1
|
Chamkin AA, Chamkina ES. Assessment of the applicability of DFT methods to [Cp*Rh]-catalyzed hydrogen evolution processes. J Comput Chem 2024; 45:2624-2639. [PMID: 39052232 DOI: 10.1002/jcc.27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
The present computational study provides a benchmark of density functional theory (DFT) methods in describing hydrogen evolution processes catalyzed by [Cp*Rh]-containing organometallic complexes. A test set was composed of 26 elementary reactions featuring chemical transformations and bonding situations essential for the field, including the emerging concept of non-innocent Cp* behavior. Reference values were obtained from a highly accurate 3/4 complete basis set and 6/7 complete PNO space extrapolated DLPNO-CCSD(T) energies. The performance of lower-level extrapolation procedures was also assessed. We considered 84 density functionals (DF) (including 13 generalized gradient approximations (GGA), nine meta-GGAs, 33 hybrids, and 29 double-hybrids) and three composite methods (HF-3c, PBEh-3c, and r2SCAN-3c), combined with different types of dispersion corrections (D3(0), D3BJ, D4, and VV10). The most accurate approach is the PBE0-DH-D3BJ (MAD of 1.36 kcal mol-1) followed by TPSS0-D3BJ (MAD of 1.60 kcal mol-1). Low-cost r2SCAN-3c composite provides a less accurate but much faster alternative (MAD of 2.39 kcal mol-1). The widely used Minnesota-family M06-L, M06, and M06-2X DFs should be avoided (MADs of 3.70, 3.94, and 4.01 kcal mol-1, respectively).
Collapse
Affiliation(s)
- Aleksandr A Chamkin
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| | - Elena S Chamkina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Askins EJ, Sarkar A, Navabi P, Kumar K, Finkelmeyer SJ, Presselt M, Cabana J, Glusac KD. Interfacial Electrochemistry of Catalyst-Coordinated Graphene Nanoribbons. J Am Chem Soc 2024; 146:22360-22373. [PMID: 39087647 DOI: 10.1021/jacs.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The immobilization of molecular electrocatalysts on conductive electrodes is an appealing strategy for enhancing their overall activity relative to those of analogous molecular compounds. In this study, we report on the interfacial electrochemistry of self-assembled two-dimensional nanosheets of graphene nanoribbons (GNR-2DNS) and analogs containing a Rh-based hydrogen evolution reaction (HER) catalyst (RhGNR-2DNS) immobilized on conductive electrodes. Proton-coupled electron transfer (PCET) taking place at N-centers of the nanoribbons was utilized as an indirect reporter of the interfacial electric fields experienced by the monolayer nanosheet located within the electric double layer. The experimental Pourbaix diagrams were compared with a theoretical model, which derives the experimental Pourbaix slopes as a function of parameter f, a fraction of the interfacial potential drop experienced by the redox-active group. Interestingly, our study revealed that GNR-2DNS was strongly coupled to glassy carbon electrodes (f = 1), while RhGNR-2DNS was not (f = 0.15). We further investigated the HER mechanism by RhGNR-2DNS using electrochemical and X-ray absorption spectroelectrochemical methods and compared it to homogeneous molecular model compounds. RhGNR-2DNS was found to be an active HER electrocatalyst over a broader set of aqueous pH conditions than its molecular analogs. We find that the improved HER performance in the immobilized catalyst arises due to two factors. First, redox-active bipyrimidine-based ligands were shown to dramatically alter the activity of Rh sites by increasing the electron density at the active Rh center and providing RhGNR-2DNS with improved catalysis. Second, catalyst immobilization was found to prevent catalyst aggregation that was found to occur for the molecular analog in the basic pH. Overall, this study provides valuable insights into the mechanism by which catalyst immobilization can affect the overall electrocatalytic performance.
Collapse
Affiliation(s)
- Erik J Askins
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Abdul Sarkar
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Pouyan Navabi
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Khagesh Kumar
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Sarah Jasmin Finkelmeyer
- Leibniz Institute of Photonic Technology (IPHT), Jena 07745, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Jena 07745, Germany
- SciClus GmbH & Co. KG, Jena 07745, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany
| | - Jordi Cabana
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
Ferrer-Bru C, Ferrer J, Passarelli V, Lahoz FJ, García-Orduña P, Carmona D. Molecular Dihydrogen Activation by (C 5Me 5)M/N (M=Rh, Ir) Transition Metal Frustrated Lewis Pairs: Reversible Proton Migration to, and Proton Abstraction from, the C 5Me 5 Ligand. Chemistry 2024; 30:e202304140. [PMID: 38323731 DOI: 10.1002/chem.202304140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
The masked transition-metal frustrated Lewis pairs [Cp*M(κ3N,N',N''-L)][SbF6] (Cp*=η5-C5Me5; M=Ir, 1, Rh, 2; HL=pyridinyl-amidine ligand) reversibly activate H2 under mild conditions rendering the hydrido derivatives [Cp*MH(κ2N,N'-HL)][SbF6] observed as a mixture of the E and Z isomers at the amidine C=N bond (M=Ir, 3Z, 3E; M=Rh, 4Z, 4E). DFT calculations indicate that the formation of the E isomers follows a Grotthuss type mechanism in the presence of water. A mixture of Rh(I) isomers of formula [(Cp*H)Rh(κ2N,N'-HL)][SbF6] (5 a-d) is obtained by reductive elimination of Cp*H from 4. The formation of 5 a-d was elucidated by means of DFT calculations. Finally, when 2 reacts with D2, the Cp* and Cp*H ligands of the resulting rhodium complexes 4 and 5, respectively, are deuterated as a result of a reversible hydrogen abstraction from the Cp* ligand and D2 activation at rhodium.
Collapse
Affiliation(s)
- Carlos Ferrer-Bru
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Joaquina Ferrer
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Vincenzo Passarelli
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Fernando J Lahoz
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Pilar García-Orduña
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Daniel Carmona
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
4
|
Choi H, Yoo S, Song H, Lee E. IZCp and PZCp: Redox Non-innocent Cyclopentadienyl Ligands as Electron Reservoirs for Sandwich Complexes. Inorg Chem 2024; 63:6427-6434. [PMID: 38534011 DOI: 10.1021/acs.inorgchem.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A long-sustained effort of systematic steric and electronic modification of cyclopentadienyl (Cp) ligands has enabled them to find wide-ranging, valuable applications. Herein, we present two novel Cp ligands: imidazolium- and pyrrolinium-substituted zwitterionic Cps (IZCp and PZCp), whose key utility is redox non-innocence─the ability to participate cooperatively with the metal center in redox reactions. Through the simple metalation of ZCps, the Cr(0) and Mo(0) half-sandwich complexes (IZCp)Cr(CO)3, (PZCp)Cr(CO)3, (IZCp)Mo(CO)3, and (PZCp)Mo(CO)3, respectively, as well as the Ru(II) sandwich complexes [(IZCp)RuCp]PF6 and [(PZCp)RuCp]PF6 were prepared. The sandwich complexes were fully characterized and showed by cyclic voltammetry reversible one-electron reduction at E1/2 potentials ranging from -1.7 to -2.7 V vs Fc/Fc+. These values are unusually low and have not been observed with other Cp ligands due to the instability of the reduced complexes. Density functional theory (DFT) calculations for the reduced sandwich derivatives with IZCp and PZCp showed their spin densities to be highly delocalized over their ZCp ligand moieties (70-90%). Electron paramagnetic resonance (EPR) analysis of the isolated K[(PZCp)Mo(CO)3] and (PZCp)RuCp also indicated a high degree of ligand-localized radical character. Thus, the IZCp and PZCp ligands act as electron reservoirs to sustain these sandwich complexes in highly reduced states. At the same time, the CO stretching frequencies of K[(PZCp)Mo(CO)3]: νCO 1871, 1748, and 1699 cm-1, rank the [PZCp]- ligand as the strongest electron-donating Cp ligand among the reported CpMo(CO)3 derivatives, whose νCO > 1746 cm-1. In addition, these redox non-innocent Cps were obtained in high yields and found to be practically air- and moisture-stable, unlike typical Cps.
Collapse
Affiliation(s)
- Hyeonjeong Choi
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seunghyuk Yoo
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Bens T, Walter RRM, Beerhues J, Lücke C, Gabler J, Sarkar B. Isolation, Characterization and Reactivity of Key Intermediates Relevant to Reductive (Electro)catalysis with Cp*Rh Complexes Containing Pyridyl-MIC (MIC=Mesoionic Carbene) Ligands. Chemistry 2024; 30:e202302354. [PMID: 37768608 DOI: 10.1002/chem.202302354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
In recent years, metal complexes of pyridyl-mesoionic carbene (MIC) ligands have been reported as excellent homogeneous and molecular electrocatalysts. In combination with group 9 metals, such ligands form highly active catalysts for hydrogenation/transfer hydrogenation/hydrosilylation catalysis and electrocatalysts for dihydrogen production. Despite such progress, very little is known about the structural/electrochemical/spectroscopic properties of crucial intermediates for such catalytic reactions with these ligands: solvato complexes, reduced complexes and hydridic species. We present here a comprehensive study involving the isolation, crystallographic characterization, electrochemical/spectroelectrochemical/theoretical investigations, and in-situ reactivity studies of all the aforementioned crucial intermediates involving Cp*Rh and pyridyl-MIC ligands. A detailed mechanistic study of the precatalytic activation of [RhCp*] complexes with pyridyl-MIC ligands is presented. Intriguingly, amphiphilicity of the [RhCp*]-hydride complexes was observed, displaying the substrate dependent transfer of H+ , H or H- . To the best of our knowledge, this study is the first of its kind targeting intermediates and reactive species involving metal complexes of pyridyl-MIC ligands and investigating the interconversion amongst them.
Collapse
Affiliation(s)
- Tobias Bens
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Robert R M Walter
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Julia Beerhues
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
- Current Address, Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans 16, 43007, Tarragona, Spain
| | - Clemens Lücke
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Julia Gabler
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| |
Collapse
|
6
|
Balduf T, Blakemore JD, Caricato M. Computational Insights into the Influence of Ligands on Hydrogen Generation with [Cp*Rh] Hydrides. J Phys Chem A 2023. [PMID: 37436832 DOI: 10.1021/acs.jpca.3c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This work reports a computational investigation of the effect of ancillary ligands on the activity of an Rh catalyst for hydrogen evolution based on the [Cp*Rh] motif (Cp* = η5-pentamethylcyclopentadienyl). Specifically, we investigate why a bipyridyl (bpy) ligand leads to H2 generation but diphenylphosphino-based (dpp) ligands do not. We compare the full ligands to simplified models and systematically vary structural features to ascertain their effect on the reaction energy of each catalytic step. The calculations based on density functional theory show that the main effect on reactivity is the choice of linker atom, followed by its coordination. In particular, P stabilizes the intermediate Rh-hydride species by donating electron density to the Rh, thus inhibiting the reaction toward H2 generation. Conversely, N, a more electron-withdrawing center, favors H2 generation at the price of destabilizing the hydride intermediate, which cannot be isolated experimentally and makes determining the mechanism of this reaction more difficult. We also find that the steric effects of bulky substituents on the main ligand scaffold can lead to large effects on the reactivity, which may be challenging to fine-tune. On the other hand, structural features like the bite angle of the bidentate ligand have a much smaller impact on reactivity. Therefore, we propose that the choice of linker atom is key for the catalytic activity of this species, which can be further fine-tuned by a proper choice of electron-directing groups on the ligand scaffold.
Collapse
Affiliation(s)
- Ty Balduf
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
VanderWeide A, Prokopchuk DE. Cyclopentadienyl ring activation in organometallic chemistry and catalysis. Nat Rev Chem 2023:10.1038/s41570-023-00501-1. [PMID: 37258685 DOI: 10.1038/s41570-023-00501-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The cyclopentadienyl (Cp) ligand is a cornerstone of modern organometallic chemistry. Since the discovery of ferrocene, the Cp ligand and its various derivatives have become foundational motifs in catalysis, medicine and materials science. Although largely considered an ancillary ligand for altering the stereoelectronic properties of transition metal centres, there is mounting evidence that the core Cp ring structure also serves as a reservoir for reactive protons (H+), hydrides (H-) or radical hydrogen (H•) atoms. This Review chronicles the field of Cp ring activation, highlighting the pivotal role that Cp ligands can have in electrocatalytic H2 production, N2 reduction, hydride transfer reactions and proton-coupled electron transfer.
Collapse
|
8
|
Henke W, Peng Y, Meier A, Fujita E, Grills D, Polyansky D, Blakemore J. Mechanistic roles of metal- and ligand-protonated species in hydrogen evolution with [Cp*Rh] complexes. Proc Natl Acad Sci U S A 2023; 120:e2217189120. [PMID: 37186841 PMCID: PMC10214172 DOI: 10.1073/pnas.2217189120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/17/2023] [Indexed: 05/17/2023] Open
Abstract
Protonation reactions involving organometallic complexes are ubiquitous in redox chemistry and often result in the generation of reactive metal hydrides. However, some organometallic species supported by η5-pentamethylcyclopentadienyl (Cp*) ligands have recently been shown to undergo ligand-centered protonation by direct proton transfer from acids or tautomerization of metal hydrides, resulting in the generation of complexes bearing the uncommon η4-pentamethylcyclopentadiene (Cp*H) ligand. Here, time-resolved pulse radiolysis (PR) and stopped-flow spectroscopic studies have been applied to examine the kinetics and atomistic details involved in the elementary electron- and proton-transfer steps leading to complexes ligated by Cp*H, using Cp*Rh(bpy) as a molecular model (where bpy is 2,2'-bipyridyl). Stopped-flow measurements coupled with infrared and UV-visible detection reveal that the sole product of initial protonation of Cp*Rh(bpy) is [Cp*Rh(H)(bpy)]+, an elusive hydride complex that has been spectroscopically and kinetically characterized here. Tautomerization of the hydride leads to the clean formation of [(Cp*H)Rh(bpy)]+. Variable-temperature and isotopic labeling experiments further confirm this assignment, providing experimental activation parameters and mechanistic insight into metal-mediated hydride-to-proton tautomerism. Spectroscopic monitoring of the second proton transfer event reveals that both the hydride and related Cp*H complex can be involved in further reactivity, showing that [(Cp*H)Rh] is not necessarily an off-cycle intermediate, but, instead, depending on the strength of the acid used to drive catalysis, an active participant in hydrogen evolution. Identification of the mechanistic roles of the protonated intermediates in the catalysis studied here could inform design of optimized catalytic systems supported by noninnocent cyclopentadienyl-type ligands.
Collapse
Affiliation(s)
- Wade C. Henke
- Department of Chemistry, University of Kansas, Lawrence, KS66045
| | - Yun Peng
- Department of Chemistry, University of Kansas, Lawrence, KS66045
| | - Alex A. Meier
- Department of Chemistry, University of Kansas, Lawrence, KS66045
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, NY11973-5000
| | - David C. Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, NY11973-5000
| | | | | |
Collapse
|
9
|
Pal S. Cp* non-innocence and the implications of (η 4-Cp*H)Rh intermediates in the hydrogenation of CO 2, NAD +, amino-borane, and the Cp* framework - a computational study. Dalton Trans 2023; 52:1182-1187. [PMID: 36648493 DOI: 10.1039/d2dt03611h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In hydrogenation mediated by half-sandwich complexes of Rh, Cp*Rh(III)-H intermediates are critical hydride-delivery agents. For bipyridine-supported complexes, a unique transformation named 'Cp* non-innocence' leads to the appearance of (Cp*H)Rh(I) intermediates, which are purported to exhibit enhanced hydride-delivery capabilities. In this work, DFT calculations performed to compare the role of these complexes in hydrogenation reveal that (Cp*H)Rh(I) intermediates do not compete with the conventional pathway (involving Cp*Rh(III)-H); instead they can lead to sequential hydrogenation of the Cp* framework, and potentially, catalyst degradation. Thus, caution is warranted when invoking the truly homogeneous nature of hydrogenation catalysis mediated by this popular class of complexes.
Collapse
Affiliation(s)
- Shrinwantu Pal
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
10
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
11
|
Brückmann J, Müller C, Friedländer I, Mengele AK, Peneva K, Dietzek‐Ivanšić B, Rau S. Photocatalytic Reduction of Nicotinamide Co-factor by Perylene Sensitized Rh III Complexes. Chemistry 2022; 28:e202201931. [PMID: 35920047 PMCID: PMC9825842 DOI: 10.1002/chem.202201931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
The ambitious goal of artificial photosynthesis is to develop active systems that mimic nature and use light to split water into hydrogen and oxygen. Intramolecular design concepts are particularly promising. Herein, we firstly present an intramolecular photocatalyst integrating a perylene-based light-harvesting moiety and a catalytic rhodium center (RhIII phenPer). The excited-state dynamics were investigated by means of steady-state and time-resolved absorption and emission spectroscopy. The studies reveal that photoexcitation of RhIII phenPer yields the formation of a charge-separated intermediate, namely RhII phenPer⋅+ , that results in a catalytically active species in the presence of protons.
Collapse
Affiliation(s)
- Jannik Brückmann
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Carolin Müller
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Research Department Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert-Einstein-Straße 907745JenaGermany
| | - Ilse Friedländer
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaLessingstraße 807743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Research Department Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert-Einstein-Straße 907745JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
12
|
Solé-Daura A, Benseghir Y, Ha-Thi MH, Fontecave M, Mialane P, Dolbecq A, Mellot-Draznieks C. Origin of the Boosting Effect of Polyoxometalates in Photocatalysis: The Case of CO 2 Reduction by a Rh-Containing Metal–Organic Framework. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Albert Solé-Daura
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Youven Benseghir
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
- CNRS, Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, Versailles 78000, France
| | - Minh-Huong Ha-Thi
- CNRS, Institut des Sciences Moléculaires d’Orsay, Université Paris-Saclay, Orsay 91405, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Pierre Mialane
- CNRS, Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, Versailles 78000, France
| | - Anne Dolbecq
- CNRS, Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, Versailles 78000, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| |
Collapse
|
13
|
Boyd EA, Leseberg JAH, Cosner EL, Lionetti D, Henke WC, Day VW, Blakemore JD. Remote Oxidative Activation of a [Cp*Rh] Monohydride. Chemistry 2022; 28:e202104389. [PMID: 35038188 PMCID: PMC8891045 DOI: 10.1002/chem.202104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 11/09/2022]
Abstract
Half-sandwich rhodium monohydrides are often proposed as intermediates in catalysis, but little is known regarding the redox-induced reactivity accessible to these species. Herein, the bis(diphenylphosphino)ferrocene (dppf) ligand has been used to explore the reactivity that can be induced when a [Cp*Rh] monohydride undergoes remote (dppf-centered) oxidation by 1e- . Chemical and electrochemical studies show that one-electron redox chemistry is accessible to Cp*Rh(dppf), including a unique quasi-reversible RhII/I process at -0.96 V vs. ferrocenium/ferrocene (Fc+/0 ). This redox manifold was confirmed by isolation of an uncommon RhII species, [Cp*Rh(dppf)]+ , that was characterized by electron paramagnetic resonance (EPR) spectroscopy. Protonation of Cp*Rh(dppf) with anilinium triflate yielded an isolable and inert monohydride, [Cp*Rh(dppf)H]+ , and this species was found to undergo a quasireversible electrochemical oxidation at +0.41 V vs. Fc+/0 that corresponds to iron-centered oxidation in the dppf backbone. Thermochemical analysis predicts that this dppf-centered oxidation drives a dramatic increase in acidity of the Rh-H moiety by 23 pKa units, a reactivity pattern confirmed by in situ 1 H NMR studies. Taken together, these results show that remote oxidation can effectively induce M-H activation and suggest that ligand-centered redox activity could be an attractive feature for the design of new systems relying on hydride intermediates.
Collapse
Affiliation(s)
- Emily A. Boyd
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Julie A. Hopkins Leseberg
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Emma L. Cosner
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Davide Lionetti
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Wade C. Henke
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W. Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D. Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States,To whom correspondence should be addressed.
| |
Collapse
|
14
|
Henke WC, Stiel JP, Day VW, Blakemore JD. Evidence for Charge Delocalization in Diazafluorene Ligands Supporting Low-Valent [Cp*Rh] Complexes. Chemistry 2022; 28:e202103970. [PMID: 35006643 PMCID: PMC8857064 DOI: 10.1002/chem.202103970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Ligands based upon the 4,5-diazafluorene core are an important class of emerging ligands in organometallic chemistry, but the structure and electronic properties of these ligands have received less attention than they deserve. Here, we show that 9,9'-dimethyl-4,5-diazafluorene (Me2 daf) can stabilize low-valent complexes through charge delocalization into its conjugated π-system. Using a new platform of [Cp*Rh] complexes with three accessible formal oxidation states (+III, +II, and +I), we show that the methylation in Me2 daf is protective, blocking Brønsted acid-base chemistry commonly encountered with other daf-based ligands. Electronic absorption spectroscopy and single-crystal X-ray diffraction analysis of a family of eleven new compounds, including the unusual Cp*Rh(Me2 daf), reveal features consistent with charge delocalization driven by π-backbonding into the LUMO of Me2 daf, reminiscent of behavior displayed by the workhorse 2,2'-bipyridyl ligand. Taken together with spectrochemical data demonstrating clean conversion between oxidation states, our findings show that 9,9'-dialkylated daf-type ligands are promising building blocks for applications in reductive chemistry and catalysis.
Collapse
Affiliation(s)
- Wade C. Henke
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Jonah P. Stiel
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W. Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D. Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
15
|
Chamkin AA. Teaching cyclopentadienyl how to leave: a case study of [CpIr(COD)Br] + complex. NEW J CHEM 2022. [DOI: 10.1039/d2nj00098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work was motivated by a recent report that describes the substitution of the cyclopentadienyl ring in [CpIr(COD)Br]+ with P(OMe)3 in mild conditions. We have shown that the first step...
Collapse
|
16
|
Sánchez P, Goel B, Neugebauer H, Lalancette RA, Grimme S, Hansen A, Prokopchuk DE. Ligand Protonation at Carbon, not Nitrogen, during H 2 Production with Amine-Rich Iron Electrocatalysts. Inorg Chem 2021; 60:17407-17413. [PMID: 34735115 DOI: 10.1021/acs.inorgchem.1c03142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present monometallic H2 production electrocatalysts containing electron-rich triamine-cyclopentadienyl (Cp) ligands coordinated to iron. After selective CO extrusion from the iron tricarbonyl precursors, electrocatalysis is observed via cyclic voltammetry in the presence of an exogenous acid. Contrary to the fact that amines in the secondary coordination sphere are often protonated during electrocatalysis, comprehensive quantum-chemical calculations indicate that the amines likely do not function as proton relays; instead, endo-Cp ring protonation is most favorable after 1e- reduction. This unusual mechanistic pathway emphasizes the need to consider a broad domain of H+/e- addition products by synergistically combining experimental and theoretical resources.
Collapse
Affiliation(s)
- Práxedes Sánchez
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Bhumika Goel
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Demyan E Prokopchuk
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
17
|
Comadoll CG, Henke WC, Hopkins Leseberg JA, Douglas JT, Oliver AG, Day VW, Blakemore JD. Examining the Modular Synthesis of [Cp*Rh] Monohydrides Supported by Chelating Diphosphine Ligands. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chelsea G. Comadoll
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Wade C. Henke
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Julie A. Hopkins Leseberg
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Justin T. Douglas
- Nuclear Magnetic Resonance Laboratory, Molecular Structures Group, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, 149 Stepan Chemistry, Notre Dame, Indiana 46556, United States
| | - Victor W. Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D. Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
18
|
Algarra AG, Galindo JCG, Puerta MC, Valerga P, Jiménez-Tenorio M. Activation of Dichloromethane by a Bis-NHC Cp*Ru Complex: Formation of a Pentamethyl(chloromethyl)cyclopentadiene Ligand. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrés G. Algarra
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cadiz, Spain
| | - Juan Carlos G. Galindo
- Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cadiz, Spain
| | - M. Carmen Puerta
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cadiz, Spain
| | - Pedro Valerga
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cadiz, Spain
| | - Manuel Jiménez-Tenorio
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
19
|
Wu F, Deraedt C, Cornaton Y, Ruhlmann L, Karmazin L, Bailly C, Kyritsakas N, Le Breton N, Choua S, Djukic JP. Fate of Cobaltacycles in Cp*Co-Mediated C–H Bond Functionalization Catalysis: Cobaltacycles May Collapse upon Oxidation via Co(IV) Species. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fule Wu
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Christophe Deraedt
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Yann Cornaton
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Laurent Ruhlmann
- Laboratoire d’Electrochimie et Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Lydia Karmazin
- Service de Radiocristallographie Fédération de Chimie Le Bel−FR2010 BP 296R8, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex, France
| | - Corinne Bailly
- Service de Radiocristallographie Fédération de Chimie Le Bel−FR2010 BP 296R8, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex, France
| | - Nathalie Kyritsakas
- Service de Radiocristallographie Fédération de Chimie Le Bel−FR2010 BP 296R8, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex, France
| | - Nolwenn Le Breton
- Laboratoire Propriétés Optiques et Magnétiques des Architectures Moléculaires, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Sylvie Choua
- Laboratoire Propriétés Optiques et Magnétiques des Architectures Moléculaires, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Jean-Pierre Djukic
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| |
Collapse
|
20
|
Mas‐Roselló J, Cope CJ, Tan E, Pinson B, Robinson A, Smejkal T, Cramer N. Iridium‐Catalyzed Acid‐Assisted Hydrogenation of Oximes to Hydroxylamines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Josep Mas‐Roselló
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Christopher J. Cope
- Process Chemistry Research Syngenta Crop Protection AG Schaffhauserstrasse 101 4332 Stein AG Switzerland
| | - Eric Tan
- Process Chemistry Research Syngenta Crop Protection AG Schaffhauserstrasse 101 4332 Stein AG Switzerland
| | - Benjamin Pinson
- Process Chemistry Research Syngenta Crop Protection AG Schaffhauserstrasse 101 4332 Stein AG Switzerland
| | - Alan Robinson
- Process Chemistry Research Syngenta Crop Protection AG Schaffhauserstrasse 101 4332 Stein AG Switzerland
| | - Tomas Smejkal
- Process Chemistry Research Syngenta Crop Protection AG Schaffhauserstrasse 101 4332 Stein AG Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
21
|
Mas-Roselló J, Cope CJ, Tan E, Pinson B, Robinson A, Smejkal T, Cramer N. Iridium-Catalyzed Acid-Assisted Hydrogenation of Oximes to Hydroxylamines. Angew Chem Int Ed Engl 2021; 60:15524-15532. [PMID: 33886142 DOI: 10.1002/anie.202103806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/11/2022]
Abstract
We found that cyclometalated cyclopentadienyl iridium(III) complexes are uniquely efficient catalysts in homogeneous hydrogenation of oximes to hydroxylamine products. A stable iridium C,N-chelation is crucial, with alkoxy-substituted aryl ketimine ligands providing the best catalytic performance. Several Ir-complexes were mapped by X-ray crystal analysis in order to collect steric parameters that might guide a rational design of even more active catalysts. A broad range of oximes and oxime ethers were activated with stoichiometric amounts of methanesulfonic acid and reduced at room temperature, remarkably without cleavage of the fragile N-O bond. The exquisite functional group compatibility of our hydrogenation system was further demonstrated by additive tests. Experimental mechanistic investigations support an ionic hydrogenation platform, and suggest a role for the Brønsted acid beyond a proton source. Our studies provide deep understanding of this novel acidic hydrogenation and may facilitate its improvement and application to other challenging substrates.
Collapse
Affiliation(s)
- Josep Mas-Roselló
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christopher J Cope
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, AG, Switzerland
| | - Eric Tan
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, AG, Switzerland
| | - Benjamin Pinson
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, AG, Switzerland
| | - Alan Robinson
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, AG, Switzerland
| | - Tomas Smejkal
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, AG, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
Derosa J, Garrido-Barros P, Peters JC. Electrocatalytic Reduction of C-C π-Bonds via a Cobaltocene-Derived Concerted Proton-Electron Transfer Mediator: Fumarate Hydrogenation as a Model Study. J Am Chem Soc 2021; 143:9303-9307. [PMID: 34138550 DOI: 10.1021/jacs.1c03335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reductive concerted proton-electron transfer (CPET) is poorly developed for the reduction of C-C π-bonds, including for activated alkenes that can succumb to deleterious pathways (e.g., a competing hydrogen evolution reaction or oligomerization) in a standard electrochemical reduction. We demonstrate herein that selective hydrogenation of the C-C π-bond of fumarate esters can be achieved via electrocatalytic CPET (eCPET) using a CPET mediator comprising cobaltocene with a tethered Brønsted base. High selectivity for electrocatalytic hydrogenation is observed only when the mediator is present. Mechanistic analysis sheds light on two distinct kinetic regimes based on the substrate concentration: low fumarate concentrations operate via rate-limiting CPET followed by an electron-transfer/proton-transfer (ET/PT) step, whereas high concentrations operate via CPET followed by a rate-limiting ET/PT step.
Collapse
Affiliation(s)
- Joseph Derosa
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Pablo Garrido-Barros
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
23
|
Marrone A, Fish RH. DFT Mechanism Studies: Biomimetic 1,4-NADH Chemoselective, Co-factor Regeneration with [Cp*Rh(bpy)H]+, in Tandem with the Biocatalysis Pathways of a Core Model of the (HLADH)-Zn(II) Mediated Enzyme, in the Enantioselective Reduction of Achiral Ketones to Chiral S-Alcohols. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Nijamudheen A, Kanega R, Onishi N, Himeda Y, Fujita E, Ertem MZ. Distinct Mechanisms and Hydricities of Cp*Ir-Based CO 2 Hydrogenation Catalysts in Basic Water. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- A. Nijamudheen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Ryoichi Kanega
- Research Institute of Energy Conservation, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Naoya Onishi
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8569, Japan
| | - Yuichiro Himeda
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8569, Japan
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mehmed Z. Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
25
|
Alférez MG, Moreno JJ, Hidalgo N, Campos J. Reversible Hydride Migration from C 5Me 5 to Rh I Revealed by a Cooperative Bimetallic Approach. Angew Chem Int Ed Engl 2020; 59:20863-20867. [PMID: 33448577 PMCID: PMC7754342 DOI: 10.1002/anie.202008442] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The use of cyclopentadienyl ligands in organometallic chemistry and catalysis is ubiquitous, mostly due to their robust spectator role. Nonetheless, increasing examples of non-innocent behaviour are being documented. Here, we provide evidence for reversible intramolecular C-H activation at one methyl terminus of C5Me5 in [(η-C5Me5)Rh(PMe3)2] to form a new Rh-H bond, a process so far restricted to early transition metals. Experimental evidence was acquired from bimetallic rhodium/gold structures in which the gold center binds either to the rhodium atom or to the activated Cp* ring. Reversibility of the C-H activation event regenerates the RhI and AuI monometallic precursors, whose cooperative reactivity towards polar E-H bonds (E=O, N), including the N-H bonds in ammonia, can be understood in terms of bimetallic frustration.
Collapse
Affiliation(s)
- Macarena G. Alférez
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - Juan J. Moreno
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - Nereida Hidalgo
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| |
Collapse
|
26
|
Alférez MG, Moreno JJ, Hidalgo N, Campos J. Reversible Hydride Migration from C
5
Me
5
to Rh
I
Revealed by a Cooperative Bimetallic Approach. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Macarena G. Alférez
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Juan J. Moreno
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Nereida Hidalgo
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
27
|
Hopkins JA, Lionetti D, Day VW, Blakemore JD. Synthesis and Reactivity Studies of a [Cp*Rh] Complex Supported by a Methylene-Bridged Hybrid Phosphine-Imine Ligand. J Organomet Chem 2020; 921. [PMID: 32773887 DOI: 10.1016/j.jorganchem.2020.121294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
[Cp*Rh] complexes (Cp* = η 5-pentamethylcyclopentadienyl) supported by bidentate chelating ligands are useful in studies of redox chemistry and catalysis, but little information is available for derivatives bearing "hybrid" [P,N] chelates. Here, the preparation, structural characterization, and chemical and electrochemical properties of a [Cp*Rh] complex bearing the κ2-[P,N]-2-[(diphenylphosphino)methyl]pyridine ligand (PN) are reported. Cyclic voltammetry data reveal that [Cp*Rh(PN)Cl]PF6 (1) undergoes a chemically reversible, net two-electron reduction at -1.28 V vs. ferrocenium/ferrocene, resulting in generation of a rhodium(I) complex (3) that is stable on the timescale of the voltammetry. However, 1H and 31P{1H} NMR studies reveal that chemical reduction of 1 generates a mixture of products over a 1 h timescale; this mixture forms as a result of deprotonation of the methylene group of 1 by 3 followed by further reactivity. The analogous complex [Cp*Rh(PQN)Cl]PF6 (2; PQN = κ2-[P,N]-8-(diphenylphosphino)quinoline) does not undergo self-deprotonation or further reactivity upon two-electron reduction, confirming the reactivity of the acidic backbone methylene C-H bonds in the PN complexes. Comparison of the electrochemical properties 1 and 2 also shows that the extended conjugated system of PQN contributes to an additional ligand-centered redox event for 2 that is absent for 1.
Collapse
Affiliation(s)
- Julie A Hopkins
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, United States
| | - Davide Lionetti
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, United States
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, United States
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, United States
| |
Collapse
|
28
|
Chalkley MJ, Garrido-Barros P, Peters JC. A molecular mediator for reductive concerted proton-electron transfers
via electrocatalysis. Science 2020; 369:850-854. [DOI: 10.1126/science.abc1607] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Electrocatalytic approaches to the activation of unsaturated substrates
via reductive concerted proton-electron transfer (CPET) must overcome
competing, often kinetically dominant hydrogen evolution. We introduce the
design of a molecular mediator for electrochemically triggered reductive
CPET through the synthetic integration of a Brønsted acid and a redox
mediator. Cathodic reduction at the cobaltocenium redox mediator
substantially weakens the homolytic nitrogen-hydrogen bond strength of a
Brønsted acidic anilinium tethered to one of the cyclopentadienyl rings. The
electrochemically generated molecular mediator is demonstrated to transform
a model substrate, acetophenone, to its corresponding neutral α-radical via
a rate-determining CPET.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Pablo Garrido-Barros
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
29
|
Bani-Yaseen AD, Elbashier E. Computational Insights on the Electrocatalytic Behavior of [Cp*Rh] Molecular Catalysts Immobilized on Graphene for Heterogeneous Hydrogen Evolution Reaction. Sci Rep 2020; 10:5777. [PMID: 32238849 PMCID: PMC7113254 DOI: 10.1038/s41598-020-62758-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/13/2020] [Indexed: 12/03/2022] Open
Abstract
The heterogeneous metal-based molecular electrocatalyst can typically exhibit attractive features compared to its homogeneous analogue including recoverability and durability. As such, it is necessary to evaluate the electrocatalytic behavior of heterogenized molecular catalysts of interest toward gaining insights concerning the retainability of such behaviors while benefiting from heterogenization. In this work, we examined computationally the electrochemical properties of nanographene-based heterogenized molecular complexes of Rhodium. We assessed, as well, the electrocatalytic behavior of the heterogenized molecular catalyst for hydrogen evolution reaction (HER). Two electrochemical pathways were examined, namely one- and two-electron electrochemical reduction pathways. Interestingly, it is computationally demonstrated that [RhIII(Cp*)(phen)Cl]+-Gr can exhibit redox and electrocatalytic properties for HER that are comparable to its homogeneous analogue via a two-electron reduction pathway. On the other hand, the one-electron reduction pathway is notably found to be less favorable kinetically and thermodynamically. Furthermore, molecular insights are provided with respect to the HER employing molecular orbitals analyses and mechanistic aspects. Importantly, our findings may provide insights toward designing more efficient graphene-based molecular heterogeneous electrocatalysts for more efficient energy production.
Collapse
Affiliation(s)
- Abdulilah Dawoud Bani-Yaseen
- Department of Chemistry & Earth Sciences, College of Arts & Science, Qatar University, P.O. Box 2713, Doha, State of Qatar.
| | - Elkhansa Elbashier
- Department of Chemistry & Earth Sciences, College of Arts & Science, Qatar University, P.O. Box 2713, Doha, State of Qatar
| |
Collapse
|
30
|
Saberi F, Ostovar S, Behazin R, Rezvani A, Ebrahimi A, Shaterian HR. Insight into 6-aminopenicillanic acid structure and study of the quantum mechanical calculations of the acid–base site on γ-Fe 2O 3@SiO 2 core–shell nanocomposites and as efficient catalysts in multicomponent reactions. NEW J CHEM 2020. [DOI: 10.1039/d0nj02942d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Magnetic 6-APA/γ-Fe2O3@Sio2 nanocomposites have been developed by exploiting the potential of the acid–base bifunctional system to study the quantum mechanistic calculations.
Collapse
Affiliation(s)
- Farveh Saberi
- Department of Chemistry
- University of Sistan and Baluchestan
- Faculty of Sciences
- Zahedan
- Iran
| | - Somayeh Ostovar
- Department of Chemistry
- University of Sistan and Baluchestan
- Faculty of Sciences
- Zahedan
- Iran
| | - Roya Behazin
- Department of Chemistry
- University of Sistan and Baluchestan
- Faculty of Sciences
- Zahedan
- Iran
| | - Alireza Rezvani
- Department of Chemistry
- University of Sistan and Baluchestan
- Faculty of Sciences
- Zahedan
- Iran
| | - Ali Ebrahimi
- Department of Chemistry
- University of Sistan and Baluchestan
- Faculty of Sciences
- Zahedan
- Iran
| | - Hamid Reza Shaterian
- Department of Chemistry
- University of Sistan and Baluchestan
- Faculty of Sciences
- Zahedan
- Iran
| |
Collapse
|
31
|
Pototskiy RA, Nelyubina YV, Perekalin DS. Synthesis and Reactivity of Heptamethylcyclohexadienyl Rhodium(III) Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Roman A. Pototskiy
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation
| | - Yulia V. Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation
| | - Dmitry S. Perekalin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation
- Plekhanov Russian University of Economics, 36 Stremyannyi pereulok, Moscow 117997, Russian Federation
| |
Collapse
|
32
|
Romashev NF, Gushchin AL, Fomenko IS, Abramov PA, Mirzaeva IV, Kompan'kov NB, Kal'nyi DB, Sokolov MN. A new organometallic rhodium(I) complex with dpp-bian ligand: Synthesis, structure and redox behaviour. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Zedler L, Mengele AK, Ziems KM, Zhang Y, Wächtler M, Gräfe S, Pascher T, Rau S, Kupfer S, Dietzek B. Unraveling the Light‐Activated Reaction Mechanism in a Catalytically Competent Key Intermediate of a Multifunctional Molecular Catalyst for Artificial Photosynthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linda Zedler
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
| | - Alexander Klaus Mengele
- Department of Inorganic Chemistry I University of Ulm Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Karl Michael Ziems
- Institute of Physical Chemistry and Abbe Center of Photonics Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Ying Zhang
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry and Abbe Center of Photonics Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Maria Wächtler
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry and Abbe Center of Photonics Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Torbjörn Pascher
- Pascher Instruments AB Stora Råby Byaväg 24 S-224 80 Lund Sweden
| | - Sven Rau
- Department of Inorganic Chemistry I University of Ulm Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Benjamin Dietzek
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry and Abbe Center of Photonics Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| |
Collapse
|
34
|
Zedler L, Mengele AK, Ziems KM, Zhang Y, Wächtler M, Gräfe S, Pascher T, Rau S, Kupfer S, Dietzek B. Unraveling the Light-Activated Reaction Mechanism in a Catalytically Competent Key Intermediate of a Multifunctional Molecular Catalyst for Artificial Photosynthesis. Angew Chem Int Ed Engl 2019; 58:13140-13148. [PMID: 31347251 PMCID: PMC6772164 DOI: 10.1002/anie.201907247] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 11/07/2022]
Abstract
Understanding photodriven multielectron reaction pathways requires the identification and spectroscopic characterization of intermediates and their excited-state dynamics, which is very challenging due to their short lifetimes. To the best of our knowledge, this manuscript reports for the first time on in situ spectroelectrochemistry as an alternative approach to study the excited-state properties of reactive intermediates of photocatalytic cycles. UV/Vis, resonance-Raman, and transient-absorption spectroscopy have been employed to characterize the catalytically competent intermediate [(tbbpy)2 RuII (tpphz)RhI Cp*] of [(tbbpy)2 Ru(tpphz)Rh(Cp*)Cl]Cl(PF6 )2 (Ru(tpphz)RhCp*), a photocatalyst for the hydrogenation of nicotinamide (NAD-analogue) and proton reduction, generated by electrochemical and chemical reduction. Electronic transitions shifting electron density from the activated catalytic center to the bridging tpphz ligand significantly reduce the catalytic activity upon visible-light irradiation.
Collapse
Affiliation(s)
- Linda Zedler
- Department Functional InterfacesLeibniz Institute of Photonic Technology Jena (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | | | - Karl Michael Ziems
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Ying Zhang
- Department Functional InterfacesLeibniz Institute of Photonic Technology Jena (IPHT)Albert-Einstein-Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Maria Wächtler
- Department Functional InterfacesLeibniz Institute of Photonic Technology Jena (IPHT)Albert-Einstein-Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | | | - Sven Rau
- Department of Inorganic Chemistry IUniversity of UlmAlbert-Einstein-Allee 1189081UlmGermany
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Benjamin Dietzek
- Department Functional InterfacesLeibniz Institute of Photonic Technology Jena (IPHT)Albert-Einstein-Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| |
Collapse
|
35
|
Lionetti D, Day VW, Blakemore JD. Structural and chemical properties of half-sandwich rhodium complexes supported by the bis(2-pyridyl)methane ligand. Dalton Trans 2019; 48:12396-12406. [PMID: 31168559 DOI: 10.1039/c9dt01821b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) supported by bidentate chelating ligands are a useful class of compounds for studies of redox chemistry and catalysis. Here, we show that the bis(2-pyridyl)methane ligand, also known as dipyridylmethane or dpma, can support [Cp*Rh] complexes in the formally +iii and +ii rhodium oxidation states. Specifically, two new rhodium complexes ([Cp*Rh(dpma)(L)]n+, L = Cl-, CH3CN) have been isolated and structurally characterized, and the properties of the complexes have been compared with those of [Cp*Rh] complexes bearing the related dimethyldipyridylmethane (Me2dpma) ligand. Complex [Cp*Rh(dpma)(NCCH3)]2+ displays a quasireversible rhodium(iii/ii) reduction by cyclic voltammetry; related electron paramagnetic resonance (EPR) spectroscopic studies confirm access to the unusual rhodium(ii) oxidation state. Further reduction to the formally rhodium(i) oxidation state, however, is followed by deprotonation of dpma, as observed in electrochemical studies and chemical reduction experiments. This reactivity can be understood to occur as a consequence of the presence of doubly benzylic protons in the dpma ligand, since use of the analogous Me2dpma enables reduction to rhodium(i) without involvement of ligand deprotonation. These findings highlight the important role of the ligand backbone substitution pattern in influencing the stability of highly-reduced complexes, a key class of metal species for study of electron and proton management in catalysis.
Collapse
Affiliation(s)
- Davide Lionetti
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| |
Collapse
|
36
|
Todorova TK, Huan TN, Wang X, Agarwala H, Fontecave M. Controlling Hydrogen Evolution during Photoreduction of CO 2 to Formic Acid Using [Rh(R-bpy)(Cp*)Cl] + Catalysts: A Structure-Activity Study. Inorg Chem 2019; 58:6893-6903. [PMID: 31050296 DOI: 10.1021/acs.inorgchem.9b00371] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The photochemical reduction of CO2 to formic acid catalyzed by a series of [Rh(4,4'-R-bpy)(Cp*)Cl]+ and [Rh(5,5'-COOH-bpy)(Cp*)Cl]+ complexes (Cp* = pentamethylcyclopentadienyl, bpy = 2,2'-bipyridine, and R = OCH3, CH3, H, COOC2H5, CF3, NH2, or COOH) was studied to assess how modifications in the electronic structure of the catalyst affect its selectivity, defined as the HCOOH:H2 product ratio. A direct molecular-level influence of the functional group on the initial reaction rate for CO2 versus proton reduction reactions was established. Density functional theory computations elucidated for the first time the respective role of the [RhH] and [Cp*H] tautomers, recognizing rhodium hydride as the key player for both reactions. In particular, our calculations explain the observed tendency of electron-donating substituents to favor CO2 reduction by means of decreasing the hydricity of the Rh-H bond, resulting in a lower hydride transfer barrier toward formic acid production as compared to substituents with an electron-withdrawing nature that favor more strongly the reduction of protons to hydrogen.
Collapse
Affiliation(s)
- Tanya K Todorova
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France , Université Paris 6 , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05, France
| | - Tran Ngoc Huan
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France , Université Paris 6 , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05, France
| | - Xia Wang
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France , Université Paris 6 , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05, France
| | - Hemlata Agarwala
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France , Université Paris 6 , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France , Université Paris 6 , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05, France
| |
Collapse
|
37
|
Boyd EA, Lionetti D, Henke WC, Day VW, Blakemore JD. Preparation, Characterization, and Electrochemical Activation of a Model [Cp*Rh] Hydride. Inorg Chem 2019; 58:3606-3615. [PMID: 30256096 DOI: 10.1021/acs.inorgchem.8b02160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Monomeric half-sandwich rhodium hydride complexes are often proposed as intermediates in catalytic cycles, but relatively few such compounds have been isolated and studied, limiting understanding of their properties. Here, we report preparation and isolation of a monomeric rhodium(III) hydride complex bearing the pentamethylcyclopentadienyl (Cp*) and bis(diphenylphosphino)benzene (dppb) ligands. The hydride complex is formed rapidly upon addition of weak acid to a reduced precursor complex, Cp*Rh(dppb). Single-crystal X-ray diffraction data for the [Cp*Rh] hydride, which were previously unavailable for this class of compounds, provide evidence of the direct Rh-H interaction. Complementary infrared spectra show the Rh-H stretching frequency at 1986 cm-1. In contrast to results with other [Cp*Rh] complexes bearing diimine ligands, treatment of the isolated hydride with strong acid does not result in H2 evolution. Electrochemical studies reveal that the hydride complex can be reduced only at very negative potentials (ca. -2.5 V vs ferrocenium/ferrocene), resulting in Rh-H bond cleavage and H2 generation. These results are discussed in the context of catalytic H2 generation, and development of design rules for improved catalysts bearing the [Cp*] ligand.
Collapse
Affiliation(s)
- Emily A Boyd
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| | - Davide Lionetti
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| | - Wade C Henke
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| | - Victor W Day
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| | - James D Blakemore
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| |
Collapse
|
38
|
Hopkins JA, Lionetti D, Day VW, Blakemore JD. Chemical and Electrochemical Properties of [Cp*Rh] Complexes Supported by a Hybrid Phosphine-Imine Ligand. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00551] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julie A. Hopkins
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Davide Lionetti
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Victor W. Day
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - James D. Blakemore
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
39
|
Moore WNG, Henke WC, Lionetti D, Day VW, Blakemore JD. Single-Electron Redox Chemistry on the [Cp*Rh] Platform Enabled by a Nitrated Bipyridyl Ligand. Molecules 2018; 23:E2857. [PMID: 30400193 PMCID: PMC6278249 DOI: 10.3390/molecules23112857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022] Open
Abstract
[Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) are attracting renewed interest in coordination chemistry and catalysis, but these useful compounds often undergo net two-electron redox cycling that precludes observation of individual one-electron reduction events. Here, we show that a [Cp*Rh] complex bearing the 4,4'-dinitro-2,2'-bipyridyl ligand (dnbpy) (3) can access a distinctive manifold of five oxidation states in organic electrolytes, contrasting with prior work that found no accessible reductions in aqueous electrolyte. These states are readily generated from a newly isolated and fully characterized rhodium(III) precursor complex 3, formulated as [Cp*Rh(dnbpy)Cl]PF₆. Single-crystal X-ray diffraction (XRD) data, previously unavailable for the dnbpy ligand bound to the [Cp*Rh] platform, confirm the presence of both [η⁵-Cp*] and [κ²-dnbpy]. Four individual one-electron reductions of 3 are observed, contrasting sharply with the single two-electron reductions of other [Cp*Rh] complexes. Chemical preparation and the study of the singly reduced species with electronic absorption and electron paramagnetic resonance spectroscopies indicate that the first reduction is predominantly centered on the dnbpy ligand. Comparative cyclic voltammetry studies with [NBu₄][PF₆] and [NBu₄][Cl] as supporting electrolytes indicate that the chloride ligand can be lost from 3 by ligand exchange upon reduction. Spectroelectrochemical studies with ultraviolet (UV)-visible detection reveal isosbestic behavior, confirming the clean interconversion of the reduced forms of 3 inferred from the voltammetry with [NBu₄][PF₆] as supporting electrolyte. Electrochemical reduction in the presence of triethylammonium results in an irreversible response, but does not give rise to catalytic H₂ evolution, contrasting with the reactivity patterns observed in [Cp*Rh] complexes bearing bipyridyl ligands with less electron-withdrawing substituents.
Collapse
Affiliation(s)
- William N G Moore
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | - Wade C Henke
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | - Davide Lionetti
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| |
Collapse
|
40
|
Castillo CE, Stoll T, Sandroni M, Gueret R, Fortage J, Kayanuma M, Daniel C, Odobel F, Deronzier A, Collomb MN. Electrochemical Generation and Spectroscopic Characterization of the Key Rhodium(III) Hydride Intermediates of Rhodium Poly(bipyridyl) H2-Evolving Catalysts. Inorg Chem 2018; 57:11225-11239. [PMID: 30129361 DOI: 10.1021/acs.inorgchem.8b01811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Thibaut Stoll
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Martina Sandroni
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES 38000 Grenoble, France
| | - Robin Gueret
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Jérôme Fortage
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Megumi Kayanuma
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg, UMR 7177 CNRS/UdS, 1-4 Rue Blaise pascal, 67037 Strasbourg, France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg, UMR 7177 CNRS/UdS, 1-4 Rue Blaise pascal, 67037 Strasbourg, France
| | - Fabrice Odobel
- CEISAM, Université de Nantes, CNRS, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | | | | |
Collapse
|
41
|
Chalkley MJ, Del Castillo TJ, Matson BD, Peters JC. Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring p K a Effects and Demonstrating Electrocatalysis. J Am Chem Soc 2018; 140:6122-6129. [PMID: 29669205 PMCID: PMC6071328 DOI: 10.1021/jacs.8b02335] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Substrate selectivity in reductive multielectron/proton catalysis with small molecules such as N2, CO2, and O2 is a major challenge for catalyst design, especially where the competing hydrogen evolution reaction (HER) is thermodynamically and kinetically competent. In this study, we investigate how the selectivity of a tris(phosphine)borane iron(I) catalyst, P3BFe+, for catalyzing the nitrogen reduction reaction (N2RR, N2-to-NH3 conversion) versus HER changes as a function of acid p Ka. We find that there is a strong correlation between p Ka and N2RR efficiency. Stoichiometric studies indicate that the anilinium triflate acids employed are only compatible with the formation of early stage intermediates of N2 reduction (e.g., Fe(NNH) or Fe(NNH2)) in the presence of the metallocene reductant Cp*2Co. This suggests that the interaction of acid and reductant is playing a critical role in N-H bond-forming reactions. DFT studies identify a protonated metallocene species as a strong PCET donor and suggest that it should be capable of forming the early stage N-H bonds critical for N2RR. Furthermore, DFT studies also suggest that the observed p Ka effect on N2RR efficiency is attributable to the rate and thermodynamics of Cp*2Co protonation by the different anilinium acids. Inclusion of Cp*2Co+ as a cocatalyst in controlled potential electrolysis experiments leads to improved yields of NH3. The data presented provide what is to our knowledge the first unambiguous demonstration of electrocatalytic nitrogen fixation by a molecular catalyst (up to 6.7 equiv of NH3 per Fe at -2.1 V vs Fc+/0).
Collapse
Affiliation(s)
- Matthew J Chalkley
- Division of Chemistry and Chemical Engineering , California Institute of Technology (Caltech) , Pasadena , California 91125 , United States
| | - Trevor J Del Castillo
- Division of Chemistry and Chemical Engineering , California Institute of Technology (Caltech) , Pasadena , California 91125 , United States
| | - Benjamin D Matson
- Division of Chemistry and Chemical Engineering , California Institute of Technology (Caltech) , Pasadena , California 91125 , United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering , California Institute of Technology (Caltech) , Pasadena , California 91125 , United States
| |
Collapse
|
42
|
Behazin R, Ebrahimi A. The physicochemical properties and tyrosinase inhibitory activity of ectoine and its analogues: A theoretical study. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Pal S, Kusumoto S, Nozaki K. Dehydrogenation of Dimethylamine–Borane Catalyzed by Half-Sandwich Ir and Rh Complexes: Mechanism and the Role of Cp* Noninnocence. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00889] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shrinwantu Pal
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuhei Kusumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Banerjee S, Soldevila-Barreda JJ, Wolny JA, Wootton CA, Habtemariam A, Romero-Canelón I, Chen F, Clarkson GJ, Prokes I, Song L, O'Connor PB, Schünemann V, Sadler PJ. New activation mechanism for half-sandwich organometallic anticancer complexes. Chem Sci 2018; 9:3177-3185. [PMID: 29732100 PMCID: PMC5916112 DOI: 10.1039/c7sc05058e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/18/2018] [Indexed: 01/12/2023] Open
Abstract
The Cp x C-H protons in certain organometallic RhIII half-sandwich anticancer complexes [(η5-Cp x )Rh(N,N')Cl]+, where Cp x = Cp*, phenyl or biphenyl-Me4Cp, and N,N' = bipyridine, dimethylbipyridine, or phenanthroline, can undergo rapid sequential deuteration of all 15 Cp* methyl protons in aqueous media at ambient temperature. DFT calculations suggest a mechanism involving abstraction of a Cp* proton by the Rh-hydroxido complex, followed by sequential H/D exchange, with the Cp* rings behaving like dynamic molecular 'twisters'. The calculations reveal the crucial role of pπ orbitals of N,N'-chelated ligands in stabilizing deprotonated Cp x ligands, and also the accessibility of RhI-fulvene intermediates. They also provide insight into why biologically-inactive complexes such as [(Cp*)RhIII(en)Cl]+ and [(Cp*)IrIII(bpy)Cl]+ do not have activated Cp* rings. The thiol tripeptide glutathione (γ-l-Glu-l-Cys-Gly, GSH) and the activated dienophile N-methylmaleimide, (NMM) did not undergo addition reactions with the proposed RhI-fulvene, although they were able to control the extent of Cp* deuteration. We readily trapped and characterized RhI-fulvene intermediates by Diels-Alder [4+2] cyclo-addition reactions with the natural biological dienes isoprene and conjugated (9Z,11E)-linoleic acid in aqueous media, including cell culture medium, the first report of a Diels-Alder reaction of a metal-bound fulvene in aqueous solution. These findings will introduce new concepts into the design of organometallic Cp* anticancer complexes with novel mechanisms of action.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | | | - Juliusz A Wolny
- Department of Physics , University of Kaiserslautern , Erwin-Schrödinger-Straße 46 , 67663 Kaiserslautern , Germany
| | - Christopher A Wootton
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Isolda Romero-Canelón
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Feng Chen
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Ivan Prokes
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Lijiang Song
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Peter B O'Connor
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Volker Schünemann
- Department of Physics , University of Kaiserslautern , Erwin-Schrödinger-Straße 46 , 67663 Kaiserslautern , Germany
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| |
Collapse
|
45
|
Lionetti D, Day VW, Lassalle-Kaiser B, Blakemore JD. Multiple binding modes of an unconjugated bis(pyridine) ligand stabilize low-valent [Cp*Rh] complexes. Chem Commun (Camb) 2018; 54:1694-1697. [DOI: 10.1039/c7cc09164h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unconjugated bis(pyridine) ligand enables sequential one-electron reductions of a [Cp*Rh] complex, revealing the ligand's ability to stabilize low-valent species.
Collapse
Affiliation(s)
| | - Victor W. Day
- Department of Chemistry
- University of Kansas
- Lawrence
- USA
| | | | | |
Collapse
|
46
|
Gonell S, Miller AJ. Carbon Dioxide Electroreduction Catalyzed by Organometallic Complexes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2018. [DOI: 10.1016/bs.adomc.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Henke WC, Lionetti D, Moore WNG, Hopkins JA, Day VW, Blakemore JD. Ligand Substituents Govern the Efficiency and Mechanistic Path of Hydrogen Production with [Cp*Rh] Catalysts. CHEMSUSCHEM 2017; 10:4589-4598. [PMID: 29024563 DOI: 10.1002/cssc.201701416] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate that [Cp*Rh] complexes bearing substituted 2,2'-bipyridyl ligands are effective hydrogen evolution catalysts (Cp*=η5 -pentamethylcyclopentadienyl). Disubstitution (at the 4 and 4' positions) of the bipyridyl ligand (namely -tBu, -H, and -CF3 ) modulates the catalytic overpotential, in part due to involvement of the reduced ligand character in formally rhodium(I) intermediates. These reduced species are synthesized and isolated here; protonation results in formation of complexes bearing the unusual η4 -pentamethylcyclopentadiene ligand, and the properties of these protonated intermediates further govern the catalytic performance. Electrochemical studies suggest that multiple mechanistic pathways are accessible, and that the operative pathway depends on the applied potential and solution conditions. Taken together, these results suggest synergy in metal-ligand cooperation that modulates the mechanisms of fuel-forming catalysis with organometallic compounds bearing multiple non-innocent ligands.
Collapse
Affiliation(s)
- Wade C Henke
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Davide Lionetti
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - William N G Moore
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Julie A Hopkins
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| |
Collapse
|
48
|
Johnson SI, Gray HB, Blakemore JD, Goddard WA. Role of Ligand Protonation in Dihydrogen Evolution from a Pentamethylcyclopentadienyl Rhodium Catalyst. Inorg Chem 2017; 56:11375-11386. [DOI: 10.1021/acs.inorgchem.7b01698] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samantha I. Johnson
- Center for Chemical
Innovation in Solar Fuels, California Institute of Technology, Pasadena, California 91125, United States
- Materials Research Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Harry B. Gray
- Center for Chemical
Innovation in Solar Fuels, California Institute of Technology, Pasadena, California 91125, United States
| | - James D. Blakemore
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045-7582, United States
| | - William A. Goddard
- Materials Research Center, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|