1
|
Alsharairi NA. A Review with a Focus on Vaccinium-Berries-Derived Bioactive Compounds for the Treatment of Reproductive Cancers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1047. [PMID: 38611574 PMCID: PMC11013621 DOI: 10.3390/plants13071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Cancers of the reproductive organs, including prostate, bladder, ovarian, and cervical cancers, are considered the most common causes of death in both sexes worldwide. The genus Vaccinium L. (Ericaceae) comprises fleshy berry crop species, including cranberries, blueberries, lingonberries, bilberries, and bog bilberries, and are widely distributed in many countries. Flavonols, anthocyanins (ACNs), proanthocyanidins (PACs), and phenolic acids are the most bioactive compounds naturally found in Vaccinium berries and have been extensively used as anticancer agents. However, it remains uncertain whether Vaccinium bioactives have a therapeutic role in reproductive cancers (RCs), and how these bioactives could be effective in modulating RC-related signalling pathways/molecular genes. Therefore, this article aims to review existing evidence in the PubMed/MEDLINE database on Vaccinium berries' major bioactive compounds in RC treatment and unravel the mechanisms underlying this process.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
2
|
Zeng T, He Z, He J, Lv W, Huang S, Li J, Zhu L, Wan S, Zhou W, Yang Z, Zhang Y, Luo C, He J, Wang C, Wang L. The telomere-to-telomere gap-free reference genome of wild blueberry ( Vaccinium duclouxii) provides its high soluble sugar and anthocyanin accumulation. HORTICULTURE RESEARCH 2023; 10:uhad209. [PMID: 38023474 PMCID: PMC10681038 DOI: 10.1093/hr/uhad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Vaccinium duclouxii, endemic to southwestern China, is a berry-producing shrub or small tree belonging to the Ericaceae family, with high nutritive, medicinal, and ornamental value, abundant germplasm resources, and good edible properties. In addition, V. duclouxii exhibits strong tolerance to adverse environmental conditions, making it a promising candidate for research and offering wide-ranging possibilities for utilization. However, the lack of V. duclouxii genome sequence has hampered its development and utilization. Here, a high-quality telomere-to-telomere genome sequence of V. duclouxii was de novo assembled and annotated. All of 12 chromosomes were assembled into gap-free single contigs, providing the highest integrity and quality assembly reported so far for blueberry. The V. duclouxii genome is 573.67 Mb, which encodes 41 953 protein-coding genes. Combining transcriptomics and metabolomics analyses, we have uncovered the molecular mechanisms involved in sugar and acid accumulation and anthocyanin biosynthesis in V. duclouxii. This provides essential molecular information for further research on the quality of V. duclouxii. Moreover, the high-quality telomere-to-telomere assembly of the V. duclouxii genome will provide insights into the genomic evolution of Vaccinium and support advancements in blueberry genetics and molecular breeding.
Collapse
Affiliation(s)
- Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Zhijiao He
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Jiefang He
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Wei Lv
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Shixiang Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Jiawen Li
- School of Advanced Agricultural Sciences, Peking University, 100871 Beijing, China
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Wan
- Wuhan Benagen Technology Co., Ltd, Wuhan 430070, China
| | - Wanfei Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengsong Yang
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Yatao Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Chong Luo
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Jiawei He
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yue M, Jiang L, Zhang N, Zhang L, Liu Y, Lin Y, Zhang Y, Luo Y, Zhang Y, Wang Y, Li M, Wang X, Chen Q, Tang H. Regulation of flavonoids in strawberry fruits by FaMYB5/FaMYB10 dominated MYB-bHLH-WD40 ternary complexes. FRONTIERS IN PLANT SCIENCE 2023; 14:1145670. [PMID: 36993840 PMCID: PMC10040760 DOI: 10.3389/fpls.2023.1145670] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Anthocyanins endowing strawberry fruit red color are regulated by the MYB-bHLH-WD40 complex. By analyzing the MYBs involved in the flavonoid biosynthesis in strawberry, we found that R2R3-FaMYB5 promoted the content of anthocyanin and proanthocyanidins in strawberry fruits. Yeast two-hybrid and BiFC assays confirmed that MBW complexes connected with flavonoid metabolism were FaMYB5/FaMYB10-FaEGL3 (bHLH)-FaLWD1/FaLWD1-like (WD40). Transient overexpression and qRT-PCR analysis revealed that disparate MBW models hold different patterns in the regulation of flavonoid biosynthesis in strawberry fruits. Compared with FaMYB10, FaMYB5 and its dominant complexes showed a more specific regulatory range on strawberry flavonoid biosynthetic pathway, while FaMYB10 was more extensive. In addition, the complexes involved in FaMYB5 facilitated PAs accumulation primarily through the LAR tributary while FaMYB10 mainly by the ANR branch. FaMYB9 and FaMYB11 tremendously elicited the accumulation of proanthocyanidins by up-regulating the expression levels of both LAR and ANR, and also affected anthocyanin metabolism by changing the ratio of Cy3G and Pg3G which were constituted as two major anthocyanin monomers in strawberries. Our study also illustrated that FaMYB5-FaEGL3-FaLWD1-like directly targeted the promoters of F3'H, LAR, and AHA10 thus committing to flavonoid accumulation. These results allow the specific members involved in the MBW complex to be deciphered and provide new insights into the regulatory mechanisms of anthocyanins and proanthocyanidins regulated by the MBW complex.
Collapse
Affiliation(s)
- Maolan Yue
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Leiyu Jiang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Nating Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lianxi Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yongqiang Liu
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Šedbarė R, Pašakinskienė I, Janulis V. Changes in the Composition of Biologically Active Compounds during the Ripening Period in Fruit of Different Large Cranberry ( Vaccinium macrocarpon Aiton) Cultivars Grown in the Lithuanian Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010202. [PMID: 36616331 PMCID: PMC9824273 DOI: 10.3390/plants12010202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/25/2022] [Indexed: 06/12/2023]
Abstract
In our investigation, we evaluated the content of chlorogenic acid, proanthocyanidins, anthocyanins, flavonols, triterpenoids, and phytosterols in cranberry fruit extracts of the cultivars ‘Baifay’, ‘Early Black’, ‘Howes’, ‘Pilgrim’, ‘Red Star’, and ‘Stevens’ grown in Lithuania, as well as changes in the antioxidant activity in extracts of fruit samples of these cultivars during the period of berry maturation. The highest amount of proanthocyanidins (8.87 ± 0.57 mg EE/g EE) and flavonols (3688.52 ± 22.85 µg/g) was determined in cranberries of the cultivar ‘Howes’ harvested on 12 August. Remarkably, the highest anthocyanins content (9628.62 ± 266 µg/g) was determined in cranberries of the cultivar ‘Howes’ harvested on 22 October. The study showed that the content of phytochemical compounds in cranberries varied between 12 August and 22 October; the content of proanthocyanidins decreased by a factor of about 2, the content of chlorogenic acid decreased by a factor of about 1.3, the content of flavonols decreased by a factor of about 2, and the content of anthocyanins increased by 27 to 450 times. A strong correlation was found between the total proanthocyanidin content of cranberry fruit extracts and their in vitro antiradical and reducing activity (r = 0.781 and 0.726, respectively, p < 0.001). The data of our study detail the accumulation of the phytochemical composition of biologically active compounds in cranberry samples during the stages of maturity, therefore these data are significant for the assessment of harvest time of cranberry and can be applied to select cranberry cultivars for further cultivation in Lithuanian climatic conditions.
Collapse
Affiliation(s)
- Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| | | | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| |
Collapse
|
5
|
Zhong R, Wei J, Liu B, Luo H, Zhang Z, Pang X, Fang F. Metabolite and Transcriptome Profiles of Proanthocyanidin Biosynthesis in the Development of Litchi Fruit. Int J Mol Sci 2022; 24:ijms24010532. [PMID: 36613975 PMCID: PMC9820520 DOI: 10.3390/ijms24010532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
The fruit of Litchi chinensis contains high levels of proanthocyanidins (PAs) in the pericarp. These substances can serve as substrates of laccase-mediated rapid pericarp browning after the fruit is harvested. In this study, we found that the major PAs in litchi pericarp were (-)-epicatechin (EC) and several procyanidins (PCs), primarily PC A2, B2, and B1, and the EC and the PC content decreased with the development of the fruit. RNA-seq analysis showed that 43 early and late structure genes related to flavonoid/PA biosynthesis were expressed in the pericarp, including five ANTHOCYANIDIN REDUCTASE (ANR), two LEUCOANTHOCYANIDIN REDUCTASE (LAR), and two ANTHOCYANIDIN SYNTHASE (ANS) genes functioning in the PA biosynthesis branch of the flavonoid pathway. Among these nine PA biosynthesis-related genes, ANR1a, LAR1/2, and ANS1 were highly positively correlated with changes in the EC/PC content, suggesting that they are the key PA biosynthesis-related genes. Several transcription factor (TF) genes, including MYB, bHLH, WRKY, and AP2 family members, were found to be highly correlated with ANR1a, LAR1/2, and ANS1, and their relevant binding elements were detected in the promoters of these target genes, strongly suggesting that these TF genes may play regulatory roles in PA biosynthesis. In summary, this study identified the candidate key structure and regulatory genes in PA biosynthesis in litchi pericarp, which will assist in understanding the accumulation of high levels of browning-related PA substances in the pericarp.
Collapse
Affiliation(s)
- Ruihao Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Honghui Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xuequn Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.P.); (F.F.)
| | - Fang Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.P.); (F.F.)
| |
Collapse
|
6
|
Goncharuk EA, Zubova MY, Nechaeva TL, Kazantseva VV, Gulevich AA, Baranova EN, Lapshin PV, Katanskaya VM, Aksenova MA, Zagoskina NV. Effects of Hydrogen Peroxide on In Vitro Cultures of Tea ( Camellia sinensis L.) Grown in the Dark and in the Light: Morphology, Content of Malondialdehyde, and Accumulation of Various Polyphenols. Molecules 2022; 27:molecules27196674. [PMID: 36235213 PMCID: PMC9572957 DOI: 10.3390/molecules27196674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Tea plants (Camellia sinensis L.) are phenol-accumulating crops that are widely used for public health. The healing effect of tea leaf products is due to the biosynthesis of such phenolic compounds (PCs) as flavans, which have P-vitamin capillary-strengthening activity. Due to their limited habitat and the value of their specialized metabolites of a phenolic nature, a promising approach is to establish in vitro cultures from them that retain the ability to form PCs, which is characteristic of ex vivo tea plants. The aim of this study was to investigate the effect of exogenic H2O2 (0.01 mM; 0.1 mM; 1 mM) on the growth, morphology, degree of stress response, and accumulation of various phenolic compounds in tea plant callus cultures of different ages (24 or 36 days) grown under different cultivation conditions (darkness or light). According to the results obtained, the H2O2 effect on tea callus cultures of different ages did not cause changes in their morphophysiological characteristics, both after 2 h of exposure (rapid response of callus culture, RRCC) and after 48 h (delayed response of callus culture, DRCC). The determination of the malondialdehyde (MDA) content, which serves as an indicator of changes in the level of lipid peroxidation (LPO) and the presence of stress responses in plant cells, indicated either its maintenance at the control level, a decrease, or an increase. All these effects depended on the growth conditions of the tea callus cultures (darkness or light), their age, the duration of exposure (rapid or delayed response), and the H2O2 concentration. Similar trends were noted for the total content of PCs as well as the amount of flavans, proanthocyanidins (soluble and insoluble forms), and lignin. The plant cell responses reflected changes in its adaptation programs, when specialized metabolites act as a target for the action of H2O2, thereby contributing to an increase in their resistance.
Collapse
Affiliation(s)
- Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
- Correspondence: (E.A.G.); (A.A.G.); (N.V.Z.)
| | - Maria Yu. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Alexander A. Gulevich
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
- Correspondence: (E.A.G.); (A.A.G.); (N.V.Z.)
| | - Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia
| | - Petr V. Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
- Correspondence: (E.A.G.); (A.A.G.); (N.V.Z.)
| |
Collapse
|
7
|
Mora J, Pott DM, Osorio S, Vallarino JG. Regulation of Plant Tannin Synthesis in Crop Species. Front Genet 2022; 13:870976. [PMID: 35586570 PMCID: PMC9108539 DOI: 10.3389/fgene.2022.870976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Plant tannins belong to the antioxidant compound family, which includes chemicals responsible for protecting biological structures from the harmful effects of oxidative stress. A wide range of plants and crops are rich in antioxidant compounds, offering resistance to biotic, mainly against pathogens and herbivores, and abiotic stresses, such as light and wound stresses. These compounds are also related to human health benefits, offering protective effects against cardiovascular and neurodegenerative diseases in addition to providing anti-tumor, anti-inflammatory, and anti-bacterial characteristics. Most of these compounds are structurally and biosynthetically related, being synthesized through the shikimate-phenylpropanoid pathways, offering several classes of plant antioxidants: flavonoids, anthocyanins, and tannins. Tannins are divided into two major classes: condensed tannins or proanthocyanidins and hydrolysable tannins. Hydrolysable tannin synthesis branches directly from the shikimate pathway, while condensed tannins are derived from the flavonoid pathway, one of the branches of the phenylpropanoid pathway. Both types of tannins have been proposed as important molecules for taste perception of many fruits and beverages, especially wine, besides their well-known roles in plant defense and human health. Regulation at the gene level, biosynthesis and degradation have been extensively studied in condensed tannins in crops like grapevine (Vitis vinifera), persimmon (Diospyros kaki) and several berry species due to their high tannin content and their importance in the food and beverage industry. On the other hand, much less information is available regarding hydrolysable tannins, although some key aspects of their biosynthesis and regulation have been recently discovered. Here, we review recent findings about tannin metabolism, information that could be of high importance for crop breeding programs to obtain varieties with enhanced nutritional characteristics.
Collapse
Affiliation(s)
| | | | | | - José G. Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”—Consejo Superior de Investigaciones Científicas-Universidad de Málaga- (IHSM-CSIC-UMA), Málaga, Spain
| |
Collapse
|
8
|
Lafferty DJ, Espley RV, Deng CH, Günther CS, Plunkett B, Turner JL, Jaakola L, Karppinen K, Allan AC, Albert NW. Hierarchical regulation of MYBPA1 by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in Vaccinium species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1344-1356. [PMID: 34664645 DOI: 10.1093/jxb/erab460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/17/2021] [Indexed: 05/28/2023]
Abstract
Members of the Vaccinium genus bear fruits rich in anthocyanins, a class of red-purple flavonoid pigments that provide human health benefits, although the localization and concentrations of anthocyanins differ between species: blueberry (V. corymbosum) has white flesh, while bilberry (V. myrtillus) has red flesh. Comparative transcriptomics between blueberry and bilberry revealed that MYBPA1.1 and MYBA1 strongly correlated with the presence of anthocyanins, but were absent or weakly expressed in blueberry flesh. MYBPA1.1 had a biphasic expression profile, correlating with both proanthocyanidin biosynthesis early during fruit development and anthocyanin biosynthesis during berry ripening. MYBPA1.1 was unable to induce anthocyanin or proanthocyanidin accumulation in Nicotiana benthamiana, but activated promoters of flavonoid biosynthesis genes. The MYBPA1.1 promoter is directly activated by MYBA1 and MYBPA2 proteins, which regulate anthocyanins and proanthocyanidins, respectively. Our findings suggest that the lack of VcMYBA1 expression in blueberry flesh results in an absence of VcMYBPA1.1 expression, which are both required for anthocyanin regulation. In contrast, VmMYBA1 is well expressed in bilberry flesh, up-regulating VmMYBPA1.1, allowing coordinated regulation of flavonoid biosynthesis genes and anthocyanin accumulation. The hierarchal model described here for Vaccinium may also occur in a wider group of plants as a means to co-regulate different branches of the flavonoid pathway.
Collapse
Affiliation(s)
- Declan J Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
- The University of Auckland, Auckland, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Janice L Turner
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Andrew C Allan
- The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
9
|
Dare AP, Günther CS, Grey AC, Guo G, Demarais NJ, Cordiner S, McGhie TK, Boldingh H, Hunt M, Deng C, Karppinen K, Jaakola L, Espley RV. Resolving the developmental distribution patterns of polyphenols and related primary metabolites in bilberry (Vaccinium myrtillus) fruit. Food Chem 2021; 374:131703. [PMID: 34902814 DOI: 10.1016/j.foodchem.2021.131703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
Bilberry (Vaccinium myrtillus) is a commercially important wild berry species, which accumulates high amounts of polyphenols, particularly anthocyanins, in the skin and flesh. Whilst a number of studies have quantified these phytochemicals in intact ripe bilberry fruit, we extend the current knowledge by investigating the spatial distribution of anthocyanin-associated polyphenols in fruit tissue, and study their links with primary metabolism during ripening. To address this, we used LC-MS and mass spectrometry imaging to measure and map primary and secondary metabolites in fruit. Correlation analysis showed that five sugars displayed strong positive correlations with anthocyanin accumulation, whereas all amino acids were negatively correlated. The accumulation patterns of polyphenols correlated in fruit skin and flesh, but altered with development. Finally, spatial segmentation analysis revealed that the chemical signatures of ripening first appear at defined regions under the skin and rapidly expand to encompass the entire fruit at the eating-ripe stage.
Collapse
Affiliation(s)
- Andrew P Dare
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand.
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - George Guo
- Department of Physiology, School of Medical Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sarah Cordiner
- The New Zealand Institute for Plant and Food Research Ltd, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand
| | - Tony K McGhie
- The New Zealand Institute for Plant and Food Research Ltd, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand
| | - Helen Boldingh
- The New Zealand Institute for Plant and Food Research Ltd, Ruakura Campus, Bisley Rd, Hamilton 3214, New Zealand
| | - Martin Hunt
- The New Zealand Institute for Plant and Food Research Ltd, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway; NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| |
Collapse
|
10
|
Karppinen K, Lafferty DJ, Albert NW, Mikkola N, McGhie T, Allan AC, Afzal BM, Häggman H, Espley RV, Jaakola L. MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. THE NEW PHYTOLOGIST 2021; 232:1350-1367. [PMID: 34351627 DOI: 10.1111/nph.17669] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/02/2021] [Indexed: 05/14/2023]
Abstract
The regulatory network of R2R3 MYB transcription factors in anthocyanin biosynthesis is not fully understood in blue-coloured berries containing delphinidin compounds. We used blue berries of bilberry (Vaccinium myrtillus) to comprehensively characterise flavonoid-regulating R2R3 MYBs, which revealed a new type of co-regulation in anthocyanin biosynthesis between members of MYBA-, MYBPA1- and MYBPA2-subgroups. VmMYBA1, VmMYBPA1.1 and VmMYBPA2.2 expression was elevated at berry ripening and by abscisic acid treatment. Additionally, VmMYBA1 and VmMYBPA1.1 expression was strongly downregulated in a white berry mutant. Complementation and transient overexpression assays confirmed VmMYBA1 and VmMYBA2 to induce anthocyanin accumulation. Promoter activation assays showed that VmMYBA1, VmMYBPA1.1 and VmMYBPA2.2 had similar activity towards dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS), but differential regulation activity for UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT) and flavonoid 3'5'-hydroxylase (F3'5'H) promoters. Silencing of VmMYBPA1.1 in berries led to the downregulation of key anthocyanin and delphinidin biosynthesis genes. Functional analyses of other MYBPA regulators, and a member of novel MYBPA3 subgroup, associated them with proanthocyanidin biosynthesis and F3'5'H expression. The existence of 18 flavonoid-regulating MYBs indicated gene duplication, which may have enabled functional diversification among MYBA, MYBPA1 and MYBPA2 subgroups. Our results provide new insights into the intricate regulation of the complex anthocyanin profile found in blue-coloured berries involving regulation of both cyanidin and delphinidin branches.
Collapse
Affiliation(s)
- Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Declan J Lafferty
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Nelli Mikkola
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland
| | - Tony McGhie
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Andrew C Allan
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1025, New Zealand
| | - Bilal M Afzal
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1025, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, 1431, Norway
| |
Collapse
|
11
|
Sganzerla WG, da Rosa CG, da Silva APG, Ferrareze JP, Azevedo MS, Forster-Carneiro T, Nunes MR, de Lima Veeck AP. Application in situ of biodegradable films produced with starch, citric pectin and functionalized with feijoa (Acca sellowiana (Berg) Burret) extracts: An effective proposal for food conservation. Int J Biol Macromol 2021; 189:544-553. [PMID: 34450148 DOI: 10.1016/j.ijbiomac.2021.08.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
In this study, biodegradable films produced with starch, citric pectin, and functionalized with antioxidant compounds from feijoa (Acca sellowiana (Berg) Burret) were in situ applied for the conservation of ground beef, bread, and grapes. The results demonstrated that the films produced were an excellent source of stable antioxidant compounds, with antimicrobial activity against Escherichia coli, Salmonella, and Shigella. The bioactive films based on biological macromolecules positively stabilized the polyunsaturated fatty acids and deterioration reactions in ground beef. The release of bioactive compounds from the films was responsible for inhibiting molds and yeasts in bread, increasing their shelf life for 30 days of storage. The application of film coating and packaging in grapes increased postharvest conservation and maintained steady physicochemical characteristics. Therefore, the innovative films produced can release bioactive compounds with antioxidant and antimicrobial activity, and consequently, can be proposed as an effective material for food conservation, increasing the shelf life of perishable food products.
Collapse
Affiliation(s)
- William Gustavo Sganzerla
- Federal Institute of Education, Science and Technology of Santa Catarina (IFSC), Campus Lages, Rua Heitor Villa Lobos, 222, 88506-400, Lages, SC, Brazil; University of Campinas (UNICAMP), School of Food Engineering (FEA), Graduate Program in Food Engineering, Monteiro Lobato St., 80, 13083-862, Campinas, SP, Brazil.
| | - Cleonice Gonçalves da Rosa
- University of Planalto Catarinense (UNIPLAC), Graduation Program in Environment and Health, Av. Mal. Castelo Branco, 170, 88680-000, Lages, SC, Brazil
| | | | - Jocleita Peruzzo Ferrareze
- Federal Institute of Education, Science and Technology of Santa Catarina (IFSC), Campus Lages, Rua Heitor Villa Lobos, 222, 88506-400, Lages, SC, Brazil
| | - Mônia Stremel Azevedo
- Federal Institute of Education, Science and Technology of Santa Catarina (IFSC), Campus Lages, Rua Heitor Villa Lobos, 222, 88506-400, Lages, SC, Brazil
| | - Tânia Forster-Carneiro
- University of Campinas (UNICAMP), School of Food Engineering (FEA), Graduate Program in Food Engineering, Monteiro Lobato St., 80, 13083-862, Campinas, SP, Brazil
| | - Michael Ramos Nunes
- Federal Institute of Education, Science and Technology of Santa Catarina (IFSC), Campus Lages, Rua Heitor Villa Lobos, 222, 88506-400, Lages, SC, Brazil
| | - Ana Paula de Lima Veeck
- Federal Institute of Education, Science and Technology of Santa Catarina (IFSC), Campus Lages, Rua Heitor Villa Lobos, 222, 88506-400, Lages, SC, Brazil
| |
Collapse
|
12
|
Advances in Biosynthesis and Biological Functions of Proanthocyanidins in Horticultural Plants. Foods 2020; 9:foods9121774. [PMID: 33265960 PMCID: PMC7759826 DOI: 10.3390/foods9121774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Proanthocyanidins are colorless flavonoid polymers condensed from flavan-3-ol units. They are essential secondary plant metabolites that contribute to the nutritional value and sensory quality of many fruits and the related processed products. Mounting evidence has shown that the accumulation of proanthocyanidins is associated with the resistance of plants against a broad spectrum of abiotic and biotic stress conditions. The biosynthesis of proanthocyanidins has been examined extensively, allowing for identifying and characterizing the key regulators controlling the biosynthetic pathway in many plants. New findings revealed that these specific regulators were involved in the proanthocyanidins biosynthetic network in response to various environmental conditions. This paper reviews the current knowledge regarding the control of key regulators in the underlying proanthocyanidins biosynthetic and molecular mechanisms in response to environmental stress. Furthermore, it discusses the directions for future research on the metabolic engineering of proanthocyanidins production to improve food and fruit crop quality.
Collapse
|