organisms collected from typical shallow lakes of the Yangtze River Delta. Furthermore, their effects on human health were evaluated by the estimated daily intake (EDI), noncarcinogenic risk, and carcinogenic risk. RESULTS The concentrations of ΣPBDE (defined as the sum of BDE-28, -47, -100, -99, -153, -154, -183, and -209) in biota samples ranged from 2.36 to 85.81 ng/g lipid weight. BDE-209, BDE-153 and BDE-47 were the major PBDE congeners. The factors affecting the concentration of PBDEs in aquatic organisms included dietary habits, species, and the metabolic debromination ability of the PBDE congeners. BDE-209 and BDE-47 were the strongest bioaccumulative PBDE congeners in aquatic organisms. Additionally, except for BDE-99, BDE-153 and BDE-154, the trophic magnification factor (TMF) values of PBDE congeners were significantly higher than 1. Moreover, the log Kow played a significant role in the biomagnification ability of PBDE congeners. The noncarcinogenic risk of PBDE congeners and carcinogenic risk of BDE-209 from aquatic products were lower than the thresholds. CONCLUSIONS PBDE congeners were bioaccumulated and biomagnified to varying degrees in aquatic organisms from typical shallow lakes. Both the noncarcinogenic and carcinogenic risks assessment of edible aquatic products indicated that none of the PBDE congeners pose health risks to the localite. This study will provide a basis for a comprehensive assessment of PBDEs in aquatic ecosystems in shallow lakes and for environmental prevention measures for decision-makers.
Collapse
Affiliation(s)
- Bei Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Juanheng Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Guocheng Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xiaolin Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Dan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Chongdan Xiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| |
Collapse
|
8
|
Bustnes JO, Bårdsen BJ, Herzke D, Bangjord G, Bollinger E, Bourgeon S, Schulz R, Fritsch C, Eulaers I. The impact of climate sensitive factors on the exposure to organohalogenated contaminants in an aquatic bird exploiting both marine and freshwater habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157667. [PMID: 35907551 DOI: 10.1016/j.scitotenv.2022.157667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
To assess how climate-sensitive factors may affect the exposure to organochlorines (OCs) and perfluoroalkyl substances (PFASs), we monitored concentrations in eggs of the common goldeneye (Bucephala clangula) over two decades (1999-2019) in central Norway. The goldeneye alternates between marine and freshwater habitats and is sensitive to climate variation, especially due to alterations in ice conditions which may affect feeding conditions. We assessed how biological factors such as diet (stable isotopes δ13C and δ15N), the onset of egg laying, and physical characteristics such as winter climate (North Atlantic Oscillation: NAOw) influenced exposure. We predicted compounds to show different temporal trends depending on whether they were still in production (i.e. some PFASs) or have been banned (i.e. legacy OCs and some PFASs). Therefore, we controlled for potential temporal trends in all analyses. There were declining trends for α- and γ-hexachlorocyclohexane (HCH), oxychlordane, cis-chlordane, cis-nonachlor, p,p'-dichlorodiphenyltrichloroethane (p.p'-DDT) and less persistent polychlorinated biphenyl (PCB) congeners (e.g. PCB101). In contrast, the dominant compounds, such as p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and persistent PCB congeners, were stable, whereas hexachlorobenzene (HCB) increased over time. Most OCs were positively related to δ15N, suggesting higher exposure in birds feeding at upper trophic levels. Chlordanes and HCB were positively associated with δ13C, indicating traces of marine input for these compounds, whereas the relationships to most PCBs were negative. Among PFASs, perfluorooctanesulfonamide (PFOSA) and perfluorohexane sulfonic acid (PFHxS) declined. Most PFASs were positively associated with δ13C, whereas there were no associations with δ15N. Egg laying date was positively associated to perfluoroheptanesulfonic acid (PFHpS), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), suggesting that some of the PFAS load originated from the wintering locations. Although NAOw had little impact on the exposure to organohalogenated contaminants, factors sensitive to climate change, especially diet, were associated with the exposure to OHCs in goldeneyes.
Collapse
Affiliation(s)
- Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA), The Fram Centre, N-9296 Tromsø, Norway.
| | - Bård-Jørgen Bårdsen
- Norwegian Institute for Nature Research (NINA), The Fram Centre, N-9296 Tromsø, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), The Fram Centre, N-9296 Tromsø, Norway; The Arctic University of Norway, Department of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | | | - Eric Bollinger
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, DE-76829 Landau, Germany
| | - Sophie Bourgeon
- The Arctic University of Norway, Department of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, DE-76829 Landau, Germany
| | - Clementine Fritsch
- UMR Chrono-environnement 6249 CNRS - University of Franche-Comté, F-25030 Besançon Cedex, France
| | - Igor Eulaers
- Norwegian Polar Institute, The Fram Centre, N-9296 Tromsø, Norway
| |
Collapse
|
9
|
Wu JY, Gu L, Hua ZL, Liang ZY, Chu KJ, He XX. Per-, poly-fluoroalkyl substances (PFASs) pollution in benthic riverine ecosystem: Integrating microbial community coalescence and biogeochemistry with sediment distribution. CHEMOSPHERE 2021; 281:130977. [PMID: 34289625 DOI: 10.1016/j.chemosphere.2021.130977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Per-, Poly-fluoroalkyl substances (PFASs) accumulation in benthic environments is mainly determined by material mixing and represents a significant challenge to river remediation. However, less attention has been paid to the effects of sediment distribution on PFASs accumulation, and how PFASs influence microbial community coalescence and biogeochemical processes. In order to identify correlations between PFASs distribution and benthic microbial community functions, we conducted a field study and quantified the ecological constrains of material transportation on benthic microorganisms. Perfluorohexanoic acid (PFHxA) contributed most to the taxonomic heterogeneity of both archaeal (12.199%) and bacterial (13.675%) communities. Genera Methanoregula (R2 = 0.292) and Bacillus (R2 = 0.791) were identified as indicators that respond to PFASs. Phylogenetic null modeling indicated that deterministic processes (50.0-82.2%) dominated in spatial assembly of archaea, while stochasticity (94.4-97.8%) dominated in bacteria. Furthermore, spatial mixing of PFASs influenced broadly in nitrogen cycling of archaeal genomes, and phosphorus mineralization of bacterial genomes (p < 0.05). Overall, we quantified the effect of PFASs on community assembly and highlighted the constrains of PFASs influence on benthic geochemical potentials, which may provide new insights into riverine remediation.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zhong-Yan Liang
- Nanjing Guohuan Science and Technology Co., Ltd., Nanjing, 210001, China
| | - Ke-Jian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xin-Xin He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
10
|
Hao Z, Xu H, Feng Z, Zhang C, Zhou X, Wang Z, Zheng J, Zou X. Spatial distribution, deposition flux, and environmental impact of typical persistent organic pollutants in surficial sediments in the Eastern China Marginal Seas (ECMSs). JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124343. [PMID: 33144015 DOI: 10.1016/j.jhazmat.2020.124343] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
High emissions of synthetic compounds are damaging the marine environment and threatening human health. This study represents the first extensive and comprehensive analysis of three typical persistent organic pollutants (POPs), i.e., organochlorine pesticides (n = 228), perfluoroalkyl substances (n = 202), and short-chain chlorinated paraffins (n = 162), using a highly resolved spatial dataset. The results revealed the complex distribution of POPs in the Eastern China Marginal Seas (ECMSs). POPs in the surface sediments of the ECMSs showed spatial heterogeneity, with high levels observed mainly in areas with fine-grained sediments (e.g., the Yellow River and Changjiang River estuaries and the central south Yellow Sea). Strong positive correlations were identified between POP concentration and sediment grain size/components/longitude/latitude in the ECMSs, suggesting that POP distribution was significantly influenced by river input and regional hydrodynamics. The annual deposition fluxes of POPs in the ECMSs were also calculated and high values were recorded in the Yellow River Estuary and East China Sea. Human-induced changes in the catchments could affect the fate of POPs in the ECMSs and other river-dominated marginal seas worldwide. Our findings highlight concerns regarding local aquaculture and provide a basis for government decision-making. We also suggest the need for increased attention to be paid to the effects of marine organic pollution on aquaculture on a global scale.
Collapse
Affiliation(s)
- Zhe Hao
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Hengtao Xu
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| | - Ziyue Feng
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Chuchu Zhang
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Xin Zhou
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Zhifu Wang
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jiaheng Zheng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
11
|
Wang H, Xia X, Wang Z, Liu R, Muir DCG, Wang WX. Contribution of Dietary Uptake to PAH Bioaccumulation in a Simplified Pelagic Food Chain: Modeling the Influences of Continuous vs Intermittent Feeding in Zooplankton and Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1930-1940. [PMID: 33448220 DOI: 10.1021/acs.est.0c06970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dietary uptake is important for trophic transfer of polycyclic aromatic hydrocarbons (PAHs) in the freshwater pelagic ecosystem. In this study, we hypothesized that both the dietary uptake rate and interval significantly influenced its relative contribution to bioaccumulation. We developed a toxicokinetic model framework for the bioaccumulation of deuterated PAHs (PAHs-d10) in aquatic organisms considering different feeding intervals ranging from none for phytoplankton to approximately continuous for zooplankton to discrete for fish and built a simple artificial freshwater pelagic food chain composed of algae Chlorella vulgaris, zooplankton Daphnia magna, and zebrafish. We conducted bioaccumulation experiments and simulations for Daphnia magna and zebrafish under different algal densities based on our model. The results showed that intermittent feeding led to a large fluctuation in the PAH-d10 concentrations in zebrafish compared to a leveled-off pattern in Daphnia magna because of approximately continuous feeding. Trophic dilution of PAHs-d10 occurred in the food chain when there was waterborne-only uptake, but dietary uptake largely mitigated its extent that depended on dietary uptake rates. The assimilation efficiency, dietary uptake rate, and its relative contribution to bioaccumulation of PAHs-d10 in zebrafish were all higher than those in Daphnia magna, suggesting that dietary uptake played a more important role in bioaccumulation of PAHs at higher trophic-level organisms.
Collapse
Affiliation(s)
- Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zixuan Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ran Liu
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, L7S 1A1 Canada
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, Research Centre for the Oceans and Human Health, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
12
|
Hou Y, Zhou Y, Lu S, Zhang X, Tai H, Zhu Y, Sun Z, Dong D, Jiao C, Li J. Two novel zinc(II) phosphonates for the selective luminescence sensing of 1,2,4-trichlorobenzene and Hg2+. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
An Y, Hong S, Kim Y, Kim M, Choi B, Won EJ, Shin KH. Trophic transfer of persistent toxic substances through a coastal food web in Ulsan Bay, South Korea: Application of compound-specific isotope analysis of nitrogen in amino acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115160. [PMID: 32682185 DOI: 10.1016/j.envpol.2020.115160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Trophic magnification factor (TMF) of persistent toxic substances (PTSs: Hg, PCBs, PAHs, and styrene oligomers (SOs)) in a coastal food web (12 fish and four invertebrates) was determined in Ulsan Bay, South Korea. The nitrogen stable isotope ratios (δ15N) of amino acids [δ15NGlu-Phe based on glutamic acid (δ15NGlu) and phenylalanine (δ15NPhe)] were used to estimate the trophic position (TPGlu-Phe) of organisms. The TPGlu-Phe of organisms ranged from 1.64 to 3.69, which was lower than TP estimated by δ15N of bulk particulate organic matter (TPBulk: 2.46-4.21). Mercury and CB 138, 153, 187, and 180 were biomagnified through the whole food web (TMF > 1), while other PTSs, such as PAHs and SOs were not (biodilution of SOs firstly reported). In particular, the trophic transfer of PTSs was pronounced in the resident fish (e.g., rock bream, sea perch, Korean rockfish). Of note, CB 99, 101, 118, and 183 were additionally found to be biomagnifying PTSs in these species. Thus, fish residency appears to represent an important factor in determining the TMF of PTSs in the coastal environment. Overall, δ15NGlu-Phe provided accurate TPs of organisms and could be applied to determine the trophic transfer of PTSs in coastal food webs.
Collapse
Affiliation(s)
- Yoonyoung An
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Youngnam Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bohyung Choi
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
14
|
Liang J, Zulkifli MYB, Choy S, Li Y, Gao M, Kong B, Yun J, Liang K. Metal-Organic Framework-Plant Nanobiohybrids as Living Sensors for On-Site Environmental Pollutant Detection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11356-11364. [PMID: 32794698 DOI: 10.1021/acs.est.0c04688] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoluminescent metal-organic frameworks (MOFs) were grown in a living plant (Syngonium podophyllum) via immersing their roots in an aqueous solution of disodium terephthalate and terbium chloride hexahydrate sequentially for 12 h without affecting their viability. Then, app-assisted living MOF-plant nanobiohybrids were used for the detection of various toxic metal ions and organic pollutants. Their performance and sensing mechanism were also evaluated. The results demonstrated that the living plants served as self-powered preconcentrators via their passive fluid transport systems and accumulated the pollutants around the embedded MOFs, resulting in relative changes in fluorescence intensity. Therefore, the living MOF-plant nanobiohybrids initiate superior selectivity and sensitivity (0.05-0.5 μM) in water for Ag+, Cd2+, and aniline with a "turn-up" fluorescence response and for Fe3+ and Cu2+ with "turn-down" fluorescence response in the linear range of 0.05-10 μM with excellent precision and accuracy of 5 and 10%, respectively. With the easy-to-read visual signals under ultraviolet light, the app translates plant luminescent signals into digital information on a smartphone for on-site monitoring of environmental pollutants with high sensitivity and specificity. These results suggest that interfacing synthetic and living materials may contribute to the development of smart sensors for on-site environmental pollutant sensing with high accuracy.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Muhammad Y B Zulkifli
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Samantha Choy
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yong Li
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Meng Gao
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Biao Kong
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Jimmy Yun
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
- Qingdao International Academician Park Research Institute, Qingdao, Shandong 266000, China
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Windsor FM, Pereira MG, Morrissey CA, Tyler CR, Ormerod SJ. Environment and food web structure interact to alter the trophic magnification of persistent chemicals across river ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137271. [PMID: 32065886 DOI: 10.1016/j.scitotenv.2020.137271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Legacy organic pollutants persist in freshwater environments, but there is limited understanding of how their trophic transfer and effects vary across riverine ecosystems with different land use, biological communities and food webs. Here, we investigated the trophic magnification of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and a suite of organochlorines (OCs) across nine riverine food webs in contrasting hydrological catchments across South Wales (United Kingdom). Pollutants biomagnified through the food webs in all catchments studied, in some cases reaching levels sufficient for biological effects on invertebrates, fish and river birds such as the Dipper (Cinclus cinclus). Trophic magnification differed across food webs depending on pollutant characteristics (e.g. octanol-water partitioning coefficient) and site-specific environmental conditions (e.g. land use, water chemistry and basal resource composition). The trophic magnification of PBDEs, PCBs and OCs also reflected food-web structure, with greater accumulation in more connected food webs with more generalist taxa. These data highlight interactions between pollutant properties, environmental conditions and biological network structure in the transfer and biomagnification of POPs in river ecosystems. We advocate the need for further investigations of system-specific transfers of contaminants through aquatic food webs as these factors appear to have important implications for risk assessment.
Collapse
Affiliation(s)
- Fredric M Windsor
- School of Biosciences, Cardiff University, Cardiff, South Glamorgan CF10 3AX, UK; Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK.
| | - M Glória Pereira
- Centre for Ecology and Hydrology, Lancaster, Lancashire LA1 4AP, UK
| | - Christy A Morrissey
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B5, Canada
| | - Charles R Tyler
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Steve J Ormerod
- School of Biosciences, Cardiff University, Cardiff, South Glamorgan CF10 3AX, UK
| |
Collapse
|