1
|
Głowacz K, Tokarska W, Olechowska A, Wezynfeld NE, Ciosek-Skibińska P. Tuning multispectral fluorescence quantum dot-based identification of short-length amyloid β peptides by applying Cu(II) ions. Mikrochim Acta 2024; 191:700. [PMID: 39460815 PMCID: PMC11512857 DOI: 10.1007/s00604-024-06764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Currently available methods for detecting amyloid β (Aβ) derivatives are mainly dedicated to determining the long forms Aβ1-42 and Aβ1-40. At the same time, the number of physiologically occurring Aβ analogs is much higher, including those truncated at the N- and C-termini. Their identification using standard methods is challenging due to the structural similarity of various Aβ analogs, but could highly benefit from both biomarkers discovery and pathophysiological studies of Alzheimer's disease. Therefore a "chemical tongue" sensing strategy was employed for the detection of seven Aβ peptide derivatives: Aβ1-16, Aβ4-16, Aβ4-9, Aβ5-16, Aβ5-12, Aβ5-9, Aβ12-16. The proposed sensing system is based on competitive interactions between quantum dots, Cu(II) ions, and Aβ peptides, providing unique fluorescence fingerprints useful for the identification of analytes. After carefully evaluating the Aβ sample preparation protocol, perfect determination of all studied Aβ peptides was achieved using partial least square-discriminant analysis (PLS-DA). The developed PLS-DA models are characterized by excellent accuracy, sensitivity, precision, and specificity of analyte determination, emphasizing the potential of the proposed sensing strategy.
Collapse
Affiliation(s)
- Klaudia Głowacz
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Weronika Tokarska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Anita Olechowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Nina E Wezynfeld
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Patrycja Ciosek-Skibińska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
2
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
3
|
Tobolska A, Jabłońska AE, Suwińska A, Wawrzyniak UE, Wróblewski W, Wezynfeld NE. The effect of histidine, histamine, and imidazole on electrochemical properties of Cu(II) complexes of Aβ peptides containing His-2 and His-3 motifs. Dalton Trans 2024; 53:15359-15371. [PMID: 39228368 DOI: 10.1039/d4dt01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The N-truncation of amyloid beta (Aβ) peptides could lead to peptide sequences with the histidine residue at the second and third positions, creating His-2 and His-3 motifs, known as high-affinity Cu(II) binding sites. In such complexes, the Cu(II) ion is arrested in a rigid structure of a square-planar arrangement of nitrogen donors, which highly limits its susceptibility to Cu(II) reduction. Cu(II) reduction fuels the Cu(II)/Cu(I) redox cycle, which is engaged in the production of reactive oxygen species (ROS). Employing electrochemical techniques, cyclic voltammetry (CV) and differential pulse voltammetry (DPV), together with UV-vis spectroscopy, we showed that low-molecular-weight (LMW) substances, such as imidazole, histamine, and histidine, could enhance the redox activity of Cu(II) complexes of three models of N-truncated Aβ peptides, Aβ4-9, Aβ5-9, and Aβ12-16, identifying three main mechanisms. LMW compounds could effectively compete with Aβ peptides for Cu(II) ions, forming Cu(II)/LMW species, which are more prone to Cu(II) reduction. LMW substances could also shift the equilibrium between the Cu(II)/Aβ species towards the species with higher susceptibility to Cu(II) reduction. Finally, the presence of LMW molecules could promote Cu(I) reoxidation in ternary Cu(II)/Aβ/LMW systems. The obtained results raise further questions regarding the Cu(II) redox activity in Alzheimer's disease.
Collapse
Affiliation(s)
- Aleksandra Tobolska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Agnieszka E Jabłońska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Aleksandra Suwińska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Urszula E Wawrzyniak
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Wojciech Wróblewski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Nina E Wezynfeld
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
4
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
5
|
Kola A, Nencioni F, Valensin D. Bioinorganic Chemistry of Micronutrients Related to Alzheimer's and Parkinson's Diseases. Molecules 2023; 28:5467. [PMID: 37513339 PMCID: PMC10385134 DOI: 10.3390/molecules28145467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are fundamental to guarantee the regular physiological activity of the human organism. Similarly, vitamins play a key role in many biological functions of the metabolism, among which are coenzymes, redox mediators, and antioxidants. Due to their importance in the human organism, both metals and vitamins have been extensively studied for their involvement in neurodegenerative diseases (NDs). However, the full potential of the interaction between vitamins and metal ions has not been fully explored by researchers yet, and further investigation on this topic is needed. The aim of this review is to provide an overview of the scientific literature on the implications of vitamins and selected metal ions in two of the most common neurodegenerative diseases, Alzheimer's and Parkinson's disease. Furthermore, vitamin-metal ion interactions are discussed in detail focusing on their bioinorganic chemistry, with the perspective of arousing more interest in this fascinating bioinorganic field.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (F.N.)
| |
Collapse
|
6
|
Sk S, Majumder A, Sow P, Samadder A, Bera M. Exploring a new family of designer copper(II) complexes of anthracene-appended polyfunctional organic assembly displaying potential anticancer activity via cytochrome c mediated mitochondrial apoptotic pathway. J Inorg Biochem 2023; 243:112182. [PMID: 36933342 DOI: 10.1016/j.jinorgbio.2023.112182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
The present article describes the systematic study on design and synthesis, physicochemical properties and spectroscopic features, and potential anticancer activities of a family of novel copper(II)-based designer metal complexes [Cu2(acdp)(μ-Cl)(H2O)2] (1), [Cu2(acdp)(μ-NO3)(H2O)2] (2) and [Cu2(acdp)(μ-O2CCF3)(H2O)2] (3) of anthracene-appended polyfunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol). Synthesis of 1-3 was accomplished under facile experimental conditions, preserving their overall integrity in solution. The incorporation of polycyclic anthracene skeleton within the backbone of organic assembly increases lipophilicity of resulting complexes, thereby dictating the degree of cellular uptake with improved biological activity. Complexes 1-3 were characterized by elemental analysis, molar conductance, FTIR, UV-Vis absorption/fluorescence emission titration spectroscopy, PXRD and TGA/DTA studies, including DFT calculations. The cellular cytotoxicity of 1-3 when studied in HepG2 cancer cell line showed substantial cytotoxic effects, whereas no such cytotoxicity was observed when exposed to normal L6 skeletal muscle cell line. Thereafter, the signaling factors involved in the process of cytotoxicity in HepG2 cancer cells were investigated. Alteration of cytochrome c and Bcl-2 protein expression levels along with modulation of mitochondrial membrane potential (MMP) in the presence of 1-3, strongly suggested the possibility of activating mitochondria-mediated apoptotic pathway involved in halting the cancer cell propagation. However, when a comparative assessment on their bio-efficacies was made, 1 showed higher cytotoxicity, nuclear condensation, DNA binding and damage, ROS generation and lower rate of cell proliferation compared to 2 and 3 in HepG2 cell line, indicating that the anticancer activity of 1 is significantly higher than that of 2 and 3.
Collapse
Affiliation(s)
- Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Priyanka Sow
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Asmita Samadder
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| |
Collapse
|
7
|
Kola A, Lamponi S, Currò F, Valensin D. A Comparative Study between Lycorine and Galantamine Abilities to Interact with AMYLOID β and Reduce In Vitro Neurotoxicity. Int J Mol Sci 2023; 24:2500. [PMID: 36768823 PMCID: PMC9916559 DOI: 10.3390/ijms24032500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Galantamine is a natural alkaloid extracted from the Amaryllidaceae plants and is used as the active ingredient of a drug approved for the treatment of the early stages of Alzheimer's disease. It mainly acts as an acetylcholinesterase (AChE) inhibitor, increasing concentrations of the acetylcholine neurotransmitter. Recent cellular studies have also shown the ability of galantamine to protect SH-SY5Y cell lines against amyloid-β (Aβ)-induced toxicity. Such investigations have supported and validated further in-depth studies for understanding the chemical and molecular features associated with galantamine-protective abilities. In addition to galantamine, other natural alkaloids are known to possess AChE inhibitory activity; among them lycorine has been extensively investigated for its antibacterial, anti-inflammatory and antitumoral activities as well. Despite its interesting biological properties, lycorine's neuroprotective functions against Aβ-induced damages have not been explored so far. In this research study, the ability of galantamine and lycorine to suppress Aβ-induced in vitro neuronal toxicity was evaluated by investigating the chemical interactions of the two alkaloids with Aβ peptide. A multi-technique spectroscopic analysis and cellular cytotoxicity assays were applied to obtain new insights on these molecular associations. The comparison between the behaviors exhibited by the two alkaloids indicates that both compounds possess analogue abilities to interact with the amyloidogenic peptide and protect cells.
Collapse
Affiliation(s)
- Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesco Currò
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- CIRMMP, Via Luigi Sacconi 6, 50019 Firenze, Italy
| |
Collapse
|
8
|
Tobolska A, Głowacz K, Ciosek-Skibińska P, Bal W, Wróblewski W, Wezynfeld NE. Dual mode of voltammetric studies on Cu(II) complexes of His2 peptides: phosphate and peptide sequence recognition. Dalton Trans 2022; 51:18143-18151. [PMID: 36385190 DOI: 10.1039/d2dt03078k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Copper(II) complexes of peptides with a histidine residue at the second position (His2 peptides) provide a unique profile of electrochemical behavior, offering signals of both Cu(II) reduction and Cu(II) oxidation. Furthermore, their structures with vacant positions in the equatorial coordination plane could facilitate interactions with other biomolecules. In this work, we designed a library of His2 peptides based on the sequence of Aβ5-9 (RHDSG), an amyloid beta peptide derivative. The changes in the Aβ5-9 sequence highly affect the Cu(II) oxidation signals, altered further by anionic species. As a result, Cu(II) complexes of Arg1 peptides without Asp residues were chosen as the most promising peptide-based molecular receptors for phosphates. The voltammetric data on Cu(II) oxidation for binary Cu(II)-His2 peptide complexes and ternary Cu(II)-His2 peptide/phosphate systems were also tested for His2 peptide recognition. We achieved a highly promising identification of subtle modifications in the peptide sequence. Thus, we introduce voltammetric measurement as a potential novel tool for peptide sequence recognition.
Collapse
Affiliation(s)
- Aleksandra Tobolska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Klaudia Głowacz
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Patrycja Ciosek-Skibińska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wojciech Wróblewski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Nina E Wezynfeld
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
9
|
Gonzalez P, Sabater L, Mathieu E, Faller P, Hureau C. Why the Ala-His-His Peptide Is an Appropriate Scaffold to Remove and Redox Silence Copper Ions from the Alzheimer's-Related Aβ Peptide. Biomolecules 2022; 12:1327. [PMID: 36291536 PMCID: PMC9599918 DOI: 10.3390/biom12101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The progressive, neurodegenerative Alzheimer's disease (AD) is the most widespread dementia. Due to the ageing of the population and the current lack of molecules able to prevent or stop the disease, AD will be even more impactful for society in the future. AD is a multifactorial disease, and, among other factors, metal ions have been regarded as potential therapeutic targets. This is the case for the redox-competent Cu ions involved in the production of reactive oxygen species (ROS) when bound to the Alzheimer-related Aβ peptide, a process that contributes to the overall oxidative stress and inflammation observed in AD. Here, we made use of peptide ligands to stop the Cu(Aβ)-induced ROS production and we showed why the AHH sequence is fully appropriate, while the two parents, AH and AAH, are not. The AHH peptide keeps its beneficial ability against Cu(Aβ)-induced ROS, even in the presence of ZnII-competing ions and other biologically relevant ions. The detailed kinetic mechanism by which AHH could exert its action against Cu(Aβ)-induced ROS is also proposed.
Collapse
Affiliation(s)
- Paulina Gonzalez
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Laurent Sabater
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Emilie Mathieu
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Peter Faller
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | | |
Collapse
|
10
|
Wiloch MZ, Jönsson-Niedziółka M. Very small changes in the peptide sequence alter the redox properties of Aβ(11-16)-Cu(II) and pAβ(11–16)-Cu(II) β-amyloid complexes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Kotuniak R, Bal W. Kinetics of Cu(II) complexation by ATCUN/NTS and related peptides: a gold mine of novel ideas for copper biology. Dalton Trans 2021; 51:14-26. [PMID: 34816848 DOI: 10.1039/d1dt02878b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cu(II)-peptide complexes are intensely studied as models for biological peptides and proteins and for their direct importance in copper homeostasis and dyshomeostasis in human diseases. In particular, high-affinity ATCUN/NTS (amino-terminal copper and nickel/N-terminal site) motifs present in proteins and peptides are considered as Cu(II) transport agents for copper delivery to cells. The information on the affinities and structures of such complexes derived from steady-state methods appears to be insufficient to resolve the mechanisms of copper trafficking, while kinetic studies have recently shown promise in explaining them. Stopped-flow experiments of Cu(II) complexation to ATCUN/NTS peptides revealed the presence of reaction steps with rates much slower than the diffusion limit due to the formation of novel intermediate species. Herein, the state of the field in Cu(II)-peptide kinetics is reviewed in the context of physiological data, leading to novel ideas in copper biology, together with the discussion of current methodological issues.
Collapse
Affiliation(s)
- Radosław Kotuniak
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
12
|
Jakusch T, Hassoon AA, Kiss T. Characterization of copper(II) specific pyridine containing ligands: Potential metallophores for Alzheimer's disease therapy. J Inorg Biochem 2021; 228:111692. [PMID: 34990971 DOI: 10.1016/j.jinorgbio.2021.111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Two amide group containing pyridine derivatives, N-(pyridin-2-ylmethyl)picolinamide (PMPA) and N-(pyridin-2-ylmethyl)-2-((pyridin-2-ylmethyl)amino)acetamide (DPMGA), have been investigated as potential metallo-phores in the therapy of Alzheimer's disease. Their complex formation with Cu(II) and Zn(II) were characterized in details. Unexpectedly not only the Cu(II) but also the Zn(II) was able to induce deprotonation of the amide-NH, however, it occurred only at higher pH or at higher metal ion concentrations than the biological conditions. At μM concentration level mono complexes (MLH-1) dominate with both ligands. Direct fluorescence and reactive oxygen species (ROS) producing measurements prove that both ligands are able to remove Cu(II) from its amyloid-β complexes (CuAβ). Correlation was also established between the conditional stability constant of the Cu(II) complexes with different ligands and their ability of inhibition of ROS production by CuAβ.
Collapse
Affiliation(s)
- Tamás Jakusch
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| | - Azza A Hassoon
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Tamás Kiss
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
13
|
Płonka D, Kotuniak R, Dąbrowska K, Bal W. Electrospray-Induced Mass Spectrometry Is Not Suitable for Determination of Peptidic Cu(II) Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2766-2776. [PMID: 34738801 PMCID: PMC8640992 DOI: 10.1021/jasms.1c00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The toolset of mass spectrometry (MS) is still expanding, and the number of metal ion complexes researched this way is growing. The Cu(II) ion forms particularly strong peptide complexes of biological interest which are frequent objects of MS studies, but quantitative aspects of some reported results are at odds with those of experiments performed in solution. Cu(II) complexes are usually characterized by fast ligand exchange rates, despite their high affinity, and we speculated that such kinetic lability could be responsible for the observed discrepancies. In order to resolve this issue, we selected peptides belonging to the ATCUN family characterized with high and thoroughly determined Cu(II) binding constants and re-estimated them using two ESI-MS techniques: standard conditions in combination with serial dilution experiments and very mild conditions for competition experiments. The sample acidification, which accompanies the electrospray formation, was simulated with the pH-jump stopped-flow technique. Our results indicate that ESI-MS should not be used for quantitative studies of Cu(II)-peptide complexes because the electrospray formation process compromises the entropic contribution to the complex stability, yielding underestimations of complex stability constants.
Collapse
|
14
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
15
|
Beuning CN, Zocchi LJ, Malikidogo KP, Esmieu C, Dorlet P, Crans DC, Hureau C. Measurement of Interpeptidic Cu II Exchange Rate Constants of Cu II-Amyloid-β Complexes to Small Peptide Motifs by Tryptophan Fluorescence Quenching. Inorg Chem 2021; 60:7650-7659. [PMID: 33983723 DOI: 10.1021/acs.inorgchem.0c03555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The interpeptidic CuII exchange rate constants were measured for two Cu amyloid-β complexes, Cu(Aβ1-16) and Cu(Aβ1-28), to fluorescent peptides GHW and DAHW using a quantitative tryptophan fluorescence quenching methodology. The second-order rate constants were determined at three pH values (6.8, 7.4, and 8.7) important to the two Cu(Aβ) coordination complexes, components Cu(Aβ)I and Cu(Aβ)II. The interpeptidic CuII exchange rate constant is approximately 104 M-1 s-1 but varies in magnitude depending on many variables. These include pH, length of the Aβ peptide, location of the anchoring histidine ligand in the fluorescent peptide, number of amide deprotonations required in the tryptophan peptide to coordinate CuII, and interconversion between Cu(Aβ)I and Cu(Aβ)II. We also present EPR data probing the CuII exchange between peptides and the formation of ternary species between Cu(Aβ) and GHW. As the nonfluorescent GHK and DAHK peptides are important motifs found in the blood and serum, their ability to sequester CuII ions from Cu(Aβ) complexes may be relevant for the metal homeostasis and its implication in Alzheimer's disease. Thus, their kinetic CuII interpeptidic exchange rate constants are important chemical rate constants that can help elucidate the complex CuII trafficking puzzle in the synaptic cleft.
Collapse
Affiliation(s)
- Cheryle N Beuning
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Luca J Zocchi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | | | - Pierre Dorlet
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, IMM, 13400 Marseille, France
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
16
|
Oxidase Reactivity of Cu II Bound to N-Truncated Aβ Peptides Promoted by Dopamine. Int J Mol Sci 2021; 22:ijms22105190. [PMID: 34068879 PMCID: PMC8155989 DOI: 10.3390/ijms22105190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The redox chemistry of copper(II) is strongly modulated by the coordination to amyloid-β peptides and by the stability of the resulting complexes. Amino-terminal copper and nickel binding motifs (ATCUN) identified in truncated Aβ sequences starting with Phe4 show very high affinity for copper(II) ions. Herein, we study the oxidase activity of [Cu–Aβ4−x] and [Cu–Aβ1−x] complexes toward dopamine and other catechols. The results show that the CuII–ATCUN site is not redox-inert; the reduction of the metal is induced by coordination of catechol to the metal and occurs through an inner sphere reaction. The generation of a ternary [CuII–Aβ–catechol] species determines the efficiency of the oxidation, although the reaction rate is ruled by reoxidation of the CuI complex. In addition to the N-terminal coordination site, the two vicinal histidines, His13 and His14, provide a second Cu-binding motif. Catechol oxidation studies together with structural insight from the mixed dinuclear complexes Ni/Cu–Aβ4−x reveal that the His-tandem is able to bind CuII ions independently of the ATCUN site, but the N-terminal metal complexation reduces the conformational mobility of the peptide chain, preventing the binding and oxidative reactivity toward catechol of CuII bound to the secondary site.
Collapse
|
17
|
Nerve Growth Factor Peptides Bind Copper(II) with High Affinity: A Thermodynamic Approach to Unveil Overlooked Neurotrophin Roles. Int J Mol Sci 2021; 22:ijms22105085. [PMID: 34064906 PMCID: PMC8150721 DOI: 10.3390/ijms22105085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Nerve growth factor (NGF) is a protein essential to neurons survival, which interacts with its receptor as a non-covalent dimer. Peptides belonging to NGF N-terminal domain are able to mimic the activity of the whole protein. Such activity is affected by the presence of copper ions. The metal is released in the synaptic cleft where proteins, not yet identified, may bind and transfer to human copper transporter 1 (hCtr1), for copper uptake in neurons. The measurements of the stability constants of copper complexes formed by amyloid beta and hCtr1 peptide fragments suggest that beta-amyloid (Aβ) can perform this task. In this work, the stability constant values of copper complex species formed with the dimeric form of N-terminal domain, sequence 1–15 of the protein, were determined by means of potentiometric measurements. At physiological pH, NGF peptides bind one equivalent of copper ion with higher affinity of Aβ and lower than hCtr1 peptide fragments. Therefore, in the synaptic cleft, NGF may act as a potential copper chelating molecule, ionophore or chaperone for hCtr1 for metal uptake. Copper dyshomeostasis and mild acidic environment may modify the balance between metal, NGF, and Aβ, with consequences on the metal cellular uptake and therefore be among causes of the Alzheimer’s disease onset.
Collapse
|
18
|
Banchelli M, Cascella R, D’Andrea C, La Penna G, Li MS, Machetti F, Matteini P, Pizzanelli S. Probing the Structure of Toxic Amyloid-β Oligomers with Electron Spin Resonance and Molecular Modeling. ACS Chem Neurosci 2021; 12:1150-1161. [PMID: 33724783 PMCID: PMC9284516 DOI: 10.1021/acschemneuro.0c00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Structural models of the toxic species involved in the development of Alzheimer's disease are of utmost importance to understand the molecular mechanism and to describe early biomarkers of the disease. Among toxic species, soluble oligomers of amyloid-β (Aβ) peptides are particularly important, because they are responsible for spreading cell damages over brain regions, thus rapidly impairing brain functions. In this work we obtain structural information on a carefully prepared Aβ(1-42) sample, representing a toxic state for cell cultures, by combining electron spin resonance spectroscopy and computational models. We exploited the binding of Cu2+ to Aβ(1-42) and used copper as a probe for estimating Cu-Cu distances in the oligomers by applying double electron-electron resonance (DEER) pulse sequence. The DEER trace of this sample displays a unique feature that fits well with structural models of oligomers formed by Cu-cross-linked peptide dimers. Because Cu is bound to the Aβ(1-42) N-terminus, for the first time structural constraints that are missing in reported studies are provided at physiological conditions for the Aβ N-termini. These constraints suggest the Aβ(1-42) dimer as the building block of soluble oligomers, thus changing the scenario for any kinetic model of Aβ(1-42) aggregation.
Collapse
Affiliation(s)
- Martina Banchelli
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Roberta Cascella
- University of Florence, Department of Experimental and Clinical Biomedical Sciences, I-50134 Firenze, Italy
| | - Cristiano D’Andrea
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), Sesto Fiorentino, I-50019 FI, Italy
- National Institute for Nuclear Physics (INFN),
Section of Roma-Tor Vergata, I-00133 Roma, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu
Duc District, 700000 Ho Chi Minh City, Vietnam
| | - Fabrizio Machetti
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), Sesto Fiorentino, I-50019 FI, Italy
- University of Florence, Department of Chemistry “Ugo Schiff”, Sesto Fiorentino, I-50019 FI, Italy
| | - Paolo Matteini
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Silvia Pizzanelli
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), I-56124 Pisa, Italy
| |
Collapse
|
19
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 386] [Impact Index Per Article: 128.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
21
|
The Aggregation Pattern of Aβ
1–40
is Altered by the Presence of
N
‐Truncated Aβ
4–40
and/or Cu
II
in a Similar Way through Ionic Interactions. Chemistry 2021; 27:2798-2809. [DOI: 10.1002/chem.202004484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 12/19/2022]
|
22
|
Reinscheid F. A new proposal for the causative agent of the sporadic form of Alzheimer's disease. Med Hypotheses 2020; 146:110453. [PMID: 33373829 DOI: 10.1016/j.mehy.2020.110453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Group B streptococcus (Streptococcus agalactiae) is proposed as causative agent for the development of the sporadic form of Alzheimer's disease. Using a fibrinogen binding protein, aggregates are formed including A-beta. After triggering Alzheimer's disease by the bacterium, the next down-stream events mainly follow the well known so called A-beta hypothesis. The combination of the two hypotheses is able to explain a number of epidemiological and biochemial aspects of Alzheimer's disease.
Collapse
Affiliation(s)
- Frauke Reinscheid
- Institution: GoePharmResearch, Pfaffenstück 16, 37077 Göttingen, Germany.
| |
Collapse
|
23
|
Esmieu C, Ferrand G, Borghesani V, Hureau C. Impact of N-Truncated Aβ Peptides on Cu- and Cu(Aβ)-Generated ROS: Cu I Matters! Chemistry 2020; 27:1777-1786. [PMID: 33058356 DOI: 10.1002/chem.202003949] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/07/2020] [Indexed: 12/15/2022]
Abstract
In vitro Cu(Aβ1-x )-induced ROS production has been extensively studied. Conversely, the ability of N-truncated isoforms of Aβ to alter the Cu-induced ROS production has been overlooked, even though they are main constituents of amyloid plaques found in the human brain. N-Truncated peptides at the positions 4 and 11 (Aβ4-x and Aβ11-x ) contain an amino-terminal copper and nickel (ATCUN) binding motif (H2 N-Xxx-Zzz-His) that confer them different coordination sites and higher affinities for CuII compared to the Aβ1-x peptide. It has further been proposed that the role of Aβ4-x peptide is to quench CuII toxicity in the brain. However, the role of CuI coordination has not been investigated to date. In contrast to CuII , CuI coordination is expected to be the same for N-truncated and N-intact peptides. Herein, we report in-depth characterizations and ROS production studies of Cu (CuI and CuII ) complexes of the Aβ4-16 and Aβ11-16 N-truncated peptides. Our findings show that the N-truncated peptides do produce ROS when CuI is present in the medium, albeit to a lesser extent than the unmodified counterpart. In addition, when used as competitor ligands (i.e., in the presence of Aβ1-16 ), the N-truncated peptides are not able to fully preclude Cu(Aβ1-16 )-induced ROS production.
Collapse
Affiliation(s)
- Charlène Esmieu
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France
| | - Guillaume Ferrand
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France
| | - Valentina Borghesani
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France.,current address: School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France
| |
Collapse
|
24
|
Mital M, Szutkowski K, Bossak-Ahmad K, Skrobecki P, Drew SC, Poznański J, Zhukov I, Frączyk T, Bal W. The Palladium(II) Complex of A β4-16 as Suitable Model for Structural Studies of Biorelevant Copper(II) Complexes of N-Truncated Beta-Amyloids. Int J Mol Sci 2020; 21:E9200. [PMID: 33276669 PMCID: PMC7731285 DOI: 10.3390/ijms21239200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
The Aβ4-42 peptide is a major beta-amyloid species in the human brain, forming toxic aggregates related to Alzheimer's Disease. It also strongly chelates Cu(II) at the N-terminal Phe-Arg-His ATCUN motif, as demonstrated in Aβ4-16 and Aβ4-9 model peptides. The resulting complex resists ROS generation and exchange processes and may help protect synapses from copper-related oxidative damage. Structural characterization of Cu(II)Aβ4-x complexes by NMR would help elucidate their biological function, but is precluded by Cu(II) paramagneticism. Instead we used an isostructural diamagnetic Pd(II)-Aβ4-16 complex as a model. To avoid a kinetic trapping of Pd(II) in an inappropriate transient structure, we designed an appropriate pH-dependent synthetic procedure for ATCUN Pd(II)Aβ4-16, controlled by CD, fluorescence and ESI-MS. Its assignments and structure at pH 6.5 were obtained by TOCSY, NOESY, ROESY, 1H-13C HSQC and 1H-15N HSQC NMR experiments, for natural abundance 13C and 15N isotopes, aided by corresponding experiments for Pd(II)-Phe-Arg-His. The square-planar Pd(II)-ATCUN coordination was confirmed, with the rest of the peptide mostly unstructured. The diffusion rates of Aβ4-16, Pd(II)-Aβ4-16 and their mixture determined using PGSE-NMR experiment suggested that the Pd(II) complex forms a supramolecular assembly with the apopeptide. These results confirm that Pd(II) substitution enables NMR studies of structural aspects of Cu(II)-Aβ complexes.
Collapse
Affiliation(s)
- Mariusz Mital
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Kosma Szutkowski
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Karolina Bossak-Ahmad
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Piotr Skrobecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Simon C. Drew
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Tomasz Frączyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| |
Collapse
|
25
|
Stefaniak E, Pushie MJ, Vaerewyck C, Corcelli D, Griggs C, Lewis W, Kelley E, Maloney N, Sendzik M, Bal W, Haas KL. Exploration of the Potential Role for Aβ in Delivery of Extracellular Copper to Ctr1. Inorg Chem 2020; 59:16952-16966. [PMID: 33211469 DOI: 10.1021/acs.inorgchem.0c02100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid beta (Aβ) peptides are notorious for their involvement in Alzheimer's disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood-brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aβ peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aβ peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aβ1-16 and Aβ4-16 peptides as well-established non-aggregating models of major Aβ species in healthy and AD brains, and the Ctr1-14 peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aβ peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aβ1-16 fully and rapidly delivered Cu(II) to Ctr1-14 along the affinity gradient. Such delivery was only partial for the Aβ4-16/Ctr1-14 pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aβ species released Cu(I) to Ctr1-14 rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aβ model peptides. These results are discussed in terms of the fundamental difference between the peptides' Cu(II) complexes (pleiotropic ensemble of open structures of Aβ1-16 vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aβ4-16) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aβ peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Catherine Vaerewyck
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - David Corcelli
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Chloe Griggs
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Whitney Lewis
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Emma Kelley
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Noreen Maloney
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Madison Sendzik
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| |
Collapse
|
26
|
Bartnicka JJ, Al-Salemee F, Firth G, Blower PJ. L-Cysteine-mediated modulation of copper trafficking in prostate cancer cells: an in vitro and in vivo investigation with 64Cu and 64Cu-PET. Metallomics 2020; 12:1508-1520. [PMID: 32959856 DOI: 10.1039/d0mt00161a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper imbalance is implicated in many diseases, including cancer. Copper in blood is mainly transported by carrier proteins but a small fraction is bound to low molecular weight species, possibly amino acids. Their roles in cellular copper delivery are unknown. Our aim was to test whether accumulation of 64Cu into cancer-derived cells can be influenced by copper-binding serum amino acids. In vitro cellular accumulation of 64Cu was measured in Hank's Balanced Salt Solution in the presence of 100 μM l-histidine, l-methionine, l-cysteine and l-threonine. l-Cysteine markedly increased 64Cu accumulation and retention in DU145, PC3 and SK-OV-3 cells, while some other cell lines did not show an effect. This effect was not due to 64Cu delivery in the form of a 64Cu-cysteine complex, nor to reduction of 64Cu(ii) to 64Cu(i) by l-cysteine. Pre-incubation of cells with l-cysteine increased 64Cu accumulation, even if l-cysteine was removed from HBSS before 64Cu was added. The effect of l-cysteine on 64Cu accumulation was not mediated by increased glutathione synthesis. Despite the demonstrable in vitro effect, pre-injection of l-cysteine precursor N-acetyl-cysteine (NAC) in vivo did not enhance 64Cu delivery to DU145 xenografts in mice. Instead, it decreased 64Cu accumulation in the DU145 tumour and in brain, as assessed by PET imaging. We conclude that 64Cu is not delivered to DU145 cancer cells in vitro as a complex with amino acids but its cellular accumulation is enhanced by l-cysteine or NAC influx to cells. The latter effect was not demonstrable in vivo in the DU145 xenograft.
Collapse
Affiliation(s)
- Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
27
|
Arrigoni F, Rizza F, Tisi R, De Gioia L, Zampella G, Bertini L. On the propagation of the OH radical produced by Cu-amyloid beta peptide model complexes. Insight from molecular modelling. Metallomics 2020; 12:1765-1780. [PMID: 33052996 DOI: 10.1039/d0mt00113a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidative stress and metal dyshomeostasis are considered as crucial factors in the pathogenesis of Alzheimer's disease (AD). Indeed, transition metal ions such as Cu(ii) can generate Reactive Oxygen Species (ROS) via O2 Fenton-like reduction, catalyzed by Cu(ii) coordinated to the Amyloid beta (Aβ) peptide. Despite intensive effort, the mechanisms of ROS-induced molecular damage remain poorly understood. In the present paper, we investigate on the basis of molecular modelling computations the mechanism of OH radical propagation toward the Aβ peptide, starting from the end-product of OH radical generation by Cu(ii)·Aβ. We evaluate (i) the OH oxidative capacity, as well as the energetics of the possible Aβ oxidation target residues, by quantum chemistry Density Functional Theory (DFT) on coordination models of Cu(ii)/OH/Aβ and (ii) the motion of the OH˙ approaching the Aβ target residues by classical Molecular Dynamics (MD) on the full peptide Cu(ii)/OH/Aβ(1-16). The results show that the oxidative capacity of OH coordinated Cu(ii)Aβ is significantly lower than that of the free OH radical and that propagation toward Aβ Asp and His residues is favoured over Tyr residues. These results are discussed on the basis of the recent literature on in vitro Aβ metal-catalyzed oxidation and on the possible implications for the AD oxidative stress mechanism.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Wezynfeld NE, Tobolska A, Mital M, Wawrzyniak UE, Wiloch MZ, Płonka D, Bossak-Ahmad K, Wróblewski W, Bal W. Aβ 5-x Peptides: N-Terminal Truncation Yields Tunable Cu(II) Complexes. Inorg Chem 2020; 59:14000-14011. [PMID: 32924459 PMCID: PMC7539298 DOI: 10.1021/acs.inorgchem.0c01773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Aβ5-x peptides (x = 38, 40, 42) are minor Aβ species in normal brains but elevated upon the application of inhibitors of Aβ processing enzymes. They are interesting from the point of view of coordination chemistry for the presence of an Arg-His metal binding sequence at their N-terminus capable of forming a 3-nitrogen (3N) three-coordinate chelate system. Similar sequences in other bioactive peptides were shown to bind Cu(II) ions in biological systems. Therefore, we investigated Cu(II) complex formation and reactivity of a series of truncated Aβ5-x peptide models comprising the metal binding site: Aβ5-9, Aβ5-12, Aβ5-12Y10F, and Aβ5-16. Using CD and UV-vis spectroscopies and potentiometry, we found that all peptides coordinated the Cu(II) ion with substantial affinities higher than 3 × 1012 M-1 at pH 7.4 for Aβ5-9 and Aβ5-12. This affinity was elevated 3-fold in Aβ5-16 by the formation of the internal macrochelate with the fourth coordination site occupied by the imidazole nitrogen of the His13 or His14 residue. A much higher boost of affinity could be achieved in Aβ5-9 and Aβ5-12 by adding appropriate amounts of the external imidazole ligand. The 3N Cu-Aβ5-x complexes could be irreversibly reduced to Cu(I) at about -0.6 V vs Ag/AgCl and oxidized to Cu(III) at about 1.2 V vs Ag/AgCl. The internal or external imidazole coordination to the 3N core resulted in a slight destabilization of the Cu(I) state and stabilization of the Cu(III) state. Taken together these results indicate that Aβ5-x peptides, which bind Cu(II) ions much more strongly than Aβ1-x peptides and only slightly weaker than Aβ4-x peptides could interfere with Cu(II) handling by these peptides, adding to copper dyshomeostasis in Alzheimer brains.
Collapse
Affiliation(s)
- Nina E Wezynfeld
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Aleksandra Tobolska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Mariusz Mital
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Urszula E Wawrzyniak
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Z Wiloch
- Charge Transfer Processes in Hydrodynamic Systems Group, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Karolina Bossak-Ahmad
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wojciech Wróblewski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
29
|
Novel Perspective on Alzheimer's Disease Treatment: Rosmarinic Acid Molecular Interplay with Copper(II) and Amyloid β. Life (Basel) 2020; 10:life10070118. [PMID: 32698429 PMCID: PMC7400086 DOI: 10.3390/life10070118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is a severe disorder that affects millions of people worldwide. It is a very debilitating disease with no cure at the moment. The necessity of finding an effective treatment is very demanding, and the entire scientific community is putting in a lot of effort to address this issue. The major hallmark of Alzheimer's disease is the presence of toxic aggregated species in the brain, impaired metal homeostasis, and high levels of oxidative stress. Rosmarinic acid is a well-known potent antioxidant molecule, the efficacy of which has been proved both in vitro and in vivo. In this study, we investigated the possible role played by rosmarinic acid as a mediator of the copper(II)-induced neurotoxicity. Several spectroscopic techniques and biological assays were applied to characterize the metal complexes and to evaluate the cytotoxicity and the mutagenicity of rosmarinic acid and its Cu(II) complex. Our data indicate that rosmarinic acid is able to interfere with the interaction between amyloid β and Cu(II) by forming an original ternary association.
Collapse
|
30
|
Kotuniak R, Strampraad MJF, Bossak‐Ahmad K, Wawrzyniak UE, Ufnalska I, Hagedoorn P, Bal W. Key Intermediate Species Reveal the Copper(II)-Exchange Pathway in Biorelevant ATCUN/NTS Complexes. Angew Chem Int Ed Engl 2020; 59:11234-11239. [PMID: 32267054 PMCID: PMC7383912 DOI: 10.1002/anie.202004264] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 01/31/2023]
Abstract
The amino-terminal copper and nickel/N-terminal site (ATCUN/NTS) present in proteins and bioactive peptides exhibits high affinity towards CuII ions and have been implicated in human copper physiology. Little is known, however, about the rate and exact mechanism of formation of such complexes. We used the stopped-flow and microsecond freeze-hyperquenching (MHQ) techniques supported by steady-state spectroscopic and electrochemical data to demonstrate the formation of partially coordinated intermediate CuII complexes formed by glycyl-glycyl-histidine (GGH) peptide, the simplest ATCUN/NTS model. One of these novel intermediates, characterized by two-nitrogen coordination, t1/2 ≈100 ms at pH 6.0 and the ability to maintain the CuII /CuI redox pair is the best candidate for the long-sought reactive species in extracellular copper transport.
Collapse
Affiliation(s)
- Radosław Kotuniak
- Department of BiophysicsInstitute of Biochemistry and Biophysics Polish Academy of SciencesPawińskiego 5a02-106WarsawPoland
| | - Marc J. F. Strampraad
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Karolina Bossak‐Ahmad
- Department of BiophysicsInstitute of Biochemistry and Biophysics Polish Academy of SciencesPawińskiego 5a02-106WarsawPoland
| | - Urszula E. Wawrzyniak
- Chair of Medical BiotechnologyFaculty of ChemistryWarsaw University of TechnologyNoakowskiego 300-664WarsawPoland
| | - Iwona Ufnalska
- Chair of Medical BiotechnologyFaculty of ChemistryWarsaw University of TechnologyNoakowskiego 300-664WarsawPoland
| | - Peter‐Leon Hagedoorn
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Wojciech Bal
- Department of BiophysicsInstitute of Biochemistry and Biophysics Polish Academy of SciencesPawińskiego 5a02-106WarsawPoland
| |
Collapse
|
31
|
Kotuniak R, Strampraad MJF, Bossak‐Ahmad K, Wawrzyniak UE, Ufnalska I, Hagedoorn P, Bal W. Key Intermediate Species Reveal the Copper(II)‐Exchange Pathway in Biorelevant ATCUN/NTS Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Radosław Kotuniak
- Department of Biophysics Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Marc J. F. Strampraad
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Karolina Bossak‐Ahmad
- Department of Biophysics Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Urszula E. Wawrzyniak
- Chair of Medical Biotechnology Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Iwona Ufnalska
- Chair of Medical Biotechnology Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Peter‐Leon Hagedoorn
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Wojciech Bal
- Department of Biophysics Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| |
Collapse
|
32
|
Friedemann M, Tõugu V, Palumaa P. Copper(II) partially protects three histidine residues and the N-terminus of amyloid-β peptide from diethyl pyrocarbonate (DEPC) modification. FEBS Open Bio 2020; 10:1072-1081. [PMID: 32255544 PMCID: PMC7262909 DOI: 10.1002/2211-5463.12857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 11/07/2022] Open
Abstract
Diethyl pyrocarbonate (DEPC) has been primarily used as a residue‐specific modifying agent to study the role of His residues in peptide/protein and enzyme function; however, its action is not specific, and several other residues can also be modified. In the current study, we monitored the reaction of DEPC with amyloid‐beta (Aβ) peptides and insulin by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) and determined the modification sites by electrospray ionization quadrupole time‐of‐flight tandem MS (ESI Q‐TOF MS/MS). Our results indicate that five residues in Aβ1–42 are modified in the presence of 30‐fold molar excess of DEPC. After hydroxylamine treatment (which removes modifications from three His residues), two labels remain bound at the peptide N terminus and Lys16. DEPC treatment of Aβ1–42 promotes peptide aggregation, as monitored through the loss of soluble Aβ42 in a semi‐quantitative MALDI‐TOF MS assay. It has been previously proposed that Cu(II) ions protect Aβ1–16 from DEPC modification through binding to His6. We confirmed that Cu(II) ions decrease the stoichiometry of Aβ1–16 modification with the excess of DEPC being lower as compared to the control, which indicates that Cu(II) protects Aβ from DEPC modification. Sequencing of obtained Cu(II)‐protected Aβ1–16 samples showed that Cu(II) does not protect any residues completely, but partially protects all three His residues and the N terminus. Thus, the protection by Cu(II) ions is not related to specific metal binding to a particular residue (e.g. His6), but rather all His residues and the N terminus are involved in binding of Cu(II) ions. These results allow us to elucidate the effect of DEPC modification on amyloidogenity of human Aβ and to speculate about the role of His residues in these processes.
Collapse
Affiliation(s)
- Merlin Friedemann
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| |
Collapse
|
33
|
Stefaniak E, Płonka D, Szczerba P, Wezynfeld NE, Bal W. Copper Transporters? Glutathione Reactivity of Products of Cu-Aβ Digestion by Neprilysin. Inorg Chem 2020; 59:4186-4190. [PMID: 32212682 PMCID: PMC7588031 DOI: 10.1021/acs.inorgchem.0c00427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Aβ4–42 is the major subspecies of Aβ peptides characterized
by avid Cu(II) binding via the ATCUN/NTS motif. It is thought to be
produced in vivo proteolytically by neprilysin, but in vitro experiments in the presence of Cu(II) ions indicated
preferable formation of C-terminally truncated ATCUN/NTS species including
CuIIAβ4–16, CuIIAβ4–9, and also CuIIAβ12–16, all with nearly femtomolar affinities at neutral pH. Such small
complexes may serve as shuttles for copper clearance from extracellular
brain spaces, on condition they could survive intracellular conditions
upon crossing biological barriers. In order to ascertain such possibility,
we studied the reactions of CuIIAβ4–16, CuIIAβ4–9, CuIIAβ12–16, and CuIIAβ1–16 with reduced glutathione (GSH) under aerobic and anaerobic conditions
using absorption spectroscopy and mass spectrometry. We found CuIIAβ4–16 and CuIIAβ4–9 to be strongly resistant to reduction and concomitant
formation of Cu(I)–GSH complexes, with reaction times ∼10
h, while CuIIAβ12–16 was reduced
within minutes and CuIIAβ1–16 within
seconds of incubation. Upon GSH exhaustion by molecular oxygen, the
CuIIAβ complexes were reformed with no concomitant
oxidative damage to peptides. These finding reinforce the concept
of Aβ4–x peptides as physiological
trafficking partners of brain copper. Aβ4−16, Aβ4−9, and Aβ12−16, oligopeptide products of β-amyloid degradation
by neprilysin, bind CuII ions very tightly and are considered
as possible CuII carriers in the brain. We demonstrated
that CuII(Aβ4−x) complexes, but not CuII(Aβ12−16), are kinetically resistant to reduction by glutathione. No covalent
Aβ peptide modifications were observed during the copper reduction
and reoxidation by ambient oxygen, yielding the original complexes.
These features suggest that CuII(Aβ4−x) complexes might be able to cross the blood−brain
barrier.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Paulina Szczerba
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Nina E Wezynfeld
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
34
|
Teng X, Stefaniak E, Girvan P, Kotuniak R, Płonka D, Bal W, Ying L. Hierarchical binding of copperII to N-truncated Aβ4–16 peptide. Metallomics 2020; 12:470-473. [DOI: 10.1039/c9mt00299e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple intermediates were found in Cu(ii) binding to Aβ4–16 before the formation of a tight complex.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- White City Campus
- London W12 0BZ
| | - Ewelina Stefaniak
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- 02-106 Warsaw
- Poland
| | - Paul Girvan
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- White City Campus
- London W12 0BZ
| | - Radosław Kotuniak
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- 02-106 Warsaw
- Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- 02-106 Warsaw
- Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- 02-106 Warsaw
- Poland
| | - Liming Ying
- National Heart and Lung Institute
- Imperial College London
- Molecular Sciences Research Hub
- White City Campus
- London W12 0BZ
| |
Collapse
|