1
|
Chang J, Wei X, Liu D, Li Q, Li C, Zhao J, Cheng L, Wang G. Engineering Escherichia coli via introduction of the isopentenol utilization pathway to effectively produce geranyllinalool. Microb Cell Fact 2024; 23:292. [PMID: 39443997 PMCID: PMC11515624 DOI: 10.1186/s12934-024-02563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Geranyllinalool, a natural diterpenoid found in plants, has a floral and woody aroma, making it valuable in flavors and fragrances. Currently, its synthesis primarily depends on chemical methods, which are environmentally harmful and economically unsustainable. Microbial synthesis through metabolic engineering has shown potential for producing geranyllinalool. However, achieving efficient synthesis remains challenging owing to the limited availability of terpenoid precursors in microorganisms. Thus, an artificial isopentenol utilization pathway (IUP) was constructed and introduced in Escherichia coli to enhance precursor availability and further improve terpenoid synthesis. RESULTS We first constructed an artificial IUP in E. coli to enhance the supply of precursor geranylgeranyl diphosphate (GGPP) and then screened geranyllinalool synthases from plants to achieve efficient synthesis of geranyllinalool (274.78 ± 2.48 mg/L). To further improve geranyllinalool synthesis, we optimized various cultivation factors, including carbon source, IPTG concentration, and prenol addition and obtained 447.51 ± 6.92 mg/L of geranyllinalool after 72 h of shaken flask fermentation. Moreover, a scaled-up production in a 5-L fermenter was investigated to give 2.06 g/L of geranyllinalool through fed-batch fermentation. To the best of our knowledge, this is the highest reported titer so far. CONCLUSIONS Efficient synthesis of geranyllinalool in E. coli can be achieved through a two-step pathway and optimization of culture conditions. The findings of this study provide valuable insights into the production of other terpenoids in E. coli.
Collapse
Affiliation(s)
- Jin Chang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Xinduo Wei
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Deyu Liu
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Qian Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Chong Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Jianguo Zhao
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China
| | - Likun Cheng
- Laboratory of Synthetic Biology, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Research Institution of Veterinarian, No.777 Chang Jiang 5th Road, Binzhou, Shandong Province, 256600, China.
| | - Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, No.136 Ke Xue Avenue, Zhengzhou, Henan, 450002, People's Republic of China.
| |
Collapse
|
2
|
Wang X, Zhang Y, Qi Z, Xu J, Pei J, Fang X, Zhao L. Dihydro-β-ionone production by a one-pot enzymatic cascade of a short-chain dehydrogenase NaSDR and enoate reductase AaDBR1. Int J Biol Macromol 2024; 277:134538. [PMID: 39111462 DOI: 10.1016/j.ijbiomac.2024.134538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Dihydro-β-ionone, a high-value compound with distinctive fragrance, is widely utilized in the flavor and fragrance industries. However, its low abundance in plant sources poses a significant challenge to its application through traditional extraction methods. Development of an enzyme cascade reaction with artificial design offers a promising alternative. Herein, a short-chain dehydrogenase NaSDR, was identified from Novosphingobium aromaticivorans DSM 12444, which exhibited a high activity in converting β-ionol to β-ionone. A novel biosynthesis route to produce dihydro-β-ionone from β-ionol was developed, by utilizing alcohol dehydrogenase NaSDR and enoate reductase AaDBR1. Under the optimized conditions (0.29 mg/mL NaSDR, 0.39 mg/mL AaDBR1, 1 mM NADP+ and 2.5 mM β-ionol at 40 °C for 2 h), a maximum yield (173.11 mg/L) of dihydro-β-ionone was achieved with a molar conversion rate of 35.6 %, which was 2.7-fold higher than that before optimization. Additionally, this cascade reaction achieved self-sufficient NADPH regeneration through the actions of NaSDR and AaDBR1. This study offered a fresh perspective for achieving a green and sustainable synthesis of dihydro-β-ionone and could inspire on another natural products biosynthesis.
Collapse
Affiliation(s)
- Xinyi Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Yangyang Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Zhipeng Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Jiahui Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xianying Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| |
Collapse
|
3
|
Wang X, Zhang X, Zhang J, Zhou Y, Wang F, Wang Z, Li X. Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. Crit Rev Biotechnol 2024:1-16. [PMID: 39266251 DOI: 10.1080/07388551.2024.2391881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Oseni OM, Sajaditabar R, Mahmoud SS. Metabolic engineering of terpene metabolism in lavender. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:67. [PMID: 38988370 PMCID: PMC11230991 DOI: 10.1186/s43088-024-00524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
Background Several members of the Lamiaceae family of plants produce large amounts of essential oil [EO] that find extensive applications in the food, cosmetics, personal hygiene, and alternative medicine industries. There is interest in enhancing EO metabolism in these plants. Main body Lavender produces a valuable EO that is highly enriched in monoterpenes, the C10 class of the isoprenoids or terpenoids. In recent years, substantial effort has been made by researchers to study terpene metabolism and enhance lavender EO through plant biotechnology. This paper reviews recent advances related to the cloning of lavender monoterpene biosynthetic genes and metabolic engineering attempts aimed at improving the production of lavender monoterpenes in plants and microbes. Conclusion Metabolic engineering has led to the improvement of EO quality and yield in several plants, including lavender. Furthermore, several biologically active EO constituents have been produced in microorganisms.
Collapse
Affiliation(s)
- Ojo Michael Oseni
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| | - Reza Sajaditabar
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| |
Collapse
|
5
|
Li DX, Guo Q, Yang YX, Jiang SJ, Ji XJ, Ye C, Wang YT, Shi TQ. Recent Advances and Multiple Strategies of Monoterpenoid Overproduction in Saccharomyces cerevisiae and Yarrowia lipolytica. ACS Synth Biol 2024; 13:1647-1662. [PMID: 38860708 DOI: 10.1021/acssynbio.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Monoterpenoids are an important subclass of terpenoids that play important roles in the energy, cosmetics, pharmaceuticals, and fragrances fields. With the development of biotechnology, microbial synthesis of monoterpenoids has received great attention. Yeasts such Saccharomyces cerevisiae and Yarrowia lipolytica are emerging as potential hosts for monoterpenoids production because of unique advantages including rapid growth cycles, mature gene editing tools, and clear genetic background. Recently, advancements in metabolic engineering and fermentation engineering have significantly enhanced the accumulation of monoterpenoids in cell factories. First, this review introduces the biosynthetic pathway of monoterpenoids and comprehensively summarizes the latest production strategies, which encompass enhancing precursor flux, modulating the expression of rate-limited enzymes, suppressing competitive pathway flux, mitigating cytotoxicity, optimizing substrate utilization, and refining the fermentation process. Subsequently, this review introduces four representative monoterpenoids. Finally, we outline the future prospects for efficient construction cell factories tailored for the production of monoterpenoids and other terpenoids.
Collapse
Affiliation(s)
- Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Shun-Jie Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| |
Collapse
|
6
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
7
|
Liu J, Lin M, Han P, Yao G, Jiang H. Biosynthesis Progress of High-Energy-Density Liquid Fuels Derived from Terpenes. Microorganisms 2024; 12:706. [PMID: 38674649 PMCID: PMC11052473 DOI: 10.3390/microorganisms12040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
High-energy-density liquid fuels (HED fuels) are essential for volume-limited aerospace vehicles and could serve as energetic additives for conventional fuels. Terpene-derived HED biofuel is an important research field for green fuel synthesis. The direct extraction of terpenes from natural plants is environmentally unfriendly and costly. Designing efficient synthetic pathways in microorganisms to achieve high yields of terpenes shows great potential for the application of terpene-derived fuels. This review provides an overview of the current research progress of terpene-derived HED fuels, surveying terpene fuel properties and the current status of biosynthesis. Additionally, we systematically summarize the engineering strategies for biosynthesizing terpenes, including mining and engineering terpene synthases, optimizing metabolic pathways and cell-level optimization, such as the subcellular localization of terpene synthesis and adaptive evolution. This article will be helpful in providing insight into better developing terpene-derived HED fuels.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Man Lin
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| |
Collapse
|
8
|
Lu X, Bai J, Tian Z, Li C, Ahmed N, Liu X, Cheng J, Lu L, Cai J, Jiang H, Wang W. Cyclization mechanism of monoterpenes catalyzed by monoterpene synthases in dipterocarpaceae. Synth Syst Biotechnol 2024; 9:11-18. [PMID: 38173809 PMCID: PMC10758623 DOI: 10.1016/j.synbio.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Monoterpenoids are typically present in the secretory tissues of higher plants, and their biosynthesis is catalyzed by the action of monoterpene synthases (MTSs). However, the knowledge about these enzymes is restricted in a few plant species. MTSs are responsible for the complex cyclization of monoterpene precursors, resulting in the production of diverse monoterpene products. These enzymatic reactions are considered exceptionally complex in nature. Therefore, it is crucial to understand the catalytic mechanism of MTSs to elucidate their ability to produce diverse or specific monoterpenoid products. In our study, we analyzed thirteen genomes of Dipterocarpaceae and identified 38 MTSs that generate a variety of monoterpene products. By focusing on four MTSs with different product spectra and analyzing the formation mechanism of acyclic, monocyclic and bicyclic products in MTSs, we observed that even a single amino acid mutation can change the specificity and diversity of MTS products, which is due to the synergistic effect between the shape of the active cavity and the stabilization of carbon-positive intermediates that the mutation changing. Notably, residues N340, I448, and phosphoric acid groups were found to be significant contributors to the stabilization of intermediate terpinyl and pinene cations. Alterations in these residues, either directly or indirectly, can impact the synthesis of single monoterpenes or their mixtures. By revealing the role of key residues in the catalytic process and establishing the interaction model between specific residues and complex monoterpenes in MTSs, it will be possible to reasonably design and engineer different catalytic activities into existing MTSs, laying a foundation for the artificial design and industrial application of MTSs.
Collapse
Affiliation(s)
- Xiaoyun Lu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jie Bai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Congyu Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Nida Ahmed
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaonan Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jian Cheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lina Lu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| |
Collapse
|
9
|
Taratynova MO, Tikhonova EE, Fedyaeva IM, Dementev DA, Yuzbashev TV, Solovyev AI, Sineoky SP, Yuzbasheva EY. Boosting Geranyl Diphosphate Synthesis for Linalool Production in Engineered Yarrowia lipolytica. Appl Biochem Biotechnol 2024; 196:1304-1315. [PMID: 37392322 DOI: 10.1007/s12010-023-04581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
Linalool is a pleasant-smelling monoterpenoid widely found in the essential oils of most flowers. Due to its biologically active properties, linalool has considerable commercial potential, especially in the food and perfume industries. In this study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce linalool de novo. The (S)-linalool synthase (LIS) gene from Actinidia argute was overexpressed to convert geranyl diphosphate (GPP) into linalool. Flux was diverted from farnesyl diphosphate (FPP) synthesis to GPP by introducing a mutated copy of the native ERG20F88W-N119W gene, and CrGPPS gene from Catharanthus roseus on its own and as part of a fusion with LIS. Disruption of native diacylglycerol kinase enzyme, DGK1, by oligo-mediated CRISPR-Cas9 inactivation further increased linalool production. The resulting strain accumulated 109.6 mg/L of linalool during cultivation in shake flasks with sucrose as a carbon source. CrGPPS expression in Yarrowia lipolytica increased linalool accumulation more efficiently than the ERG20F88W-N119W expression, suggesting that the increase in linalool production was predominantly influenced by the level of GPP precursor supply.
Collapse
Affiliation(s)
- Maria O Taratynova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia.
| | - Ekaterina E Tikhonova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Iuliia M Fedyaeva
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Dmitry A Dementev
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Tigran V Yuzbashev
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, West Common, UK
| | - Andrey I Solovyev
- Gamaleya National Research Center of Epidemiology and Microbiology, Russian Ministry of Health, Gamaleya St. 18, Moscow, 123098, Russia
| | - Sergey P Sineoky
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Evgeniya Y Yuzbasheva
- BioMediCan Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
- BioKai Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
| |
Collapse
|
10
|
Kong Y, Xing QQ, Tian YX, Li L, Yu P, Zhao LG, Li DD. Design, synthesis, and biological activity of 9- O-cinnamoylberberines as novel lipid-lowering agents. Nat Prod Res 2023; 37:3452-3460. [PMID: 35695154 DOI: 10.1080/14786419.2022.2085697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Berberine possesses a wide spectrum of lipid regulation, and yet it has poor physicochemical property and cytotoxicity as a drug candidate. In order to alleviate the problems, a total of twenty-one 9-O-cinnamoylberberines and twenty 9-O-cinnamoyltetrahydroberberines were designed, synthesized, and evaluated by in vitro cell viability experiment and four classical lipid-lowering assays involving with total cholesterol, triglyceride, low density lipoprotein cholesterol, and high density lipoprotein cholesterol. A structure-activity relationship study of these compounds resulted in the discovery of two promising candidate molecules (5p and 7u). Compound 5p displayed the most potent inhibitory effect for TG formation, with the inhibitory rates of 40.5% and 76.8% in 3T3-L1 cells and HepG2 cells, respectively. Compound 7u exhibited the most promoting activity for the production of HDLC, with the increasing rates of 52.6% and 70.5% in both models, respectively. These two attractive compounds can be further investigated as new lipid-lowering agents in follow-up researches.
Collapse
Affiliation(s)
- Yuan Kong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qi-Qi Xing
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yu-Xuan Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Lin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Pan Yu
- Institute of Environmentally Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Lin-Guo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dong-Dong Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Claude SJ, Raman G, Park SJ. Comparative Analysis and Identification of Terpene Synthase Genes in Convallaria keiskei Leaf, Flower and Root Using RNA-Sequencing Profiling. PLANTS (BASEL, SWITZERLAND) 2023; 12:2797. [PMID: 37570951 PMCID: PMC10421360 DOI: 10.3390/plants12152797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
The 'Lilly of the Valley' species, Convallaria, is renowned for its fragrant white flowers and distinctive fresh and green floral scent, attributed to a rich composition of volatile organic compounds (VOCs). However, the molecular mechanisms underlying the biosynthesis of this floral scent remain poorly understood due to a lack of transcriptomic data. In this study, we conducted the first comparative transcriptome analysis of C. keiskei, encompassing the leaf, flower, and root tissues. Our aim was to investigate the terpene synthase (TPS) genes and differential gene expression (DEG) patterns associated with essential oil biosynthesis. Through de novo assembly, we generated a substantial number of unigenes, with the highest count in the root (146,550), followed by the flower (116,434) and the leaf (72,044). Among the identified unigenes, we focused on fifteen putative ckTPS genes, which are involved in the synthesis of mono- and sesquiterpenes, the key aromatic compounds responsible for the essential oil biosynthesis in C. keiskei. The expression of these genes was validated using quantitative PCR analysis. Both DEG and qPCR analyses revealed the presence of ckTPS genes in the flower transcriptome, responsible for the synthesis of various compounds such as geraniol, germacrene, kaurene, linalool, nerolidol, trans-ocimene and valencene. The leaf transcriptome exhibited genes related to the biosynthesis of kaurene and trans-ocimene. In the root, the identified unigenes were associated with synthesizing kaurene, trans-ocimene and valencene. Both analyses indicated that the genes involved in mono- and sesquiterpene biosynthesis are more highly expressed in the flower compared to the leaf and root. This comprehensive study provides valuable resources for future investigations aiming to unravel the essential oil-biosynthesis-related genes in the Convallaria genus.
Collapse
Affiliation(s)
| | | | - Seon-Joo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
12
|
Zhang Y, Su R, Yuan H, Zhou H, Jiangfang Y, Liu X, Luo J. Widely Targeted Volatilomics and Metabolomics Analysis Reveal the Metabolic Composition and Diversity of Zingiberaceae Plants. Metabolites 2023; 13:700. [PMID: 37367858 PMCID: PMC10301730 DOI: 10.3390/metabo13060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Zingiberaceae plants are widely used in the food and pharmaceutical industries; however, research on the chemical composition and interspecific differences in the metabolome and volatilome of Zingiberaceae plants is still limited. In this study, seven species of Zingiberaceae plants were selected, including Curcuma longa L., Zingiber officinale Rosc., Alpinia officinarum Hance, Alpinia tonkinensis Gagnep, Amomum tsaoko Crevost et Lemarie, Alpinia hainanensis K. Schum. and Amomum villosum Lour. Myristica fragrans Houtt. was also selected due to its flavor being similar to that of the Zingiberaceae plant. The metabolome and volatilome of selected plants were profiled by widely targeted approaches; 542 volatiles and 738 non-volatile metabolites were detected, and β-myrcene, α-phellandrene and α-cadinene were detected in all the selected plants, while chamigren, thymol, perilla, acetocinnamone and cis-α-bisabolene were exclusively detected in certain Zingiberaceae plants. Differential analysis showed that some terpenoids, such as cadalene, cadalene-1,3,5-triene, cadalene-1,3,8-triene and (E)-β-farnesene, and some lipids, including palmitic acid, linoleic acid and oleic acid were amongst the most varied compounds in Zingiberaceae plants. In conclusion, this study provided comprehensive metabolome and volatilome profiles for Zingiberaceae plants and revealed the metabolic differences between these plants. The results of this study could be used as a guide for the nutrition and flavor improvement of Zingiberaceae plants.
Collapse
Affiliation(s)
- Youjin Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Rongxiu Su
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Honglun Yuan
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Haihong Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Yiding Jiangfang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Xianqing Liu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Jie Luo
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Keller CL, Doppalapudi KR, Woodroffe JD, Harvey BG. Solvent-free dehydration, cyclization, and hydrogenation of linalool with a dual heterogeneous catalyst system to generate a high-performance sustainable aviation fuel. Commun Chem 2022; 5:113. [PMID: 36697844 PMCID: PMC9814387 DOI: 10.1038/s42004-022-00725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023] Open
Abstract
The development of efficient catalytic methods for the synthesis of bio-based, full-performance jet fuels is critical for limiting the impacts of climate change while enabling a thriving modern society. To help address this need, here, linalool, a terpene alcohol that can be produced via fermentation of biomass sugars, was dehydrated, cyclized, and hydrogenated in a one-pot reaction under moderate reaction conditions. This sequence produced a biosynthetic fuel mixture primarily composed of 1-methyl-4-isopropylcyclohexane (p-menthane) and 2,6-dimethyloctane (DMO). The reaction was promoted by a catalyst composed of commercial Amberlyst-15, H+ form, and 10% Pd/C. Two other terpenoid substrates (1,8-cineole and 1,4-cineole) were subjected to the same conditions and excellent conversion to high purity p-menthane was observed. The fuel mixture derived from linalool exhibits a 1.7% higher gravimetric heat of combustion and 66% lower kinematic viscosity at -20 °C compared to the limits for conventional jet fuel. These properties suggest that isomerized hydrogenated linalool (IHL) can be blended with conventional jet fuel or synthetic paraffinic kerosenes to deliver high-performance sustainable aviation fuels for commercial and military applications.
Collapse
Affiliation(s)
- C. Luke Keller
- grid.482248.00000 0004 0511 8606Research Department, Chemistry Division, US NAVY, NAWCWD, China Lake, CA 93555 USA
| | - Karan R. Doppalapudi
- grid.482248.00000 0004 0511 8606Research Department, Chemistry Division, US NAVY, NAWCWD, China Lake, CA 93555 USA
| | - Josanne-Dee Woodroffe
- grid.482248.00000 0004 0511 8606Research Department, Chemistry Division, US NAVY, NAWCWD, China Lake, CA 93555 USA
| | - Benjamin G. Harvey
- grid.482248.00000 0004 0511 8606Research Department, Chemistry Division, US NAVY, NAWCWD, China Lake, CA 93555 USA
| |
Collapse
|
14
|
Combinatorial Engineering of Upper Pathways and Carotenoid Cleavage Dioxygenase in Escherichia coli for Pseudoionone Production. Appl Biochem Biotechnol 2022; 194:5977-5991. [DOI: 10.1007/s12010-022-04078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
|
15
|
Rinaldi MA, Tait S, Toogood HS, Scrutton NS. Bioproduction of Linalool From Paper Mill Waste. Front Bioeng Biotechnol 2022; 10:892896. [PMID: 35711639 PMCID: PMC9195575 DOI: 10.3389/fbioe.2022.892896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
A key challenge in chemicals biomanufacturing is the maintenance of stable, highly productive microbial strains to enable cost-effective fermentation at scale. A “cookie-cutter” approach to microbial engineering is often used to optimize host stability and productivity. This can involve identifying potential limitations in strain characteristics followed by attempts to systematically optimize production strains by targeted engineering. Such targeted approaches however do not always lead to the desired traits. Here, we demonstrate both ‘hit and miss’ outcomes of targeted approaches in attempts to generate a stable Escherichia coli strain for the bioproduction of the monoterpenoid linalool, a fragrance molecule of industrial interest. First, we stabilized linalool production strains by eliminating repetitive sequences responsible for excision of pathway components in plasmid constructs that encode the pathway for linalool production. These optimized pathway constructs were then integrated within the genome of E. coli in three parts to eliminate a need for antibiotics to maintain linalool production. Additional strategies were also employed including: reduction in cytotoxicity of linalool by adaptive laboratory evolution and modification or homologous gene replacement of key bottleneck enzymes GPPS/LinS. Our study highlights that a major factor influencing linalool titres in E. coli is the stability of the genetic construct against excision or similar recombination events. Other factors, such as decreasing linalool cytotoxicity and changing pathway genes, did not lead to improvements in the stability or titres obtained. With the objective of reducing fermentation costs at scale, the use of minimal base medium containing paper mill wastewater secondary paper fiber as sole carbon source was also investigated. This involved simultaneous saccharification and fermentation using either supplemental cellulase blends or by co-expressing secretable cellulases in E. coli containing the stabilized linalool production pathway. Combined, this study has demonstrated a stable method for linalool production using an abundant and low-cost feedstock and improved production strains, providing an important proof-of-concept for chemicals production from paper mill waste streams. For scaled production, optimization will be required, using more holistic approaches that involve further rounds of microbial engineering and fermentation process development.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Future Biomanufacturing Research Hub, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Shirley Tait
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Helen S Toogood
- Future Biomanufacturing Research Hub, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Future Biomanufacturing Research Hub, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.,C3 Biotechnologies (Maritime and Aerospace) Ltd, Lancaster, United Kingdom
| |
Collapse
|
16
|
Zhang J, Wang X, Zhang X, Zhang Y, Wang F, Li X. Sesquiterpene Synthase Engineering and Targeted Engineering of α-Santalene Overproduction in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5377-5385. [PMID: 35465671 DOI: 10.1021/acs.jafc.2c00754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a natural sesquiterpene compound with numerous biological activities, α-santalene has extensive applications in the cosmetic and pharmaceutical industries. Although several α-santalene-producing microbial strains have been constructed, low productivity still hampers large-scale fermentation. Herein, we present a case of engineered sesquiterpene biosynthesis where the insufficient downstream pathway capacity limited high-level α-santalene production in Escherichia coli. The initial strain was constructed, and it produced 6.4 mg/L α-santalene. To increase α-santalene biosynthesis, we amplified the flux toward farnesyl diphosphate (FPP) precursor by screening and choosing the right FPP synthase and reprogrammed the rate-limiting downstream pathway by generating mutations in santalene synthase (Clausena lansium; ClSS). Santalene synthase was engineered by site-directed mutagenesis, resulting in the improved soluble expression of ClSS and an α-santalene titer of 887.5 mg/L; the α-santalene titer reached 1078.8 mg/L after adding a fusion tag to ClSS. The most productive pathway, which included combining precursor flux amplification and mutant synthases, conferred an approximate 169-fold increase in α-santalene levels. Maximum titers of 1272 and 2916 mg/L were achieved under shake flask and fed-batch fermentation, respectively, and were among the highest levels reported using E. coli as the host.
Collapse
Affiliation(s)
- Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
17
|
One-pot synthesis of dihydro-β-ionone from carotenoids using carotenoid cleavage dioxygenase and enoate reductase. Bioprocess Biosyst Eng 2022; 45:891-900. [PMID: 35244776 DOI: 10.1007/s00449-022-02707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/07/2022] [Indexed: 11/02/2022]
Abstract
Dihydro-β-ionone is a characteristic aroma compound of Osmanthus fragrans and is widely applied in the flavor & fragrance industry. However, the main focus is on chemical synthesis due to the metabolic pathways of dihydro-β-ionone is still unclear. Here, we explored the one-pot synthesis system for dihydro-β-ionone production using carotenoid cleavage dioxygenase (CCD) and enoate reductase. After screening the CCD enzyme, PhCCD1 from the Petunia hybrid was identified as the suitable enzyme for the first step of dihydro-β-ionone synthesis due to the high enzyme activity for carotenoid. The PhCCD1 was expressed in Escherichia coli and further characterized. The optimal activity of PhCCD1 was observed at pH 6.8 and 45 °C. The enzyme was stable over the pH range of 6.0-8.0 and had good thermal stability below 40 °C. Then, we optimized the coupled reaction conditions for dihydro-β-ionone production by PhCCD1 and enoate reductase AaDBR1 from Artemisia annua. Furthermore, we introduced the NADPH regeneration system with a 1.5-fold enhancement for dihydro-β-ionone production. Collectively, approximately 13.34 mg/L dihydro-β-ionone was obtained by the one-pot biosystem with a corresponding molar conversion of 85.8%. For the first time, we successfully designed and constructed a new synthesis pathway for dihydro-β-ionone production in vitro. The coupled catalysis reported herein illustrates the feasibility of producing dihydro-β-ionone from carotenoids and guides further engineering in the food industry.
Collapse
|
18
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
19
|
Liu Y, Ma X, Liang H, Stephanopoulos G, Zhou K. Monoterpenoid biosynthesis by engineered microbes. J Ind Microbiol Biotechnol 2021; 48:6380491. [PMID: 34601590 DOI: 10.1093/jimb/kuab065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 11/14/2022]
Abstract
Monoterpenoids are C10 isoprenoids and constitute a large family of natural products. They have been used as ingredients in food, cosmetics and therapeutic products. Many monoterpenoids such as linalool, geraniol, limonene and pinene are volatile and can be found in plant essential oils. Conventionally, these bioactive compounds are obtained from plant extracts by using organic solvents or by distillation method, which are costly and laborious if high purity product is desired. In recent years, microbial biosynthesis has emerged as alternative source of monoterpenoids with great promise for meeting the increasing global demand for these compounds. However, current methods of production are not yet at levels required for commercialization. Production efficiency of monoterpenoids in microbial hosts is often restricted by high volatility of the monoterpenoids, a lack of enzymatic activity and selectivity, and/or product cytotoxicity to the microbial hosts. In this review, we summarize advances in microbial production of monoterpenoids over the past three years with particular focus on the key metabolic engineering strategies for different monoterpenoid products. We also provide our perspective on the promise of future endeavors to improve monoterpenoid productivity.
Collapse
Affiliation(s)
- Yurou Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.,Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Xiaoqiang Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Hong Liang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.,Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.,Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
20
|
Abstract
The Streptomyces clavuligerus genome consists in a linear chromosome of about 6.7 Mb and four plasmids (pSCL1 to pSCL4), the latter one of 1.8 Mb. Deletion of pSCL4, results in viable mutants with high instability in the chromosome arms, which may lead to chromosome circularisation. Transcriptomic and proteomic studies comparing different mutants with the wild-type strain improved our knowledge on the biosynthesis and regulation of clavulanic acid, cephamycin C and holomycin. Additional knowledge has been obtained on the SARP-type CcaR activator and the network of connections with other regulators (Brp, AreB, AdpA, BldG, RelA) controlling ccaR expression. The transcriptional pattern of the cephamycin and clavulanic acid clusters is supported by the binding of CcaR to different promoters and confirmed that ClaR is a CcaR-dependent activator that controls the late steps of clavulanic biosynthesis. Metabolomic studies allowed the detection of new metabolites produced by S. clavuligerus such as naringenin, desferroxamines, several N-acyl tunicamycins, the terpenes carveol and cuminyl alcohol or bafilomycin J. Heterologous expression of S. clavuligerus terpene synthases resulted in the formation of no less than 15 different terpenes, although none of them was detected in S. clavuligerus culture broth. In summary, application of the Omic tools results in a better understanding of the molecular biology of S. clavuligerus, that allows the use of this strain as an industrial actinobacterial platform and helps to improve CA production.
Collapse
Affiliation(s)
- Paloma Liras
- Microbiology Section. Department of Molecular Biology University of León, León 24071. Spain
| | - Juan F Martín
- Microbiology Section. Department of Molecular Biology University of León, León 24071. Spain
| |
Collapse
|
21
|
Gu N, Liu S, Qiu C, Zhao L, Pei J. Biosynthesis of 3'-O-methylisoorientin from luteolin by selecting O-methylation/C-glycosylation motif. Enzyme Microb Technol 2021; 150:109862. [PMID: 34489021 DOI: 10.1016/j.enzmictec.2021.109862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
Glycosylation and methylation of flavonoids are the main types of structural modifications and can endow flavonoids with greater stability, bioactivity, and bioavailability. In this study, five types of O-methyltransferases were screened for producing O-methylated luteolin, and the biosynthesis strategy of 3'-O-methylisoorientin from luteolin was determined. To improve the production of 3'-O-methylluteolin, the S-adenosyl-l-methionine synthesis pathway was reconstructed in the recombinant strain by introducing S-adenosyl-l-methionine synthetase genes. After optimizing the conversion conditions, maximal 3'-O-methylluteolin production reached 641 ± 25 mg/L with a corresponding molar conversion of 76.5 %, which was the highest titer of methylated flavonoids reported to date in Escherichia coli. 3'-O-Methylluteolin (127 mg) was prepared from 250 mL of the broth by silica gel column chromatography and preparative HPLC with a yield of 79.4 %. Subsequently, we used the biocatalytic cascade of Gentiana triflora C-glycosyltransferase (Gt6CGT) and Glycine max sucrose synthase (GmSUS) to biosynthesize 3'-O-methylisoorientin from 3'-O-methylluteolin in vitro. By optimizing the coupled reaction conditions and using the fed-batch operation, maximal 3'-O-methylisoorientin production reached 226 ± 8 mg/L with a corresponding molar conversion of 98 %. Therefore, this study provides an efficient method for the production of novel 3'-O-methylisoorientin and the biosynthesis strategy for methylated C-glycosylation flavonoids by selective O-methylation/C-glycosylation motif on flavonoids.
Collapse
Affiliation(s)
- Na Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Simin Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China.
| |
Collapse
|
22
|
Lei D, Qiu Z, Wu J, Qiao B, Qiao J, Zhao GR. Combining Metabolic and Monoterpene Synthase Engineering for de Novo Production of Monoterpene Alcohols in Escherichia coli. ACS Synth Biol 2021; 10:1531-1544. [PMID: 34100588 DOI: 10.1021/acssynbio.1c00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The monoterpene alcohols acyclic nerol and bicyclic borneol are widely applied in the food, cosmetic, and pharmaceutical industries. The emerging synthetic biology enables microbial production to be a promising alternative for supplying monoterpene alcohols in an efficient and sustainable approach. In this study, we combined metabolic and plant monoterpene synthase engineering to improve the de novo production of nerol and borneol in prene-overproducing Escherichia coli. We engineered the growth-orthogonal neryl diphosphate (NPP) as the universal precursor of monoterpene alcohol biosynthesis and coexpressed nerol synthase (GmNES) from Glycine max to generate nerol or coexpressed the truncated bornyl diphosphate synthase (LdtBPPS) from Lippia dulcis for borneol production. Further, through site-directed mutation of LdtBPPS based on the structural simulation, we screened multiple variants that markedly elevated the production of acyclic nerol or bicyclic borneol, of which the LdtBPPSS488T mutant outperformed the wild-type LdtBPPS on borneol synthesis and the LdtBPPSF612A variant was superior to GmNES on nerol production. Subsequently, we overexpressed the endogenous Nudix hydrolase NudJ to facilitate the dephosphorylation of precursors and boosted the production of nerol and borneol from glucose. Finally, after the optimization of the fermentation process, the engineered strain ENO2 produced 966.55 mg/L nerol, and strain ENB57 generated 87.20 mg/L borneol in a shake flask, achieving the highest reported titers of nerol and borneol in microbes to date. This work shows a combinatorial engineering strategy for microbial production of natural terpene alcohols.
Collapse
Affiliation(s)
- Dengwei Lei
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Zetian Qiu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Jihua Wu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Bin Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen 518071, China
| |
Collapse
|
23
|
Wu J, Wang X, Xiao L, Wang F, Zhang Y, Li X. Synthetic Protein Scaffolds for Improving R-(-)-Linalool Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5663-5670. [PMID: 33983023 DOI: 10.1021/acs.jafc.1c01101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
R-(-)-Linalool is widely used in the pharmaceutical, agrochemical, and fragrance industries; however, its applications are limited owing to low yield and high cost of production. To improve the production efficiency of R-(-)-linalool in Escherichia coli, three enzymes [E. coli-derived isopentenyl diphosphate isomerase, Abies grandis-derived geranyl diphosphate synthase, and Streptomyces clavuligerus-derived (3R)-linalool synthases] were physically colocalized to synthetic complexes using synthetic protein scaffolds of GTPase-binding domain, Src homology 3, and PSD95/DlgA/Zo-1. R-(-)-Linalool was produced at the highest concentration in the strain IGL114 containing a scaffold ratio of 1:1:4. By further optimizing the inducer, temperature, and glycerol concentration, the production titer of R-(-)-linalool in the shake flask was increased by approximately 10 times compared with that of the scaffold-free control and was 2.78 times the previously reported yield. The production in the fermenter was about 1.5 times the previous highest production. In general, the final strain accumulated 277.8 and 1523.2 mg/L R-(-)-linalool under the conditions of shake-flask and fed-batch fermentation, respectively. This study provides a foundation for the assembly of bacterial intracellular protein scaffolds.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Wang
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Longjie Xiao
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Li
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
24
|
Wang X, Chen J, Zhang J, Zhou Y, Zhang Y, Wang F, Li X. Engineering Escherichia coli for production of geraniol by systematic synthetic biology approaches and laboratory-evolved fusion tags. Metab Eng 2021; 66:60-67. [PMID: 33865982 DOI: 10.1016/j.ymben.2021.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 12/16/2022]
Abstract
Geraniol is a valuable monoterpene extensively used in the fragrance, food, and cosmetic industries. Increasing environmental concerns and supply gaps have motivated efforts to advance the microbial production of geraniol from renewable feedstocks. In this study, we first constructed a platform geraniol Escherichia coli strain by bioprospecting the key enzymes geranyl diphosphate synthase (GPPS) and geraniol synthase (GES) and selection of a host cell background. This strategy led to a 46.4-fold increase in geraniol titer to 964.3 mg/L. We propose that the expression level of eukaryotic GES can be further optimized through fusion tag evolution engineering. To this end, we manipulated GES to maximize flux towards the targeted product geraniol from precursor geranyl diphosphate (GPP) via the utilization of fusion tags. Additionally, we developed a high-throughput screening system to monitor fusion tag variants. This common plug-and-play toolbox proved to be a robust approach for systematic modulation of protein expression and can be used to tune biosynthetic metabolic pathways. Finally, by combining a modified E1* fusion tag, we achieved 2124.1 mg/L of geraniol in shake flask cultures, which reached 27.2% of the maximum theoretical yield and was the highest titer ever reported. We propose that this strategy has set a good reference for enhancing a broader range of terpenoid production in microbial cell factories, which might open new possibilities for the bio-production of other valuable chemicals.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiaming Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jia Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yujunjie Zhou
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xun Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
25
|
Zhou P, Du Y, Fang X, Xu N, Yue C, Ye L. Combinatorial Modulation of Linalool Synthase and Farnesyl Diphosphate Synthase for Linalool Overproduction in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1003-1010. [PMID: 33427461 DOI: 10.1021/acs.jafc.0c06384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Linalool, as a fragrant monoterpene, is an important feedstock for food, pharmaceuticals, and cosmetics industries. Although our previous study had significantly increased linalool production by the directed evolution of linalool synthase and overexpression of the whole mevalonate pathway genes, the engineered yeast strain suffered from dramatically reduced biomass. Herein, a stress-free linalool-producing yeast cell factory was constructed by the combinational regulation of linalool synthase and farnesyl diphosphate synthase instead of multienzyme overexpression. First, the expression level of linalool synthase was successfully enhanced by introducing a N-terminal SKIK tag, which improved linalool production by 3.3-fold. Subsequently, the modular assembly of linalool synthase and dominant negative farnesyl diphosphate synthase via short peptide tags efficiently converted geranyl pyrophosphate to linalool. Additional downregulation of the native farnesyl diphosphate synthase led to the highest reported linalool production (80.9 mg/L) in yeast. This combinatorial modulation strategy may also be applied to the production of other high-value monoterpenes.
Collapse
Affiliation(s)
- Pingping Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Du
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Xin Fang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Nannan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Chunlei Yue
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|