1
|
Zhao D, Li C, Zeng N, Wang D, Yu G, Zhang N, Li B. Transcriptomic and metabolomic analyses reveal the positive effect of moderate concentration of sodium chloride treatment on the production of β-carotene, torulene, and torularhodin in oleaginous red yeast Rhodosporidiobolus odoratus XQR. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100221. [PMID: 39399738 PMCID: PMC11470240 DOI: 10.1016/j.fochms.2024.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids, a family of lipid-soluble pigments, have garnered growing interest for their health-promoting benefits and are widely utilized in the food, feed, pharmaceutical, and cosmetic industries. Rhodosporidiobolus odoratus, a representative oleaginous red yeast, is considered a promising alternative for producing high-value carotenoids including β-carotene, torulene, and torularhodin. Here, the impact of varying concentrations of NaCl treatments on carotenoid contents in R. odoratus XQR after 120 h of incubation was examined. The results indicated that, as compared to the control (59.37 μg/gdw), the synthesis of total carotenoids was significantly increased and entirely suppressed under low-to-moderate (0.25 mol/L: 68.06 μg/gdw, 0.5 mol/L: 67.62 μg/gdw, and 0.75 mol/L: 146.47 μg/gdw) and high (1.0, 1.25, and 1.5 mol/L: 0 μg/gdw) concentrations of NaCl treatments, respectively. Moreover, the maximum production of β-carotene (117.62 μg/gdw), torulene (21.81 μg/gdw), and torularhodin (7.04 μg/gdw) was achieved with a moderate concentration (0.75 mol/L) of NaCl treatment. Transcriptomic and metabolomic analyses suggested that the increase in β-carotene, torulene, and torularhodin production might be primarily attributed to the up-regulation of some key protein-coding genes involved in the terpenoid backbone biosynthesis (atoB, HMGCS, and mvaD), carotenoid biosynthesis (crtYB and crtI), and TCA cycle (pckA, DLAT, pyc, MDH1, gltA, acnA, IDH1/2, IDH3, sucA, sucB, sucD, LSC1, SDHA, and fumA/fumB). The present study not only demonstrates a viable method to concurrently increase the production of β-carotene, torulene, torularhodin, and total carotenoids in R. odoratus XQR, but it also establishes a molecular foundation for further enhancing their production through genetic engineering.
Collapse
Affiliation(s)
- Die Zhao
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Chunji Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Dandan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Guohui Yu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Qi Z, Deng S, Wu Y, Ye B. The effects of Ganoderma leucocontextum triterpenoids treatment on the D-galactose and aluminum chloride-induced Alzheimer-like pathology in mouse brain. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118530. [PMID: 38977221 DOI: 10.1016/j.jep.2024.118530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Ganoderma leucocontextum T.H. Li, W. Q. Deng M. Wang & H.P.Hu. is a highland herbal medicine that has been shown to nourish the nervesand prolong life. Nevertheless, there is no evidence to indicate that Ganoderma leucocontextum triterpenoids (GLTs) reduce the damage triggered by Alzheimer's disease (AD). AIM OF THE STUDY The aim of this investigation was to ascertain the protective effects of GLTs on AD mice models and cells, as well as to look into potential pathways. MATERIALS AND METHODS In this study, the phytochemical characterization of GLTs was performed by High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). The AD mouse model was induced by injecting intraperitoneally with D-galactose (120 mg/kg) and administering orally with aluminum chloride (20 mg/kg) daily for 28 days. After that, donepezil (5 mg/kg) and GLTs (0.4, 0.8, and 1.6 g/kg) were administered orally for 35 days. During the treatment period, aluminum chloride (20 mg/kg) and D-galactose (120 mg/kg) were continuously administered. And the behavior of the animals and the molecular changes of the hippocampus were determined after the whole experimental procedure. Furthermore, BV-2 cells were employed to validate GLTs' anti-neuroinflammatory properties. RESULTS The total triterpenoids content was 443.12 ± 0.21 g/kg and was inferred to contain 19 classes of substances such as organic acids, amino acids, vitamins, flavonoids, and other chemicals in GLTs. Treatment of D-galactose/aluminum chloride-induced mouse with GLTs can ameliorate AD symptoms, counteract cognitive decline, improve Aβ1-42 deposition, reduce the expression level of pro-apoptotic proteins, and attenuate the activation of hippocampal microglia and astrocytes. GLTs significantly increased the expression of antioxidant enzymes and significantly reduced the expression of inflammatory factors. GLTs inhibits nuclear factor kappa B (NF-κB) nuclear translocation and preserves myd88/traf6-mediated mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, GLTs (2 and 5 mg/mL) inhibited the generation of nitric oxide and protected lipopolysaccharide (1 mg/L)-induced neuroinflammation in BV-2 cells. CONCLUSIONS Taken together, Ganoderma leucocontextum triterpenoids can improve cognitive functions, including learning and memory, by reducing neuroinflammation and oxidative stress, preventing apoptosis, and controlling amyloid genesis.
Collapse
Affiliation(s)
- Zhongzhi Qi
- Nuclear Medicine Department of West China Hospital of Sichuan University, China.
| | - Shizhan Deng
- Medical College of Tibet University, Lasa, 850002, China.
| | - Yexin Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610041, China.
| | - Bengui Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610041, China; Medical College of Tibet University, Lasa, 850002, China.
| |
Collapse
|
3
|
Ambrico A, Larocca V, Trupo M, Martino M, Magarelli RA, Spagnoletta A, Balducchi R. A New Method for Selective Extraction of Torularhodin from Red Yeast Using CO 2-SFE Technique. Appl Biochem Biotechnol 2024; 196:6473-6491. [PMID: 38386146 PMCID: PMC11604813 DOI: 10.1007/s12010-024-04884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Torularhodin is a dark pink colored carotenoid belonging to the xanthophylls group that can be biologically synthesized by red yeasts, especially by Rhodotorula and Sporobolomyces genera. The growing interest in this molecule is due to its biological activities such as antioxidant, anticholesterolemic, anti-inflammatory, antimicrobial, and anticancer. To satisfy potential commercial markets, numerous methods have been proposed to develop a cost-effective and environmentally friendly downstream process for the purification of torularhodin. However, obtaining high purity products without resorting to the use of toxic solvents, which can leave residues in the final preparations, remains a major challenge. In this context, the present study aimed to develop a new efficient method for the isolation of torularhodin from the red yeast Rhodotorula strain ELP2022 by applying the extraction technique with supercritical CO2 (CO2-SFE) in two sequential steps. In particular, in the first step, the dried lysed biomass of yeast was subjected to the action of CO2 in supercritical conditions (CO2SC) as sole solvent for extraction of apolar carotenoids. In the second step, the residual biomass was subjected to the action of CO2SC using ethanol as a polar co-solvent for the extraction of torularhodin. Both steps were carried out at different operating parameters of temperature (40 and 60 °C) and pressure (from 300 to 500 bar) with a constant CO2 flow of 6 L min-1. Regardless of the operating conditions used, this method allowed to obtain an orange-colored oily extract and a red-colored extract after the first and second step, respectively. In all trials, torularhodin represented no less than 95.2% ± 0.70 of the total carotenoids in the red extracts obtained from the second step. In particular, the best results were obtained by performing both steps at 40 °C and 300 bar, and the maximum percentage of torularhodin achieved was 97.9% ± 0.88. Since there are no data on the selective recovery of torularhodin from red yeast using the SFE technique, this study may be a good starting point to optimize and support the development of industrial production of torularhodin by microbial synthesis. This new method can significantly reduce the environmental impact of torularhodin recovery and can be considered an innovation for which an Italian patent application has been filed. In a circular bioeconomy approach, this method will be validated up to a pilot scale, culturing the strain Rhodotorula spp. ELP2022 on low-cost media derived from agri-food wastes.
Collapse
Affiliation(s)
- Alfredo Ambrico
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Vincenzo Larocca
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Mario Trupo
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy.
| | - Maria Martino
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Rosaria Alessandra Magarelli
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Anna Spagnoletta
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Roberto Balducchi
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| |
Collapse
|
4
|
Hu K, Wu S, Xu J, Zhang Y, Zhang Y, Wu X, Miao J, Yao Y, Zhu S, Chen G, Ren J. Pongamol Alleviates Neuroinflammation and Promotes Autophagy in Alzheimer's Disease by Regulating the Akt/mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38841893 DOI: 10.1021/acs.jafc.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD), one of the neurodegenerative disorders, is highly correlated with the abnormal hyperphosphorylation of Tau and aggregation of β-amyloid (Aβ). Oxidative stress, neuroinflammation, and abnormal autophagy are key drivers of AD and how they contribute to neuropathology remains largely unknown. The flavonoid compound pongamol is reported to possess a variety of pharmacological activities, such as antioxidant, antibacterial, and anti-inflammatory. This study investigated the neuroprotective effect and its mechanisms of pongamol in lipopolysaccharide (LPS)-induced BV2 cells, d-galactose/sodium nitrite/aluminum chloride (d-gal/NaNO2/AlCl3)-induced AD mice, and Caenorhabditis elegans models. Our research revealed that pongamol reduced the release of inflammatory factors IL-1β, TNF-α, COX-2, and iNOS in LPS-induced BV2 cells. Pongamol also protected neurons and significantly restored memory function, inhibited Tau phosphorylation, downregulated Aβ aggregation, and increased oxidoreductase activity in the hippocampus of AD mice. In addition, pongamol reversed the nuclear transfer of NF-κB and increased the levels of Beclin 1 and LC3 II/LC3 I. Most importantly, the anti-inflammatory and promoter autophagy effects of pongamol may be related to the regulation of the Akt/mTOR signaling pathway. In summary, these results showed that pongamol has a potential neuroprotective effect, which greatly enriched the research on the pharmacological activity of pongamol for improving AD.
Collapse
Affiliation(s)
- Kun Hu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, Jiangsu 213164, China
| | - Shaojun Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, Jiangsu 213164, China
| | - Jiaxin Xu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, Jiangsu 213164, China
| | - Yongzhen Zhang
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, Jiangsu 213164, China
| | - Yanan Zhang
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, Jiangsu 213164, China
| | - Xinyuan Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, Jiangsu 213164, China
| | - Jie Miao
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, Jiangsu 213164, China
| | - Yongxu Yao
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, Jiangsu 213164, China
| | - Susu Zhu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, Jiangsu 213164, China
| | - Guangtong Chen
- School of Pharmacy, Nantong University, No. 19. Qixiu Road, Nantong, Jiangsu 226001, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, Jiangsu 213164, China
| |
Collapse
|
5
|
Zhao S, Guo T, Yao Y, Dong B, Zhao G. Research advancements in the maintenance mechanism of Sporidiobolus pararoseus enhancing the quality of soy sauce during fermentation. Int J Food Microbiol 2024; 417:110690. [PMID: 38581832 DOI: 10.1016/j.ijfoodmicro.2024.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Soy sauce is a traditional condiment that undergoes microbial fermentation of various ingredients to achieve its desired color, scent, and flavor. Sporidiobolus pararoseus, which is a type of Rhodocerevisiae, shows promising potential as a source of lipids, carotenoids, and enzymes that can enrich the taste and color of soy sauce. However, there is currently a lack of systematic and comprehensive studies on the functions and mechanisms of action of S. pararoseus during soy sauce fermentation. In this review, it is well established that S. pararoseus produces lipids that are abundant in unsaturated fatty acids, particularly oleic acid, as well as various carotenoids, such as β-carotene, torulene, and torularhodin. These pigments are synthesized through the mevalonic acid pathway and possess remarkable antioxidant properties, acting as natural colorants. The synthesis of carotenoids is stimulated by high salt concentrations, which induces oxidative stress caused by NaCl. This stress further activates crucial enzymes involved in carotenoid production, ultimately leading to pigment formation. Moreover, S. pararoseus can produce high-quality enzymes that aid in the efficient utilization of soy sauce substrates during fermentation. Furthermore, this review focused on the impact of S. pararoseus on the color and quality of soy sauce and comprehensively analyzed its characteristics and ingredients. Thus, this review serves as a basis for screening high-quality oleaginous red yeast strains and improving the quality of industrial soy sauce production through the wide application of S. pararoseus.
Collapse
Affiliation(s)
- Shuoshuo Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bin Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Rai R, Jat D, Mishra SK. Naringenin mitigates aluminum toxicity-induced learning memory impairments and neurodegeneration through amelioration of oxidative stress. J Biochem Mol Toxicol 2024; 38:e23717. [PMID: 38742857 DOI: 10.1002/jbt.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.
Collapse
Affiliation(s)
- Ravina Rai
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Deepali Jat
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | | |
Collapse
|
7
|
Han H, Zhao Y, Du J, Wang S, Yang X, Li W, Song J, Zhang S, Zhang Z, Tan Y, Hatch GM, Zhang M, Chen L. Exercise improves cognitive dysfunction and neuroinflammation in mice through Histone H3 lactylation in microglia. Immun Ageing 2023; 20:63. [PMID: 37978517 PMCID: PMC10655345 DOI: 10.1186/s12979-023-00390-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Exercise is postulated to be a promising non-pharmacological intervention for the improvement of neurodegenerative disease pathology. However, the mechanism of beneficial effects of exercise on the brain remains to be further explored. In this study, we investigated the effect of an exercise-induced metabolite, lactate, on the microglia phenotype and its association with learning and memory. RESULTS Microglia were hyperactivated in the brains of AlCl3/D-gal-treated mice, which was associated with cognitive decline. Running exercise ameliorated the hyperactivation and increased the anti-inflammatory/reparative phenotype of microglia and improved cognition. Mice were injected intraperitoneally with sodium lactate (NaLA) had similar beneficial effects as that of exercise training. Exogenous NaLA addition to cultured BV2 cells promoted their transition from a pro-inflammatory to a reparative phenotype. CONCLUSION The elevated lactate acted as an "accelerator" of the endogenous "lactate timer" in microglia promoting this transition of microglia polarization balance through lactylation. These findings demonstrate that exercise-induced lactate accelerates the phenotypic transition of microglia, which plays a key role in reducing neuroinflammation and improving cognitive function.
Collapse
Affiliation(s)
- Hao Han
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Yawei Zhao
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Junda Du
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Sushan Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Xuehan Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Weijie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Jiayi Song
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Siwei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Ziyi Zhang
- The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yongfei Tan
- South China Institute of Collaborative Innovation, Dongguan, 523808, China
| | - Grant M Hatch
- Departments of Pharmacology and Therapeutics, Biochemistry and Medical Genetics, Center for Research and Treatment of Atherosclerosis, DREAM Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, R3E0T6, Canada
| | - Ming Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China.
| | - Li Chen
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Aihaiti M, Shi H, Liu Y, Hou C, Song X, Li M, Li J. Nervonic acid reduces the cognitive and neurological disturbances induced by combined doses of D-galactose/AlCl 3 in mice. Food Sci Nutr 2023; 11:5989-5998. [PMID: 37823115 PMCID: PMC10563680 DOI: 10.1002/fsn3.3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 10/13/2023] Open
Abstract
Nervonic acid (NA) is a kind of ultra-long-chain monounsaturated fatty acid, which can repair nerve cell damage caused by oxidative stress. Alzheimer's disease (AD) is a nervous system disease and often accompanied by the decline of learning and memory capacity. In this study, the combined dose of D-galactose/AlCl3 was used to establish a mouse model of AD. Meanwhile, the mice were treated with different doses of NA (10.95 and 43.93 mg/kg). The results showed that NA delayed the decline of locomotion and learning ability caused by D-galactose/AlCl3, increased the activity of total superoxide dismutase, catalase, glutathione peroxidase, and reduced the content of malondialdehyde in vivo. Besides, NA reduced the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), aspartate aminotransferase, alanine aminotransferase, increased the levels of 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, alleviated the cell morphology damage induced by D-galactose/AlCl3 in hippocampus and liver tissue. Furthermore, the intervention of NA upregulated the expression levels of PI3K, AKT, and mTOR genes and downregulated the expression levels of TNF-α, IL-6, and IL-1β genes. Therefore, we speculate the intervention of NA could be an effective way in improving cognitive impairment through the activation of PI3K signaling pathway. These results suggest that NA has the potential to be developed as antioxidant drug for the prevention and early therapy of AD.
Collapse
Affiliation(s)
- Mayile Aihaiti
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Haidan Shi
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Yaojie Liu
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Chen Hou
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Xiaoyu Song
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Mengting Li
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Jianke Li
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| |
Collapse
|
9
|
Ren Z, Yang H, Zhu C, Deng J, Fan D. Ginsenoside Rh4 Alleviates Amyloid β Plaque and Tau Hyperphosphorylation by Regulating Neuroinflammation and the Glycogen Synthase Kinase 3β Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13783-13794. [PMID: 37676640 DOI: 10.1021/acs.jafc.3c02550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is a primary neurodegenerative disease. It can be caused by aging and brain trauma and severely affects the abilities of cognition and memory of patients. Therefore, it seriously threatens the mental and physical health of humans worldwide. As a traditional Chinese medicine, ginsenosides have been proven to have a variety of pharmacological activities. Ginsenoside Rh4 (Rh4) is one of the rare ginsenosides with higher pharmacological activity than ordinary ginsenosides, but its effect on alleviating AD and its molecular mechanism have not been studied. Here, we investigated the anti-AD effects of Rh4 and its potential mechanisms using an AD mouse model induced by a combination of AlCl3·6H2O and d-galactose. The results showed that Rh4 could significantly improve the ability of cognizance and reduce neuronal damage in mice. Concurrently, Rh4 attenuates amyloid β accumulation, increases the density of dendritic spines, and logically inhibits synaptic structural damage as a result of neuronal excessive apoptosis and autophagy. Rh4 can not only inhibit the inflammatory response caused by the overactivation of microglia and astrocytes, reduce the levels of pro-inflammatory factors, increase the level of antioxidant enzymes in serum, and significantly improve the activity of antioxidant enzyme SOD1 in the hippocampus but also inhibit the hyperphosphorylation of tau protein in the hippocampus of mice by regulating the Wnt2b/GSK-3β/SMAD4 signaling pathway. Together, this study provides a theoretical basis for Rh4 in the treatment of AD and reveals that Rh4 is a potential drug for the treatment of AD.
Collapse
Affiliation(s)
- Zhuo Ren
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| |
Collapse
|
10
|
Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci 2023; 24:ijms24043748. [PMID: 36835155 PMCID: PMC9967135 DOI: 10.3390/ijms24043748] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect the West due to the increase in life expectancy. Nervous cells accumulate oxidative damage, which is one of the factors that triggers and accelerates neurodegeneration. However, cells have mechanisms that scavenge reactive oxygen species (ROS) and alleviate oxidative stress (OS). Many of these endogenous antioxidant systems are regulated at the gene expression level by the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In the presence of prooxidant conditions, Nrf2 translocates to the nucleus and induces the transcription of genes containing ARE (antioxidant response element). In recent years, there has been an increase in the study of the Nrf2 pathway and the natural products that positively regulate it to reduce oxidative damage to the nervous system, both in in vitro models with neurons and microglia subjected to stress factors and in vivo models using mainly murine models. Quercetin, curcumin, anthocyanins, tea polyphenols, and other less studied phenolic compounds such as kaempferol, hesperetin, and icariin can also modulate Nrf2 by regulating several Nrf2 upstream activators. Another group of phytochemical compounds that upregulate this pathway are terpenoids, including monoterpenes (aucubin, catapol), diterpenes (ginkgolides), triterpenes (ginsenosides), and carotenoids (astaxanthin, lycopene). This review aims to update the knowledge on the influence of secondary metabolites of health interest on the activation of the Nrf2 pathway and their potential as treatments for NDs.
Collapse
|
11
|
Liu C, Han M, Lv F, Gao Y, Wang X, Zhang X, Guo Y, Cheng Y, Qian H. Study on the Cellular Anti-Inflammatory Effect of Torularhodin Produced by Sporidiobolus pararoseus ZQHL Isolated from Vinegar Fungus. Molecules 2023; 28:molecules28031436. [PMID: 36771110 PMCID: PMC9920945 DOI: 10.3390/molecules28031436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The red stretcher bacterium Sporidiobolus pararoseus is a high producer of carotenoids such as torularhodin, but its presence in vinegar has not been detected. Moreover, torularhodin has several biological activities, but its effect on the LPS-induced RAW 264.7 inflammatory cell model has also yet to be elucidated. In this study, S. pararoseus was identified in different vinegar samples from China by ITS sequencing. Meanwhile, one of the strains was deeply resolved by whole genome sequencing and functional annotation and named S. pararoseus ZQHL. Subsequently, the antioxidant effect of the fungal carotenoid torularhodin was investigated using in vitro DPPH, ABTS, and cellular models. Finally, LPS-induced RAW 264.7 cells were used as an inflammation model to assess torularhodin's protective effect on inflammatory cells and to determine whether the TLR4 pathway is associated with this process. The results indicate that torularhodin has good free radical scavenging ability in vitro and can contribute to cell viability. More importantly, torularhodin alleviated LPS-induced cellular inflammatory damage and reduced the expression of inflammatory factors such as TLR4, MyD88, and TNF-a. The mechanism may attenuate the cellular inflammatory response by inhibiting the TLR4 inflammatory pathway. In conclusion, torularhodin produced by S. pararoseus fungi in vinegar samples significantly scavenged free radicals in vitro and alleviated RAW 264.7 cellular inflammation by modulating the TLR4 pathway.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Mei Han
- Department of Food Science, Shanghai Business School, Shanghai 200235, China
| | - Fuqiang Lv
- Jiangsu Hengshun Vinegar-Industry Co., Ltd., No. 66 Hengshun Road, Zhenjiang 212143, China
| | - Yaobin Gao
- Shanxi Mature Vinegar Group Co., Ltd., No. 26 Madaopo, Xinghua District, Taiyuan 030013, China
| | - Xiaoyun Wang
- Shanxi Mature Vinegar Group Co., Ltd., No. 26 Madaopo, Xinghua District, Taiyuan 030013, China
| | - Xujiao Zhang
- Shanxi Zilin Vinegar Industry Co., Ltd., No. 550 Gaohua Duan, Taimao Road, Taiyuan 030100, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Correspondence: (Y.C.); (H.Q.)
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Correspondence: (Y.C.); (H.Q.)
| |
Collapse
|
12
|
Hassan M, Ismail H, Hammam O, Elsayed A, Othman O, Aly Hassan S. Natural inhibitors for acetylcholinesterase and autophagy modulators as effective antagonists for tau and β-amyloid in Alzheimer's rat model. Biomarkers 2023; 28:273-288. [PMID: 36594248 DOI: 10.1080/1354750x.2022.2164617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: Phytochemicals have amazing biological effects in relation to age-related illnesses and are increasingly being studied in clinical trials. The goal of this study was to examine the effectiveness of the aqueous extracts of Rosmarinus officinalis L. (Rosemary) and Crocus sativus L. (Saffron) and their combinations as tau and β-amyloid antagonists in an Alzheimer's rat model. Methods: AlCl3 and D-galactose (150 & 300 mg/kg) were used to create the Alzheimer's neuroinflammation rat model. The animals were subsequently given the two extracts and their combinations (500 mg/kg) along 15 days. The cognitive impairment, oxidative stress, tau & amyloid neuroproteins, acetylcholine, acetylcholinesterase neurotransmitters, proinflammatory cytokines, LC3 as an autophagy marker, computational analysis, and morphological alterations were all assessed. Results: When compared to the conventional donepezil and normal groups, the treated groups showed a significant improvement in all calculated parameters. The cortex and hippocampus have a better morphological appearance. In silico analysis found that these extracts may have an affinity for and impede the activity of some proteins thought to be essential regulators of disease progression. Conclusion: Rosemary and Saffron extracts by the power of their constituents were able to alleviate the neurotoxicity of AlCl3 & D-galactose and regulate the natural autophagy process.
Collapse
Affiliation(s)
- Mervat Hassan
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Hisham Ismail
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Abdullrahman Elsayed
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, British University in Egypt, Al Shorouk City, Egypt
| | - Othman Othman
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Sohair Aly Hassan
- Therapeutic Chemistry Department, Pharmaceutical Industries Research Institute, National Research Center, Cairo, Egypt
| |
Collapse
|
13
|
Liu C, Guo Y, Cheng Y, Qian H. Torularhodin-Loaded Bilosomes Ameliorate Lipid Accumulation and Amino Acid Metabolism in Hypercholesterolemic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3250-3260. [PMID: 36693047 DOI: 10.1021/acs.jafc.2c06483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
SCOPE Hypercholesterolemia is a cause of cardiovascular disease. Torularhodin is a carotenoid, and its entrapment in bilosomes helps to improve its bioavailability. METHODS AND RESULTS The effects of torularhodin-loaded bilosomes on lipid accumulation, inflammatory response, and serum metabolic profiles in hypercholesterolemic ApoE-/- C57BL/6J mice were investigated by feeding a high-fat, high-cholesterol diet (HFHCD) for 20 weeks. At the same time, mice were gavaged with torularhodin-loaded bilosomes for 10 weeks. The results showed that torularhodin successfully alleviated weight gain and insulin resistance in mice and could also lower blood lipids. Meanwhile, torularhodin improved liver lipid accumulation in mice and modulated inflammatory factors in the "blood-liver-ileum." Nontargeted metabolomics revealed that torularhodin significantly increased the concentrations of l-tryptophan, glyceraldehyde, hypotaurine, pyrophosphate, and niacinamide in serum (p < 0.01). In addition, targeted amino acid metabolomics verification found that torularhodin promoted the metabolism of serum amino acids in mice, particularly for branched-chain amino acids, thereby helping to improve hypercholesterolemia in mice. Finally, interaction network bioinformatics was used to demonstrate that amino acid metabolism represented an important mechanism by which torularhodin improves lipid accumulation and inflammatory response in mice. CONCLUSIONS Torularhodin can improve hypercholesterolemia in HFHCD-fed mice, thereby supporting the feasibility of its usage in food applications for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| |
Collapse
|
14
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
15
|
Zhang W, Guo Y, Cheng Y, Yao W, Qian H. Neuroprotective effects of polysaccharide from Sparassis crispa on Alzheimer's disease-like mice: Involvement of microbiota-gut-brain axis. Int J Biol Macromol 2023; 225:974-986. [PMID: 36402384 DOI: 10.1016/j.ijbiomac.2022.11.160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease that may cause neurotoxicity and imbalance in gut microbiota. A polysaccharide derived from Sparassis crispa-1 (SCP-1) acts as a neuroprotective agent in vitro. There is, however, no clarity on the mechanism responsible for SCP-1's neuroprotective effects against AD. In this study, C57BL/6J male mice were treated with D-galactose and AlCl3 to establish an animal model of AD, followed by treatment with SCP-1. As evidenced by behavioral tests and brain pathology, SCP-1 treatment ameliorated learning deficits and defective spatial recognition, reduced amyloidogenesis, and modulated the neurotransmitter levels (γ-aminobutyric acid, glutamate, and acetylcholine) in the brain of AD mice. The results of 16S rRNA sequencing revealed that SCP-1 reshaped the gut microbiota composition, especially by promoting the proliferation of butyrate-producing genera, such as Intestinaimonas, [Eubacterium] ventriosum group, Lachnospiraceae_UCG_010, and Lachnospiraceae_UCG_001, and suppressing the growth of inflammation-related bacteria (i.e., Escherichia/Shigella). Furthermore, SCP-1 significantly attenuated inflammation by reducing the levels of inflammatory cytokines, maintaining intestinal barrier function, inhibiting glial activation, and decreasing the expression of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB). Collectively, our findings suggest that SCP-1 may prevent the development of AD via modulation of gut microbiota and suppression of inflammation, for a potential application in preventing or managing AD.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China.
| |
Collapse
|
16
|
Xu Y, Wu J, Dong L, Di G. The role of Nrf2 in protection against electrostatic field-induced oxidative stress and learning and memory decline in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7005-7017. [PMID: 36018411 DOI: 10.1007/s11356-022-22702-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/20/2022] [Indexed: 05/21/2023]
Abstract
The intensity of static electric field (SEF) in the surrounding environment of transmission lines has been greatly increased with the rapid development of ultra-high-voltage direct-current transmission. Therefore, the potential health effects of SEF have stimulated great public attention. It has been proven that SEF exposure can cause reversible damage to the nervous system through oxidative stress; however, the mechanism of its recovery is unclear. This study focused on nuclear factor erythroid 2-related factor 2 (Nrf2), a vital regulator of oxidative stress, and has been identified to notably impact the protection of organisms against many external stimuli. Herein, it was found that 56.3 kV/m SEF exposure for 7 days and 14 days significantly improved the expression levels of Nrf2 protein in the cytoplasm and nucleus of mice' hippocampus, as well as antioxidant genes, superoxide dismutase 2, and glutathione peroxidase 1. No significant difference in the expression level of the Nrf2 gene was found. The results indicated that the body could activate the Nrf2 signalling under SEF exposure by means other than up-regulation of Nrf2 gene expression. Inhibiting Nrf2 signalling by isoniazid could block SEF-induced gene transcription and protein expression, resulting in a decrease in antioxidant capacity, an increase in the level of lipid peroxide product, and irretrievability of learning and memory damage. These results demonstrated that the Nrf2 signalling pathway exhibited a protective role in SEF-induced oxidative damage and decline in learning and memory ability, which provides a potential strategy for preventing and treating SEF-related neurotoxicity.
Collapse
Affiliation(s)
- Yaqian Xu
- College of Science and Technology, Ningbo University, Ningbo, 315300, People's Republic of China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiahong Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Li Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Guoqing Di
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
17
|
Effects of torularhodin against acetaminophen induced liver injury base on antioxidation, anti-inflammation and anti-apoptosis. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Zhao D, Li C. Multi-omics profiling reveals potential mechanisms of culture temperature modulating biosynthesis of carotenoids, lipids, and exopolysaccharides in oleaginous red yeast Rhodotorula glutinis ZHK. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Wang C, Liu C, Xu W, Cheng Y, Guo Y, Zhao Y, Shen F, Qian H. Torularhodin bilosomes attenuate high-fat diet-induced chronic kidney disease in mice by regulating the TLR4/NF-κB pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Li Z, Li C, Cheng P, Yu G. Rhodotorula mucilaginosa—alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon 2022; 8:e11505. [DOI: 10.1016/j.heliyon.2022.e11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
|
21
|
Torularhodin Alleviates Hepatic Dyslipidemia and Inflammations in High-Fat Diet-Induced Obese Mice via PPARα Signaling Pathway. Molecules 2022; 27:molecules27196398. [PMID: 36234935 PMCID: PMC9572851 DOI: 10.3390/molecules27196398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Torularhodin is a β-carotene-like compound from Sporidiobolus pararoseus, and its protective effect against high-fat diet (HFD)-induced hepatic dyslipidemia and inflammation was investigated. Compared to mice of C57BL/6J fed on HFD, the addition of Torularhodin into the HFD (HFD-T) significantly reduced body weight, serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), and the inflammatory mediators of TNF-α, IL-6, IL-1β, and lipopolysaccharide (LPS). A significant increase of high-density lipoprotein cholesterol (HDL-c), which is beneficial to cholesterol clearance, was also observed in HFD-T group. Proteomic analysis showed HDL-C-c is highly correlated with proteins (e.g., CPT1A and CYP7A1) involved in lipid β-oxidation and bile acid synthesis, whereas the other phenotypic parameters (TC, TG, LDL, and inflammatory cytokines) are highly associated with proteins (e.g., SLC27A4) involved in lipid-uptake. The up-regulated anti-inflammation proteins FAS, BAX, ICAM1, OCLN, GSTP1, FAF1, LRP1, APEX1, ROCK1, MANF, STAT3, and INSR and down-regulated pro-inflammatory proteins OPTN, PTK2B, FADD, MIF, CASP3, YAP1, DNM1L, and NAMPT not only demonstrate the occurrence of HFD-induced hepatic inflammation, but also prove the anti-inflammatory property of Torularhodin. KEGG signaling pathway analysis revealed that the PPARα signaling pathway is likely fundamental to the health function of Torularhodin through up-regulating genes related to fatty acid β-oxidation, cholesterol excretion, HDL-Cc formation, and anti-inflammation. Torularhodin, as a new food resource, may act as a therapeutic agent to prevent hepatic dyslipidemia and related inflammation for improved health.
Collapse
|
22
|
Liu C, Guo Y, Cheng Y, Qian H. A colon-targeted delivery system of torularhodin encapsulated in electrospinning microspheres, and its co-metabolic regulation mechanism of gut microbiota. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Liu C, Guo Y, Cheng Y, Qian H. Bilosomes: a controlled delivery system for the sustained release of torularhodin during digestion in the small intestine both in vitro and in vivo. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Zhao W, Wang J, Latta M, Wang C, Liu Y, Ma W, Zhou Z, Hu S, Chen P, Liu Y. Rhizoma Gastrodiae Water Extract Modulates the Gut Microbiota and Pathological Changes of P-TauThr231 to Protect Against Cognitive Impairment in Mice. Front Pharmacol 2022; 13:903659. [PMID: 35910384 PMCID: PMC9335362 DOI: 10.3389/fphar.2022.903659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Gastrodiae Rhizoma and its active constituents are known to exhibit neuroprotective effects in Alzheimer’s disease (AD). However, the effect of Rhizoma Gastrodiae water extract (WERG) on AD and the detailed mechanism of action remain unclear. In this study, the mechanism of action of WERG was investigated by the microbiome–gut–brain axis using a D-galactose (D-gal)/AlCl3-induced AD mouse model. WERG improved the cognitive impairment of D-gal/AlCl3-induced mice. The expression level of p-Tauthr231 in the WERG-H treatment group was decreased, and p-Tauthr231 was found negative in hippocampal DG, CA1, and CA3 regions. Here, the diversity and composition of the gut microbiota were analyzed by 16sRNA sequencing. WERG-H treatment had a positive correlation with Firmicutes, Bacilli, Lactobacillus johnsonii, Lactobacillus murinus, and Lactobacillus reuteri. Interestingly, the Rikenellaceae-RC9 gut group in the gut increased in D-gal/AlCl3-induced mice, but the increased L. johnsonii, L. murinus, and L. reuteri reversed this process. This may be a potential mechanistic link between gut microbiota dysbiosis and P-TauThr231 levels in AD progression. In conclusion, this study demonstrated that WERG improved the cognitive impairment of the AD mouse model by enriching gut probiotics and reducing P-TauThr231 levels.
Collapse
Affiliation(s)
- Wenbin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianhui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Maria Latta
- School of Pharmacy, University of Connecticut, Mansfield, CT, United States
| | - Chenyu Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Yuheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shujian Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Peng Chen, ; Yingqian Liu,
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Peng Chen, ; Yingqian Liu,
| |
Collapse
|
25
|
Ghasemi-Tarie R, Kiasalari Z, Fakour M, Khorasani M, Keshtkar S, Baluchnejadmojarad T, Roghani M. Nobiletin prevents amyloid β 1-40-induced cognitive impairment via inhibition of neuroinflammation and oxidative/nitrosative stress. Metab Brain Dis 2022; 37:1337-1349. [PMID: 35294678 DOI: 10.1007/s11011-022-00949-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 03/01/2022] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is presented as an age-related neurodegenerative disease with multiple cognitive deficits and amyloid β (Aβ) accumulation is the most important involved factor in its development. Nobiletin is a bioflavonoid isolated from citrus fruits peels with anti-inflammatory and anti-oxidative activity as well as anti-dementia property that has shown potency to ameliorate intracellular and extracellular Ab. The aim of the present study was to assess protective effect of nobiletin against Aβ1-40-induced cognitive impairment as a consistent model of AD. After bilateral intrahippocampal (CA1 subfield) injection of Aβ1-40, rats were treated with nobiletin (10 mg/kg/day; p.o.) from stereotaxic surgery day (day 0) till day + 7. Cognition function was evaluated in a battery of behavioral tasks at week 3 with final assessment of hippocampal oxidative stress and inflammation besides Nissl staining and 3-nitrotyrosine (3-NT) immunohistochemistry. Analysis of behavioral data showed notable and significant improvement of alternation in Y maze test, discrimination ratio in novel object recognition task, and step through latency in passive avoidance test in nobiletin-treated Aβ group. Additionally, nobiletin treatment was associated with lower hippocampal levels of MDA and ROS and partial reversal of SOD activity and also improvement of Nrf2 with no significant effect on GSH and catalase. Furthermore, nobiletin attenuated hippocampal neuroinflammation in Aβ group as shown by lower tissue levels of TLR4, NF-kB, and TNFa. Histochemical findings showed that nobiletin prevents CA1 neuronal loss in Nissl staining in addition to its alleviation of 3-nitrotyrosine (3-NT) immunoreactivity as a marker of nitrosative stress. Collectively, these findings indicated neuroprotective and anti-dementia potential of nobiletin that is partly attributed to its anti-oxidative, anti-nitrosative, and anti-inflammatory property associated with proper modulation of TLR4/NF-kB/Nrf2 pathways.
Collapse
Affiliation(s)
| | - Zahra Kiasalari
- Neurophysiology Research Center, Department of Physiology, Shahed University, Tehran, Iran
| | - Marzieh Fakour
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran.
| | - Maryam Khorasani
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Sedigheh Keshtkar
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Department of Physiology, Shahed University, Tehran, Iran.
| |
Collapse
|
26
|
Liu R, Yang J, Qiu X, Ji W, Shen J, Li Y, Lu Z, Wu Y, Wang W, Wang J, Hao J, Zhang X. "Cascaded Rocket" Nanosystems with Spatiotemporal Separation for Triple-Synergistic Therapy of Alzheimer's Disease. Adv Healthc Mater 2022; 11:e2101748. [PMID: 35158417 DOI: 10.1002/adhm.202101748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) remains an incurable disease due to the intricate pathogenesis. The neuropathological hallmarks include extracellular amyloid-β (Aβ) plaques, tau phosphorylation and extensive oxidative stress in neurons, which facilitate the progression of AD. Based on the complex etiology, a spatiotemporally "cascaded rocket" delivery system (DPH/TPGAS NPs) with metal ion/enzyme responses is established in this study for triple-synergistic AD treatment. After targeting and permeating the blood-brain barrier (BBB), the histidine units in the DPH chelate excess metal ions at the extracellular microenvironment, restraining the formation of Aβ aggregates, inducing the first-stage separation. Then, the remanent system targets neuronal cells and triggers the second separation with cathepsin B for reducing the level of phosphorylated tau and oxidative stress. Accordingly, the DPH/TPGAS NPs can achieve spatiotemporal drug release, which results in enhanced synergistic therapeutic effects both in the extracellular and intracellular region of the AD brain. After treating with DPH/TPGAS NPs, the memory deficits, levels of Aβ and phosphorylated tau, inflammation and neuron damages are remarkably ameliorated in 3 × Tg-AD mice. Therefore, this "cascaded rocket" delivery system has great potential to serve as a powerful platform and provides a new horizon to the therapeutic strategy for AD and other brain diseases' treatments.
Collapse
Affiliation(s)
- Ruiyuan Liu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- College of Pharmacy Heze University Heze 274015 P. R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinyu Qiu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Weihong Ji
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanyue Wu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenli Wang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jing Wang
- School of Pharmacy Hebei Province Key Laboratory of Innovative Drug Research and Evaluation Hebei Medical University Shijiazhuang 050017 P. R. China
| | - Jifu Hao
- College of Pharmacy Shandong First Medical University & Shandong Academy of Medical Science Taian 271000 P. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
27
|
Li C, Xu Y, Li Z, Cheng P, Yu G. Transcriptomic and metabolomic analysis reveals the potential mechanisms underlying the improvement of β-carotene and torulene production in Rhodosporidiobolus colostri under low temperature treatment. Food Res Int 2022; 156:111158. [DOI: 10.1016/j.foodres.2022.111158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
|
28
|
Cai Y, Chai Y, Fu Y, Wang Y, Zhang Y, Zhang X, Zhu L, Miao M, Yan T. Salidroside Ameliorates Alzheimer's Disease by Targeting NLRP3 Inflammasome-Mediated Pyroptosis. Front Aging Neurosci 2022; 13:809433. [PMID: 35126093 PMCID: PMC8814655 DOI: 10.3389/fnagi.2021.809433] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Amyloid β-protein (Aβ) is reported to activate NLRP3 inflammasomes and drive pyroptosis, which is subsequently involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD). To date, the pathogenesis of AD is unfortunately insufficiently elucidated. Therefore, this study was conducted to explore whether Salidroside (Sal) treatment could benefit AD by improving pyroptosis. Firstly, two animal models of AD, induced, respectively, by Aβ1-42 and D-galactose (D-gal)/AlCl3, have been created to assist our appreciation of AD pathophysiology. We then confirmed that pyroptosis is related to the pathogenesis of AD, and Sal can slow the progression of AD by inhibiting pyroptosis. Subsequently, we established the D-gal and Nigericin-induced PC12 cells injury model in vitro to verify Sal blocks pyroptosis mainly by targeting the NLRP3 inflammasome. For in vivo studies, we observed that Aβ accumulation, Tau hyperphosphorylation, neurons of hippocampal damage, and cognitive dysfunction in AD mice, caused by bilateral injection of Aβ1-42 into the hippocampus and treatments with D-gal combine AlCl3. Besides, accumulated Aβ promotes NLRP3 inflammasome activation, which leads to the activation and release of a pro-inflammatory cytokine, interleukin-1 beta (IL-1β). Notably, both Aβ accumulation and hyperphosphorylation of Tau decreased and inhibited pyroptosis by downregulating the expression of IL-1β and IL-18, which can be attributed to the treatment of Sal. We further found that Sal can reverse the increased protein expression of TLR4, MyD88, NF-κB, P-NF-κB, NLRP3, ASC, cleaved Caspase-1, cleaved GSDMD, IL-1β, and IL-18 in vitro. The underlying mechanism may be through inhibiting TLR4/NF-κB/NLRP3/Caspase-1 signaling pathway. Our study highlights the importance of NLRP3 inflammasome-mediated pyroptosis in AD, and how the administration of pharmacological doses of Sal can inhibit NLRP3 inflammasome-mediated pyroptosis and ameliorate AD. Thus, we conclude that NLRP3 inflammasome-mediated pyroptosis plays a significant role in AD and Sal could be a therapeutic drug for AD.
Collapse
Affiliation(s)
- Yawen Cai
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuhui Chai
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Fu
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingdi Wang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiming Zhang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xue Zhang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Lingpeng Zhu
| | - Mingxing Miao
- Center of National Pharmaceutical Experimental Teaching Demonstration, China Pharmaceutical University, Nanjing, China
- Mingxing Miao
| | - Tianhua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Tianhua Yan
| |
Collapse
|
29
|
Liu Y, Meng X, Sun L, Pei K, Chen L, Zhang S, Hu M. Protective effects of hydroxy-α-sanshool from the pericarp of Zanthoxylum bungeanum Maxim. On D-galactose/AlCl 3-induced Alzheimer's disease-like mice via Nrf2/HO-1 signaling pathways. Eur J Pharmacol 2022; 914:174691. [PMID: 34896111 DOI: 10.1016/j.ejphar.2021.174691] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Hydroxy-α-sanshool (HAS) is an unsaturated fatty acid amide from Zanthoxylum bungeanum Maxim. with hypolipidemic, hypoglycemic, anti-inflammatory, and neurotrophic effects, etc. In this study, results indicated that HAS effectively ameliorated spontaneous locomotion deficit of mice induced by D-galactose (D-gal) and AlCl3 treatment in open field test. Results of Morris water maze test (MWM) showed that HAS significantly improved the spatial learning and memory ability of aging mice. Histopathological evaluations revealed that HAS markedly alleviated morphological changes and increased number of Nissl neurons in hippocampus of D-gal/AlCl3-induced Alzheimer's disease (AD)-like mice. HAS markedly reduced malondialdehyde (MDA) production, and increased the activity of antioxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), showing an inhibitory effect on oxidative stress. Furthermore, HAS treatment obviously reversed the inhibitory expressions of mRNA and protein of HO-1 and Nrf2 in the hippocampus of AD mice, suggesting that neuroprotective effects of HAS against oxidative stress might be mediated by the Nrf2/HO-1 pathway. Meanwhile, HAS significantly inhibited neuronal apoptosis by decreasing mRNA and protein expressions of Cyt-c, Bax and Caspase 3, and increasing Bcl-2 expression in the hippocampus of AD mice. These results suggest that HAS have the potential to be developed as antioxidant drug for the prevention and early therapy of AD.
Collapse
Affiliation(s)
- Yujie Liu
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China; School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xianglong Meng
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China
| | - Lin Sun
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China
| | - Ke Pei
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China
| | - Lin Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Shuosheng Zhang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China.
| | - Meibian Hu
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China.
| |
Collapse
|
30
|
Li X, He Q, Zhang G. The impact of the physical form of torularhodin on its metabolic fate in the gastrointestinal tract. Food Funct 2021; 12:9955-9964. [PMID: 34494058 DOI: 10.1039/d1fo01950c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Torularhodin is a fungal carotenoid with multiple health benefits. However, the relationship between its physical form and metabolic fate in the gastrointestinal tract (GIT), which is essential to its bioavailability and health efficacy, has rarely been studied. Thus, physical forms of torularhodin including nanoemulsion powder (T-EP), capsules of the T-EP by alginate (T-EPA), and solution in MCT oil (T-oil) were used in the study. T-EP was produced through OSA-starch-mediated torularhodin emulsification and spray drying whereas the T-EPA was alginate-based capsules of the T-EP particles that were entrapped in the network structure of the alginate matrix as observed by scanning electron microscopy (SEM). The oil digestibility in the simulated small intestine was decreased from T-EP (100%), T-oil (60%) to T-EPA (40%), and the bioaccessibilities were 27%, 15% and 12%, respectively. The in vivo study using mice revealed that the content of torularhodin gradually decreased along with the digestion time in both the stomach and small intestine while a significantly higher colonic accumulation was observed in T-EPA compared to T-oil and T-EP. In vitro fecal fermentation showed that propionate (32 mM) was the predominant metabolite produced by torularhodin in the physical form of T-EPA. Thus, the physical form of torularhodin is a significant contributing factor to its GIT metabolic fate, and a health outcome-oriented design of the physical form of torularhodin or other nutraceuticals is beneficial for the development of functional foods with enhanced health benefits.
Collapse
Affiliation(s)
- Xingming Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China 214122. .,Yitong Food Industry Co., Ltd, Xuzhou, China 221000
| | - Qian He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China 214122.
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China 214122.
| |
Collapse
|
31
|
Li C, Cheng P, Li Z, Xu Y, Sun Y, Qin D, Yu G. Transcriptomic and Metabolomic Analyses Provide Insights into the Enhancement of Torulene and Torularhodin Production in Rhodotorula glutinis ZHK under Moderate Salt Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11523-11533. [PMID: 34545740 DOI: 10.1021/acs.jafc.1c04028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carotenoids are a group of tetraterpene pigments widely used in the food, pharmaceutical, and cosmetic industries. Torulene, torularhodin, and β-carotene, three principal carotenoids synthesized by Rhodotorula glutinis ZHK, possess strong health-promoting properties such as antioxidant, provitamin A, and antitumor. Here, the effect of different salt conditions on carotenoids production of R. glutinisZHK was investigated. The results showed that the total carotenoids were significantly enhanced in 0.5 M (3.91 mg/L) and 0.75 M (5.41 mg/L) NaCl treatments than that in 1.0 M (0.35 mg/L) and control (1.42 mg/L) after 120 h of cultivation. Of which, the increase in torulene and torularhodin production acts as the main contributor to the enhancement of total carotenoids. Transcriptome profiling revealed that salt stress efficiently promotes the gene expression of crtI, which could explain the molecular mechanisms of the enhanced torulene and torularhodin production under salt stress. Further experiments indicated that torulene and torularhodin play an important role in quenching excrescent reactive oxygen species induced by salt stress. Together, the present study reports an effective strategy for simultaneously improving torulene and torularhodin production in R. glutinis ZHK.
Collapse
Affiliation(s)
- Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Zhiheng Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Yuzhao Xu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Di Qin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| |
Collapse
|