1
|
Shi J, Wang X, Luo Y. Honey bees prefer moderate sublethal concentrations of acetamiprid and experience increased mortality. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106320. [PMID: 40015911 DOI: 10.1016/j.pestbp.2025.106320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Acetamiprid, a prevalent neonicotinoid residue in honey, poses long-term risks to honey bee health even at sublethal concentrations. Despite this, the chronic lethal effects across a bee's full adult life stage and the influence of acetamiprid at environmentally relevant concentrations on food preferences in honey bees remain uncertain. By conducting a long-term survival monitoring, we found that bees chronically exposed to 0.75 mg/L acetamiprid exhibited a greater mortality compared to those exposed to the highest concentration (3 mg/L) when given a choice between acetamiprid-treated syrup and nontreated pollen. Bees exposed to 0.75 mg/L acetamiprid consumed less pollen and higher amounts of treated syrups compared to the control and 3 mg/L treatment, indicating a preference for moderate sublethal concentrations. To refine our understanding, we tested a range of additionally extended acetamiprid concentrations (0, 0.1, 0.5, 1, and 5 mg/L) using various food-choice assays. The findings indicated no consumption bias and revealed a significant dose-response relationship concerning reduced survival at concentrations exceeding 0.5 mg/L of acetamiprid in the no-choice assay, while manifesting a highest preference for 0.5 mg/L concentration in the two-choice and five-choice assays. This study underscores the hidden risk of acetamiprid threatening bees through foraging preferences on specific range of concentrations.
Collapse
Affiliation(s)
- Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, PR China
| | - Xiaolong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
2
|
Chandrasekar S, Marimuthu M, Angappan S, Pernamallur SA, Kaithamalai B, Pagalahalli SS. Effects of neonicotinoid residues in Apis cerana indica bees and bee products: LC-MS/MS analysis and dietary risk assessment in a sunflower field study. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02857-0. [PMID: 39984777 DOI: 10.1007/s10646-025-02857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Bee colony decline, including in Apis cerana indica F., is a global concern linked to multiple factors, notably neonicotinoid insecticides. Residues in honey and pollen threaten bees and humans when exceeding safe levels, necessitating critical assessments of daily exposure thresholds. A controlled field experiment and dietary risk assessment studies were conducted to identify the impact of neonicotinoids. The LC-MS/MS method was developed to analyze residue in bee products. A survey of eight locations showed that only two honey samples, each from a different location, were contaminated with imidacloprid (0.03 µg g-1) and acetamiprid (0.07 µg g-1) residues. Similarly, a separate field experiment in sunflower detected neonicotinoid residues (0.025-0.456 μg g-1) in bee products. The field experiment indicated significantly higher bee mortality in the clothianidin sprayed field, using dead bee trap (88.00 bees) and cotton fabric spread (10.50 bees), than in the control field one day after spraying (DAS). Foraging activity significantly improved in the control plots, with increased incoming nectar (7.18 bees/min) and outgoing forager activity (13.28 bees/min) at 15 DAS. Colony growth parameters, namely, honey (61.88 cm2), pollen (41.25 cm2), brood area (91.00 cm2), and population (3479.50 bees) were highest in the control. The yield parameters followed the descending order of control > dimethoate > thiacloprid > imidacloprid > thiamethoxam > clothianidin. The dietary neonicotinoid residue risk evaluation showed moderate-high risk (risk quotient > 5) for bees but tolerable hazard (hazard quotient < 1) for humans. Hence, these neonicotinoid effects should be further explored through comprehensive risk analysis to safeguard native bee populations while maintaining effective crop protection practices.
Collapse
Affiliation(s)
- Sowmiya Chandrasekar
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Murugan Marimuthu
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India.
| | - Suganthi Angappan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | | |
Collapse
|
3
|
Mahdavi A, Torabi E, Ghasemi V, Mahdavi V, Haji Mohammad Hasan F. Pesticide residues in nectar, pollen, and beebread matrices from rapeseed (Brassica napus L.): Which matrix is associated with the highest risks to the honey bee (Apis mellifera L.)? ENVIRONMENTAL RESEARCH 2025; 270:121014. [PMID: 39892806 DOI: 10.1016/j.envres.2025.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
This study investigated pesticide residues in nectar, pollen, and beebread samples collected from 17 apiaries situated near rapeseed fields in Golestan province, Iran. A total of 54 pesticides, including all those registered for use in the region within the past five years, were analyzed using UHPLC-MS/MS following QuEChERS extraction. A total of 19, 21, and 18 pesticides were detected in nectar, pollen, and beebread, respectively. While overall pesticide concentrations were similar across matrices, distinct pesticide distributions were observed. Fungicides (propiconazole, thiophanate-methyl, tebuconazole, and carbendazim), along with organophosphate and neonicotinoid insecticides, were more prevalent in beebread compared to pollen or nectar. Hazard quotients (HQs) and risk quotients (RQs) were calculated to evaluate potential risks to honey bees. Maximum HQ values for nectar, pollen, and beebread ranged from <0.01 to 5690.80, <0.01 to 4589.61, and <0.01 to 13,090.78, respectively. Diazinon, imidacloprid, and propiconazole exhibited the highest HQ values. Pollen and beebread samples were associated with the highest risks to honey bees, exhibiting a higher number of pesticides with HQs >50 and higher overall HQ values. RQ values revealed that diazinon and imidacloprid exceeded the level of concern for forager bees and drones, while diazinon posed a risk to nurse bees. Our findings highlight the potential exposure of honey bees to pesticide residues from rapeseed fields and emphasize the need for strategies to mitigate these risks.
Collapse
Affiliation(s)
- Ali Mahdavi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Vahid Ghasemi
- Division of Honey Bee, Department of Animal Science, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Fatemeh Haji Mohammad Hasan
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
4
|
Wang J, Hou J, Wang L, Zhu Z, Han B, Chen L, Liu W. Pollution characteristics, environmental issues, and green development of neonicotinoid insecticides in China: Insights from Imidacloprid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125394. [PMID: 39586452 DOI: 10.1016/j.envpol.2024.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Imidacloprid (IMI), a leading neonicotinoid insecticide, is widely used in China. Nevertheless, owing to its high toxicity to pollinators, regulatory scrutiny of its usage has increased in recent years. Despite this, no relevant issues have been announced in China, and its usage continues to rise. In this study, we systematically reviewed the development history, pollution characteristics, and environmental problems associated with IMI in China, which is imperative to promote its green development. The results show that most IMI products (97.1%) in China are registered for agricultural use. Owing to its extensive use and strong migration ability in different environmental matrices, IMI has been broadly detected in multiple environmental media. The average detection rate (DR) of IMI in soils, ambient water, and sediments were 90.7%, 81.3% and 84.5%, respectively, and the corresponding concentrations were 54.6 ± 83.8 ng/g dry weight (dw), 32.8 ± 103 ng/L, and 1.7 ± 2.9 ng/g dw, respectively, indicating high IMI abundance in multiple environmental media in China. The spatiotemporal distribution of IMI was generally determined by its application modes, transport, and degradation rates. IMI is commonly overused in China, leading to the development of high IMI resistance in many pests, and a high DR of IMI in food, drinking water, and human bodies. To alleviate IMI pollution in China, the joint efforts of the government, farmers, and scientists are necessary, including but not limited to formulating laws and regulations, strengthening governmental supervision, improving farmers' knowledge of IMI use, and promoting technological innovation in IMI and application methods.
Collapse
Affiliation(s)
- JinZe Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jie Hou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiXi Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - ZiYang Zhu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - BingJun Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiYuan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - WenXin Liu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Liu TX, Chen XX. Biological Control of Aphids in China: Successes and Prospects. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:401-419. [PMID: 39499910 DOI: 10.1146/annurev-ento-121423-012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Aphids are small, soft-bodied insects, and many are notorious pests of field crops, vegetables, fruit trees, ornamental plants, and trees. In China, there is an increasing emphasis on utilizing biological control agents, including aphidopathogenics, and selective pesticides for the management of aphids. In particular, preventive integrated pest management strategies with early interventions reduce the financial and environmental costs associated with treatments of outbreaks. Decades of progress have proved that biological control is a cost-effective and environmentally safe control option. Here, we review the history and progress of aphid control, with an emphasis on major natural enemies, mass-rearing, and conservation, and provide two successful cases, constraints, and future perspectives on aphid biological control in China.
Collapse
Affiliation(s)
- Tong-Xian Liu
- Institute of Entomology and Institute of Plant Health and Medicine, College of Agriculture, Guizhou University, Guiyang, Guizhou, China;
| | - Xue-Xin Chen
- State Key Lab of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, and Zhejiang Provincial Engineering Research Center for Biological Control Technology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Ren C, Luo T, Qi S, Shen H, Li Q, Wang M, Wu L, Zhao L. Assessing the distribution and human health risks of cationic surface-active agents in honey from China. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136956. [PMID: 39729796 DOI: 10.1016/j.jhazmat.2024.136956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Cationic surface-active agents (CSAAs) can persist in ambient water, be ingested by bees, and contaminate honey. Residues of CSAAs in honey remains unknown. This study measured the residual levels of five CSAAs in 271 honey samples from China using ultrahigh-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry. Residual benzalkonium chloride-C12 (BAC-C12), BAC-C14, BAC-C16, chlorhexidine (CHG), and 4-chloraniline levels were 0.0098-2.1468, 0.0061-1.7492, 0.0012-1.6305, 0.1576-0.8401, and 0.0019-0.0234 μg kg-1, respectively. CHG and all BAC were detected in 100 % of Z. jujuba, V. negundo var. heterophylla, wildflower, L. chinensis, and D. longan Lour honey; T. tuan honey had the lowest detection rate of any CSAAs. BAC-C16 had the highest residual level among all BAC tested in Central, North China. CHG levels were detected in 91.38 % of samples in North China and 100 % in East China. BAC-C12 was significantly higher in A. cerana versus A. mellifera honey (P < 0.001). Hazard quotient and Hazard index values indicate that CSAAs residuals in honey do not pose a health risk. Correlation analysis revealed a positive correlation between BACs resides in honey and surrounding environment. The findings suggest that continuous monitoring of CSAAs in honey is imperative to ensure its safety for human consumption, while also serving as an effective matrix to assess the environmental pollution of a given region.
Collapse
Affiliation(s)
- Caijun Ren
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Teng Luo
- Institute of NBC Defence, Beijing 102205, China
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Haona Shen
- College of Food Science and Biology, Hebei University of Science and Technology, Hebei 050018, China
| | - Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Miao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Liuwei Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
7
|
Li W, Zan Y, Wu T, Yang S, Liu L, Li S, Dai P, Gao J. Impact of chlorantraniliprole on honey bees: Differential sensitivity and biological responses in Apis mellifera and Apis cerana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177417. [PMID: 39510278 DOI: 10.1016/j.scitotenv.2024.177417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Chlorantraniliprole (CAP), a diamide insecticide, is extensively applied to combat pests in various crops. However, the widespread use of insecticides has raised concerns about their potential impact on pollinators. In the present study, we explored the toxic effects of CAP in two important honey bee species, Apis mellifera and Apis cerana. The 48 h LC50 values of CAP for A. mellifera and A. cerana was 256.052 mg/L and 109.709 mg/L, implying that A. cerana is more sensitive to CAP. Prolonged exposure to 40 mg/L CAP significantly impaired sucrose responsiveness and climbing activity in both bee species. Both species showed a decrease in GR activity and GSH content with increasing CAP concentration. By contrast, the activities of GST, CAT, P450 and NAD-MDH were increased in both A. mellifera and A. cerana, but the differences between the 10 mg/L and 40 mg/L treatments were less pronounced in A. mellifera. Moreover, the immune related genes exhibited differential responses to CAP when comparing the two species. Low CAP concentrations led to down-regulation in expression of toll but up-regulation in expression of apideacin and hymeopatecin in A. mellifera, whereas A. cerana exhibited minimal changes in these genes. Additionally, CAP significantly inhibited the expression of ER stress response genes gp-93 and P58 in A. mellifera, while 10 mg/L of CAP promoted P58 expression in A. cerana. Our results highlight species-specific effects with the possible, distinct detoxification mechanisms and immune responses between A. mellifera and A. cerana. These findings serve as a foundation for further evaluating the safety of CAP for honey bee species and offer insights into the scientific use of pesticides.
Collapse
Affiliation(s)
- Wenmin Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yikun Zan
- Beijing No. 80 Middle School Guanzhuang Branch, Beijing 100024, China
| | - Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Liu
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Zhang G, Kuesel RW, Olsson R, Reed R, Liu X, Hopkins B. Pesticide exposure patterns in honey bees during migratory pollination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135910. [PMID: 39321480 DOI: 10.1016/j.jhazmat.2024.135910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Monitoring pesticide exposures in honey bees provides fundamental risk information that informs efforts to improve regulatory policy, pesticide use, and beekeeping management so pollinators are protected in realistic field conditions. We investigated pesticide exposures to bee colonies while colonies moved along commercial migratory routes in 2022 and 2023 to pollinate multiple pollinator-dependent, high-value U.S. specialty crops (e.g., almonds in California and apples and cherries in Washington). We found evident pesticide exposure patterns, including increasing exposures (both levels and number of pesticides) to fungicides during almond pollination, higher exposures to insecticides and persistent exposures to fungicides during springtime fruit pollination, and declining exposures in summer. Exposure risk assessment by risk quotient (RQ) model based on residues in bee bread indicates no concern of acute toxicity to adult honey bees during pollination, however, during colony inspections we found severe brood mortality in fields associated with high exposure to buprofezin, an insect growth regulator (IGR) thought to be safe for adult bees, which is permitted for use any time across the season. Our results suggest a need to improve compliance with insecticide label requirements during tree fruit pollination and a need for further research into the negative impacts of IGR on colony health especially on immature bees to inform potential policy changes.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Washington State University, Pullman WA 99164, United States.
| | - Ryan William Kuesel
- Department of Entomology, Washington State University, Pullman WA 99164, United States
| | - Rae Olsson
- Department of Entomology, Washington State University, Pullman WA 99164, United States
| | - Riley Reed
- Department of Entomology, Washington State University, Pullman WA 99164, United States
| | - Xia Liu
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, United States
| | - Brandon Hopkins
- Department of Entomology, Washington State University, Pullman WA 99164, United States
| |
Collapse
|
9
|
Su Y, Shi J, Hu Y, Liu J, Wu X. Acetamiprid Exposure Disrupts Gut Microbiota in Adult and Larval Worker Honeybees ( Apis mellifera L.). INSECTS 2024; 15:927. [PMID: 39769529 PMCID: PMC11678641 DOI: 10.3390/insects15120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Acetamiprid is a third-generation neonicotinoid insecticide that is now widely employed for the protection of crops grown in outdoor environments. This is because it is considerably less toxic to pollinating insects than other neonicotinoids. Previous studies have shown that acetamiprid has direct physiological effects on adult and larval bees. However, its effects on the potentially healthy gut microbiota of honeybees have not been fully elucidated. To further investigate the effects, adult and larval worker honeybees were exposed to sucrose solutions containing acetamiprid at concentrations of 0, 5, and 25 mg/L for a period of 7 days (adults) and 4 days (larvae). The results showed that acetamiprid exposure significantly disrupted the honeybees' intestinal microbiota. In adults, acetamiprid exposure led to a significant increase in the relative abundance of Commensalibacter, while the Bifidobacterium and Gilliamella levels decreased. In larvae, we observed significant changes in the microbial composition, notably a marked reduction in Bombella. Further analysis demonstrated that alterations in the gut microbiota of honeybee larvae were associated with disturbances in metabolic pathways that regulate energy metabolism and neurometabolism. These results suggest that acetamiprid affects bee health not only through direct physiological effects, but also through changes in the gut microbiota, which in turn affect the metabolic and immune function of bees. This study underscores the need to evaluate pesticides' risks from a microbiological standpoint and offers crucial insights into how acetamiprid impacts bee health by modifying the gut microbiota. These insights support the more comprehensive assessment of acetamiprid and similar pesticides regarding bee health.
Collapse
Affiliation(s)
- Yuchen Su
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.S.); (J.S.); (Y.H.); (J.L.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.S.); (J.S.); (Y.H.); (J.L.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yueyang Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.S.); (J.S.); (Y.H.); (J.L.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.S.); (J.S.); (Y.H.); (J.L.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.S.); (J.S.); (Y.H.); (J.L.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| |
Collapse
|
10
|
Zhang Y, Zhu W, Wang Y, Li X, Lv J, Luo J, Yang M. Insight of neonicotinoid insecticides: Exploring exposure, mechanisms in non-target organisms, and removal technologies. Pharmacol Res 2024; 209:107415. [PMID: 39306021 DOI: 10.1016/j.phrs.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Neonicotinoid insecticides (NEOs) have garnered global attention due to their selective toxicity to insects and minimal impact on mammals. However, growing concerns about their extensive use and potential adverse effects on the ecological environment and non-target organisms necessitate further investigation. This study utilized bibliometric tools to analyze Web of Science data from 2003 to 2024, elucidating the current research landscape, identifying key research areas, and forecasting future trends related to NEOs. This paper provides an in-depth analysis of NEO exposure in non-target organisms, including risk assessments for various samples and maximum residue limits established by different countries. Additionally, it examines the impacts and mechanisms of NEOs on non-target organisms. Finally, it reviews the current methods for NEO removal and degradation. This comprehensive analysis provides valuable insights for regulating NEO usage and addressing associated exposure challenges.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanxuan Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Xueli Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianxin Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
11
|
Huang Y, Tang B, Wu L, Liang C, Giesy JP, Li W, Xu Y, Wang K, Purdy JR, Solomon KR, Qi S. Contamination profile and hazards of neonicotinoid insecticides in honey from apiaries in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60959-60970. [PMID: 39400668 DOI: 10.1007/s11356-024-35225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
The residues of neonicotinoid insecticides in honey have raised global concern for their adverse effects on non-target organisms. However, information on the presence of neonicotinoids in raw honey in China is limited. Our study investigated the distribution profiles of neonicotinoids in raw honey samples collected from apiaries in plain and mountainous areas surrounding Beijing City. At least one of four neonicotinoids, imidacloprid, thiamethoxam, acetamiprid, or clothianidin, was found in 46.9% of samples. Neonicotinoids in multi-floral honey in plain areas exhibited higher concentrations and prevalence than in uni-floral honey collected from mountainous areas. These results indicated that neonicotinoid residues in honey were linked to the agricultural ecosystems influenced by geographies, particularly the intensity of agriculture and nectariferous plant types. The dietary risks to adult and children health from neonicotinoid exposure were deemed de minimis, while risks to honeybees at the maximum concentration level require much attention through refined, higher-tier assessments and possible mitigation measures for the use of these products.
Collapse
Affiliation(s)
- Yuan Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Benyan Tang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Chongbo Liang
- Beijing Municipal Forestry and Parks Bureau (Office of Beijing Greening Commission), Beijing Landscaping Industry Promotion Center, Beijing, 101118, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, MI, USA
- Department of Environmental Sciences, Baylor University, Waco, TX, 76706, USA
| | - Wanli Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yandong Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - John R Purdy
- Abacus Consulting Services Ltd., Campbellville, ON, Canada
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
12
|
Cui S, Lv J, Hough R, Fu Q, An L, Zhang Z, Ke Y, Liu Z, Li YF. Recent advances and prospects of neonicotinoid insecticides removal from aquatic environments using biochar: Adsorption and degradation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173509. [PMID: 38815835 DOI: 10.1016/j.scitotenv.2024.173509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
In recent years, neonicotinoid insecticides (NNIs), representing a new era of pest control, have increasingly replaced traditional classes such as organophosphorus compounds, carbamates, and pyrethroids due to their precise targeting and broad-spectrum efficacy. However, the high water solubility of NNIs has led to their pervasion in aquatic ecosystems, raising concerns about potential risks to non-target organisms and human health. Therefore, there is an urgent need for research on remediating NNI contamination in aquatic environments. This study demonstrates that biochar, characterized by its extensive surface area, intricate pore structure, and high degree of aromaticity holds significant promise for removing NNIs from water. The highest reported adsorption capacity of biochar for NNIs stands at 738.0 mg·g-1 with degradation efficiencies reaching up to 100.0 %. This review unveils that the interaction mechanisms between biochar and NNIs primarily involve π-π interactions, electrostatic interactions, pore filling, and hydrogen bonding. Additionally, biochar facilitates various degradation pathways including Fenton reactions, photocatalytic, persulfate oxidations, and biodegradation predominantly through radical (such as SO4-, OH, and O2-) as well as non-radical (such as 1O2 and electrons transfer) processes. This study emphasizes the dynamics of interaction between biochar surfaces and NNIs during adsorption and degradation aiming to elucidate mechanistic pathways involved as well as assess the overall efficacy of biochar in NNI removal. By comparing the identification of degradation products and degradation pathways, the necessity of advanced oxidation process is confirmed. This review highlights the significance of harnessing biochar's potential for mitigating NNI pollution through future application-oriented research and development endeavors, while simultaneously ensuring environmental integrity and promoting sustainable practices.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Jialin Lv
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - LiHui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zulin Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yuxin Ke
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
13
|
Liao L, Sun T, Gao Z, Lin J, Gao M, Li A, Gao T, Gao Z. Neonicotinoids as emerging contaminants in China's environment: a review of current data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51098-51113. [PMID: 39110283 DOI: 10.1007/s11356-024-34571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2024] [Indexed: 09/06/2024]
Abstract
Neonicotinoids (NEOs), the most widely used class of insecticides, are pervasive in the environment, eliciting concerns due to their hydrophilicity, persistence, and potential ecological risks. As the leading pesticide consumer, China shows significant regional disparities in NEO contamination. This review explores NEO distribution, sources, and toxic risks across China. The primary NEO pollutants identified in environmental samples include imidacloprid, thiamethoxam, and acetamiprid. In the north, corn cultivation represents the principal source of NEOs during wet seasons, while rice dominates in the south year-round. The high concentration levels of NEOs have been detected in the aquatic environment in the southern regions (130.25 ng/L), the urban river Sects. (157.66 ng/L), and the downstream sections of the Yangtze River (58.9 ng/L), indicating that climate conditions and urban pollution emissions are important drivers of water pollution. Neonicotinoids were detected at higher levels in agricultural soils compared to other soil types, with southern agricultural areas showing higher concentrations (average 27.21 ng/g) than northern regions (average 12.77 ng/g). Atmospheric NEO levels were lower, with the highest concentration at 1560 pg/m3. The levels of total neonicotinoid pesticides in aquatic environments across China predominantly exceed the chronic toxicity ecological threshold of 35 ng/L, particularly in the regions of Beijing and the Qilu Lake Basin, where they likely exceed the acute toxicity ecological threshold of 200 ng/L. In the future, efforts should focus on neonicotinoid distribution in agriculturally developed regions of Southwest China, while also emphasizing their usage in urban greening and household settings.
Collapse
Affiliation(s)
- Lingzhi Liao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, PR China
| | - Ting Sun
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China.
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Meng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ao Li
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Teng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ziqin Gao
- Fuxin Experimental Middle School, Fuxin, 123099, PR China
| |
Collapse
|
14
|
Qin R, Zhang B, Huang Y, Song S, Zhang Z, Wen X, Zhong Z, Zhang F, Zhang T. The fate and transport of neonicotinoid insecticides and their metabolites through municipal wastewater treatment plants in South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123968. [PMID: 38631448 DOI: 10.1016/j.envpol.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Neonicotinoid insecticides (NEOs) have gained widespread usage as the most prevalent class of insecticides globally and are frequently detected in the environment, posing potential risks to biodiversity and human health. Wastewater discharged from wastewater treatment plants (WWTPs) is a substantial source of environmental NEOs. However, research tracking NEO variations in different treatment units at the WWTPs after being treated by the treatment processes remains limited. Therefore, this study aimed to comprehensively investigate the fate of nine parent NEOs (p-NEOs) and five metabolites in two municipal WWTPs using distinct treatment processes. The mean concentrations of ∑NEOs in influent (effluent) for the UNITANK, anaerobic-anoxic-oxic (A2/O), and cyclic activated sludge system (CASS) processes were 189 ng/L (195 ng/L), 173 ng/L (177 ng/L), and 123 ng/L (138 ng/L), respectively. Dinotefuran, imidacloprid, thiamethoxam, acetamiprid, and clothianidin were the most abundant p-NEOs in the WWTPs. Conventional wastewater treatment processes were ineffective in removing NEOs from wastewater (-4.91% to -12.1%), particularly major p-NEOs. Moreover, the behavior of the NEOs in various treatment units was investigated. The results showed that biodegradation and sludge adsorption were the primary mechanisms responsible for eliminating NEO. An anoxic or anaerobic treatment unit can improve the removal efficiency of NEOs during biological treatment. However, the terminal treatment unit (chlorination disinfection tank) did not facilitate the removal of most of the NEOs. The estimated total amount of NEOs released from WWTPs to receiving waters in the Pearl River of South China totaled approximately 6.90-42.6 g/d. These findings provide new insights into the efficiency of different treatment processes for removing NEOs in current wastewater treatment systems.
Collapse
Affiliation(s)
- Ronghua Qin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Yingyan Huang
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou, 510530, China.
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Ziqi Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiaoyu Wen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhiqing Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fengru Zhang
- School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
15
|
Liu Y, Lin F, Yue X, Zhang S, Wang H, Xiao J, Cao H, Shi Y. Inhalation bioaccessibility of imidacloprid in particulate matter: Implications for risk assessment during spraying. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133986. [PMID: 38493632 DOI: 10.1016/j.jhazmat.2024.133986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Adverse health outcomes due to the inhalation of pesticide residues in atmospheric particulate matter (PM) are gaining global attention. Quantitative health risk assessments of pesticide inhalation exposure highlight the need to understand the bioaccessibility of pesticide residues. Herein, the inhalation bioaccessibility of imidacloprid in PM was determined using three commonly used in vitro lung modeling methods (Artificial Lysosomal Fluid, Gamble Solution, and Simulated Lung Fluid). To validate its feasibility and effectiveness, we evaluated the bioavailability of imidacloprid using a mouse nasal instillation assay. The in vitro inhalation bioaccessibility of imidacloprid was extracted using Gamble Solution with a solid-liquid ratio of 1/1000, an oscillation rate of 150 r/min, and an extraction time of 24 h, showed a strong linear correlation with its in vivo liver-based bioavailability (R2 =0.8928). Moreover, the margin of exposure was incorporated into the inhalation exposure risk assessment, considering both formulations and nozzles. The inhalation unit exposure of imidacloprid for residents was 0.95-4.09 ng/m3. The margin of exposure for imidacloprid was determined to be acceptable when considering inhalation bioaccessibility. Taken together, these results indicate that the inhalation bioaccessibility of pesticides should be incorporated into assessments of human health risks posed by PM particles.
Collapse
Affiliation(s)
- Yuying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Xingyu Yue
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Sai Zhang
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Han Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
16
|
Shi J, Wang X, Chen Z, Mao D, Luo Y. Spatial distribution of two acaricides and five neonicotinoids in beehives and surrounding environments in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133892. [PMID: 38461662 DOI: 10.1016/j.jhazmat.2024.133892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Managed bees commonly suffer from cross-contamination with acaricides and neonicotinoids, posing robust threats to bee population health. However, their residual characteristics and spatial distribution in beehives and surrounding environments are poorly understood. This study detected two common acaricides and five neonicotinoids in 240 beehive samples and 44 surrounding environmental samples collected from 25 Chinese provinces. The results showed that 40.0% of the honey samples contained acaricides and 83.1% contained neonicotinoids. Neonicotinoid concentrations in honey were geographically distinguished by the "Hu Huanyong line", and concentrations of neonicotinoids in honey from eastern areas were 2.65-fold higher than those in honey from western areas. Compared to the approved acaricide amitraz, the banned acaricide coumaphos was detected more frequently in honey and was positively correlated with that quantified in the paired pollen samples. Although coumaphos was identified in only three soil samples, lower coumaphos residues in honey might be associated with persistent pollution in the surrounding environment. Conversely, neonicotinoids were detected at higher levels in honey than in the pollen and soil, demonstrating that the neonicotinoid residues in honey have a cumulative effect. This study contributes to a better understanding of the pesticide contamination scenarios that underlie the exposure risks of bees.
Collapse
Affiliation(s)
- Jingliang Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
17
|
Xia B, Wang S, Li R, Dong F, Zheng Y, Li Y. From Water to Water: Insight into the Translocation of Pesticides from Plant Rhizosphere Solution to Leaf Guttation and the Associated Ecological Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7600-7608. [PMID: 38629313 DOI: 10.1021/acs.est.3c10925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Plant guttation is an important source of water/nutrients for many beneficial insects, while the presence of pesticides in guttation has been considered as a new exposure route for nontarget insects. This study aimed to elucidate how 15 diverse pesticides are translocated from growth media to guttation by maize plants through a hydroponic experiment. All pesticides were effectively translocated from the growth solution to maize guttation and reached a steady state within 5 days. The strong positive correlation (R2 = 0.43-0.84) between the concentrations of pesticides in guttation and in xylem sap demonstrated that xylem sap was a major source of pesticides in guttation. The relationship between the bioaccumulation of pesticides in guttation (BCFguttation) and the chemical Kow was split into two distinct patterns: for pesticides with log Kow > 3, we identified a good negative linear correlation between log BCFguttation and log Kow (R2 = 0.71); however, for pesticides with log Kow < 3, all data fall close to a horizontal line of BCFguttation ≅ 1, indicating that hydrophilic pesticides can easily pass through the plants from rhizosphere solution to leaf guttation and reach saturation status. Besides, after feeding with pesticide-contaminated guttation, the mortality of honeybees was significantly impacted, even at very low levels (e.g., ∑600 μg/L with a mortality of 93%). Our results provide essential information for predicting the contamination of plant guttation with pesticides and associated ecological risks.
Collapse
Affiliation(s)
- Beiqi Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Sijia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
18
|
Zhang J, Wang Y, Wurjihu S, Ruan H, Huang Y, Guo M, Kong D, Luo J, Yang M. Comprehensive analysis of neonicotinoids in Chinese commercial honey and pollen: A corresponding health risk assessment for non-targeted organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170937. [PMID: 38360305 DOI: 10.1016/j.scitotenv.2024.170937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanbaga Wurjihu
- Plastic Surgery Hospital and Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Haonan Ruan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Dandan Kong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
19
|
Yu W, Wu R, Zhang L, Pan Y, Ling J, Yang D, Qu J, Tao Z, Meng R, Shen Y, Yu J, Lin N, Wang B, Jin H, Zhao M, Chen Y. Identification of key factors affecting neonicotinoid residues in crops and risk of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123489. [PMID: 38311155 DOI: 10.1016/j.envpol.2024.123489] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Neonicotinoids, widely used on farmland, are ubiquitous in food; however, their distribution among various crops and associated exposure risks at the provincial level in China remain unclear. We collected 19 types of crop samples (fruits, vegetables, and tea) from farmland in nine prefectural cities in Zhejiang Province, China. We analyzed nine commonly used neonicotinoids in the edible portions of these crops. A notable detection rate (42.1 %-82.9 %) and high residual neonicotinoid concentrations (278 ± 357 ng/g) were observed. Tea exhibited the highest residue, followed by fruits, and vegetables showed the lowest (P < 0.05). Neonicotinoid ratios in crops to soil (R_C/S) and soil to water (R_S/W) were defined to discern insecticide distribution across different environments. Increased water solubility leads to increased migration of neonicotinoids (R_S/W) from agricultural soils to water through runoff, thereby increasing the relative contribution of nitenpyram and dinotefuran in water. In comparison with other studied compounds, all crops demonstrated the strongest soil uptake of thiamethoxam, denoted by the highest R_C/S value. Elevated R_C/S values in tea, pickled cabbage, and celery suggest increased susceptibility of these crops to neonicotinoid absorption from the soil (P < 0.05). Estimated dietary intake for teenagers, adults and elders was 8.9 ± 0.5, 8.9 ± 0.6, and 8.8 ± 0.3 μg/kg/d, respectively, below the reference dose (57 μg/kg/d). Teenagers, compared to adults and elders, exhibited significantly higher neonicotinoid exposure through fruit consumption, emphasizing the need for increased attention to neonicotinoid exposure among vulnerable populations.
Collapse
Affiliation(s)
- Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Ruxin Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Li Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Yangzhong Pan
- Management Center of Environmental Protection and Security, Changxing Chuangtong Power Supply Co.,Ltd., Huzhou, Zhejiang, 313100, China
| | - Jun Ling
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Dan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Jiajia Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Zhen Tao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Ruirui Meng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Yuexing Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Jingtong Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Nan Lin
- Department of Environmental Health School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University, Beijing, 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China.
| |
Collapse
|
20
|
Shang N, Yang Y, Xiao Y, Wu Y, Li K, Jiang X, Sanganyado E, Zhang Q, Xia X. Exposure levels and health implications of fungicides, neonicotinoid insecticides, triazine herbicides and their associated metabolites in pregnant women and men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123069. [PMID: 38052341 DOI: 10.1016/j.envpol.2023.123069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Exposure to pesticides can pose a series of advance effects on human health. However, the exposure levels and health implications of the current use pesticides and their metabolites in both men and pregnant women remain unclear. In this study, an analytical method was developed to quantify fungicides, neonicotinoid insecticides, triazine herbicides, and their metabolites in the human serum. Fifty of the 73 target pesticides and metabolites were detected in the human serum of men and pregnant women from Wuxi, China, which included 11 triazine herbicides and metabolites, 17 neonicotinoid insecticides and metabolites, and 22 fungicides. Fungicides had the highest cumulative concentration (49.5 ng/mL), followed by neonicotinoid insecticides and metabolites (6.38 ng/mL), and triazine herbicides and metabolites (5.10 ng/mL). Moreover, the estimated daily intake (EDI) of fungicides was 10.4 and 12.7 times higher than that of triazine herbicides (included their metabolites) and neonicotinoid insecticides (included their metabolites), respectively. Of the three categories of pesticides, exposure to fungicides contributed to the highest exposure risk within the hazard quotient in the range of 5.1 × 10-3-0.17. Correlation analysis revealed that the pesticide exposure levels in human serum were correlated with their maximum residue levels in vegetables and fruits. Pesticide exposure has also been correlated with the weight and Body Mass Index (BMI) of humans based on structural equation modeling. This study provides new insights into the exposure of men and pregnant women to a cocktail of fungicides, neonicotinoid insecticides, triazine herbicides and their metabolites.
Collapse
Affiliation(s)
- Nanxiu Shang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Yang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yukang Wu
- Wuxi Center for Disease Control and Prevention, Jiangsu, 214023, China
| | - Kaixuan Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Zhao L, Zhou X, Kang Z, Peralta-Videa JR, Zhu YG. Nano-enabled seed treatment: A new and sustainable approach to engineering climate-resilient crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168640. [PMID: 37989394 DOI: 10.1016/j.scitotenv.2023.168640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Under a changing climate, keeping the food supply steady for an ever-increasing population will require crop plants adapted to environmental fluctuations. Genetic engineering and genome-editing approaches have been used for developing climate-resilient crops. However, genetically modified crops have yet to be widely accepted, especially for small-scale farmers in low-income countries and some societies. Nano-priming (seed exposure to nanoparticles, NPs) has appeared as an alternative to the abovementioned techniques. This technique improves seed germination speed, promotes seedlings' vigor, and enhances plant tolerance to adverse conditions such as drought, salinity, temperature, and flooding, which may occur under extreme weather conditions. Moreover, nano-enabled seed treatment can increase the disease resistance of crops by boosting immunity, which will reduce the use of pesticides. This unsophisticated, farmer-available, cost-effective, and environment-friendly seed treatment approach may help crop plants fight climate change challenges. This review discusses the previous information about nano-enabled seed treatment for enhancing plant tolerance to abiotic stresses and increasing disease resistance. Current knowledge about the mechanisms underlying nanomaterial-seed interactions is discussed. To conclude, the review includes research questions to address before this technique reaches its full potential.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Xiaoding Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Kang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jose R Peralta-Videa
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
22
|
Wang R, Zhang J, Sun Z, Jian X, Xu Y, Zhou X, Liang X, Lin J, Li B, Mu W, Li Y. Eucalyptol-loaded microcapsules combined with Cynanchum komarovii extracts provide long-term and low-risk management of Chinese wolfberry (Lycium barbarum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115874. [PMID: 38176181 DOI: 10.1016/j.ecoenv.2023.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Realizing eco-friendly, long-term, and low-risk aphid control on Lycium barbarum (medicinal cash crop) using a Cynanchum komarovii extracts and eucalyptus oil-loaded microcapsules (EOMCs) formulation compositions is viable. In this study, the aim is to optimize the composition of Cynanchum komarovii extracts and EOMCs formulation for effective control of aphids, the release of EOMCs was controlled by changing the cross-linking degree of the shell to match the aphid control characteristics of Cynanchum komarovii extracts. Four types of polyamines were used as cross-linking agents for the preparation of EOMCs by interfacial polymerization. The bioactivity, wettability, and field application efficacy of Cynanchum komarovii extracts and different EOMCs formulation compositions were evaluated. These EOMCs exhibited an encapsulation efficiency exceeding 85 %. The control efficiency of the formulation compositions of microcapsules with a moderate release rate and Cynanchum komarovii extracts on aphids remained at 62.86 %, while the control efficiency of the combination of microcapsules with the fastest and slowest rates with Cynanchum komarovii extracts was only 48.62 % and 57.11 %, respectively. The formulation compositions of Cynanchum komarovii extracts with all four types of EOMCs were found to be safe for Chinese wolfberry plants. Overall, by selecting appropriate polyamines during fabrication, the release rate can be effectively controlled to achieve sustainable and low-risk aphid control in Lycium barbarum through compounding with selected microcapsules.
Collapse
Affiliation(s)
- Rui Wang
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, PR China; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jian Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zhengyi Sun
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xuewen Jian
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yue Xu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xuan Zhou
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, PR China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, PR China
| | - Xiaojie Liang
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, PR China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, PR China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Yuekun Li
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, PR China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, PR China.
| |
Collapse
|
23
|
Chen X, Li A, Yin L, Ke L, Dai P, Liu YJ. Early-Life Sublethal Thiacloprid Exposure to Honey Bee Larvae: Enduring Effects on Adult Bee Cognitive Abilities. TOXICS 2023; 12:18. [PMID: 38250974 PMCID: PMC10820931 DOI: 10.3390/toxics12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Honey bees have significant ecological and economic value as important pollinators, but they are continuously exposed to various environmental stressors, including insecticides, which can impair their health and cause colony decline. (1) Background: Cognitive abilities are vital for the functional maintenance of honey bees; however, it remains unknown if chronic, low-dose exposure to thiacloprid during the larval stage impairs the cognitive abilities of emerged adult honey bees. (2) Methods: To explore this question, honey bee larvae were fed 0, 0.5, and 1.0 mg/L thiacloprid during their developmental phase. Then, the cognitive (i.e., olfactory learning and memory) abilities of adult honey bees were quantified to assess the delayed impacts of early-stage thiacloprid exposure on adult honey bee cognition. Neural apoptosis and transcriptomic level were also evaluated to explore the neurological mechanisms underlying these effects. (3) Results: Our results revealed that chronic larval exposure to sublethal thiacloprid impaired the learning and memory abilities of adult honey bees by inducing neuronal apoptosis and transcriptomic alterations. (4) Conclusions: We highlighted a previously unknown impairment caused by thiacloprid in honey bees.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
24
|
Xiao Q, Li X, Xu S, Chen X, Xu Y, Lu Y, Liu L, Lin L, Ma H, Lu S. Neonicotinoids in tea leaves and infusions from China: Implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166114. [PMID: 37567284 DOI: 10.1016/j.scitotenv.2023.166114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The ingestion of contaminated tea involves the risk of human exposure to residues of neonicotinoids (NEOs). Nevertheless, there is little empirical research about this topic; to bridge the current knowledge gap, we collected 220 samples of various tea products from four geographical areas in China, including unfermented green tea, semi-fermented white tea and oolong tea, completely fermented black tea, and post-fermented dark tea. A total of six NEOs were detected from the tea leaves and infusions, namely, dinotefuran (DIN), thiamethoxam (THM), clothianidin (CLO), imidacloprid (IMI), acetamiprid (ACE), and thiacloprid (THI). The detection frequencies (DFs) and concentrations of all target NEOs were relatively high across the investigated tea samples, and the DIN, IMI and ACE residues measured in some samples exceeded the maximum residue level (MRL) standards for the European Union. Samples representing the Jiangnan area exhibited greater levels of total target NEOs (∑6NEOs) than samples representing the Jiangbei area (p < 0.001). Moreover, dark tea samples were found to have far higher levels of NEO residues than green (p < 0.001), white (p < 0.05), or oolong (p < 0.001) samples. The health risks associated with exposure to NEO residues via tea were small for both children and adults in terms of acute, chronic, and cumulative dietary exposure risk assessments. The transfer rates (TRs) of NEOs observed in white, black, and dark tea infusions gradually decreased after the third brewing time. As such, it is recommended to only consume tea that has been brewed at least three times. The presented results not only describe the extent of NEO contamination in Chinese tea leaves and infusions, but also provide tea drinking guidelines for consumers.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shuyang Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yu Lu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR 999077, China
| | - Langyan Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Liyun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521000, China.
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
25
|
Zhao H, Gui W, Tan X, Chen Y, Ning Y, Wang X. Exploratory analysis of the associations between neonicotinoids insecticides and serum lipid profiles among US adults: A cross-sectional, population-based study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115724. [PMID: 37992647 DOI: 10.1016/j.ecoenv.2023.115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Neonicotinoid insecticides (NNIs) are widely used in agriculture, horticulture, forestry, and household environment, but their potential impact on human health remains a subject of concern. This study aimed to investigate the relationship between NNIs and their metabolites in urine with serum lipid profiles in adults using data from the National Health and Nutrition Examination Survey (NHANES) 2015-2016. The study included 1192 participants aged over 20 years with urinary NNIs levels, serum lipid parameter levels and potential confounders. Urinary concentrations of NNIs, including imidacloprid, acetamiprid, clothianidin, thiacloprid, N-desmethyl-acetamiprid, and 5-hydroxy-imidacloprid, were quantified. Serum lipids profiles, such as total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (Apo-B), were assessed. Considering the effects of lipid-lowering medications, the censored normal regression model was used to explore the associations between urinary NNIs and TC, TG, HDL-C, LDL-C and Apo-B levels. The results revealed a significant increase of 9.0 mg/dL (95%CI: 2.0, 16.1) in TC levels among participants with detectable N-desmethyl-acetamiprid compared to those with undetectable levels. Stratified analysis indicated that the association between N-desmethyl-acetamiprid and HDL-C levels was more pronounced among participants aged ≥ 46 years compared to those aged between 20 and 45 years with undetectable N-desmethyl-acetamiprid (pinteraction=0.044). Additionally, there were marginal effect modification of BMI on the association between N-desmethyl-acetamiprid and LDL-C (pinteraction=0.097) and Apo-B (pinteraction=0.052) levels. Specifically, participants with BMI ≥ 25 kg/m² and detectable N-desmethyl-acetamiprid tended to have higher LDL-C and Apo-B levels compared to those with BMI < 25 kg/m² and undetectable N-desmethyl-acetamiprid. However, no significant associations were observed between other NNIs and lipid profiles in the present study. To validate these findings, further longitudinal studies with larger sample sizes should be conducted, particularly within populations characterized by a high detection rate of NNIs.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, China.
| | - Wei Gui
- Department of Pediatric, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xin Tan
- Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Ying Chen
- Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Yao Ning
- Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Xin Wang
- Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, China.
| |
Collapse
|
26
|
Dai Y, Xu W, Hong J, Zheng Y, Fan H, Zhang J, Fei J, Zhu W, Hong J. A molecularly imprinted ratiometric fluorescence sensor based on blue/red carbon quantum dots for the visual determination of thiamethoxam. Biosens Bioelectron 2023; 238:115559. [PMID: 37542976 DOI: 10.1016/j.bios.2023.115559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Neonicotinoids such as thiamethoxam (TMX) were widely used in agricultural production and tended to accumulate in the environment, potentially harming human and ecosystem health. To enable widespread monitoring of TMX residues, it was essential to design a reliable and sensitive detection method. Here, we developed a novel smartphone-enablled molecularly imprinted ratiometric fluorescence sensing system for selective on-site detection of TMX. It was based on blue-emission carbon dots (CDs) wrapped with a molecularly imprinted layer (B-CDs@MIPs), which provided the response signal, while red-emission CDs (R-CDs) served as an internal reference. The fluorescence signal ratio of the sensor increased with the TMX concentration, resulting in an obvious fluorescence color change from red to blue. The sensor exhibited a satisfactory limit of detection (LOD) of 13.5 nM in fluorescence analysis while LOD of 70.1 nM in visual determination. In addition, the sensing system was validated using food and environment samples, exhibiting recoveries from 91.40% to 105.7%, indicating excellent reliability for TMX detection in actual samples. Thus, the sensing system developed in this study offered promising prospects for visual detection of pesticide residues in complex environmental samples.
Collapse
Affiliation(s)
- Yin Dai
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Junqiang Hong
- Department of Radiotherapy, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, Fujian, 361000, China
| | - Yani Zheng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Huizhu Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianwen Fei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
27
|
Sheridan AB, Johnson EJ, Vallat-Michel AJ, Glauser G, Harris JW, Neumann P, Straub L. Thiamethoxam soil contaminations reduce fertility of soil-dwelling beetles, Aethina tumida. CHEMOSPHERE 2023; 339:139648. [PMID: 37506888 DOI: 10.1016/j.chemosphere.2023.139648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
There in increasing evidence for recent global insect declines. This is of major concern as insects play a critical role in ecosystem functionality and human food security. Even though environmental pollutants are known to reduce insect fertility, their potential effects on insect fitness remain poorly understood - especially for soil-dwelling species. Here, we show that fertility of soil-dwelling beetles, Aethina tumida, is reduced, on average, by half due to field-realistic neonicotinoid soil contaminations. In the laboratory, pupating beetles were exposed via soil to concentrations of the neonicotinoid thiamethoxam that reflect global pollution of agricultural and natural habitats. Emerged adult phenotypes and reproduction were measured, and even the lowest concentration reported from natural habitats reduced subsequent reproduction by 50%. The data are most likely a conservative estimate as the beetles were only exposed during pupation. Since the tested concentrations reflect ubiquitous soil pollution, the data reveal a plausible mechanism for ongoing insect declines. An immediate reduction in environmental pollutants is urgently required if our aim is to mitigate the prevailing loss of species biodiversity.
Collapse
Affiliation(s)
- Audrey B Sheridan
- Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, USA
| | - Elijah J Johnson
- Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, USA
| | | | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jeffrey W Harris
- Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, USA
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Swiss Bee Research Center, Agroscope, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong, Thailand; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.
| |
Collapse
|
28
|
He L, Shen L, Zhang J, Li R. Comprehensive Investigation of Fluoroquinolone Residues in Apis mellifera and Apis cerana Honey and Potential Risks to Consumers: A Five-Year Study (2014-2018) in Zhejiang Province, China. TOXICS 2023; 11:744. [PMID: 37755754 PMCID: PMC10536307 DOI: 10.3390/toxics11090744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
As a group of antibiotics largely used in China's animal husbandry, fluoroquinolone (FQ) residues in honey may pose potential threats to human health. This study performed a five-year investigation on the occurrence of FQ residues in honey in 521 Apis mellifera and 160 Apis cerana honey samples collected from Zhejiang Province, China and compared FQ residue profiles in honey with a subgroup of various factors. Deterministic and probabilistic risk assessments of exposure to FQ residues in honey were further conducted. Overall, four FQs were detected in 6.9% (47/681) of analyzed samples; banned norfloxacin with the highest level (7890 μg·kg-1) and detection frequency (4.9%) was the primary safety risk factor associated with honeybees raised in China. FQ detection frequency and concentration of rape honey was highest among four of the largest and most stable honeys (rape, acacia, chaste, and linden) in China. Processed honey from commercial sale channels had a significantly higher detection frequency of FQ residues than raw honey from apiaries. Deterministic assessment showed that the noncarcinogenic hazard quotient (HQ) value of the dietary intake of FQs by the local population was between 4.75 × 10-6 and 1.18 × 10-3, less than 1.0, indicating that FQ residues in honey posed a low risk for consumers. The order of the HQ value was ciprofloxacin > norfloxacin > enrofloxacin > ofloxacin. Probabilistic assessment showed that at P95, the HQ of FQs for the age groups of children, adolescents, adults, and older adults over 65 years ranged from 2.39 × 10-5 to 0.217, less than 1, and the exposure risk for adults was higher than for children and adolescents. Sensitivity analysis showed that FQ concentrations were the major contributors to health risks. Although a low risk was found, a strict hive management is needed for beekeepers regarding troubles of food safety, international trade, and human bacterial resistance.
Collapse
Affiliation(s)
- Liang He
- Animal Experiment Center, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Leiding Shen
- Agricultural Economic Service Center, Jiaxing 314512, China
| | - Jie Zhang
- Tongxiang Institute of Agricultural Sciences, Jiaxing Academy of Agricultural Sciences, Jiaxing 314512, China
| | - Rui Li
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
29
|
Shi M, Guo Y, Wu YY, Dai PL, Dai SJ, Diao QY, Gao J. Acute and chronic effects of sublethal neonicotinoid thiacloprid to Asian honey bee (Apis cerana cerana). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105483. [PMID: 37532314 DOI: 10.1016/j.pestbp.2023.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023]
Abstract
Pesticide pollution is one of the most important factors for global bee declines. Despite many studies have revealed that the most important Chinese indigenous species,Apis cerana, is presenting a high risk on exposure to neonicotinoids, the toxicology information on Apis cerana remain limited. This study was aimed to determine the acute and chronic toxic effects of thiacloprid (IUPAC name: {(2Z)-3-[(6-Chloro-3-pyridinyl)methyl]-1,3-thiazolidin-2-ylidene}cyanamide) on behavioral and physiological performance as well as genome-wide transcriptome in A. cerana. We found the 1/5 LC50 of thiacloprid significantly impaired learning and memory abilities after both acute and chronic exposure, nevertheless, has no effects on the sucrose responsiveness and phototaxis climbing ability of A. cerana. Moreover, activities of detoxification enzyme P450 monooxygenases and CarE were increased by short-term exposure to thiacloprid, while prolonged exposure caused suppression of CarE activity. Neither acute nor chronic exposure to thiacloprid altered honey bee AChE activities. To further study the potential defense molecular mechanisms in Asian honey bee under pesticide stress, we analyzed the transcriptomes of honeybees in response to thiacloprid stress. The transcriptomic profiles revealed consistent upregulation of immune- and stress-related genes by both acute or chronic treatments. Our results suggest that the chronic exposure to thiacloprid produced greater toxic effects than a single administration to A. cerana. Altogether, our study deepens the understanding of the toxicological characteristic of A. cerana against thiacloprid, and could be used to further investigate the complex molecular mechanisms in Asian honey bee under pesticide stress.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Yi Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yan-Yan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ping-Li Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shao-Jun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Qing-Yun Diao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
30
|
Wei J, Wang X, Tu C, Long T, Bu Y, Wang H, Jeyakumar P, Jiang J, Deng S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. ENVIRONMENT INTERNATIONAL 2023; 178:108044. [PMID: 37364306 DOI: 10.1016/j.envint.2023.108044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Neonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing 526061, Guangdong, China
| | - Xiaoyu Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Yuanqing Bu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| |
Collapse
|
31
|
Jiang P, Zhang S, Chai Y, He Q, Gao Q, Xiao J, Yu L, Cao H. Digestion dynamics of acetamiprid during royal jelly formation and exposure risk assessment to honeybee larva based on processing factor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93044-93053. [PMID: 37498429 DOI: 10.1007/s11356-023-28954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Previous studies to the exposure effects of acetamiprid on honeybees were based on the analysis of bee pollen and honey sacs from field trials or of beebread and honey in the hive, which overestimate or underestimate the risk of exposure to pesticide residues. It was believed that the processing factor (PF) is an important variable to determine the final pesticide residue during royal jelly formation and the actual risk to honeybee larva. Hence, a QuEChERS method to determine acetamiprid contents in honeybee samples was established in this study. Then, the PFs for acetamiprid in beebread fermentation, honey brewing, and royal jelly formation were determined to be 0.85, 0.76, and 0.16, respectively. The PF for royal jelly formation was 0.04 when acetamiprid was detected in beebread alone, and it was 0.12 when acetamiprid was only detected in honey. Finally, the predicted exposure concentration of acetamiprid in royal jelly was calculated to be 2.05 µg/kg using the PF without significant difference with the 90th percentile value (3.64 µg/kg) in the actual sample. However, the value was 16.62 µg/kg without considering the PF. This study establishes a methodology for the correct evaluation of the risk to bee larva of acetamiprid residues in bee pollen and honey sac contents and the residual levels in royal jelly.
Collapse
Affiliation(s)
- Peng Jiang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Shiyu Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yuhao Chai
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Qibao He
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jinjing Xiao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Linsheng Yu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
32
|
Xue M, Li P, Li C, Qi Y, Han Z, Li J, Li A, Xia T. Transformation of graphene oxide affects photodegradation of imidacloprid in the aquatic environment: Mechanism and implication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163108. [PMID: 37003175 DOI: 10.1016/j.scitotenv.2023.163108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Graphene oxide (GO) is a representative novel carbonaceous nanomaterial, and neonicotinoid insecticides (NEOs) are currently the insecticides with the highest market share in the world. Their widespread application deservedly leads to their release to the environment. Thus, the complex interactions of these two types of organic compounds have attracted extensive attention. In this study, the effects of GO and its derivatives, reduced GO (RGO) and oxidized GO (OGO), on the photolysis of imidacloprid (IMD) (a typical NEO) under ultraviolet (UV) irradiation were systematically investigated. The results showed that the presence of the graphene-based nanomaterials (GNs) largely depressed the photodegradation of IMD, and the inhibition degree followed the order of RGO > GO > OGO. This was because the sp2 π-conjugated structure in the GNs caused light-shielding effect and attenuated the direct photolysis of IMD, even though the GNs-generated reactive oxygen species (ROS) promoted the indirect photodegradation of IMD to a certain extent. Additionally, the rich O-functionalized GO and OGO altered the photolysis pathway of IMD and induced more toxic intermediate products. These results highlight the implication of carbonaceous nanomaterials on the behavior, fate and potential risk of NEOs in aqueous systems.
Collapse
Affiliation(s)
- Mengzhu Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiyao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yonghao Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhentong Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiarui Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
33
|
He L, Zhang J, Shen L, Ji X, Li R. Occurrence of pesticide residues in honey from apiaries with incidents of honeybee poisoning in East China and a corresponding risk assessment for honeybees and Chinese consumers. J Food Sci 2023. [PMID: 37326343 DOI: 10.1111/1750-3841.16668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
We investigated the occurrence of 80 pesticide residues in 96 honey samples from apiaries with honeybee poisoning incidences by liquid chromatography-tandem mass spectrometry and subsequently conducted risk assessments of exposure for in-hive honeybees and Chinese consumers. Six pesticides were detected with residue concentrations ranging from 0.5 to 130.9 µg/kg. The mean concentrations of acetamiprid, dinotefuran, hexythiazox, propargite, semiamitraz, and carbendazim in positive samples were 7.9 ± 9.1, 5.9 ± 1.7, 3.0 ± 1.6, 44.2 ± 50.0, 9.0 ± 9.4, and 5.5 ± 4.1 µg/kg, respectively. Carbendazim, semiamitraz, and acetamiprid were the major contaminants in honey, with incidences of 99.0%, 93.8%, and 49.0%, respectively. The cooccurrence of pesticides (≥2 pesticides) was detected in 95.9% of the samples, with up to six residual pesticides found in one sample. The HQ (hazard quotient) values of the six pesticides to in-hive honeybees were from 4.7 × 10-8 to 0.021, less than 1, indicating their acceptable exposure risk to honeybees. In terms of the representative-case and worst-case scenarios, the sum of separate HQs of each pesticide yielding an HI (hazard index) ranged from 0.012 to 0.016 for in-hive worker honeybees and from 0.015 to 0.021 for in-hive larva honeybees, indicating an overall acceptable potential cumulative risk of multiple pesticides to in-hive honeybees. Both the %ARfD (acute reference dose) value (0.0001-0.075) and %ADI (acceptable daily intake) value (0.00002-0.0046) of risky pesticides were much less than 100, revealing acceptable risk exposure to risky pesticides via honey consumption for human health. Thus, our results showed that multipesticide residual honey from apiaries with honeybee poisoning incidents in East China was safe for humans and in-hive honeybees. PRACTICAL APPLICATION: This analytical approach will be used in detecting multiple pesticide residues in honey and risk assessment for dietary exposure to pesticide residues. It can support various surveillance programs about honey safety and in-hive honeybee health evaluation.
Collapse
Affiliation(s)
- Liang He
- Animal Experiment Center; The Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Jie Zhang
- Tongxiang Institute of Agricultural Sciences, Jiaxing Academy of Agricultural Sciences, Jiaxing, P. R. China
| | - Leiding Shen
- Agricultural Economic Service Center, Jiaxing, P. R. China
| | - Xiaofeng Ji
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, P. R. China
| | - Rui Li
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, P. R. China
| |
Collapse
|
34
|
Ke L, Chen X, Dai P, Liu YJ. Chronic larval exposure to thiacloprid impairs honeybee antennal selectivity, learning and memory performances. Front Physiol 2023; 14:1114488. [PMID: 37153228 PMCID: PMC10157261 DOI: 10.3389/fphys.2023.1114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
The use of agricultural neonicotinoid insecticides has sub-lethal chronic effects on bees that are more prevalent than acute toxicity. Among these insecticides, thiacloprid, a commonly used compound with low toxicity, has attracted significant attention due to its potential impact on the olfactory and learning abilities of honeybees. The effect of sub-lethal larval exposure to thiacloprid on the antennal activity of adult honeybees (Apis mellifera L.) is not yet fully understood. To address this knowledge gap, laboratory-based experiments were conducted in which honeybee larvae were administered thiacloprid (0.5 mg/L and 1.0 mg/L). Using electroantennography (EAG), the impacts of thiacloprid exposure on the antennal selectivity to common floral volatiles were evaluated. Additionally, the effects of sub-lethal exposure on odor-related learning and memory were also assessed. The results of this study reveal, for the first time, that sub-lethal larval exposure to thiacloprid decreased honeybee antenna EAG responses to floral scents, leading to increased olfactory selectivity in the high-dose (1.0 mg/L) group compared to the control group (0 mg/L vs. 1.0 mg/L: p = 0.042). The results also suggest that thiacloprid negatively affected odor-associated paired learning acquisition, as well as medium-term (1 h) (0 mg/L vs. 1.0 mg/L: p = 0.019) and long-term memory (24 h) (0 mg/L vs. 1.0 mg/L: p = 0.037) in adult honeybees. EAG amplitudes were dramatically reduced following R-linalool paired olfactory training (0 mg/L vs. 1.0 mg/L: p = 0.001; 0 mg/L vs. 0.5 mg/L: p = 0.027), while antennal activities only differed significantly in the control between paired and unpaired groups. Our results indicated that exposure to sub-lethal concentrations of thiacloprid may affect olfactory perception and learning and memory behaviors in honeybees. These findings have important implications for the safe use of agrochemicals in the environment.
Collapse
Affiliation(s)
- Li Ke
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiasang Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Shi X, Shi J, Yu L, Wu X. Metabolic profiling of Apis mellifera larvae treated with sublethal acetamiprid doses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114716. [PMID: 36870311 DOI: 10.1016/j.ecoenv.2023.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Acetamiprid is a neonicotinoid insecticide used in crop protection worldwide. Such widespread application can pose risks to pollinator insects, particularly to honeybees (Apis mellifera); therefore, the evaluation of the harmful effects of acetamiprid is necessary. Recent studies report behavior and gene expression dysfunction in honeybees, related to acetamiprid contamination. However, most studies do not consider potential metabolism disorders. To examine the effects of sublethal acetamiprid doses on the hemolymph metabolism of honeybees, worker bee larvae(2 days old) were fed with sucrose water containing different concentrations of acetamiprid (0, 5, and 25 mg/L) until capped (6 days old). The hemolymph (200 μL) of freshly capped larvae was collected for liquid chromatography-mass spectrometry (LC-MS). Overall, increasing acetamiprid exposure induced greater metabolic variations in worker bee larvae(treated groups compared to untreated). In the positive ion mode, 36 common differential metabolites in the acetamiprid-treated groups were screened from the identified differential metabolites. Of these, 19 metabolites were upregulated, and 17 were downregulated. 10 common differential metabolites were screened in the negative ion mode. 3 metabolites were upregulated, and 7 metabolites were downregulated. These common metabolites included traumatic acid, indole etc. These commonly differentiated metabolites were classified as compounds with biological roles, lipids, and phytochemical compounds, and others. The metabolic pathways of common differentiated metabolites with significant differences (P < 0.05) included the metabolism of tryptophan, purines, phenylalanine, etc. As the concentration of acetamiprid increased, the content of traumatic acid increased, the content of tryptophan metabolite l-kynurenine and indole decreased, and the content of lipids also decreased. Our results revealed that the damage to honeybee larvae increased when the acetamiprid solution formulations residue in their food had a concentration higher than 5 mg/L, causing metabolic disorders in various substances in larvae. Analysis of these metabolic processes can provide a theoretical basis for further research on the metabolism of acetamiprid-treated honeybees and elucidate the detoxification mechanisms.
Collapse
Affiliation(s)
- Xinxin Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Longtao Yu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China.
| |
Collapse
|
36
|
Wu J, Ge F, Zhu L, Liu N. Potential Toxic Mechanisms of Neonicotinoid Insecticides in Rice: Inhibiting Auxin-Mediated Signal Transduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4852-4862. [PMID: 36926880 DOI: 10.1021/acs.est.2c09352] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inappropriate application of pesticides not only causes sub-lethal effects on ecosystem service providers but also reduces crop yield and quality. As a xenobiotic signal molecule, pesticides may interact with signal transduction receptors in crops, resulting in oxidative damage and even metabolic perturbations. We discovered that three neonicotinoid insecticides (NIs), namely, imidacloprid, thiamethoxam, and clothianidin, at 0.06-0.12 kg ai/ha significantly inhibited the auxin signal pathway in rice leaves, thereby reducing the intracellular auxin (IAA) content. Molecular simulation further confirmed that NIs occupied the binding site where auxin transporter-like proteins 1 (LAX11) and 2 (LAX12), in which Thr253 and Asn66 of LAX11, as well as Thr244 and Asn57 of LAX12, were bound to the nitroguanidine of NIs via H-bonds. Meanwhile, Asn66 of LAX11 and Asn57 of LAX12 interacted with nitroguanidine via aromatic H-bonds. Moreover, phenylpropanoid biosynthesis was significantly disturbed because of the inhibited auxin signal pathway. Notably, peroxidase-coding genes were downregulated with a maximum value greater than 10-fold, resulting in decreased antioxidant metabolites flavone (37.82%) and lignin content (20.15%). Ultimately, rice biomass was reduced by up to 25.41% due to the decline in IAA content and antioxidant capacity. This study deeply explored the molecular mechanism of metabolic perturbations in crops stressed by pesticides, thus providing a scientific basis for pesticide environmental risk assessment and agricultural product safety.
Collapse
Affiliation(s)
- Jianjian Wu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
37
|
Lu Y, Gao J, Wu T, Han B, Qian B, Shi M, Yang S, Diao Q, Bu C, Dai P. Exposure of chlorothalonil and acetamiprid reduce the survival and cause multiple internal disturbances in Apis mellifera larvae reared in vitro. Front Physiol 2023; 14:1114403. [PMID: 36860521 PMCID: PMC9968791 DOI: 10.3389/fphys.2023.1114403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Background: Chlorothalonil and acetamiprid are chemical pesticides commonly used in agricultural production and have been shown to have negative effects on bee's fitness. Despite many studies have revealed that honey bee (Apis mellifera L.) larvae are posting a high risk on exposure to pesticides, but the toxicology information of chlorothalonil and acetamiprid on bee larvae remain limited. Results: The no observed adverse effect concentration (NOAEC) of chlorothalonil and acetamiprid for honey bee larvae were 4 μg/mL and 2 μg/mL, respectively. Except for CarE, the enzymic activities of GST and P450 were not influenced by chlorothalonil at NOAEC, while chronic exposure to acetamiprid slightly increased the activities of the three tested enzymes at NOAEC. Further, the exposed larvae showed significantly higher expression of genes involved in a series of different toxicologically relevant process following, including caste development (Tor (GB44905), InR-2 (GB55425), Hr4 (GB47037), Ac3 (GB11637) and ILP-2 (GB10174)), immune system response (abaecin (GB18323), defensin-1 (GB19392), toll-X4 (GB50418)), and oxidative stress response (P450, GSH, GST, CarE). Conclusion: Our results suggest that the exposure to chlorothalonil and acetamiprid, even at concentrations below the NOAEC, showed potentially effects on bee larvae's fitness, and more important synergistic and behavioral effects that can affect larvae fitness should be explored in the further.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Gao
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tong Wu
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Han
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingnan Qian
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Shi
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sa Yang
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyun Diao
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
| | - Pingli Dai
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Han M, Wang Y, Yang Z, Wang Y, Huang M, Luo B, Wang H, Chen Y, Jiang Q. Neonicotinoids residues in the honey circulating in Chinese market and health risk on honey bees and human. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120146. [PMID: 36096262 DOI: 10.1016/j.envpol.2022.120146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
China is the largest beekeeping and honey consumption country globally. Neonicotinoids in honey can pose adverse effects on honey bees and human, but data on neonicotinoids residues in honey and its health risk remain limited in China. A total of 94 honey samples were selected from Chinese market based on production region and sale volume in 2020. Eight neonicotinoids and four metabolites were determined by liquid chromatography coupled to mass spectrometry. Health risk of neonicotinoids in honey on honey bees and human was assessed by hazard quotient (HQ) and hazard index (HI). Neonicotinoids and their metabolites were overall detected in 97.9% of honey samples. Acetamiprid, thiamethoxam, and imidacloprid were top three dominant neonicotinoids in honey with the detection frequencies of 92.6%, 90.4%, and 73.4%, respectively. For honey bees, 78.7% of honey samples had a HI larger than one based on the safety threshold value of sublethal effects. Top three neonicotinoids with the highest percent proportion of HQ larger than one for honey bees were acetamiprid (43.6%), imidacloprid (31.9%), and thiamethoxam (24.5%) and their maximum HQs were 420, 210, and 41, respectively. Based on oral median lethal doses for honey bees, both HQ and HI were lower than one in all honey samples. For human, both HQ and HI were lower than one based on acceptable daily intakes in all honey samples. Neonicotinoids concentrations and detection frequencies in honey samples and its health risk varied with production region, commercial value of nectariferous plants, number of nectariferous plants, and sale price. The results suggested extensive residues of neonicotinoids in honey in Chinese market with a variation by the characteristics of honey. The residues were likely to affect the health of honey bees, but showed no detectable effect on human health.
Collapse
Affiliation(s)
- Minghui Han
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Min Huang
- The People's Hospital of Pingyang, Pingyang County, Zhejiang Province, 325400, China
| | - Baozhang Luo
- Department of Food Safety, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1G5Z3, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
39
|
Sharma A, Pant K, Brar DS, Thakur A, Nanda V. A review on Api-products: current scenario of potential contaminants and their food safety concerns. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Ying Z, Guo B, Zhang G, Sun L, Yang X, Zhang Q. The Characteristics and Potential Risks of Neonicotinoid Residues in Soils of Different Types of Land Use in Hangzhou. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114091. [PMID: 36155336 DOI: 10.1016/j.ecoenv.2022.114091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Due to the wide existence of neonicotinoid insecticides (neonics) and their potential impact on ecosystems and human health, they have received special attention in recent years. Soil is not only a sink of neonics but also a source of neonics, so it plays a key role in the ubiquity of neonics in the environment. The purpose of this research was to compare neonics residues in soils of different types of land use and estimate their exposure to different populations via ingestion. A total of 130 soil samples from six different types were collected. The concentrations of seven neonics in soil were simultaneous determined using isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. The results showed that at least one neonic was analyzed in all samples. The highest average concentration was 3.42 ng/g (clothianidin), followed by 3.39 ng/g (thiamethoxam), 3.06 ng/g (acetamiprid), 2.84 ng/g (imidacloprid), 2.66 ng/g (nitenpyram), 2.43 ng/g (thiacloprid), and 1.89 ng/g (dinotefuran). IMI and ACE were the most commonly found neonics in soil. The neonic levels in different soils varied significantly. The integrated neonic residue in cropland was much higher than that in other types of land. The risk assessment revealed that the average daily dose (ADD) through ingestion contact with soil was acceptable to children and adults. With the increasing evidence that neonics could cause a variety of toxic effects on mammals and humans, ingestion exposure caused by neonics in soil should also receive continuous attention in future studies.
Collapse
Affiliation(s)
- Zeteng Ying
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Bin Guo
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Guomei Zhang
- College of food science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Lihua Sun
- College of food science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Xifan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| |
Collapse
|
41
|
Yi Q, Li Y, Dai R, Li X, Li Z, Wang Z. Efficient removal of neonicotinoid by singlet oxygen dominated MoS x/ceramic membrane-integrated Fenton-like process. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129672. [PMID: 36104901 DOI: 10.1016/j.jhazmat.2022.129672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Removal of neonicotinoids (NEOs) from contaminated water is of great importance for both ecological environment and human health. However, conventional Fenton process might be insufficient for NEOs removal due to short lifetime for generated HO• and limited Fe3+/Fe2+ redox cycle. Advancing Fenton process to produce singlet oxygen can be an effective route to improve its efficacy for NEOs removal. Herein, we developed a molybdenum sulfide modified ceramic membrane-integrated Fenton-like system to achieve efficient catalytic removal of NEOs. The reduced Mo0 and Mo4+ could promote the reduction process of Fe3+ to Fe2+, improving the activation efficiency of hydrogen peroxide (H2O2) and the generation of superoxide radical (O2•-). Consequently, the coexisting Mo6+ reacted with O2•- to generate 1O2. The membrane enabled the pollutants to adequately contact oxidants due to the enhanced convective mass transfer. The functionalized membrane exhibited stable catalytic performance for clothianidin (CLO, a kind of NEOs, 10 mg/L) removal (degradation efficiency > 85%). The presence of 1O2 enabled the dechlorination and hydroxylation of CLO and thus reduced the toxicity of wastewater. Our work sheds light on the use of functionalized ceramic membrane integrated catalytic Fenton system for effective environmental remediation.
Collapse
Affiliation(s)
- Qiuying Yi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Tongji Advanced Membrane Technology Center, Shanghai 200092, China.
| |
Collapse
|
42
|
Zhou HX, Chen MH, Gu WJ, Hu MF, Liu XY, Zhou J, Song YQ, Zha HG. Identification and quantitation of the novel insecticide sulfoxaflor and its metabolites in floral nectar from Salvia splendens Ker Gawl. (Lamiaceae). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1310-1320. [PMID: 36149570 DOI: 10.1007/s10646-022-02590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Sulfoxaflor is a new systemic insecticide developed as a replacement for older neonicotinoids which are known to be toxic to pollinators. However, its metabolism in nectar and effect on nectar biosynthesis have not been investigated. After soil and foliar application, sulfoxaflor and its main metabolites in soil, leaf and Salvia splendens nectar, were measured by liquid chromatography coupled with triple quadrupole mass spectrometer (LC-MS/MS). The chemical composition between the clean and sulfoxaflor spiked nectar were also compared. The activities of two possible sulfoxaflor detoxifying enzymes in S. splendens nectar, nitrile hydratase and glutathione-s-transferase, were measured by LC-MS and spectrophotometry. S. splendens nectar proteome was investigated by high-resolution orbitrap-based MS/MS to screen for sulfoxaflor detoxifying relevant proteins. S. splendens could absorb sulfoxaflor through root or leaf surface and secrete a proportion of sulfoxaflor along with its metabolites into the nectar. After soil application, sulfoxaflor's low toxic metabolite X11719474 was dominant in the nectar and reached an average concentration of 8905 ppb. However, after foliar application, sulfoxaflor was dominant over its metabolites in the nectar. S. splendens nectar has no nitrile hydratase and glutathione-s-transferase activity and none of the 106 proteins identified in the nectar were predicted to function in detoxifying sulfoxaflor. Soil and foliar sulfoxaflor application can result in different profiles of sulfoxaflor and its metabolites presented in the nectar. However, sulfoxaflor had no effects on S. splendens nectar secretion and chemical composition and cannot be directly detoxified by components in the nectar.
Collapse
Affiliation(s)
- Hong-Xia Zhou
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Mang-Huang Chen
- Instrumental Analysis Centre, Huangshan University, Huangshan, 245041, China
| | - Wen-Jing Gu
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Meng-Fang Hu
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Xin-Yue Liu
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Jia Zhou
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Yue-Qin Song
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Hong-Guang Zha
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China.
| |
Collapse
|
43
|
Tong Z, Yang T, Sun M, Dong X, Chu Y, Meng D, Wang M, Gao T, Duan J. Systemic assessment of the chiral insecticide pyriproxyfen in a citrus nectar source system: Stereoselective degradation, biological effect and exposure risk. PEST MANAGEMENT SCIENCE 2022; 78:3012-3018. [PMID: 35426212 DOI: 10.1002/ps.6926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Balancing the safety and efficiency of chiral pesticides can help protect pollinators. We evaluated the stereoselective behavior, bioactivity, toxicity and exposure risk of the chiral insecticide pyriproxyfen in a citrus nectar system. RESULTS Density functional theory (DFT) and ultra-performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS) were applied for absolute configuration appraisal and chiral analysis validation, respectively. The recoveries ranged from 72.3% to 100.5% with an relative standard deviation (RSD) ranging from 1.2% to 9.7%. In a field trial, we determined insecticide half-lives in citrus leaves and flowers, which were 7.0 and 8.6 days for R-(+)-pyriproxyfen, and 11.7 and 14.7 days for S-(-)-pyriproxyfen, respectively. We found that the bioactivity of R-(+)-pyriproxyfen was 3.39 and 2.37 times higher than S-(-)-pyriproxyfen against Unaspis yanonensis and Diaphorina citri nymphs, respectively. S-(-)-pyriproxyfen had 3.8 times higher acute toxicity than R-(+)-pyriproxyfen on Apis mellifera L., and its exposure risk was moderate based on the hazard quotient. CONCLUSION The phenomenon of stereoselective degradation and biological effect demonstrated that the high-risk stereoisomer of S-(-)-pyriproxyfen degraded more slowly than R-(+)-pyriproxyfen, but R-(+)-pyriproxyfen with better efficiency for target. Therefore, an increased duration of R-(+)-pyriproxyfen activity on citrus was beneficial for efficacy. Our results could guide the scientific application and evaluation of chiral pesticides on nectar plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Tingmi Yang
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Mingna Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Dandan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Mei Wang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| |
Collapse
|
44
|
Wang F, Wang Y, Li Y, Zhang S, Shi P, Li-Byarlay H, Luo S. Pesticide residues in beebread and honey in Apis cerana cerana and their hazards to honey bees and human. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113574. [PMID: 35512473 DOI: 10.1016/j.ecoenv.2022.113574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The residue of pesticides in bee products such as beebread and honey threaten the survival of pollinators and human health. Apis cerana cerana is one of the leading managed honey bees in China. However, little is known about the residues of pesticides in hive products of A. c. cerana in China. Here, we investigated the pesticide residues in beebread and honey. The risk of detected residues of pesticides to honey bees was evaluated with hazard quotient (HQ) and BeeREX. Furthermore, we assessed the chronic and acute risks to humans according to the dietary exposure. Our results suggest that the pesticide residues detection ratio (25.4% for beebread and 2.8% for honey) and the concentrations of these residues is lower than previously reported. Additional risk assessments indicate that the residue levels of pesticides in tested honey of A. c. cerana do not pose a risk for human consumers. Among all identified pesticides, only thiamethoxam raises the concern for further risk assessment in the risk evaluation of honey bee colonies and thiamethoxam was safe for colonies in higer tier studies.
Collapse
Affiliation(s)
- Feiran Wang
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yuhao Wang
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yong Li
- Guyuan Beekeeping Experimental Station, Guyuan 756099, China
| | - Shiwen Zhang
- Gansu Institute of Apicultural Research, Tianshui 741022, China
| | - Pengzhen Shi
- Gansu Institute of Apicultural Research, Tianshui 741022, China
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce 45384, USA
| | - Shudong Luo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
45
|
Zhou HX, Milne RI, Cui P, Gu WJ, Hu MF, Liu XY, Song YQ, Cao J, Zha HG. Comparing the contents, functions and neonicotinoid take-up between floral and extrafloral nectar within a single species (Hemerocallis citrina Baroni). ANNALS OF BOTANY 2022; 129:429-441. [PMID: 35018412 PMCID: PMC8944713 DOI: 10.1093/aob/mcac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Many angiosperms can secrete both floral (FN) and extrafloral (EFN) nectar. However, much remains unclear about how EFN and FN differ in secretion, composition and ecological function, especially when both FN and EFN are secreted on flowers of the same species. METHODS Hemerocallis citrina flowers secrete both FN and EFN. The FN and EFN traits including volume, presentation pattern and temporal rhythms of secretion were compared by field observation. Sugar and amino acid contents were analysed using regular biochemical methods, whereas the proteome was investigated by combined gel-based and gel-free approaches. Animal feeders on FN and EFN were investigated by field observation. Hemerocallis citrina plants were exposed by soil drenching to two systemic insecticides, acetamiprid and imidacloprid, and the concentration of these in FN and EFN was measured by ultra-high performance liquid chromatography coupled with mass spectrometry. KEY RESULTS Hemerocallis citrina FN was concentrated and sucrose dominant, secreted in the mature flower tube and served as a reward for pollinators. Conversely, EFN was hexose rich, more dilute and less rich in sugar and amino acids. EFN was secreted on the outside of developing floral buds, and was likely to attract predatory animals for defence. EFN had fewer phenolics, but more pathogenesis-related components, such as chitinase and glucanase. A significantly different proteomic profile and enzymatic activities between FN and EFN suggest that they had different biosynthesis mechanisms. Both neonicotinoid insecticides examined became present in both nectar types soon after application, but in greater concentration within EFN; EFN also attracted a wider range of insect species than FN. CONCLUSIONS Hemerocallis citrina FN and EFN differed in production, composition and ecological function. The EFN pathway could be a significant way for neonicotinoids to enter the wild food chain, and must be considered when evaluating the risks to the environment of other systemic insecticides.
Collapse
Affiliation(s)
- Hong-Xia Zhou
- College of Life and Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Peng Cui
- Instrumental Analysis Centre, Huangshan University, Huangshan 245041, China
| | - Wen-Jing Gu
- College of Life and Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Meng-Fang Hu
- College of Life and Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Xin-Yue Liu
- College of Life and Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Yue-Qin Song
- College of Life and Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Jun Cao
- For correspondence. E-mail , or
| | | |
Collapse
|
46
|
Cheng X, Zhang S, Shao S, Zheng R, Yu Z, Ye Q. Translocation and metabolism of the chiral neonicotinoid cycloxaprid in oilseed rape (Brassica napus L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128125. [PMID: 34971988 DOI: 10.1016/j.jhazmat.2021.128125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Neonicotinoids have been banned in some countries because of increased nontarget resistance and ecological toxicity. Cycloxaprid is a potentially promising substitute, but its metabolism in plants is still poorly understood. The study aims to clarify the translocation of cycloxaprid, identify its metabolites, propose possible metabolic pathways and compare differences between enantiomers in oilseed rape via 14C tracing technology and HPLC-QTOF-MS. The results showed that most cycloxaprid remained in the treated leaves, and only a small amount translocated to the anthers. Seven metabolites were identified, and the possible metabolic pathway was divided into two phases. Phase Ⅰ metabolism included two metabolites obtained via cleavage of the oxa-bridged seven-membered ring. Phase II metabolism was responsible for glucose conjugate formation. The possible metabolic pathways revealed that the proportion of phase I metabolites gradually decreased over time, and the phase II metabolites transformed from monosaccharide and disaccharide conjugates to trisaccharide and tetrasaccharide conjugates. The levels of metabolites were significantly different between the enantiomers. In particular, the main metabolite was M4, which has confirmed biological toxicity. M2 was the only metabolite detected in rapeseed. The results will promote the scientific application of cycloxaprid in agriculture and could have implications for assessing environmental risk.
Collapse
Affiliation(s)
- Xi Cheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Siyao Shao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Ruonan Zheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
47
|
Schuhmann A, Schmid AP, Manzer S, Schulte J, Scheiner R. Interaction of Insecticides and Fungicides in Bees. FRONTIERS IN INSECT SCIENCE 2022; 1:808335. [PMID: 38468891 PMCID: PMC10926390 DOI: 10.3389/finsc.2021.808335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 03/13/2024]
Abstract
Honeybees and wild bees are among the most important pollinators of both wild and cultivated landscapes. In recent years, however, a significant decline in these pollinators has been recorded. This decrease can have many causes including the heavy use of biocidal plant protection products in agriculture. The most frequent residues in bee products originate from fungicides, while neonicotinoids and, to a lesser extent, pyrethroids are among the most popular insecticides detected in bee products. There is abundant evidence of toxic side effects on honeybees and wild bees produced by neonicotinoids, but only few studies have investigated side effects of fungicides, because they are generally regarded as not being harmful for bees. In the field, a variety of substances are taken up by bees including mixtures of insecticides and fungicides, and their combinations can be lethal for these pollinators, depending on the specific group of insecticide or fungicide. This review discusses the different combinations of major insecticide and fungicide classes and their effects on honeybees and wild bees. Fungicides inhibiting the sterol biosynthesis pathway can strongly increase the toxicity of neonicotinoids and pyrethroids. Other fungicides, in contrast, do not appear to enhance toxicity when combined with neonicotinoid or pyrethroid insecticides. But the knowledge on possible interactions of fungicides not inhibiting the sterol biosynthesis pathway and insecticides is poor, particularly in wild bees, emphasizing the need for further studies on possible effects of insecticide-fungicide interactions in bees.
Collapse
Affiliation(s)
- Antonia Schuhmann
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Anna Paulina Schmid
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Sarah Manzer
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Janna Schulte
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Xiao J, He Q, Liu Q, Wang Z, Yin F, Chai Y, Yang Q, Jiang X, Liao M, Yu L, Jiang W, Cao H. Analysis of honey bee exposure to multiple pesticide residues in the hive environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150292. [PMID: 34536857 DOI: 10.1016/j.scitotenv.2021.150292] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Since the loss of honeybees in hives could have a greater impact on colony health than those of their foraging bees, it is imperative to know beehives' pesticide exposure via oral ingestion of contaminated in-hive matrices. Here, a 4-year monitoring survey of 64 pesticide residues in pollen, nectar and related beehive matrices (beebread and honey) from China's main honey producing areas was carried out using a modified version of the QuEChERS multi-residue method. The results showed that 93.6% of pollen, 81.5% of nectar, 96.6% of beebread, and 49.3% of honey containing at least one target pesticide were detected either at or above the method detection limits (MDLs), respectively, with up to 19 pesticides found per sample. Carbendazim was the most frequently detected pesticide (present in >85% of the samples), and pyrethroids were also abundant (median concentration = 134.3-279.0 μg/kg). The transfer of pesticides from the environment into the beehive was shown, but the pesticide transference ratio may be affected by complex factors. Although the overall risk to colony health from pesticides appears to be at an acceptable level, the hazard quotient/hazard index (HQ/HI) value revealed that pyrethroids were clearly the most influential contributor, accounting for up to 45% of HI. Collectively, these empirical findings provide further insights into the extent of contamination caused by agricultural pesticide use on honeybee colonies.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Qibao He
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Qiongqiong Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Zhiyuan Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Fang Yin
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuhao Chai
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Qing Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Xingchuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Linsheng Yu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, 48824 East Lansing, MI, USA
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
49
|
Zhang H, Zhu K, Du J, Ou M, Hou J, Wang D, Wang J, Zhang W, Sun G. Serum concentrations of neonicotinoids and their characteristic metabolites in elderly population from South China: Association with osteoporosis. ENVIRONMENTAL RESEARCH 2022; 203:111772. [PMID: 34324851 DOI: 10.1016/j.envres.2021.111772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids (NEOs) are extensively applied in global agricultural production for pest control but have adverse effects on human health. In this study, the concentrations of six NEOs and three characteristic metabolites were investigated by collecting 200 serum samples from an elderly population in China. Results showed that the NEOs and their metabolites were widely detected (89%-98 %) in the serum samples from the osteoporosis (OP) (n = 120) and non-OP (n = 80) population, and their median concentrations ranged from 0.04 ng/mL to 5.99 ng/mL and 0.01 ng/mL to 2.02 ng/mL, respectively. N-desmethyl-acetamiprid (ACE-dm) was the most abundant NEOs in the serum samples. Gender-related differences were found in concentrations of most NEOs and their metabolites in serum, with males having higher target analytes than females. Significantly (p < 0.05) positive correlations were observed among most NEO concentrations, suggesting that exposure source of these substances is common or related. However, associations between the concentrations of characteristic metabolites and their corresponding NEOs were insignificant, probably because the exogenous intake are the primary sources of metabolites of NEOs instead of the internal biotransformation. The associations between NEO concentrations (i.e., ACE-dm, dinotefuran, and olefin-imidacloprid) and OP (OR = 2.33-6.92, 95 % CI = 0.37-16.9, p-trend < 0.05) indicate that NEO exposure is correlated with increased odds of prevalent OP. This study is the first to document the profiles of NEOs and their metabolites in serum samples collected from an elderly population in South China and examine the relationships between NEO exposure and OP.
Collapse
Affiliation(s)
- Hua Zhang
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Kairui Zhu
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Jiang Du
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Maota Ou
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Junlong Hou
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Desheng Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jing Wang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| | - Guodong Sun
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital) Jinan University, Heyuan, 517000, China; Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
50
|
Cui K, Wu X, Zhang Y, Cao J, Wei D, Xu J, Dong F, Liu X, Zheng Y. Cumulative risk assessment of dietary exposure to triazole fungicides from 13 daily-consumed foods in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117550. [PMID: 34126511 DOI: 10.1016/j.envpol.2021.117550] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The agroeconomic benefits of the routine use of triazole fungicides on crops have been evident for more than 40 years. However, increasing evidence shows that residues of triazoles are ubiquitous in various foods and thus could pose a potential health risk to humans. We analyzed 3406 samples of 13 food commodities that were collected from markets in 9 regions across China, and assessed the health risk of both chronic and acute exposure to the triazoles for Chinese children (1-6 years old) and the general population. Among all samples, 55.52% had triazoles in concentrations of 0.10-803.30 μg/kg, and 29.77% of samples contained a combination of 2-7 triazoles. Tebuconazole and difenoconazole were the most commonly found triazoles in the foods, being detected in 33.44% and 30.45% of samples, respectively. Chronic and acute cumulative risk assessment for total triazoles based on a relative potency factor method revealed that exposure to triazoles from these particular commodities was below the levels that might pose a health risk (chronic hazard index range, 5.90×10-7 to 1.83×10-3; acute hazard index range, 7.77×10-5 to 0.39, below 1). Notably, dietary exposure risk for children was greater than that for the general population-particularly for the acute intake of mandarin, grape, and cucumber (acute hazard index values of 0.35-0.39). Despite the low health risk, the potential hazards of exposure to triazoles should raise public concern owing to their ubiquitous presence in common foods and potential cumulative effects.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China.
| | - Ying Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Junli Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Dongmei Wei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Xingang Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| |
Collapse
|