1
|
Dang YY, Liu T, Liu YD, Li JY, Jing Y, Yang MJ, Zhang H, Jiang MM, Wu HH, Yang WZ, Li N, Zhang P. Anti-photoaging activity of triterpenoids isolated from Centella asiatica. PHYTOCHEMISTRY 2024; 228:114246. [PMID: 39163914 DOI: 10.1016/j.phytochem.2024.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
Centella asiatica (L.) Urban is a medical plant rich in triterpenoids, frequently used in Asia to treat skin conditions such as acne. To search for anti-photoaging agents, 16 known triterpenoids and five undescribed triterpenoids, including three ursane, one oleanane and one nor-ursane were isolated from the whole herb of C. asiatica. The structures and relative stereochemistry of these compounds were elucidated by detailed NMR spectra and HRESIMS. Compounds 1 and 2 were isomers of ursane-type and oleane-type triterpenes with rare aldehyde groups on C-23. Compound 4 was a unique example of a nor-ursane type triterpenoid. The Ultraviolet B (UVB) induced HaCaT cell damage model was used to measure the in vitro anti-photoaging activity of all 21 compounds. Twenty compounds significantly increased HaCaT viability and inhibited lactate dehydrogenase (LDH) release after UVB exposure. These findings highlight the protective effects of C. asiatica-derived triterpenoids against UVB damage and indicate their potential as natural agents that can protect the skin against photoaging.
Collapse
Affiliation(s)
- Yi-Yun Dang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Tao Liu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yu-Die Liu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jia-Yi Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yi Jing
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Miao-Jie Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Han Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Miao-Miao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hong-Hua Wu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wen-Zhi Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Nan Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Peng Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| |
Collapse
|
2
|
Wu ZW, Peng XR, Liu XC, Wen L, Tao XY, Al-Romaima A, Wu MY, Qiu MH. The structures of two polysaccharides from Lepidium meyenii and their immunomodulatory effects via activating NF-κB signaling pathway. Int J Biol Macromol 2024; 269:131761. [PMID: 38663705 DOI: 10.1016/j.ijbiomac.2024.131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
Lepidium meyenii Walp., also known as the "Peruvian national treasure", is a popular functional food in the daily lives of Peruvian people due to its bioactive with main polysaccharides. However, studies on polysaccharides isolated from Lepidium meyenii were few. Two new highly heterogeneous polysaccharides, MCP-1a and MCP-2b, were isolated and purified from the tuber of Lepidium meyenii. The structure characterization revealed that MCP-1a primarily consisted of D-Glc and had a molecular weight of 6.6 kDa. Its backbone was composed of 1,4,6-α-D-Glc, while branches feature T-α-L-Ara, 1,5-α-L-Ara, and T-α-D-Glc attached to the O-6 positions. MCP-2b was a rare arabinogalactan with a molecular weight of 49.4 kDa. Interestingly, the backbone of MCP-2b was composed of 1,6-β-D-Gal, 1,3,6-β-D-Gal with a few 1,3-β-D-GlcpA-4-OMe units inserted. Side chains of MCP-2b were mainly composed of 1,3-β-D-Gal, T-β-D-Gal, T-α-L-Ara, 1,5-α-L-Ara, with trace amounts of 1,4-β-D-Glc and T-β-D-Glc. The bioactivity assay results revealed that MCP-1a and MCP-2b increased the release of NO, IL-1β, TNF-α, and IL-6 from RAW 264.7 cells at concentrations ranging from 50 μg/mL to 400 μg/mL. Furthermore, MCP-1a and MCP-2b could promote the expression of key transcription factors (IκB-α, p-IκB-α, p65, and p-p65) in the NF-κB pathway, indicating that MCP-1a and MCP-2b had potential immunomodulatory activities.
Collapse
Affiliation(s)
- Zhou-Wei Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Cui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Luan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin-Yu Tao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Yi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
3
|
Jolly A, Hour Y, Lee YC. An outlook on the versatility of plant saponins: A review. Fitoterapia 2024; 174:105858. [PMID: 38365071 DOI: 10.1016/j.fitote.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The abundance of saponin-rich plants across different ecosystems indicates their great potential as a replacement for harmful synthetic surfactants in modern commercial products. These organic saponins have remarkable biological and surface-active properties and align with sustainable and eco-friendly practices. This article examines and discusses the structure and properties of plant saponins with high yield of saponin concentrations and their exploitable applications. This highlights the potential of saponins as ethical substitutes for traditional synthetic surfactants and pharmacological agents, with favorable effects on the economy and environment. For this purpose, studies on the relevant capabilities, structure, and yield of selected plants were thoroughly examined. Studies on the possible uses of the selected saponins have also been conducted. This in-depth analysis highlights the potential of saponins as workable and ethical replacements for traditional synthetic medications and surfactants, thus emphasizing their favorable effects on human health and the environment.
Collapse
Affiliation(s)
- Annu Jolly
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Youl Hour
- 125-6, Techno 2-ro, Yuseong-gu, Daejeon 34024, BTGin co., Ltd., Republic of Korea.
| | - Young-Chul Lee
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
4
|
Guo H, Chen T, Zhu H, Wang H, Huo YX. Engineering amino acid residues of pentacyclic triterpene synthases for improving the activity. Appl Microbiol Biotechnol 2024; 108:195. [PMID: 38324205 PMCID: PMC10850208 DOI: 10.1007/s00253-024-13030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/10/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Pentacyclic triterpenoids exhibit a wide range of biological activities which have wide applications in the food, cosmetics, and pharmaceutical industries. High-performance chassis strains have been developed for the production of various pentacyclic triterpenoids, e.g., lupane-type and oleanane-type triterpenoids. The production of common pentacyclic triterpenes and their derivatives is limited by the poor activity of typical pentacyclic triterpene synthases (PTSs). However, a general strategy applicable to typical PTSs is still lacking. As typical pentacyclic triterpenes are derived from the baccharenyl cation, engineering the non-active-site residues in the MXXXXR motif might be beneficial for the catalytic efficiencies of typical PTSs by the stabilization of the baccharenyl cation. Here, we develop a general strategy for improving the activity of typical PTSs. As a proof of concept, the activity of three PTSs such as lupeol synthase, β-amyrin synthase, and α-amyrin synthases was significantly increased up to 7.3-fold by site-directed saturation mutagenesis. This strategy could be applied to improve the activity of various typical PTSs. KEY POINTS: • The strategy could be applied to typical PTSs for improving the activity. • The catalytic activity of typical PTSs was significantly increased.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Tongtong Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Hanrong Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Huiyan Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China.
- Beijing Institute of Technology (Tangshan), Translational Research Center, Hebei, China.
| |
Collapse
|
5
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
6
|
Afifah IQ, Wibowo I, Faizal A. A newly identified β-amyrin synthase gene hypothetically involved in oleanane-saponin biosynthesis from Talinum paniculatum (Jacq.) Gaertn. Heliyon 2023; 9:e17707. [PMID: 37449131 PMCID: PMC10336583 DOI: 10.1016/j.heliyon.2023.e17707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Talinum paniculatum or Javanese ginseng in Indonesia is a plant widely used as a traditional medicine. The genus Talinum produces oleanane-type saponins, such as talinumoside I. The first aim of this study was to isolate the probable gene encoding β-amyrin synthase (bAS), a key enzyme involved in the cyclization of 2,3-oxidosqualene producing the backbone of the oleanane-type saponin β-amyrin and characterize the gene sequence and the predicted protein sequence using in silico approach. The second aim was to analyze the correlation between the TpbAS gene expression level and saponin production in various plant organs. Thus, TpbAS was isolated using degenerate primers and PCR 5'/3'-Rapid Amplification of cDNA Ends (RACE), then the gene sequence and the predicted protein were in silico analyzed using various programs. TpbAS expression level was analyzed using reverse transcriptase PCR (RT-PCR), and saponin content was measured using a spectrophotometer. The results showed that the full-length TpbAS gene consists of 2298 base pairs encoding for a 765-amino acid protein. From in silico study, the (GA)n sequence was identified in the 5'-untranslated regions and predicted to be a candidate of the gene expression modulator. In addition, functional RNA motifs and sites analysis predicted the presence of exon splicing enhancers and silencers within the coding sequence and miRNA target sites candidate. Amino acid sequence analysis showed DCTAE, QW, and WCYCR motifs that were conserved in all classes of oxidosqualene cyclase enzymes. Phylogenetic tree analysis showed that TpbAS is closely related to other plant oxidosqualene cyclase groups. Analysis of TpbAS expression and saponin content indicated that saponin is mainly synthesized and accumulated in the leaves. Taken together, these findings will assist in increasing the saponin content through a metabolic engineering approach.
Collapse
Affiliation(s)
- Ika Qurrotul Afifah
- Chemistry Department, Faculty of Science and Technology, UIN Sunan Kalijaga Yogyakarta, Yogyakarta, 55281, Indonesia
| | - Indra Wibowo
- Physiology, Animal Development, and Biomedical Sciences Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Ahmad Faizal
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
7
|
Zhang X, Chen B, Xie Y, Hu Y, Niu Z, He Z, Wang L, Zhang G, Wang M, Hu W, Li F. Phenolic compounds from the flowers of Rosa hugonis Hemsl. and their neuroprotective effects. PHYTOCHEMISTRY 2023; 208:113589. [PMID: 36669693 DOI: 10.1016/j.phytochem.2023.113589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The fragrant flowers of Rosa hugonis Hemsl. Contain abundant valuable rose oil and carotenoids. However, phytochemical investigation of this resource rich in phenolics with neuroprotective activity in vitro has been rarely reported. Purification of the 70% ethanol extracts from the flowers of R. hugonis by various chromatographic methods resulted in the isolation and characterization of five undescribed acylated flavonoid glycosides (Hugonisflavonoid A-E) together with forty known phenolics. The chemical structures of the undescribed compounds were elucidated by extensive analysis of their spectroscopic data and chemical methods. All the isolates were found from R. hugonis for the first time and evaluated for their neuroprotective effects on 6-OHDA induced injury in PC12 cells. Seventeen compounds displayed remarkable protective effects at concentrations of 10 μM. Hugonisflavonoid E can reduce excessive reactive oxygen species and up-regulate mRNA expression levels of superoxide dismutase 1 and catalase. Additionally, hugonisflavonoid E activated the phosphorylated proteins such as PDK1, Akt and GSk-3β. These findings suggested that R. hugonis could be a potential source for neuroprotective agents.
Collapse
Affiliation(s)
- Xia Zhang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuan Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yeye Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Zhiqiang Niu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Ziliang He
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Lun Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Guolin Zhang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Mingkui Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Weicheng Hu
- Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Fu Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
8
|
Wei C, Cui P, Liu X. Antibacterial Activity and Mechanism of Madecassic Acid against Staphylococcus aureus. Molecules 2023; 28:1895. [PMID: 36838882 PMCID: PMC9967526 DOI: 10.3390/molecules28041895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Antibacterial resistance has become one of the most serious problems threating global health. To overcome this urgent problem, many scientists have paid great attention to developing new antibacterial drugs from natural products. Hence, for exploring new antibacterial drugs from Chinese medicine, a series of experiments were carried out for verifying and elucidating the antibacterial activity and mechanisms of madecassic acid (MA), which is an active triterpenoid compound isolated from the traditional Chinese medicine, Centella asiatica. The antibacterial activity was investigated through measuring the diameter of the inhibition zone, the minimum inhibitory concentration (MIC), the growth curve, and the effect on the bacterial biofilm, respectively. Meanwhile, the antibacterial mechanism was also discussed from the aspects of cell wall integrity variation, cell membrane permeability, and the activities of related enzymes in the respiratory metabolic pathway before and after the intervention by MA. The results showed that MA had an inhibitory effect on eight kinds of pathogenic bacteria, and the MIC values for Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Bacillus megaterium were 31.25, 62.5, 250, 125, 62.5, and 62.5 µg/mL, respectively. For instance, 31.25 µg/mL MA could inhibit the growth of Staphylococcus aureus within 28 h. The antibacterial mechanism experiments confirmed that MA could destroy the integrity of the cell membrane and cell wall of Staphylococcus aureus, causing the leakage of macromolecular substances, inhibiting the synthesis of soluble proteins, reducing the activities of succinate dehydrogenase and malate dehydrogenase, and interacting with DNA, leading to the relaxation and ring opening of supercoiled DNA. Besides, the activities of DNA topoisomerase I and II were both inhibited by MA, which led to the cell growth of Staphylococcus aureus being repressed. This study provides a theoretical basis and reference for the application of MA in the control and inhibition of food-borne Staphylococcus aureus.
Collapse
Affiliation(s)
- Chunling Wei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Research Lab of TCM Property & Efficacy, Level 3, National Administration of TCM, Changsha 410208, China
- Mycomedicine Research Lab, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Peiwu Cui
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Research Lab of TCM Property & Efficacy, Level 3, National Administration of TCM, Changsha 410208, China
- Mycomedicine Research Lab, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiangqian Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
9
|
He Z, Hu Y, Niu Z, Zhong K, Liu T, Yang M, Ji L, Hu W. A review of pharmacokinetic and pharmacological properties of asiaticoside, a major active constituent of Centella asiatica (L.) Urb. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115865. [PMID: 36306932 DOI: 10.1016/j.jep.2022.115865] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Centella asiatica (L.) Urb., a potential medicinal plant, is widely used in orient traditional medicine. Its major active constituents include asiaticoside (AS), madecassoside (MS), asiatic acid and madecassic acid. Thereinto, AS is a pentacyclic triterpenoid saponin with a variety of pharmacological effects including antitumor, neuroprotective and wound healing effects. AIM OF THE STUDY In this review, we summarize the pharmacokinetics, safety and pharmacological properties of AS. MATERIALS AND METHODS We gathered information about AS from articles published up to 2022 and listed in Google scholar, PubMed, Web of Science, Elsevier, and similar databases. The keywords used in our search included "asiaticoside", "Centella asiatica", "pharmacokinetics", "nerve", "cancer", "skin", etc. RESULTS: AS appeared to degrade through a first-order reaction and had low biotoxicity. However, the pharmacokinetic properties of AS differed according to species. AS is highly blood-brain-barrier permeable without any harmful side effect. It has a variety of pharmacological effects including anti-neural inflammation and anti-cancer properties, as well as protective properties for the skin, cardiovascular system, and pulmonary system. CONCLUSION This review comprehensively summarized current information regarding the pharmacokinetic and pharmacological properties of AS, and supported the pharmaceutical value of this compound. Future research should focus on improving bioavailability of AS and conducting clinical assessment.
Collapse
Affiliation(s)
- Ziliang He
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China; School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Yeye Hu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Zhiqiang Niu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Kang Zhong
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Tingwu Liu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Meng Yang
- Jiangsu Food and Pharmaceutical Science College, Huaian, 223300, China.
| | - Lilian Ji
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China.
| | - Weicheng Hu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| |
Collapse
|
10
|
Gong Y, Luo W, Chen H, Ren B, Hu W, Li L. Systematical Ingredient Investigations of Ficus tikoua Bur. Fruit and Immunoregulatory and Antioxidant Effects of Different Fractions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206880. [PMID: 36296474 PMCID: PMC9608957 DOI: 10.3390/molecules27206880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022]
Abstract
Although the fruit of Ficus tikoua Bur. has been consumed by montanic people in China for centuries, its chemical and biological composition was still unclear. A series of comprehensive investigations on its chemical constituents and bioactivities were carried out for the first time. As a result, six compounds were isolated and identified as the main components in this fruit. GC-MS analysis of the lipid components demonstrated that Ficus tikoua Bur. fruit contains some wholesome constituents such as fatty acids, vitamins, triterpenoids, and phytosterols. The fatty acids are mainly composed of linolenic acid (61.27%) and linoleic acid (22.79%). Furthermore, this fruit contains a relative high content of crude protein (9.41 ± 0.03%), total amino acids (9.28%), and total polyphenols (0.86 ± 0.01 g/100 g). The analysis of monosaccharide composition showed that the total polysaccharide mainly consists of glucose, glucuronic acid, xylose, arabinose, mannose, galactose, galacturonic acid, and rhamnose. The polysaccharide, polyphenol, water, ethanol, and flavonoid extracts exhibited prominent antioxidant activity determined by ABTS, DPPH, and FRAPS methods. Meanwhile, the total polysaccharide exhibited significant immunomodulatory effect by enhancing the release of cytokines and expression of iNOS and COX-2 in RAW264.7 cells, significantly decreasing the expression of c-Jun and p65 proteins in the cytoplasm; increasing the translocation of c-Jun and p65 to the nucleus; and regulating the phosphorylation level of Akt, PI3K, and PDK1 in the PI3K/AKT signaling pathway. This study proved that the fruit of F. tikoua is a reliable source of functional food.
Collapse
Affiliation(s)
- Yu Gong
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Luo
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hulan Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Ren
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- Correspondence: (W.H.); (L.L.)
| | - Limei Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (W.H.); (L.L.)
| |
Collapse
|
11
|
Xu B, Bai L, Chen L, Tong R, Feng Y, Shi J. Terpenoid natural products exert neuroprotection via the PI3K/Akt pathway. Front Pharmacol 2022; 13:1036506. [PMCID: PMC9606746 DOI: 10.3389/fphar.2022.1036506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
PI3K/Akt, an essential signaling pathway widely present in cells, has been shown to be relevant to neurological disorders. As an important class of natural products, terpenoids exist in large numbers and have diverse backbones, so they have a great chance to be identified as neuroprotective agents. In this review, we described and summarized recent research for a range of terpenoid natural products associated with the PI3K/Akt pathway by classifying their basic chemical structures of the terpenes, identified by electronic searches on PubMed, Web of Science for research, and Google Scholar websites. Only articles published in English were included. Our discussion here concerned 16 natural terpenoids and their mechanisms of action, the associated diseases, and the methods of experimentation used. We also reviewed the discovery of their chemical structures and their derivatives, and some compounds have been concluded for their structure–activity relationships (SAR). As a result, terpenoids are excellent candidates for research as natural neuroprotective agents, and our content will provide a stepping stone for further research into these natural products. It may be possible for more terpenoids to serve as neuroprotective agents in the future.
Collapse
Affiliation(s)
- Bingyao Xu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| |
Collapse
|
12
|
Yeshi K, Turpin G, Jamtsho T, Wangchuk P. Indigenous Uses, Phytochemical Analysis, and Anti-Inflammatory Properties of Australian Tropical Medicinal Plants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123849. [PMID: 35744969 PMCID: PMC9231311 DOI: 10.3390/molecules27123849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Australian tropical plants have been a rich source of food (bush food) and medicine to the first Australians (Aboriginal people), who are believed to have lived for more than 50,000 years. Plants such as spreading sneezeweed (Centipeda minima), goat’s foot (Ipomoea pes-caprae), and hop bush (Dodonaea viscosa and D. polyandra) are a few popular Aboriginal medicinal plants. Thus far, more than 900 medicinal plants have been recorded in the tropical region alone, and many of them are associated with diverse ethnomedicinal uses that belong to the traditional owners of Aboriginal people. In our effort to find anti-inflammatory lead compounds in collaboration with Aboriginal communities from their medicinal plants, we reviewed 78 medicinal plants used against various inflammation and inflammatory-related conditions by Aboriginal people. Out of those 78 species, we have included only 45 species whose crude extracts or isolated pure compounds showed anti-inflammatory properties. Upon investigating compounds isolated from 40 species (for five species, only crude extracts were studied), 83 compounds were associated with various anti-inflammatory properties. Alphitolic acid, Betulinic acid, Malabaric acid, and Hispidulin reduced proinflammatory cytokines and cyclooxygenase enzymes (COX-1 and 2) with IC50 values ranging from 11.5 to 46.9 uM. Other promising anti-inflammatory compounds are Brevilin A (from Centipeda minima), Eupalestin, and 5′-methoxy nobiletin (from Ageratum conyzoides), Calophyllolide (from Calophyllum inophyllum), and Brusatol (from Brucea javanica). D. polyandra is one example of an Aboriginal medicinal plant from which a novel anti-inflammatory benzoyl ester clerodane diterpenoid compound was obtained (compound name not disclosed), and it is in the development of topical medicines for inflammatory skin diseases. Medicinal plants in the tropics and those associated with indigenous knowledge of Aboriginal people could be a potential alternative source of novel anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia;
- Correspondence:
| | - Gerry Turpin
- Tropical Herbarium of Australia, James Cook University, Building E1, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia;
| | - Tenzin Jamtsho
- Yangchenphug High School, Ministry of Education, Thimphu 11001, Bhutan;
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia;
| |
Collapse
|
13
|
Kunjumon R, Viswanathan G, Jayasree DV, Biju PG, Prakash P, Sasidharan BCP, Baby S. Anti-excitotoxicity and neuroprotective action of asiaticoside encapsulated polymeric nanoparticles in pilocarpine rodent seizure model. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asiaticoside (ASI), an ursane-type triterpenoid saponin, isolated from the memory enhancing herb Centella asiatica, is known for its neuroprotective activities. Here the anti-excitotoxicity and neuro protective effects of ASI encapsulated alginate chitosan nanoparticles (ACNPs) were evaluated in pilocarpine (PC) induced seizure in mice model. ACNPs were prepared by ionic gelation-polyelectrolyte complex method and their physicochemical characterization was carried out by TEM, SEM, DLS, XRD and FT-IR. Subsequently their encapsulation efficiency (EE), in vitro drug release, cell viability, seizure score, DNA fragmentation and mRNA expression of regulatory stress markers were evaluated. Membrane permeability of ACNPs in brain, histopathology and biological TEM and SEM analyses were also carried out. TEM of ACNPs showed spherical morphology with a particle size of 200-400 nm. DLS of ACNPs displayed an average size of 486.2 nm with polydispersity index (PDI) of 0.567 and zeta potential of -14.1 mV. ACNPs achieved high EE (> 90%) and controlled release (10%). Biological evaluation studies revealed ACNPs as non-toxic to mouse neural stem cells (mNSCs). They displayed enhanced brain permeability and attenuated seizure. Our results confirmed ACNPs as effective in crossing the brain membrane barrier and mitigating seizure severity induced by PC.
Collapse
Affiliation(s)
- Renju Kunjumon
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute, 332862, Phytochemistry and Phytopharmacology Division, Thiruvananthapuram, Kerala, India
- University of Kerala, 29263, Thiruvananthapuram, Kerala, India
| | - Gayathri Viswanathan
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute, 332862, Phytochemistry and Phytopharmacology Division, Thiruvananthapuram, Kerala, India
| | | | | | - Prabha Prakash
- Cochin University of Science and Technology, 29288, Department of Biotechnology, Kochi, Kerala, India
| | - Baby Chakrapani Pulikkaparambil Sasidharan
- Cochin University of Science and Technology, 29288, Department of Biotechnology, Kochi, Kerala, India
- Cochin University of Science and Technology, 29288, Inter-University Centre for Nanomaterials and Devices (IUCND), Kochi, Kerala, India
| | - Sabulal Baby
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute, 332862, Thiruvananthapuram, Kerala, India
| |
Collapse
|
14
|
Biocompatible madecassoside encapsulated alginate chitosan nanoparticles, their anti-proliferative activity on C6 glioma cells. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
15
|
Transcriptome sequencing revealed the influence of blue light on the expression levels of light-stress response genes in Centella asiatica. PLoS One 2021; 16:e0260468. [PMID: 34843573 PMCID: PMC8629183 DOI: 10.1371/journal.pone.0260468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Centella asiatica is rich in medical and cosmetic properties. While physiological responses of C. asiatica to light have been widely reported, the knowledge of the effects of light on its gene expression is sparse. In this study, we used RNA sequencing (RNA-seq) to investigate the expression of the C. asiatica genes in response to monochromatic red and blue light. Most of the differentially expressed genes (DEGs) under blue light were up-regulated but those under red light were down-regulated. The DEGs encoded for CRY-DASH and UVR3 were among up-regulated genes that play significant roles in responses under blue light. The DEGs involved in the response to photosystem II photodamages and in the biosynthesis of photoprotective xanthophylls were also up-regulated. The expression of flavonoid biosynthetic DEGs under blue light was up-regulated but that under red light was down-regulated. Correspondingly, total flavonoid content under blue light was higher than that under red light. The ABI5, MYB4, and HYH transcription factors appeared as hub nodes in the protein-protein interaction network of the DEGs under blue light while ERF38 was a hub node among the DEGs under red light. In summary, stress-responsive genes were predominantly up-regulated under blue light to respond to stresses that could be induced under high energy light. The information obtained from this study can be useful to better understand the responses of C. asiatica to different light qualities.
Collapse
|
16
|
Park HA, Kim MY, Lee NY, Lim J, Park KB, Lee CK, Nguyen VD, Kim J, Park JT, Park JI. Variation of Triterpenic Acids in 12 Wild Syzygium formosum and Anti-Inflammation Activity on Human Keratinocyte HaCaT. PLANTS 2021; 10:plants10112428. [PMID: 34834790 PMCID: PMC8622825 DOI: 10.3390/plants10112428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022]
Abstract
Syzygium formosum (Wall.) Masam leaf is known as a Vietnamese traditional herbal medicine used to treat atopic dermatitis and stomach ulcers. Recently, its potent anti-allergic effects were reported with possible active compounds analysis. Here, we collected S. formosum leaves from 12 wild trees and compared compositions of triterpenic acids (TA) with Centella asiatica. Anti-inflammatory activities of S. formosum leaf extract (SFLE) was compared with C. asiatica extract (CAE) using human keratinocyte, HaCaT. In this study, up to seven TAs were identified in SFLE, while only madecassic and asiatic acids were detected in the CAE. Total TA content varied among SFLE, but asiatic, corosolic, and betulinic acids were the major components. Surprisingly, wild tree sample 12 (S12) contained total TA of 27.2 mg/g dry-leaves that was 5-fold greater than that in the C. asiatica sample, and S4 had the highest content of asiatic acid (12.6 mg/g dry-leaves) that accounted for 50% of the total TA. S4 and S12 showed more than 3-fold higher anti-oxidative power than the CAE. In the UVB irradiation model, S4 and S12 (5 μg/mL) strongly repressed mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) and COX-2, while the CAE at the same condition showed moderate or weak repression. The difference in anti-inflammation effects between the SFLE and the CAE was also confirmed by protein quantifications. Taken together, SFLE has great potentials as a new cosmeceutical ingredient with a higher amount of skin-active phytochemicals.
Collapse
Affiliation(s)
- Hyun-ah Park
- CARBOEXPERT Inc., Daejeon 34134, Korea; (H.-a.P.); (N.-Y.L.); (K.-b.P.); (C.-K.L.)
| | - Mi Yoon Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Translational Immunology Institute, Chungnam National University, Daejeon 35015, Korea
| | - Nan-Young Lee
- CARBOEXPERT Inc., Daejeon 34134, Korea; (H.-a.P.); (N.-Y.L.); (K.-b.P.); (C.-K.L.)
| | - Jaeyoon Lim
- Department of Food Science and Nutrition, Chungnam National University, Daejeon 34134, Korea; (J.L.); (J.K.)
| | - Kyu-been Park
- CARBOEXPERT Inc., Daejeon 34134, Korea; (H.-a.P.); (N.-Y.L.); (K.-b.P.); (C.-K.L.)
| | - Chang-Kyu Lee
- CARBOEXPERT Inc., Daejeon 34134, Korea; (H.-a.P.); (N.-Y.L.); (K.-b.P.); (C.-K.L.)
| | - Van Dao Nguyen
- Biotechnology Faculty, Binh Duong University, Thu Dau Mot 820000, Vietnam;
| | - Jaehan Kim
- Department of Food Science and Nutrition, Chungnam National University, Daejeon 34134, Korea; (J.L.); (J.K.)
| | - Jong-Tae Park
- CARBOEXPERT Inc., Daejeon 34134, Korea; (H.-a.P.); (N.-Y.L.); (K.-b.P.); (C.-K.L.)
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (J.-T.P.); (J.-I.P.)
| | - Jong-Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Translational Immunology Institute, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (J.-T.P.); (J.-I.P.)
| |
Collapse
|
17
|
Li H, Zhai B, Sun J, Fan Y, Zou J, Cheng J, Zhang X, Shi Y, Guo D. Antioxidant, Anti-Aging and Organ Protective Effects of Total Saponins from Aralia taibaiensis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4025-4042. [PMID: 34594101 PMCID: PMC8476322 DOI: 10.2147/dddt.s330222] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Aim Aralia taibaiensis is a natural medicinal and food plant that is rich in triterpenoid saponins with hypoglycaemic, antioxidant, hepatoprotective, anti-gastric ulcer and anti-inflammatory effects. This study has significance in terms of the antioxidant, anti-aging and organ protective effects of Aralia taibaiensis total saponins (TSAT) in D-galactose-induced aging rats. Methods The saponin composition of TSAT was determined and quantified by high performance liquid chromatography (HPLC). We consolidated the antioxidant and enzyme inhibitory activities of TSAT in vitro and assessed the effects of TSAT on daily mobility, body weight, behaviour, organ indices, oxidation-related indices and pathological changes in aging rats. Results In vitro experiments showed that TSAT had a scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), tyrosinase, hydroxyl radicals (HO•) and superoxide radicals (•O2-) and was closely related to the dose of TSAT. In vivo experiments showed that after 8 weeks of continuous gavage administration, the rats gradually recovered their body weight, daily activity ability, learning and memory ability and organ index and effectively improved D-gal-induced organ injury. Specifically, TSAT significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) and significantly decreased malondialdehyde (MDA) levels in the serum, brain, heart, lung, spleen and kidney of aging rats compared to the model group. In addition, TSAT significantly inhibited the D-gal-induced upregulation of hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. The histopathological results showed that TSAT reversed D-gal-induced damage to the brain, heart, lung, kidney, liver and spleen to varying degrees. Conclusion TSAT is a high-quality natural product with antioxidant and anti-aging properties that can alleviate D-gal-induced aging damage in rats.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yu Fan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Junbo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yajun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| |
Collapse
|
18
|
Biswas D, Mandal S, Chatterjee Saha S, Tudu CK, Nandy S, Batiha GES, Shekhawat MS, Pandey DK, Dey A. Ethnobotany, phytochemistry, pharmacology, and toxicity of Centella asiatica (L.) Urban: A comprehensive review. Phytother Res 2021; 35:6624-6654. [PMID: 34463404 DOI: 10.1002/ptr.7248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 06/19/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
The well-known medicinal plant Centella asiatica (L.) Urban is an Ayurvedic and traditional Chinese medicine used in the treatment of different health problems and as an edible vegetable in a regular diet. Ease of availability in the wide range of environmental conditions plus low-cost cultivation process has made the plant popular in ethno-medicinal healthcare systems. In the present review, phytochemical analysis of plant-extract and pharmacological activities of bioactive-compounds are discussed based upon the available reports to understand their therapeutic potentialities along with the mechanisms behind. The results exhibited that C. asiatica and its triterpenoids demonstrated an array of pharmacological effects and health benefits, some of which were confirmed in many preclinical and clinical studies. Those reports also provided considerable evidences in support of the principles of folk treatment in different countries. Increase and maintenance of the prospective plant secondary metabolites would provide an enriched resource of drug molecules. Development of suitable derivatives of the therapeutic compounds can give an assurance for getting more effective drug candidates with reduced side effects. The review also enumerates the application of advanced nanotechnology, toxicology, and clinical-trial reports on the plant with notes on the shortcomings in the present research and future perspectives of using this medicinal plant.
Collapse
Affiliation(s)
- Dew Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Sujata Mandal
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | | | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mahipal S Shekhawat
- Department of Plant Biology and Biotechnology, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Pondicherry, India
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
19
|
Liu Y, Wang W, Miao J. New Antiproliferative Dibenzo-α-Pyrone From Whole Plants of Centella asiatica. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211003019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A new compound, 1,3,7,9-tetrahydroxy-6 H-dibenzo[ b, d]pyran-6-one (1), together with 6 known compounds (2-7), was isolated from the extract of whole plants of Centella asiatica. The chemical structure was elucidated on the basis of spectroscopic and mass spectrometric analyses. All the isolates were evaluated for their cytotoxicities against 4 human cancer cell lines (MCF-7, HepG2, Hela, and A549). Among them, compound 1 was found to exhibit significant cytotoxicity on MCF-7 and HepG2 cancer cells with half-maximal inhibitory concentration values of 4.1 and 7.2 µM, respectively.
Collapse
Affiliation(s)
- Yi Liu
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, P. R. China
| | - Wei Wang
- Department of EICU, The Second Affiliated Hospital of Dalian Medical University, Dalian, P. R. China
| | - Jian Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, P. R. China
| |
Collapse
|