1
|
Marchini E, Caramori S, Carli S. Metal Complexes for Dye-Sensitized Photoelectrochemical Cells (DSPECs). Molecules 2024; 29:293. [PMID: 38257206 PMCID: PMC10818894 DOI: 10.3390/molecules29020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Since Mallouk's earliest contribution, dye-sensitized photoelectrochemical cells (DSPECs) have emerged as a promising class of photoelectrochemical devices capable of storing solar light into chemical bonds. This review primarily focuses on metal complexes outlining stabilization strategies and applications. The ubiquity and safety of water have made its splitting an extensively studied reaction; here, we present some examples from the outset to recent advancements. Additionally, alternative oxidative pathways like HX splitting and organic reactions mediated by a redox shuttle are discussed.
Collapse
Affiliation(s)
- Edoardo Marchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Carli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
2
|
Recent Advances in Metal-Based Molecular Photosensitizers for Artificial Photosynthesis. Catalysts 2022. [DOI: 10.3390/catal12080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Artificial photosynthesis (AP) has been extensively applied in energy conversion and environment pollutants treatment. Considering the urgent demand for clean energy for human society, many researchers have endeavored to develop materials for AP. Among the materials for AP, photosensitizers play a critical role in light absorption and charge separation. Due to the fact of their excellent tunability and performance, metal-based complexes stand out from many photocatalysis photosensitizers. In this review, the evaluation parameters for photosensitizers are first summarized and then the recent developments in molecular photosensitizers based on transition metal complexes are presented. The photosensitizers in this review are divided into two categories: noble-metal-based and noble-metal-free complexes. The subcategories for each type of photosensitizer in this review are organized by element, focusing first on ruthenium, iridium, and rhenium and then on manganese, iron, and copper. Various examples of recently developed photosensitizers are also presented.
Collapse
|
3
|
Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202110491. [PMID: 34787359 PMCID: PMC9299816 DOI: 10.1002/anie.202110491] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/16/2021] [Indexed: 12/25/2022]
Abstract
The two-electron reduced forms of perylene diimides (PDIs) are luminescent closed-shell species whose photochemical properties seem underexplored. Our proof-of-concept study demonstrates that straightforward (single) excitation of PDI dianions with green photons provides an excited state that is similarly or more reducing than the much shorter-lived excited states of PDI radical monoanions, which are typically accessible after biphotonic excitation with blue photons. Thermodynamically demanding photocatalytic reductive dehalogenations and reductive C-O bond cleavage reactions of lignin model compounds have been performed using sodium dithionite acts as a reductant, either in aqueous solution or in biphasic water-acetonitrile mixtures in the presence of a phase transfer reagent. Our work illustrates the concept of multi-electron reduction of a photocatalyst by a sacrificial reagent prior to irradiation with low-energy photons as a means of generating very reactive excited states.
Collapse
Affiliation(s)
- Han Li
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|
4
|
Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Han Li
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
5
|
Jiao J, Yan X, Xing S, Zhang T, Han Q. Design of a Polyoxometalate-Based Metal-Organic Framework for Photocatalytic C(sp 3)-H Oxidation of Toluene. Inorg Chem 2022; 61:2421-2427. [PMID: 35076213 DOI: 10.1021/acs.inorgchem.1c03150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A powerful and promising route for developing novel photocatalysts for light-driven toluene oxidation in water under mild conditions is presented. Herein, a novel polyoxometalate-based metal-organic framework (POMOF), {Co4W22-DPNDI}, is prepared by incorporating the unusual Co4-sandwiched POM anion [Co4(μ-OH)2(SiW11O39)2]10- ({Co4W22}) and the photoactive organic bridging link N,N'-bis(4-pyridylmethyl)naphthalene diimide (DPNDI) into a framework. {Co4W22} is a good candidate for photocatalytic water oxidation. DPNDI is easily excited to form the radical species DPNDI* in the presence of an electron donor, which is beneficial for activation of the inert O2. Anion···π interactions and covalent bonds between {Co4W22} and DPNDI facilitate electron-hole separation and electron transfer. {Co4W22-DPNDI} displays high catalytic activity for the activation of the C(sp3)-H bond of toluene using light as a driving force and inexpensive water as an oxygen source under mild conditions. In particular, the yield and selectivity are improved by replacing oxygen with water, which may be ascribed to the release of protons during the water oxidation process that facilitate the generation of •OH.
Collapse
Affiliation(s)
- Jiachen Jiao
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiaomei Yan
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Songzhu Xing
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ting Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
6
|
Roy T, Debnath I, Mahata K. Synthesis, optical properties and cation mediated tuning of reduction potentials of core-annulated naphthalene diimide derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo00399f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Napthalene diimides (NDIs) are attractive candidates for electrical energy storage owing to the stabilisation of complexes between eletrogenerated dianions and cations. However, stability of such complexes are often compromised due...
Collapse
|
7
|
Bürgin T, Wenger OS. Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2021; 35:18848-18856. [PMID: 35873109 PMCID: PMC9302442 DOI: 10.1021/acs.energyfuels.1c02073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The formation of so-called solar fuels from abundant low-energetic compounds, such as carbon dioxide or water, relies on the chemical elementary steps of photoinduced electron transfer and accumulation of multiple redox equivalents. The majority of molecular systems explored to date require sacrificial electron donors to accumulate multiple electrons on a single acceptor unit, but the use of high-energetic sacrificial redox reagents is unsustainable. In recent years, an increasing number of molecular compounds for reversible light-driven accumulation of redox equivalents that do not need sacrificial electron donors has been reported. Those compounds are the focus of this mini review. Different concepts, such as redox potential compression (achieved by proton-coupled electron transfer, Lewis acid-base interactions, or structural rearrangements), hybrids with inorganic nanoparticles, and diffusion-controlled multi-component systems, will be discussed. Newly developed strategies to outcompete unproductive reaction pathways in favor of desired photoproduct formation will be compared, and the importance of identifying reaction intermediates in the course of multiphotonic excitation by different time-resolved spectroscopic techniques will be discussed. The mechanistic insights gained from molecular donor-photosensitizer-acceptor compounds inform the design of next-generation charge accumulation systems for solar energy conversion.
Collapse
Affiliation(s)
- Tobias
H. Bürgin
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Obermeier M, Beckmann F, Schaer RS, Wenger OS, Schwalbe M. Sensitized Photocatalytic CO 2 Reduction With Earth Abundant 3d Metal Complexes Possessing Dipicolyl-Triazacyclononane Derivatives. Front Chem 2021; 9:751716. [PMID: 34660540 PMCID: PMC8514774 DOI: 10.3389/fchem.2021.751716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Complexes based on nitrogen and sulfur containing ligands involving 3d metal centers are known for the electrocatalytic reduction of CO2. However, photocatalytical activation has rarely been investigated. We herein present results on the light-driven CO2 reduction using either Ir(dFppy)3 [Ir, dFppy = 2-(4,6-difluorophenyl)pyridine] or [Cu(xant)(bcp)]+, (Cu, xant = xantphos, bcp = bathocuproine) as photosensitizer in combination with TEA (triethylamine) as sacrificial electron donor. The 3d metal catalysts have either dptacn (dipicolyl-triazacyclononane, LN3) or dpdatcn (dipicolyl-diazathiocyclononane, LN2S) as ligand framework and Fe3+, Co3+ or Ni2+ as central metal ion. It turned out that the choice of ligand, metal center and solvent composition influences the selectivity for product formation, which means that the gaseous reduction products can be solely CO or H2 or a mixture of both. The ratio between these two products can be controlled by the right choice of reaction conditions. With using Cu as photosensitizer, we could introduce an intermolecular system that is based solely on 3d metal compounds being able to reduce CO2.
Collapse
Affiliation(s)
- Martin Obermeier
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian Beckmann
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raoul S Schaer
- Department of Chemistry, Universität Basel, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, Universität Basel, Basel, Switzerland
| | - Matthias Schwalbe
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
10
|
Pati PB, Abdellah M, Diring S, Hammarström L, Odobel F. Molecular Triad Containing a TEMPO Catalyst Grafted on Mesoporous Indium Tin Oxide as a Photoelectrocatalytic Anode for Visible Light-Driven Alcohol Oxidation. CHEMSUSCHEM 2021; 14:2902-2913. [PMID: 33973386 DOI: 10.1002/cssc.202100843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Photoelectrochemical cells based on semiconductors are among the most studied methods of artificial photosynthesis. This study concerns the immobilization, on a mesoporous conducting indium tin oxide electrode (nano-ITO), of a molecular triad (NDADI-P-Ru-TEMPO) composed of a ruthenium tris-bipyridine complex (Ru) as photosensitizer, connected at one end to 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO) as alcohol oxidation catalyst and at the other end to the electron acceptor naphthalenedicarboxyanhydride dicarboximide (NDADI). Light irradiation of NDADI-P-Ru-TEMPO grafted to nano-ITO in a pH 10 carbonate buffer effects selective oxidation of para-methoxybenzyl alcohol (MeO-BA) to para-methoxybenzaldehyde with a TON of approximately 150 after 1 h of photolysis at a bias of 0.4 V vs. SCE. The faradaic efficiency is found to be of 80±5 %. The photophysical study indicates that photoinduced electron transfer from the Ru complex to NDADI is a slow process and must compete with direct electron injection into ITO to have a better performing system. This work sheds light on some of the important ways to design more efficient molecular systems for the preparation of photoelectrocatalytic cells based on catalyst-dye-acceptor arrays immobilized on conducting electrodes.
Collapse
Affiliation(s)
- Palas Baran Pati
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| | - Mohamed Abdellah
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, SE75120, Uppsala, Sweden
- Department of Chemistry, Qena Faculty of Science, South Valley University, 83523, Qena, Egypt
| | - Stéphane Diring
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| | - Leif Hammarström
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, SE75120, Uppsala, Sweden
| | - Fabrice Odobel
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| |
Collapse
|
11
|
Gotico P, Tran T, Baron A, Vauzeilles B, Lefumeux C, Ha‐Thi M, Pino T, Halime Z, Quaranta A, Leibl W, Aukauloo A. Tracking Charge Accumulation in a Functional Triazole‐Linked Ruthenium‐Rhenium Dyad Towards Photocatalytic Carbon Dioxide Reduction. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp Gotico
- Université Paris Saclay Institut des Sciences Moléculaires d'Orsay (ISMO) 91405 Orsay France
| | - Thu‐Trang Tran
- Université Paris Saclay Institut des Sciences Moléculaires d'Orsay (ISMO) 91405 Orsay France
| | - Aurelie Baron
- Université Paris-Saclay Institut de Chimie des Substances Naturelles (ICSN) 91191 Gif-sur-Yvette France
| | - Boris Vauzeilles
- Université Paris-Saclay Institut de Chimie des Substances Naturelles (ICSN) 91191 Gif-sur-Yvette France
| | - Christophe Lefumeux
- Université Paris Saclay Institut des Sciences Moléculaires d'Orsay (ISMO) 91405 Orsay France
| | - Minh‐Huong Ha‐Thi
- Université Paris Saclay Institut des Sciences Moléculaires d'Orsay (ISMO) 91405 Orsay France
| | - Thomas Pino
- Université Paris Saclay Institut des Sciences Moléculaires d'Orsay (ISMO) 91405 Orsay France
| | - Zakaria Halime
- Université Paris Saclay Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay France
| | - Annamaria Quaranta
- Université Paris Saclay CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC) 91191 Gif-sur-Yvette France
| | - Winfried Leibl
- Université Paris Saclay CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC) 91191 Gif-sur-Yvette France
| | - Ally Aukauloo
- Université Paris Saclay Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay France
- Université Paris Saclay CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC) 91191 Gif-sur-Yvette France
| |
Collapse
|
12
|
Aster A, Rumble C, Bornhof AB, Huang HH, Sakai N, Šolomek T, Matile S, Vauthey E. Long-lived triplet charge-separated state in naphthalenediimide based donor-acceptor systems. Chem Sci 2021; 12:4908-4915. [PMID: 34168763 PMCID: PMC8179635 DOI: 10.1039/d1sc00285f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1,4,5,8-Naphthalenediimides (NDIs) are widely used motifs to design multichromophoric architectures due to their ease of functionalisation, their high oxidative power and the stability of their radical anion. The NDI building block can be incorporated in supramolecular systems by either core or imide functionalization. We report on the charge-transfer dynamics of a series of electron donor-acceptor dyads consisting of a NDI chromophore with one or two donors linked at the axial, imide position. Photo-population of the core-centred π-π* state is followed by ultrafast electron transfer from the electron donor to the NDI. Due to a solvent dependent singlet-triplet equilibrium inherent to the NDI core, both singlet and triplet charge-separated states are populated. We demonstrate that long-lived charge separation in the triplet state can be achieved by controlling the mutual orientation of the donor-acceptor sub-units. By extending this study to a supramolecular NDI-based cage, we also show that the triplet charge-separation yield can be increased by tuning the environment.
Collapse
Affiliation(s)
- Alexander Aster
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Christopher Rumble
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Anna-Bea Bornhof
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Hsin-Hua Huang
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Tomáš Šolomek
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| |
Collapse
|
13
|
Kranz C, Wächtler M. Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes. Chem Soc Rev 2021; 50:1407-1437. [DOI: 10.1039/d0cs00526f] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review provides a comprehensive overview on characterisation techniques for light-driven redox-catalysts highlighting spectroscopic, microscopic, electrochemical and spectroelectrochemical approaches.
Collapse
Affiliation(s)
- Christine Kranz
- Ulm University
- Institute of Analytical and Bioanalytical Chemistry
- 89081 Ulm
- Germany
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology
- Department Functional Interfaces
- 07745 Jena
- Germany
- Friedrich Schiller University Jena
| |
Collapse
|
14
|
Yang Y, Brückmann J, Frey W, Rau S, Karnahl M, Tschierlei S. Electron Storage Capability and Singlet Oxygen Productivity of a Ru II Photosensitizer Containing a Fused Naphthaloylenebenzene Moiety at the 1,10-Phenanthroline Ligand. Chemistry 2020; 26:17027-17034. [PMID: 32519770 PMCID: PMC7820985 DOI: 10.1002/chem.202001564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/09/2020] [Indexed: 01/29/2023]
Abstract
As a novel rylene type dye a diimine ligand with a fully rigid and extended π-system in its backbone was prepared by directly fusing a 1,10-phenanthroline building block with 1,8-naphthalimide. The corresponding heteroleptic ruthenium photosensitizer bearing one biipo and two tbbpy ligands was synthesized and extensively analyzed by a combination of NMR, single crystal X-ray diffraction, steady-state absorption and emission, time-resolved spectroscopy and different electrochemical measurements supported by time-dependent density functional theory calculations. The cyclic and differential pulse voltammograms revealed, that the naphthaloylenebenzene moiety enables an additional second reduction of the ligand. Moreover, this ligand possesses a very broad absorption in the visible region. In the RuII complex this causes an overlap of ligand-centered and metal-to-ligand charge transfer transitions. The emission of the complex is clearly redshifted compared to the ligand emission with very long-lived excited states lifetimes of 1.7 and 24.7 μs in oxygen-free acetonitrile solution. This behavior is accompanied by a surprisingly high oxygen sensitivity. Finally, this photosensitizer was successfully applied for the effective evolution of singlet oxygen challenging some of the common RuII prototype complexes.
Collapse
Affiliation(s)
- Yingya Yang
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Jannik Brückmann
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Wolfgang Frey
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Michael Karnahl
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigGaußstraße 1738106BraunschweigGermany
| |
Collapse
|
15
|
Chowdhury B, Sinha S, Dutta R, Mondal S, Karmakar S, Ghosh P. Discriminative Behavior of a Donor-Acceptor-Donor Triad toward Cyanide and Fluoride: Insights into the Mechanism of Naphthalene Diimide Reduction by Cyanide and Fluoride. Inorg Chem 2020; 59:13371-13382. [PMID: 32870665 DOI: 10.1021/acs.inorgchem.0c01738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new molecular donor-acceptor-donor (D-A-D) triad, comprised of an electron deficient 1,4,5,8-naphthalene tetracarboxylic diimide (NDI) unit covalently connected to two flanking photosensitizers, i.e., a bis-heteroleptic Ru(II) complex of 1,10-phenanthroline and pyridine triazole hybrid ligand, is described. The single crystal X-ray structure of the perchlorate salt of the triad demonstrates that the electron deficient NDI unit can act as a host for anions via anion-π interaction. Detailed solution-state studies indicate that fluoride selectively interacts with the D-A-D triad to form a dianionic NDI, NDI2-, via a radical anion, NDI•-. On the contrary, cyanide reduces the NDI moiety to NDI•-, as confirmed by UV-vis, NMR, and EPR spectroscopy. Further, femtosecond transient absorption spectroscopic studies reveal a low luminescence quantum yield of the D-A-D triad attributable to the photoinduced electron transfer (PET) process from the photoactive Ru(II) center to the NDI unit. Interestingly, the triad displays "OFF-ON" luminescence behavior in the presence of fluoride by restoring the Ru(II) to phenanthroline/pyridine-triazole-based MLCT emission, whereas cyanide fails to show a similar property due to a different redox process operational in the latter. The reduction of NDI in the presence of fluoride and cyanide in different polar solvents indicates that involvement of such deprotonated solvents in the electron transfer mechanism may not be operative in our present system. Low-temperature kinetic studies support the formation of a charge transfer associative transient species, which likely allows overcoming the thermodynamically uphill barrier for the direct electron transfer mechanism.
Collapse
Affiliation(s)
- Bijit Chowdhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sanghamitra Sinha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Ranjan Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Shreetama Karmakar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road Colaba, Mumbai 400005, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
16
|
|
17
|
Skaisgirski M, Larsen CB, Kerzig C, Wenger OS. Stepwise Photoinduced Electron Transfer in a Tetrathiafulvalene‐Phenothiazine‐Ruthenium Triad. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Skaisgirski
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| | - Christopher B. Larsen
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| | - Christoph Kerzig
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| |
Collapse
|
18
|
Randell NM, Rendon J, Demeunynck M, Bayle P, Gambarelli S, Artero V, Mouesca J, Chavarot‐Kerlidou M. Tuning the Electron Storage Potential of a Charge‐Photoaccumulating Ru
II
Complex by a DFT‐Guided Approach. Chemistry 2019; 25:13911-13920. [DOI: 10.1002/chem.201902312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Nicholas M. Randell
- Univ. Grenoble Alpes, CNRS, CEAIRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Julia Rendon
- Univ. Grenoble Alpes, CNRS, CEAIRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
- Univ. Grenoble Alpes, CEA, CNRSIRIG-DIESE-SyMMES-CAMPE 38000 Grenoble France
| | | | | | - Serge Gambarelli
- Univ. Grenoble Alpes, CEA, CNRSIRIG-DIESE-SyMMES-CAMPE 38000 Grenoble France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEAIRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Jean‐Marie Mouesca
- Univ. Grenoble Alpes, CEA, CNRSIRIG-DIESE-SyMMES-CAMPE 38000 Grenoble France
| | | |
Collapse
|
19
|
Cravcenco A, Hertzog M, Ye C, Iqbal MN, Mueller U, Eriksson L, Börjesson K. Multiplicity conversion based on intramolecular triplet-to-singlet energy transfer. SCIENCE ADVANCES 2019; 5:eaaw5978. [PMID: 31555728 PMCID: PMC6754226 DOI: 10.1126/sciadv.aaw5978] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/23/2019] [Indexed: 05/26/2023]
Abstract
The ability to convert between molecular spin states is of utmost importance in materials chemistry. Förster-type energy transfer is based on dipole-dipole interactions and can therefore theoretically be used to convert between molecular spin states. Here, a molecular dyad that is capable of transferring energy from an excited triplet state to an excited singlet state is presented. The rate of conversion between these states was shown to be 36 times faster than the rate of emission from the isolated triplet state. This dyad provides the first solid proof that Förster-type triplet-to-singlet energy transfer is possible, revealing a method to increase the rate of light extraction from excited triplet states.
Collapse
Affiliation(s)
- A. Cravcenco
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - M. Hertzog
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - C. Ye
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - M. N. Iqbal
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - U. Mueller
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - L. Eriksson
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - K. Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
20
|
Pannwitz A, Wenger OS. Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Chem Commun (Camb) 2019; 55:4004-4014. [DOI: 10.1039/c9cc00821g] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photoinduced PCET meets catalysis, and the accumulation of multiple redox equivalents is of key importance.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | |
Collapse
|
21
|
Nomrowski J, Guo X, Wenger OS. Charge Accumulation and Multi‐Electron Photoredox Chemistry with a Sensitizer–Catalyst–Sensitizer Triad. Chemistry 2018; 24:14084-14087. [DOI: 10.1002/chem.201804037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Julia Nomrowski
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Xingwei Guo
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
22
|
Ha-Thi MH, Pham VT, Pino T, Maslova V, Quaranta A, Lefumeux C, Leibl W, Aukauloo A. Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy. Photochem Photobiol Sci 2018; 17:903-909. [PMID: 29855023 DOI: 10.1039/c8pp00048d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.
Collapse
Affiliation(s)
- M-H Ha-Thi
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lefebvre JF, Schindler J, Traber P, Zhang Y, Kupfer S, Gräfe S, Baussanne I, Demeunynck M, Mouesca JM, Gambarelli S, Artero V, Dietzek B, Chavarot-Kerlidou M. An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)-pyridoquinolinone ligand. Chem Sci 2018; 9:4152-4159. [PMID: 29780545 PMCID: PMC5941200 DOI: 10.1039/c7sc04348a] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/31/2018] [Indexed: 01/14/2023] Open
Abstract
Increasing the efficiency of molecular artificial photosynthetic systems is mandatory for the construction of functional devices for solar fuel production. Decoupling the light-induced charge separation steps from the catalytic process is a promising strategy, which can be achieved thanks to the introduction of suitable electron relay units performing charge accumulation. We report here on a novel ruthenium tris-diimine complex able to temporarily store two electrons on a fused dipyridophenazine-pyridoquinolinone π-extended ligand upon visible-light irradiation in the presence of a sacrificial electron donor. Full characterization of this compound and of its singly and doubly reduced derivatives thanks to resonance Raman, EPR and (TD)DFT studies allowed us to localize the two electron-storage sites and to relate charge photoaccumulation with proton-coupled electron transfer processes.
Collapse
Affiliation(s)
- Jean-François Lefebvre
- Laboratoire de Chimie et Biologie des Métaux , Univ. Grenoble Alpes , CNRS , CEA , 38000 Grenoble , France .
- Univ. Grenoble Alpes , CNRS , DPM , 38000 Grenoble , France
| | - Julian Schindler
- Institute of Physical Chemistry , Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Department Functional Interfaces , Leibniz Institute of Photonic Technology Jena (IPHT) , Albert-Einstein-Straße 9 , 07745 Jena , Germany .
| | - Philipp Traber
- Institute of Physical Chemistry , Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
| | - Ying Zhang
- Institute of Physical Chemistry , Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Department Functional Interfaces , Leibniz Institute of Photonic Technology Jena (IPHT) , Albert-Einstein-Straße 9 , 07745 Jena , Germany .
| | - Stephan Kupfer
- Institute of Physical Chemistry , Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
| | - Stefanie Gräfe
- Institute of Physical Chemistry , Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
| | | | | | - Jean-Marie Mouesca
- Univ. Grenoble Alpes , CEA , CNRS , INAC-SyMMES , 38000 Grenoble , France
| | - Serge Gambarelli
- Univ. Grenoble Alpes , CEA , CNRS , INAC-SyMMES , 38000 Grenoble , France
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux , Univ. Grenoble Alpes , CNRS , CEA , 38000 Grenoble , France .
| | - Benjamin Dietzek
- Institute of Physical Chemistry , Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Department Functional Interfaces , Leibniz Institute of Photonic Technology Jena (IPHT) , Albert-Einstein-Straße 9 , 07745 Jena , Germany .
- Center for Energy and Environmental Chemistry , Friedrich Schiller University Jena , Philosophenweg 8 , 07743 Jena , Germany
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux , Univ. Grenoble Alpes , CNRS , CEA , 38000 Grenoble , France .
| |
Collapse
|
24
|
Nomrowski J, Wenger OS. Exploiting Potential Inversion for Photoinduced Multielectron Transfer and Accumulation of Redox Equivalents in a Molecular Heptad. J Am Chem Soc 2018; 140:5343-5346. [PMID: 29652485 DOI: 10.1021/jacs.8b02443] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoinduced multielectron transfer and reversible accumulation of redox equivalents is accomplished in a fully integrated molecular heptad composed of four donors, two photosensitizers, and one acceptor. The second reduction of the dibenzo[1,2]dithiin acceptor occurs more easily than the first by 1.3 V, and this potential inversion facilitates the light-driven formation of a two-electron reduced state with a lifetime of 66 ns in deaerated CH3CN. The quantum yield for formation of this doubly charge-separated photoproduct is 0.5%. In acidic oxygen-free solution, the reduction product is a stable dithiol. Under steady-state photoirradiation, our heptad catalyzes the two-electron reduction of an aliphatic disulfide via thiolate-disulfide interchange. Exploitation of potential inversion for the reversible light-driven accumulation of redox equivalents in artificial systems is unprecedented and the use of such a charge-accumulated state for multielectron photoredox catalysis represents an important proof-of-concept.
Collapse
Affiliation(s)
- Julia Nomrowski
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| |
Collapse
|
25
|
Christensen JA, Phelan BT, Chaudhuri S, Acharya A, Batista VS, Wasielewski MR. Phenothiazine Radical Cation Excited States as Super-oxidants for Energy-Demanding Reactions. J Am Chem Soc 2018; 140:5290-5299. [DOI: 10.1021/jacs.8b01778] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Joseph A. Christensen
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T. Phelan
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Subhajyoti Chaudhuri
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Yale University, New Haven, Connecticut 06520, United States
| | - Atanu Acharya
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S. Batista
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Yale University, New Haven, Connecticut 06520, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
26
|
Tran TT, Ha-Thi MH, Pino T, Quaranta A, Lefumeux C, Leibl W, Aukauloo A. Snapshots of Light Induced Accumulation of Two Charges on Methylviologen using a Sequential Nanosecond Pump-Pump Photoexcitation. J Phys Chem Lett 2018; 9:1086-1091. [PMID: 29442519 DOI: 10.1021/acs.jpclett.8b00169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Methylviologen (MV2+) is perhaps the most used component as a reversible electron acceptor in photophysical studies. While MV2+ is most commonly implicated as a reversible one-electron mediator, its electrochemical properties clearly evidence two successive one-electron reduction processes. In this report, we have investigated on the light driven two-charge accumulation on MV2+ using a multicomponent system composed of the prototypical molecular photosensitizer [Ru(bpy)3]2+ and MV2+ in the presence of ascorbate as reversible electron donor. The sequential addition of two electrons on the methylviologen was tracked upon sequential excitation of the [Ru(bpy)3]2+ at optimized concentration of the electron acceptor. The charge accumulated state carries an energy of 0.9 eV above the ground state and has a lifetime of ca. 50 μs. We have reached a fairly good global yield of approximately 9% for the two-charge accumulation. This result clearly demonstrates the potential of this simple approach for applications in artificial photosynthesis.
Collapse
Affiliation(s)
- Thu-Trang Tran
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Minh-Huong Ha-Thi
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Thomas Pino
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Annamaria Quaranta
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, UMR 9198 , F-91191, Gif-sur-Yvette, France
| | - Christophe Lefumeux
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Winfried Leibl
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, UMR 9198 , F-91191, Gif-sur-Yvette, France
| | - Ally Aukauloo
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, UMR 9198 , F-91191, Gif-sur-Yvette, France
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris Sud, CNRS , F-91405 Orsay Cedex, France
| |
Collapse
|
27
|
Mendes Marinho S, Ha-Thi MH, Pham VT, Quaranta A, Pino T, Lefumeux C, Chamaillé T, Leibl W, Aukauloo A. Time-Resolved Interception of Multiple-Charge Accumulation in a Sensitizer-Acceptor Dyad. Angew Chem Int Ed Engl 2017; 56:15936-15940. [PMID: 29139597 DOI: 10.1002/anie.201706564] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Indexed: 12/22/2022]
Abstract
Biomimetic models that contain elements of photosynthesis are fundamental in the development of synthetic systems that can use sunlight to produce fuel. The critical task consists of running several rounds of light-induced charge separation, which is required to accumulate enough redox equivalents at the catalytic sites for the target chemistry to occur. Long-lived first charge-separated state and distinct electronic signatures for the sequential charge accumulated species are essential features to be able to track these events on a spectroscopic ground. Herein, we use a double-excitation nanosecond pump-pump-probe experiment to interrogate two successive rounds of photo-induced electron transfer on a molecular dyad containing a naphthalene diimide (NDI) linked to a [Ru(bpy)3 ]2+ (bpy=bipyridine) chromophore by using a reversible electron donor. We report an unprecedented long-lived two-electron charge accumulation (t=200 μs).
Collapse
Affiliation(s)
- Stéphanie Mendes Marinho
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris Sud, CNRS, 91405, Orsay Cedex, France
| | - Minh-Huong Ha-Thi
- Institut des Sciences Moléculaire d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Van-Thai Pham
- Institut des Sciences Moléculaire d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay, 91405, Orsay, France.,Present address: MAX IV Laboratory, Lund University, P.O. Box 118, 22100, Lund, Sweden.,Center for Quantum Electronics, Institute of Physics, Vietnam Academy of Science and Technology, P.O. Box 429, Boho, 10000, Hanoi, Vietnam
| | - Annamaria Quaranta
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, UMR 9198, 91191, Gif-sur-Yvette, France
| | - Thomas Pino
- Institut des Sciences Moléculaire d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christophe Lefumeux
- Institut des Sciences Moléculaire d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Thierry Chamaillé
- Institut des Sciences Moléculaire d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Winfried Leibl
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, UMR 9198, 91191, Gif-sur-Yvette, France
| | - Ally Aukauloo
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris Sud, CNRS, 91405, Orsay Cedex, France.,Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, UMR 9198, 91191, Gif-sur-Yvette, France
| |
Collapse
|
28
|
Mendes Marinho S, Ha-Thi MH, Pham VT, Quaranta A, Pino T, Lefumeux C, Chamaillé T, Leibl W, Aukauloo A. Time-Resolved Interception of Multiple-Charge Accumulation in a Sensitizer-Acceptor Dyad. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stéphanie Mendes Marinho
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); Université Paris Sud, CNRS; 91405 Orsay Cedex France
| | - Minh-Huong Ha-Thi
- Institut des Sciences Moléculaire d'Orsay (ISMO), CNRS; Univ Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Van-Thai Pham
- Institut des Sciences Moléculaire d'Orsay (ISMO), CNRS; Univ Paris Sud, Université Paris-Saclay; 91405 Orsay France
- Present address: MAX IV Laboratory; Lund University; P.O. Box 118 22100 Lund Sweden
- Center for Quantum Electronics; Institute of Physics; Vietnam Academy of Science and Technology; P.O. Box 429, Boho 10000 Hanoi Vietnam
| | - Annamaria Quaranta
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Saclay, UMR 9198; 91191 Gif-sur-Yvette France
| | - Thomas Pino
- Institut des Sciences Moléculaire d'Orsay (ISMO), CNRS; Univ Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Christophe Lefumeux
- Institut des Sciences Moléculaire d'Orsay (ISMO), CNRS; Univ Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Thierry Chamaillé
- Institut des Sciences Moléculaire d'Orsay (ISMO), CNRS; Univ Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Winfried Leibl
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Saclay, UMR 9198; 91191 Gif-sur-Yvette France
| | - Ally Aukauloo
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); Université Paris Sud, CNRS; 91405 Orsay Cedex France
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Saclay, UMR 9198; 91191 Gif-sur-Yvette France
| |
Collapse
|
29
|
Reiner BR, Foxman BM, Wade CR. Electrochemical and structural investigation of the interactions between naphthalene diimides and metal cations. Dalton Trans 2017; 46:9472-9480. [DOI: 10.1039/c7dt02067h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic voltammetry and X-ray diffraction studies reveal the strength and nature of the interactions between Li+/Mg2+ and reduced naphthalene diimides.
Collapse
Affiliation(s)
| | | | - Casey R. Wade
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| |
Collapse
|