1
|
Ji XY, Wang BY, Zhang YF, Zhang YJ, Lai YJ, Yang Y, Wang XC, Wang SY, Laborda P, Shi XC. Dipicolinic acid reduces Epicoccum sorghinum symptoms on maize and inhibits tenuazonic acid biosynthesis. PEST MANAGEMENT SCIENCE 2024; 80:6545-6554. [PMID: 39189553 DOI: 10.1002/ps.8393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Epicoccum sorghinum is a pathogenic fungus that causes leaf spot in a wide range of plants, including maize, and synthesizes the mycotoxin tenuazonic acid (TEA), which is carcinogenic. Despite the relevant economic and yield losses caused by E. sorghinum worldwide, methods for the control of this pathogen are lacking. RESULTS In this work, the efficacy of Bacillus-produced dipicolinic acid (DPA) for control of E. sorghinum was evaluated using in vitro and in vivo assays, and compared with the efficacy of three commercial fungicides, including carbendazim, prochloraz, and thiram. DPA inhibited E. sorghinum mycelial growth, and conidia germination, and produced important alterations in E. sorghinum hyphae. Interestingly, 10 mM DPA reduced TEA biosynthesis by 86.6%. Although DPA rapidly degraded on maize leaves, 10 mM DPA showed higher preventive (67.4% lesion length inhibition) and inhibitory (89.5% lesion length inhibition) efficacies for the control of E. sorghinum on maize leaves compared to the commercial fungicides. CONCLUSIONS Collectively, this study presents the first method for the control of E. sorghinum on maize and demonstrates that DPA application is a suitable approach to inhibit E. sorghinum symptoms in plants and TEA biosynthesis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Yu Ji
- School of Life Sciences, Nantong University, Nantong, China
| | - Bing-Yi Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yi-Feng Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yu-Jing Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Ya-Jie Lai
- School of Life Sciences, Nantong University, Nantong, China
| | - Yang Yang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
2
|
Zhang X, Miao S, Song W, Liu X, Wu C, Gan T. Preparation of W-N-C single atom catalyst and Cu 3(HHTP) 2 metal-organic framework dual-decorated graphene nanoplatelet flexible electrode arrays for the rapid detection of carbendazim in vegetables. Food Chem 2024; 459:140338. [PMID: 38996633 DOI: 10.1016/j.foodchem.2024.140338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
It is highly desirable to develop a low-cost and rapid detection method for trace levels of carbendazim fungicide residues, which would be beneficial for improving human health and mitigating environmental issues. Herein, isolated single tungsten atoms were implanted onto well-organized metal-organic framework (MOF)-derived N-doped carbons to form W-N-C single-site heterojunctions with ultrahigh electrocatalytic activity. The coupling of W-N-C with Cu3(HHTP)2, an electronically conductive MOF with a large surface area and porous structure, exhibited enhanced electrocatalytic performance for the oxidation of carbendazim (CBZ) when they were used for decorating graphene nanoplatelet flexible electrode arrays fabricated via template-assisted scalable filtration. A wide linear range (3.0 nM-50 μM) with an ultra-low detection limit of 0.97 nM and fast response was achieved for CBZ analysis. Moreover, the sensing platform has been utilised to monitor CBZ levels in vegetable samples with satisfactory recovery rates of 97.2-102% and a low relative standard deviation of 1.9%.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Shuyan Miao
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Wenjie Song
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Xian Liu
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Can Wu
- Hubei Jiangxia Laboratory, Wuhan 430299, China
| | - Tian Gan
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
3
|
Hu X, Wei W, Li X, Yang Y, Zhou B. Recent advances in ratiometric electrochemical sensors for food analysis. Food Chem X 2024; 23:101681. [PMID: 39157660 PMCID: PMC11328010 DOI: 10.1016/j.fochx.2024.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Ratiometric electrochemical sensors are renowned for their dual-signal processing capabilities, enabling automatic correction of background noise and interferences through built-in calibration, thus providing more accurate and reproducible measurements. This characteristic makes them highly promising for food analysis. This review comprehensively summarizes and discusses the latest advancements in ratiometric electrochemical sensors and their applications in food analysis, emphasizing their design strategies, detection capabilities, and practical uses. Initially, we explore the construction and design strategies of these sensors. We then review the detection of various food-related analytes, including nutrients, additives, metal ions, pharmaceutical and pesticide residues, biotoxins, and pathogens. The review also briefly explores the challenges faced by ratiometric electrochemical sensors in food testing and potential future directions for development. It aims to provide researchers with a clear introduction and serve as a reference for the design and application of new, efficient ratiometric electrochemical sensors in food analysis.
Collapse
Affiliation(s)
- Xincheng Hu
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Wei Wei
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yewen Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
4
|
Vadia FY, Malek NI, Kailasa SK. Synthesis of Carbon Dots from Peltophorum Pterocarpum Flowers for Selective Fluorescence Detection of Carbendazim. J Fluoresc 2024:10.1007/s10895-024-03919-y. [PMID: 39227544 DOI: 10.1007/s10895-024-03919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
In this study, carbon dots (CDs) were synthesized from Peltophorum pterocarpum flowers as the precursor material using the hydrothermal method. The fluorescence emission spectra of the resulting Peltophorum pterocarpum CDs (PP-CDs) exhibited excitation-independent behavior, showing the fluorescence emission peak at 410 nm when excited at 330 nm. This method is simple, rapid and well consistent with the green chemistry and sustainable analytical method development. The as-synthesized PP-CDs acted as a promising fluorescent probe for detecting carbendazim (CBZ) via aggregation-induced emission mechanism, showing a linear response to CBZ concentrations ranging from 1 to 30 μM, with a detection limit of 5.41 nM. This method was successfully applied to quantify CBZ in food samples, achieving excellent recoveries of 99% with a relative standard deviation (RSD) of less than 2%.
Collapse
Affiliation(s)
- Foziya Yusuf Vadia
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India
| | - Naved I Malek
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
| |
Collapse
|
5
|
Zhang Y, Cao X, Liu Q, Chen Y, Wang Y, Cong H, Li C, Li Y, Wang Y, Jiang J, Li L. Multi-omics analysis of Streptomyces djakartensis strain MEPS155 reveal a molecular response strategy combating Ceratocystis fimbriata causing sweet potato black rot. Food Microbiol 2024; 122:104557. [PMID: 38839221 DOI: 10.1016/j.fm.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.
Collapse
Affiliation(s)
- Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qiao Liu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yujie Chen
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yanting Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yixuan Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| |
Collapse
|
6
|
Wang SY, Zhang YJ, Chen X, Shi XC, Herrera-Balandrano DD, Liu FQ, Laborda P. Biocontrol Methods for the Management of Sclerotinia sclerotiorum in Legumes: A Review. PHYTOPATHOLOGY 2024; 114:1447-1457. [PMID: 38669603 DOI: 10.1094/phyto-01-24-0006-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Sclerotinia sclerotiorum is an economically damaging fungal pathogen that causes Sclerotinia stem rot in legumes, producing enormous yield losses. This pathogen is difficult to control due to its wide host spectrum and ability to produce sclerotia, which are resistant bodies that can remain active for long periods under harsh environmental conditions. Here, the biocontrol methods for the management of S. sclerotiorum in legumes are reviewed. Bacillus strains, which synthesized lipopeptides and volatile organic compounds, showed high efficacies in soybean plants, whereas the highest efficacies for the control of the pathogen in alfalfa and common bean were observed when using Coniothyrium minitans and Streptomyces spp., respectively. The biocontrol efficacies in fields were under 65%, highlighting the lack of strategies to achieve a complete control. Overall, although most studies involved extensive screenings using different biocontrol agent concentrations and application conditions, there is a lack of knowledge regarding the specific antifungal mechanisms, which limits the optimization of the reported methods.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | | | - Feng-Quan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
7
|
Jayapaul A, Lin YC, Lin LY, Dhawan U, Duann YF, Lee YH, Liu TY, Sakthivel R, Chung RJ. Synergistic activation of lamellar bismuth selenide anchored functionalized carbon nanofiber for detecting hazardous carbendazim in environmental water samples. CHEMOSPHERE 2024; 355:141744. [PMID: 38522669 DOI: 10.1016/j.chemosphere.2024.141744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/10/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 μA μM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 μM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.
Collapse
Affiliation(s)
- Abishek Jayapaul
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yi-Hsuan Lee
- Department of Mechanical Engineering, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, 32003, Taiwan.
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
8
|
Yang D, Li X, Li X, Chen J, Zhang T, Lian T, Wang H. Design and synthesis of nano-iron oxyhydroxide-based molecularly imprinted electrochemical sensors for trace-level carbendazim detection in actual samples. Mikrochim Acta 2024; 191:163. [PMID: 38413431 DOI: 10.1007/s00604-024-06236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Carbendazim (CBD) is widely used as a fungicide that acts as a pesticide in farming to prevent crop diseases. However, CBD can remain on crops for a long time. When consumed by humans and animals, it produces a range of toxic symptoms and poses a serious threat to their health. Therefore, the detection of CBD is necessary. Traditional assay strategies for CBD detection, although sensitive and practical, can hardly achieve fast, robust monitoring during food processing and daily life. Here, we designed a novel electrochemical sensor for CBD detection. In this method, iron oxyhydroxide nanomaterial (β-FeOOH) was first prepared by hydrothermal method. Then, a molecularly imprinted polymer (MIP) layer was electropolymerized on the surface using CBD as the template and resorcinol (RC) as the functional monomer. The synergistic interaction between β-FeOOH and MIP endows the MIP/β-FeOOH/CC-based electrochemical sensor with high specificity and sensitivity. Under optimal conditions, the MIP/β-FeOOH/CC-based sensor showed a wide linear range of 39 pM-80 nM for CBD and a detection limit as low as 25 pM. Therefore, the as-prepared sensor can be a practical and effective tool for pesticide residue detection.
Collapse
Affiliation(s)
- Dong Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China.
| | - Xuhua Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Xiangyu Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Jifan Chen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Ting Lian
- School of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Haihua Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China.
| |
Collapse
|
9
|
Liu W, Liu F, Che A, Chen Y, Cai J, Liu W, Jing G, Li W, Yu J. Investigation of low-temperature partitioning with dispersive solid-phase extraction for quantification of pesticides in apples followed by electrospray-ionization mobility spectrometry: Comparison with conventional procedure. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124014. [PMID: 38306956 DOI: 10.1016/j.jchromb.2024.124014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Ion mobility spectrometry (IMS) has a promising application prospect in food surveillance. However, due to the complexity of food matrix and trace levels of pesticide residues, the effective and rapid detection of pesticides by IMS has been a challenge, especially when using electrospray ionization (ESI) as an ion source. In this study, low-temperature partitioning with dispersive solid-phase extraction (LTP-dSPE) was explored and compared with conventional procedures. Both methods were validated for the quantification of eight pesticides in apples, obtaining a limit of detection (LOD) of 0.02-0.12 mg/kg for LTP-dSPE and 0.02-0.09 mg/kg for conventional solid-phase extraction (SPE), lower than those usually stipulated by government legislation in food matrices. For LTP-dSPE, the matrx effect (ME) ranged from -16.3 to -68.6 %, lower than that for the SPE method, ranging from -70.0 to -92.9 %. The results showed satisfactory efficiency and precision, with recovery values ranging from 67.9 to 115.4 % for LTP-dSPE and from 62.0 to 114.8 % for conventional SPE, with relative standard deviations below 13.0 %. Notably, the proposed LTP-dSPE/ESI-IMS has been shown to be more cost-effective, easier to use, more environment-friendly, more accessible, and, most importantly, less matrix effect than the conventional method, thereby being suitably applicable to a wide range of food safety applications.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Fei Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Anyi Che
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yanjing Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jiayi Cai
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wenjie Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Guoxing Jing
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wenshan Li
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jianna Yu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
10
|
Arain M, Nafady A, Ul Haq MA, Asif HM, Ahmad HB, Khan MA, Hussain S, Sirajuddin. Selective and sensitive colorimetric detection of endocrine disrupter fungicide carbendazim through secnidazole capped silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123313. [PMID: 37666098 DOI: 10.1016/j.saa.2023.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Pesticides and fungicides are extremely useful to hinder the attacks of pests and fungi to secure crops, vegetables, fruits and other plants but due to their endocrine disrupting and carcinogenic risks in humans and animals through their continued addition in water resources they are extremely important to monitor carefully. In this investigation we synthesized silver nanoparticles (AgNPs) via the reducing action of sodium borohydride in the presence of secnidazole (SEC) as capping agent under various optimized parameters such as the concentration of NaBH4, silver nitrate (AgNO3), SEC and pH. These SEC-AgNPs were characterized through various techniques including ultra-violet visible (UV-Vis) spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta-potential analysis (ZPA) in order to investigate their diverse properties. As prepared SEC-AgNPs were proved as extremely sensitive for trace level sensing of fungicide carbendazim (CARB) in the range of 0.5-22 µM with limit of detection (LOD) equal to 0.021 µM and R2 value of 0.9964. SEC-AgNPs were tested for CARB sensing under the presence of several pesticides with negligible interference thus verifying its exclusive selectivity for the targeted analyte. This SEC-AgNPs was further applied to find out the concentration of CARB in real samples of tap water and human blood plasma with reference to standard addition method.
Collapse
Affiliation(s)
- Munazza Arain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Anwar Ul Haq
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, 75270, Pakistan
| | - Hafiz Muhammad Asif
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Saghir Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Sirajuddin
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, 75270, Pakistan.
| |
Collapse
|
11
|
Wang D, Yang G, Yun X, Luo T, Guo H, Pan L, Du W, Wang Y, Wang Q, Wang P, Zhang Q, Li Y, Lin N. Carbendazim residue in plant-based foods in China: Consecutive surveys from 2011 to 2020. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100301. [PMID: 37560751 PMCID: PMC10407663 DOI: 10.1016/j.ese.2023.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023]
Abstract
Carbendazim, a widely used fungicide in China, has been found to have reproductive toxicity and mutagenic effects. However, information on the spatial-temporal variations of carbendazim residues in food in China is limited. Here, we investigated the presence of carbendazim in China's plant-based foods from 2011 to 2020, evaluated the spatial-temporal characteristics, and assessed the associated exposure risks in the Chinese diet. The results revealed a high detection frequency of carbendazim in fruits (26.4%) and high concentrations in vegetables (∼110 mg kg-1), indicating widespread misuse of the fungicide. The acute risks of consuming certain vegetables and cereals exceeded the recommended limits by up to 12 and 5 times, respectively. Although there has been a decline in carbendazim residue levels in food since the implementation of the Chinese government's action plan for zero growth of pesticide use in 2015, some provinces still exhibited high levels of carbendazim in multiple food categories, which were positively correlated with annual pesticide application. We highlight that carbendazim contamination reflects the broader issue of pesticide use in China. It emphasizes the need for committed and targeted national policies to reduce carbendazim residues in food and suggests that such measures could also regulate the use of other pesticides, given that pesticide abuse in China is not limited to specific types. We call for the re-evaluation of maximum residue limits of carbendazim, particularly in highly consumed foods such as cereals.
Collapse
Affiliation(s)
- Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xiao Yun
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hao Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liying Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, 650500, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Pu Wang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yun Li
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| |
Collapse
|
12
|
Khosropour H, Keramat M, Laiwattanapaisal W. A dual action electrochemical molecularly imprinted aptasensor for ultra-trace detection of carbendazim. Biosens Bioelectron 2024; 243:115754. [PMID: 37857063 DOI: 10.1016/j.bios.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Carbendazim is often used in agriculture to prevent crop diseases, even though it has been associated with health concerns. To ensure the safety of food products and comply with environmental regulations, an ultrasensitive method for carbendazim determination must be developed. In this study, a new electrochemical molecularly imprinted polymer-aptasensor based on hemin-Al-metal organic framework@gold nanoparticles (H-Al-MOF@AuNPs) was developed for sensitive and selective carbendazim detection. Hemin linked to the surface of the Al-metal organic framework also possesses outstanding peroxidase-like qualities that can electrocatalyse the reduction of H2O2. Thus, H-Al-MOF functions as an in-situ probe. Additionally, AuNPs offer many binding sites to load carbendazim aptamers and create an imprinted polymer-aptasensing interface. Dopamine is the chemical functional monomer in the electropolymerised film, while carbendazim is the template molecule. Thus, compared to the molecularly imprinted polymer or aptasensor alone, the molecularly imprinted polymer-aptasensor showed greater selectivity due to the synergistic action of the polymer and carbendazim aptamer towards carbendazim. A decrease in peak current was observed by differential pulse voltammetry (DPV) and chronoamperometry (CA) as the concentration of carbendazim increased. This possibly resulted from carbendazim connecting to the carbendazim aptamer and simultaneously blocking the imprinted polymer cavities on the surface of the modified electrode, which reduced the transfer of electrons. Signals were observed for hemin DPV and H2O2 catalytic reduction CA. DPV and CA showed that the linear ranges for carbendazim were 0.3 fmol L-1-10 pmol L-1 and 0.7 fmol L-1-10 pmol L-1, respectively, with limits of detection of 80 and 300 amol L-1. Satisfactory recoveries were obtained with tap water, apple juice, and tomato juice samples, demonstrating that the proposed sensor has potential for food and environmental analysis.
Collapse
Affiliation(s)
- Hossein Khosropour
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mansoureh Keramat
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Zhang S, Luo T, Weng Y, Wang D, Sun L, Yu Z, Zhao Y, Liang S, Ren H, Zheng X, Jin Y, Qi X. Toxicologic effect and transcriptome analysis for sub-chronic exposure to carbendazim, prochloraz, and their combination on the liver of mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5500-5512. [PMID: 38123780 DOI: 10.1007/s11356-023-31412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Carbendazim (CBZ) and prochloraz (PCZ) are broad-spectrum fungicides used in agricultural peat control. Both fungicides leave large amounts of residues in fruits and are toxic to non-target organisms. However, the combined toxicity of the fungicides to non-target organisms is still unknown. Therefore, we characterized the toxic effects of dietary supplementation with CBZ, PCZ, and their combination for 90 days in 6-week-old male Institute of Cancer Research (ICR) mice. CBZ-H (100 mg/kg day), PCZ-H (10 mg/kg day), and their combination treatments increased the relative liver weights and caused liver injury. The serum total cholesterol (TC), triglyceride (TG), glucose (Glu), pyruvate (PYR), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were reduced, and synergistic toxicity was observed. Hepatic transcriptome revealed that 326 differentially expressed genes (DEGs) of liver were observed in the CBZ treatment group, 149 DEGs in the PCZ treatment group, and 272 DEGs in the combination treatment group. According to KEGG enrichment analysis, the fungicides and their combination affected lipid metabolism, amino acid metabolism, and ferroptosis. In addition, the relative mRNA levels of key genes involved in lipid metabolism were also examined. Compared with individual exposure, combined exposure to CBZ and PCZ caused a more obvious decrease in the expression of some genes related to glycolipid metabolism. Furthermore, the relative mRNA levels of some key genes in the combination treatment group were lower than those in the CBZ and PCZ treated groups. In summary, CBZ, PCZ, and their combination generally caused hepatotoxicity and glycolipid metabolism disorders, which could provide new insights for investigating the combined toxicity of multiple fungicides to animals.
Collapse
Affiliation(s)
- Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Li Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Senmiao Liang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiliang Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
14
|
Kesavan G, Subramaniam T, Manemaran HV. Development of Promising Flower-like Ag/SrFeO 3 Nanosheet Electrode Materials: An Efficient and Selective Electrocatalytic Detection of Caffeic Acid in Coffee and Green Tea. ACS OMEGA 2023; 8:46414-46424. [PMID: 38107911 PMCID: PMC10719917 DOI: 10.1021/acsomega.3c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
The development of highly efficient electrocatalytic sensors is necessary for detection in various paramedical and industrial applications. Motivated by this concept, we demonstrate flower-like Ag/SrFeO3 nanostructures prepared by a facile route to modify electrocatalyst material for the detection of caffeic acid (CA). The surface morphology, phase structure, particle size, and pore volume were investigated through different physicochemical analytical techniques. The cyclic voltammetry technique was employed to evaluate the electrochemical behavior of both glassy carbon and modified Ag/SrFeO3 electrodes toward CA. The study revealed that the modified electrode shows excellent electrocatalytic activity toward CA compared to the reported values, with a wide linear range of 1-15 nM, a detection limit of 23 nM, good stability, and excellent repeatability. The superior results are attributed to numerous factors such as rapid electron transfer ability, tunable texture, high surface area, and good conductivity. The created Ag/SrFeO3 nanostructure-based electrochemical biosensor is a potential candidate for real-time analytical performance to directly detect CA in commercially available coffee and green tea without any pre-treatment.
Collapse
Affiliation(s)
- Girija Kesavan
- Department
of Physics, Dr. N.G.P. Arts and Science
College, Coimbatore 641 048, India
| | | | | |
Collapse
|
15
|
Wang X, Yang S, Bai X, Shan J. Bimetallic CoCu nanoparticles anchored on COF/SWCNT for electrochemical detection of carbendazim. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166530. [PMID: 37633369 DOI: 10.1016/j.scitotenv.2023.166530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Carbendazim (CBZ) is a widespread fungicide used in crop protection, but the CBZ residues in drinking water, fruits, and vegetables can also cause adverse impacts on public health due to direct exposure. In this paper, a ternary synergistic composite of bimetallic CoCu nanoparticles anchored on covalent organic framework/single-walled carbon nanotube (CoCu/COF/SWCNT) was prepared and further applied as an electrochemical sensing platform for detecting CBZ. The sensor showed a sensitive response performance toward CBZ oxidation, as a result of the enhanced charge transfer ability, large electrochemically active surface area, and high electro-catalytic activity from the rational integration of the ternary components in CoCu/COF/SWCNT. Under the optimal conditions, the proposed sensor exhibited a detection range of 0.001 to 10 μM and a limit detection of 0.65 nM for CBZ detection. In addition, the sensor displayed practical feasibility for the determination of CBZ in water and pear samples with a recovery of 96.1 % to 102.1 %.
Collapse
Affiliation(s)
- Xue Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Shuang Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xuting Bai
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
16
|
Luo F, Tang Y, Zheng J, Xie Z, Wang J, Zhou J, Wu Y. Smartphone-assisted colorimetric aptasensor for rapid detection of carbendazim residue in agriculture products based on the oxidase-mimicking activity of octahedral Ag 2O nanoparticles. Talanta 2023; 265:124845. [PMID: 37385190 DOI: 10.1016/j.talanta.2023.124845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Carbendazim (CBZ) is a widely used pesticides, and its excessive intake is serious damage to humans and animals. Herein, a stable and sensitive colorimetric aptasensor for rapid detection of CBZ residue has been established based on the enhancement of CBZ-specific aptamer (CZ-13) on oxidase-mimicking activity of octahedral Ag2O nanoparticles (NPs). The CZ-13 aptamer can significantly increase the catalytic activity by promoting the production of superoxide anion (·O2-) on the surface of Ag2O NPs and enhancing the affinity of octahedral Ag2O NPs to 3,3',5,5'-tetramethylbenzidine (TMB) molecules. In the presence of CBZ, the quantity of CZ-13 aptamer will be exhausted due to the specific binding to CBZ pesticide. Thus, the rest CZ-13 aptamer no longer enhanced the catalytic activity of octahedral Ag2O NPs, which leads to the change in color of sensing solution. The color change of sensing solution can be easily converted to the corresponding RGB value by a smartphone for quantitative and rapid detection of CBZ. The designed aptasensor has excellent sensitivity and specificity, and the limit of detection was determined as low as 7.35 μg L-1 for CBZ assay. Besides, the aptasensor exhibited good recoveries in the spiked cabbage, apple and cucumber, showing that it may have broad application prospects for detecting CBZ residues in agriculture products.
Collapse
Affiliation(s)
- Feng Luo
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Yue Tang
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China
| | - Zhengmin Xie
- Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China
| | - Junjun Wang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China; College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
17
|
Crapnell RD, Adarakatti PS, Banks CE. Electroanalytical overview: the sensing of carbendazim. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4811-4826. [PMID: 37721714 DOI: 10.1039/d3ay01053h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Carbendazim is a broad-spectrum systemic fungicide that is used to control various fungal diseases in agriculture, horticulture, and forestry. Carbendazim is also used in post-harvest applications to prevent fungal growth on fruits and vegetables during storage and transportation. Carbendazim is regulated in many countries and banned in others, thus, there is a need for the sensing of carbendazim to ensure that high levels are avoided which can result in potential health risks. One approach is the use of electroanalytical sensors which present a rapid, but highly selective and sensitive output, whilst being economical and providing portable sensing platforms to support on-site analysis. In this minireview, we report on the electroanalytical sensing of carbendazim overviewing recent advances, helping to elucidate the electrochemical mechanism and provide conclusions and future perspectives of this field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Prashanth S Adarakatti
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
18
|
Venegas CJ, Bollo S, Sierra-Rosales P. Carbon-Based Electrochemical (Bio)sensors for the Detection of Carbendazim: A Review. MICROMACHINES 2023; 14:1752. [PMID: 37763915 PMCID: PMC10536525 DOI: 10.3390/mi14091752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Carbendazim, a fungicide widely used in agriculture, has been classified as a hazardous chemical by the World Health Organization due to its environmental persistence. It is prohibited in several countries; therefore, detecting it in food and environmental samples is highly necessary. A reliable, rapid, and low-cost method uses electrochemical sensors and biosensors, especially those modified with carbon-based materials with good analytical performance. In this review, we summarize the use of carbon-based electrochemical (bio)sensors for detecting carbendazim in environmental and food matrixes, with a particular interest in the role of carbon materials. Focus on publications between 2018 and 2023 that have been describing the use of carbon nanotubes, carbon nitride, graphene, and its derivatives, and carbon-based materials as modifiers, emphasizing the analytical performance obtained, such as linear range, detection limit, selectivity, and the matrix where the detection was applied.
Collapse
Affiliation(s)
- Constanza J. Venegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago 8380492, Chile
| | - Paulina Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| |
Collapse
|
19
|
Wang SY, Pang YB, Tao Y, Shi XC, Zhang YJ, Wang YX, Jiang YH, Ji XY, Wang BL, Herrera-Balandrano DD, Laborda P. Dipicolinic acid enhances kiwifruit resistance to Botrytis cinerea by promoting phenolics accumulation. PEST MANAGEMENT SCIENCE 2023; 79:3177-3189. [PMID: 37024430 DOI: 10.1002/ps.7496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/25/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Kiwifruit is highly susceptible to fungal pathogens, such as Botrytis cinerea, which reduce crop production and quality. In this study, dipicolinic acid (DPA), which is one of the main components of Bacillus spores, was evaluated as a new elicitor to enhance kiwifruit resistance to B. cinerea. RESULTS DPA enhances antioxidant capacity and induces the accumulation of phenolics in B. cinerea-infected 'Xuxiang' kiwifruit. The contents of the main antifungal phenolics in kiwifruit, including caffeic acid, chlorogenic acid and isoferulic acid, increased after DPA treatment. DPA enhanced H2 O2 levels after 0 and 1 days, which promoted catalase (CAT) and superoxide dismutase (SOD) activities, reducing long-term H2 O2 levels. DPA promoted the up-regulation of several kiwifruit defense genes, including CERK1, MPK3, PR1-1, PR1-2, PR5-1 and PR5-2. Furthermore, DPA at 5 mM inhibited B. cinerea symptoms in kiwifruit (95.1% lesion length inhibition) more effectively than the commercial fungicides carbendazim, difenoconazole, prochloraz and thiram. CONCLUSIONS The antioxidant properties of DPA and the main antifungal phenolics of kiwifruit were examined for the first time. This study uncovers new insights regarding the potential mechanisms used by Bacillus species to induce disease resistance. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yi-Bo Pang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yuan Tao
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Yu Ji
- School of Life Sciences, Nantong University, Nantong, China
| | - Bing-Lin Wang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
20
|
Ma C, Yang Z, Zhang S, Zhang X, Wang S, Cheng H, Liu Y, Ruan H, Xu Z, Liang C, Liang D, Ding Z, Liu Y, Cao Y. Carbendazim exposure inhibits mouse oocytes meiotic maturation in vitro by destroying spindle assembly. Food Chem Toxicol 2023; 179:113966. [PMID: 37506866 DOI: 10.1016/j.fct.2023.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Successful fertilization and early embryonic development heavily depend on the quality of the oocytes. Carbendazim (CBZ), a broad-spectrum fungicide, is widely available in the environment and has adverse effects on organisms. The present study focused on exploring the potential reproductive toxicity of CBZ exposure by investigating its effects on the maturation of mouse oocytes. The results demonstrated that although no disruptions were observed in the G2/M stage transition for meiosis resumption, CBZ did hinder the polar body extrusion (PBE) occurring during oocyte maturation. Cell cycle distribution analysis revealed that CBZ exposure interfered with the meiotic process, causing oocytes to be arrested at the metaphase I (MI) stage. The subsequent investigation highlighted that CBZ exposure impeded the spindle assembly and chromosomal alignment, which was linked to a decline in the level of p-MAPK. Additionally, CBZ exposure adversely affected the kinetochore-microtubule (K-MT) attachment, leading to the persistent activation of the spindle-assembly checkpoint (SAC). The study further noticed a substantial rise in the acetylation of α-tubulin and a reduction in spindle microtubule stability in CBZ-treated oocytes. In addition, the distribution pattern of estrogen receptor alpha (ERα) was altered in oocytes treated with CBZ, with abnormal aggregation on the spindles. CBZ exposure also resulted in altered histone modifications. A notable finding from this research was that the meiotic maturation of some oocytes remained unaffected even after CBZ treatment. However, during the ensuing metaphase II (MII) stage, these oocytes displayed anomalies in their spindle morphology and chromosome arrangement and diminished ability to bind to the sperm. The observations made in this study underscore the potential for CBZ to disrupt the meiotic maturation of oocytes, leading to a decline in the overall quality of oocytes.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Zhuonan Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Shouxin Zhang
- Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Xueke Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Siyuan Wang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Huiru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Yang Liu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Chunmei Liang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Dan Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| | - Yajing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
21
|
Lai H, Ming P, Liu Y, Wang S, Zhou Q, Zhai H. MWCNTs and ZnO-based Ce-MOF nanocomposites as enhanced sensing platform for electrochemical detection of carbendazim in Chinese traditional herbs samples. Mikrochim Acta 2023; 190:281. [PMID: 37407849 DOI: 10.1007/s00604-023-05869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
A facile and novel Ce-MOF@MWCNTs@ZnO-modified glassy carbon electrode was prepared through drop coating and used for accurate and sensitive electrochemical detection of carbendazim. The modification of ZnO nanospheres and Ce-based metal-organic frameworks (Ce-MOFs), which possess vast surface/bulk ratio, large surface area, and excellent catalytic ability, provided more active sites for reaction. The combination of multi-walled carbon nanotubes endowed the modified electrode with excellent conductivity and greatly accelerated the electron transfer. The promotion of electrochemical response and the significant improvement of peak current indicated the outstanding electrocatalytic ability of the modified electrode. The oxidation peak current of carbendazim which was measured by DPV in a potential range from 0.5 to 1.0 V produced a good linear relationship in the concentration ranges 0.05-10.0 μM and 10.0-50.0 μM under optimized experimental conditions. The detection limit was 13.2 nM (S/N = 3). The constructed electrode was successfully applied to the detection of carbendazim in Lithospermum and Glycyrrhiza uralensis real samples and exhibited satisfactory RSD (2.7-3.6% and 1.6-4.8%, respectively) and recovery (102-106% and 97.7-107%, respectively).
Collapse
Affiliation(s)
- Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongxin Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qing Zhou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Martins TS, Machado SAS, Oliveira ON, Bott-Neto JL. Optimized paper-based electrochemical sensors treated in acidic media to detect carbendazim on the skin of apple and cabbage. Food Chem 2023; 410:135429. [PMID: 36641915 DOI: 10.1016/j.foodchem.2023.135429] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Wearable sensors such as those made with paper are needed for non-destructive routine analysis of pesticides on plants, fruits, and vegetables. Herein we report on electrochemical sensors made with screen-printed carbon electrodes on kraft and parchment papers to detect the fungicide carbendazim. A systematic optimization was performed to find that electrochemical sensors on kraft paper treated in an acidic medium led to the highest performance, with a detection limit of 0.06 µM for carbendazim. The enhanced sensitivity for this sensor was attributed to the porous nature of kraft paper, which allowed for a large electrode surface area, and to the carboxylic groups formed during electrochemical activation. As a proof-of-concept, the electrochemical sensor attached to the skin of apple and cabbage was used to detect carbendazim with the same performance as the gold standard method, thus demonstrating that the sensor can be used in the farm and on supermarket shelves.
Collapse
Affiliation(s)
- Thiago S Martins
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - José L Bott-Neto
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
23
|
Guterres Silva LR, Santos Stefano J, Cornélio Ferreira Nocelli R, Campos Janegitz B. 3D electrochemical device obtained by additive manufacturing for sequential determination of paraquat and carbendazim in food samples. Food Chem 2023; 406:135038. [PMID: 36463603 DOI: 10.1016/j.foodchem.2022.135038] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Pesticides are heavily employed compounds protecting crops, however, these compounds can be extremely harmful to human health. Once the monitoring of pesticides in foods is of great importance, in this work we propose a ready-to-use electrochemical sensor made with 3D printing technology, capable of detecting paraquat and carbendazim in sequential analysis. The proposed electrodes are lab-made and of easy obtention, composed of graphite on a polylactic acid matrix, and provided great results for the analysis of paraquat and carbendazim in honey, milk, juice, and water samples. The sequential analysis of paraquat and carbendazim was proposed, providing optimal analysis of both compounds individually when both are present in a mixture. Limits of detection of 0.01 and 0.03 µmol/L for paraquat and carbendazim, respectively. Recovery tests attested to the suitability of the method, ranging from 94.5 to 113.7 %, and the suitability of 3D printing for environmental and food samples analysis.
Collapse
Affiliation(s)
- Luiz Ricardo Guterres Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
| | - Jéssica Santos Stefano
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil.
| | | | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil.
| |
Collapse
|
24
|
Kumar A, Castro M, Feller JF. Review on Sensor Array-Based Analytical Technologies for Quality Control of Food and Beverages. SENSORS (BASEL, SWITZERLAND) 2023; 23:4017. [PMID: 37112358 PMCID: PMC10141392 DOI: 10.3390/s23084017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Food quality control is an important area to address, as it directly impacts the health of the whole population. To evaluate the food authenticity and quality, the organoleptic feature of the food aroma is very important, such that the composition of volatile organic compounds (VOC) is unique in each aroma, providing a basis to predict the food quality. Different types of analytical approaches have been used to assess the VOC biomarkers and other parameters in the food. The conventional approaches are based on targeted analyses using chromatography and spectroscopies coupled with chemometrics, which are highly sensitive, selective, and accurate to predict food authenticity, ageing, and geographical origin. However, these methods require passive sampling, are expensive, time-consuming, and lack real-time measurements. Alternately, gas sensor-based devices, such as the electronic nose (e-nose), bring a potential solution for the existing limitations of conventional methods, offering a real-time and cheaper point-of-care analysis of food quality assessment. Currently, research advancement in this field involves mainly metal oxide semiconductor-based chemiresistive gas sensors, which are highly sensitive, partially selective, have a short response time, and utilize diverse pattern recognition methods for the classification and identification of biomarkers. Further research interests are emerging in the use of organic nanomaterials in e-noses, which are cheaper and operable at room temperature.
Collapse
|
25
|
Photoelectrochemical aptasensor based on cascade dual Z-scheme CdTe-polyaniline@MoS2 heterostructure for the sensitive carbendazim detection. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Tang Y, Yu H, Niu X, Wang Q, Liu Y, Wu Y. Aptamer-mediated carbon dots as fluorescent signal for ultrasensitive detection of carbendazim in vegetables and fruits. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Guo L, Zhao B, Hao L, Zhang Y, Wang C. An electrochemical sensor based on MOF-derived porous carbon/graphene composite for sensitive determination of carbendazim. Mikrochim Acta 2022; 189:454. [DOI: 10.1007/s00604-022-05526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
|
28
|
Cestonaro LV, Macedo SMD, Piton YV, Garcia SC, Arbo MD. Toxic effects of pesticides on cellular and humoral immunity: an overview. Immunopharmacol Immunotoxicol 2022; 44:816-831. [PMID: 35770924 DOI: 10.1080/08923973.2022.2096466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
People are exposed to pesticides through food, drinking water, and the environment. These compounds are associated with several disorders, such as inflammatory diseases, rheumatoid arthritis, cancer, and a condition related to metabolic syndrome. The immunotoxicants or immunotoxic compounds can cause a wide variety of effects on immune function, altering humoral immunity and cell-mediated immunity, resulting in adverse effects to the body. Here, immune system disorders are highlighted because they are closely linked to multiple organs, including the nervous, endocrine, reproductive, cardiovascular, and respiratory systems, leading to transient or permanent changes. Therefore, this study reviewed the mechanisms involved in the immunotoxicity of fungicides, herbicides, and insecticides in cells, animals, and humans in the past 11 years. According to the studies analyzed, the pesticides interfere with innate and adaptive immune functions, but the effects observed mainly on cellular and humoral immunity were highlighted. These compounds affected specific immune cells, causing apoptosis, changes in factor nuclear kappa B (NF-κB) expression, pro-inflammatory factors interleukin 6 (IL-6), interleukin 8 (IL-8), interferon-gamma (IFN-γ), chemokines (CXCL-c1c), and anti-inflammatory factor, such as interleukin 10 (IL-10). To verify the threats of these compounds, new evaluations with immunotoxicological biomarkers are necessary. HighlightsPesticides interfere with the innate and adaptive immune response.Cells, animals and human studies demonstrate the immunotoxicity of pesticides in the cellular and humoral immune response.Fungicides, herbicides, and insecticides alter the immune system by various mechanisms, such as pro-inflammatory and anti-inflammatory factors.
Collapse
Affiliation(s)
- Larissa Vivan Cestonaro
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Sandra Manoela Dias Macedo
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Yasmin Vendrusculo Piton
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Marcelo Dutra Arbo
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
29
|
Khosropour H, Maeboonruan N, Sriprachuabwong C, Tuantranont A, Laiwattanapaisal W. A new double signal on electrochemical aptasensor based on gold nanoparticles/graphene nanoribbons/MOF-808 as enhancing nanocomposite for ultrasensitive and selective detection of carbendazim. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Sakthi Priya T, Nataraj N, Chen TW, Chen SM, Kokulnathan T. Synergistic formation of samarium oxide/graphene nanocomposite: A functional electrocatalyst for carbendazim detection. CHEMOSPHERE 2022; 307:135711. [PMID: 35843428 DOI: 10.1016/j.chemosphere.2022.135711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Herein, an electrochemical sensor based on samarium oxide anchored, reduced graphene oxide (Sm2O3/RGO) nanocomposite was developed for the rapid detection of carbendazim (CBZ). Different characterization methods were infused to deeply examine the morphology, composition, and elemental state of Sm2O3/RGO nanocomposite. The Sm2O3/RGO modified electrode exhibits an excellent electro-catalytic performance toward CBZ detection with a peak potential of +1.04 V in phosphate buffer solution (pH 3.0), which is superior to the RGO-, Sm2O3- and bare- electrodes. This remarkable activity can be credited to the synergetic effect generated by the robust interaction between Sm2O3 and RGO, resulting in a well-enhanced electrochemical sensing ability. Impressively, the fabricated sensor shows improved electrochemical performance in terms of the wide working range, detection limit, and strong sensitivity. On a peculiar note, the electrochemical sensing performances of CBZ detection based on Sm2O3/RGO nanocomposite demonstrate an extraordinary behavior compared to the prior documented electro-catalyst. In addition, the fabricated Sm2O3/RGO sensor also displays good operational stability, reproducibility, and repeatability towards the detection of CBZ. Furthermore, it was successfully applied to the CBZ detection in food and environmental water samples with satisfactory recovery. In accordance with our research findings, the Sm2O3/RGO nanocomposite could be used as an electro-active material for effectual electrochemical sensing of food and environmental pollutants.
Collapse
Affiliation(s)
- Thangavelu Sakthi Priya
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan; Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan.
| | - Thangavelu Kokulnathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan; Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| |
Collapse
|
31
|
Xiao Y, Wu N, Wang L, Chen L. A Novel Paper-Based Electrochemical Biosensor Based on N,O-Rich Covalent Organic Frameworks for Carbaryl Detection. BIOSENSORS 2022; 12:899. [PMID: 36291036 PMCID: PMC9599374 DOI: 10.3390/bios12100899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/28/2023]
Abstract
A new N,O-rich covalent organic framework (COFDHNDA-BTH) was synthesized by an amine-aldehyde condensation reaction between 2,6-dialdehyde-1,5-dihydroxynaphthalene (DHNDA) and 1,3,5-phenyltriformylhydrazine (BTH) for carbaryl detection. The free NH, OH, and C=O groups of COFDHNDA-BTH not only covalently couples with acetylcholinesterase (AChE) into the pores of COFDHNDA-BTH, but also greatly improves the catalytic activity of AChE in the constrained environment of COFDHNDA-BTH's pore. Under the catalysis of AChE, the acetylthiocholine (ATCl) was decomposed into positively charged thiocholine (TCl), which was captured on the COFDHNDA-BTH modified electrode. The positive charges of TCl can attract anionic probe [Fe(CN)6]3-/4- on the COFDHNDA-BTH-modified electrode to show a good oxidation peak at 0.25 V (versus a saturated calomel electrode). The carbaryl detection can inhibit the activity of AChE, resulting in the decrease in the oxidation peak. Therefore, a turn-off electrochemical carbaryl biosensor based on a flexible carbon paper electrode loaded with COFDHNDA-BTH and AChE was constructed using the oxidation peak of an anionic probe [Fe(CN)6]3-/4- as the detection signal. The detection limit was 0.16 μM (S/N = 3), and the linear range was 0.48~35.0 μM. The sensor has good selectivity, repeatability, and stability, and has a good application prospect in pesticide detection.
Collapse
Affiliation(s)
| | | | | | - Lili Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
32
|
Nataraj N, Chen TW, Akilarasan M, Chen SM, Al-Ghamdi AA, Elshikh MS. Se substituted 2D-gC 3N 4 modified disposable screen-printed carbon electrode substrate: A bifunctional nano-catalyst for electrochemical and absorption study of hazardous fungicide. CHEMOSPHERE 2022; 302:134765. [PMID: 35500632 DOI: 10.1016/j.chemosphere.2022.134765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The indispensable usage of pesticides for the control and prevention of pests is probable and includes several types based on the problems in the crops. Among them, fungicides, are one problem-solving agent curing fungal developments. the disproportionate use of fungicides will lead to environmental deterioration and several health issues. The assessment of such fungicides is highly motivated to be detected. Under the class of two-dimensional materials, graphitic carbon nitride (GCN) with high surface area and high electrocatalytic activity was chosen as electrode material. The efficiency of GCN was improved with the subsequent substitution of selenium (Se) into the triazine ring as Se-GCN. The structural and surface analysis was done and the layered structure was proved. The electrochemical detection of CBM showed a lower detection limit at 6 nM with a linear range 0.099 μM-346.9 μM while, the absorption studies showed a LOD of 20 nM with a linear range of 0.099 μM-182.09 μM. The orange juice and vegetable extract samples had good recovery with CBM at Se-GCN modified disposable screen-printed electrode. The developed disposable electrode was more sensitive with 6.45 μAμM-1cm2 sensitivity and highly reactive with CBM. Moreover, the developed sensor will be more effective in sensing applications to avoid the menace generated by several agents.
Collapse
Affiliation(s)
- Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Muthumariappan Akilarasan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
33
|
Guan M, Guo Y, Yan X, Si X, Peng X, Lei Y, Shen X, Luo L, He H. Silver ions involved fluorescence "on-off" responses of gold nanoclusters system for determination of carbendazim residues in fruit samples. Food Chem 2022; 386:132836. [PMID: 35381539 DOI: 10.1016/j.foodchem.2022.132836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
Herein, a fluorescence "on-off" system was developed for monitoring carbendazim (CBZ) residues in fruit samples, based on glutathione-gold nanoclusters (GSH-Au NCs) and silver ions (Ag+). First, the fluorescence intensity of GSH-Au NCs was greatly enhanced (turn on) with aggregation-induced emission enhancement (AIEE) effect in the presence of Ag+, then fluorescence quenching occurred (turn off) with adding CBZ by the chelation between CBZ and Ag+. The quenching degree was well linearly dependent on CBZ concentration covering from 0.5 to 20 μM. Moreover, the GSH-Au NCs-Ag+ system exhibited superior selectivity towards CBZ and was sensitive for the determination of CBZ in apple and orange juices with a low detection limit of 0.12 μM. The recoveries of CBZ spiked in fruit samples ranged from 81.0 % to 111.4% with the relative standard deviations less than 6.6%, demonstrating its great potential for monitoring CBZ residues in fruit samples.
Collapse
Affiliation(s)
- Mengting Guan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yue Guo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaoxia Yan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaojing Si
- Department of Food Science, Shanghai Business School, Shanghai 200235, PR China
| | - Xitian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Yunyi Lei
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xia Shen
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Haibo He
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
34
|
Sun Q, Zhang SL, Xie YJ, Xu MT, Herrera-Balandrano DD, Chen X, Wang SY, Shi XC, Laborda P. Identification of New Fusarium sulawense Strains Causing Soybean Pod Blight in China and Their Control Using Carbendazim, Dipicolinic Acid and Kojic Acid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10531. [PMID: 36078255 PMCID: PMC9518069 DOI: 10.3390/ijerph191710531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Soybean plants are highly susceptible to Fusarium species, which significantly reduce soybean production and quality. Several Fusarium species have been reported to synthesize mycotoxins, such as trichothecene, which have been related to major human diseases. In November 2021, soybean pods in Nantong municipality, China, showed black necrotic lesions during the harvest stage. The disease incidence reached 69%. The pathogen was identified as Fusarium sulawense via morphological analysis and sequencing of ITS, EF1-α and RPB2 genes. A PCR assay with primers targeting the trichothecene biosynthesis genes suggested that the three isolates could synthesize trichothecenes. The effectiveness of fungicide carbendazim and natural metabolites dipicolinic acid and kojic acid was screened for the management of F. sulawense on postharvest soybean pods. The highest efficacy was obtained when combining 3.8 mg/mL carbendazim and 0.84 mg/mL dipicolinic acid (curative efficacy: 49.1% lesion length inhibition; preventive efficacy: 82.7% lesion length inhibition), or 1.9 mg/mL carbendazim and 0.71 mg/mL kojic acid (preventive efficacy: 84.9% lesion length inhibition). Collectively, this report will lead to a better understanding of the safety hazards found in soybean products in China and reveals the application of dipicolinic and kojic acids to reduce the use of carbendazim.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
35
|
Luo Y, Wu N, Wang L, Song Y, Du Y, Ma G. Biosensor Based on Covalent Organic Framework Immobilized Acetylcholinesterase for Ratiometric Detection of Carbaryl. BIOSENSORS 2022; 12:bios12080625. [PMID: 36005021 PMCID: PMC9405660 DOI: 10.3390/bios12080625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 01/03/2023]
Abstract
A ratiometric electrochemical biosensor based on a covalent organic framework (COFThi-TFPB) loaded with acetylcholinesterase (AChE) was developed. First, an electroactive COFThi-TFPB with a two-dimensional sheet structure, positive charge and a pair of inert redox peaks was synthesized via a dehydration condensation reaction between positively charged thionine (Thi) and 1,3,5-triformylphenylbenzene (TFPB). The immobilization of AChE on the positively charged electrode surface was beneficial for maintaining its bioactivity and achieving the best catalytic effect; therefore, the positively charged COFThi-TFPB was an appropriate support material for AChE. Furthermore, the COFThi-TFPB provided a stable internal reference signal for the constructed AChE inhibition-based electrochemical biosensor to eliminate various effects which were unrelated to the detection of carbaryl. The sensor had a linear range of 2.2–60 μM with a detection limit of 0.22 μM, and exhibited satisfactory reproducibility, stability and anti-interference ability for the detection of carbaryl. This work offers a possibility for the application of COF-based materials in the detection of low-level pesticide residues.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangran Ma
- Correspondence: or ; Tel.: +86-0791-88120861
| |
Collapse
|
36
|
Deng H, Cai X, Ji Y, Yan D, Yang F, Liu S, Deji Z, Wang Y, Bian Z, Tang G, Fan Z, Huang Z. Development of a lateral flow immunoassay for rapid quantitation of carbendazim in agricultural products. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Liu W, Chen Y, Yin X, Liu F, Li W, Yu J, Jing G, Li W. A Rapid and on-Site detection of Pesticide Residue from Fruit Samples based on Surface Swab-Electrospray Ionization-Ion Mobility Spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Wei L, Huang X, Yang J, Wang Y, Huang K, Xie L, Yan F, Luo L, Jiang C, Liang J, Li T, Ya Y. A high performance electrochemical sensor for carbendazim based on porous carbon with intrinsic defects. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Peel Diffusion and Antifungal Efficacy of Different Fungicides in Pear Fruit: Structure-Diffusion-Activity Relationships. J Fungi (Basel) 2022; 8:jof8050547. [PMID: 35628802 PMCID: PMC9144380 DOI: 10.3390/jof8050547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/12/2023] Open
Abstract
Fungal pathogens can invade not only the fruit peel but also the outer part of the fruit mesocarp, limiting the efficacy of fungicides. In this study, the relationships between fungicide structure, diffusion capacity and in vivo efficacy were evaluated for the first time. The diffusion capacity from pear peel to mesocarp of 11 antifungal compounds, including p-aminobenzoic acid, carbendazim, difenoconazole, dipicolinic acid, flusilazole, gentamicin, kojic acid, prochloraz, quinolinic acid, thiophanate methyl and thiram was screened. The obtained results indicated that size and especially polarity were negatively correlated with the diffusion capacity. Although some antifungal compounds, such as prochloraz and carbendazim, were completely degraded after a few days in peel and mesocarp, other compounds, such as p-aminobenzoic acid and kojic acid, showed high stability. When applying the antifungal compounds at the EC50 concentrations, it was observed that the compounds with high diffusion capacity showed higher in vivo antifungal activity against Alternaria alternata than compounds with low diffusion capacity. In contrast, there was no relationship between stability and in vivo efficacy. Collectively, the obtained results indicated that the diffusion capacity plays an important role in the efficacy of fungicides for the control of pear fruit diseases.
Collapse
|
40
|
Zhang W, Fan R, Luo S, Jin Y, Li Y, Xiong M, Yuan X, Jia L, Chen Y. Antagonistic effects and mechanisms of carbendazim and chlorpyrifos on the neurobehavior of larval zebrafish. CHEMOSPHERE 2022; 293:133522. [PMID: 34995633 DOI: 10.1016/j.chemosphere.2022.133522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Residues from multiple pesticides are frequently detected on vegetables, which may produce combined toxicity not predicted by individual toxicity data. As these combined effects present additional dangers to food safety, we have compared individual to combined effects for a variety of pesticides. Carbendazim and chlorpyrifos are the two most commonly detected pesticides in vegetables, and previous studies reported that combined exposure results in synergistic developmental toxicity to zebrafish embryos. In this study, individual and combined effects on zebrafish motor activity were examined following individual and combined exposure to assess nervous system toxicity. Further, transcriptomics methods were used to identify potential molecular mechanisms for individual and combined toxicity. Carbendazim alone induced a disorganized swim pattern characterized by increased angular velocity, turn angle, meander, and acceleration during light-dark transition, while chlorpyrifos alone reduced average swim speed and light-dark acceleration. Combined treatment significantly reduced average swim velocity and total distance traveled. Combination indices indicated strong antagonism between compounds for average speed and light-dark acceleration. Transcriptomics (RNA-seq) showed that carbendazim significantly altered the expression of genes involved in antigen processing and presentation, apoptosis, autophagy, and metabolism, including ctslb, cyp7a1, hsp70l, and ugt1a1. Alternatively, chlorpyrifos significantly altered genes involved in various nervous system-related pathways, including glutamatergic, GABAergic, dopaminergic, and calcium signaling. Protein-protein interaction (PPI) network analysis suggested that chlorpyrifos significantly downregulated genes related to light transduction, resulting in decreased sensitivity to light-dark transitions, while antagonism mainly reflected divergent effects on phototransduction and retinol metabolism. Carbendazim had no significant effects on vision-related genes such as gnat1 and gngt1, while chlorpyrifos downregulated expression, an effect reversed by the combination. Comprehensive toxicity analyses must include joint effects of co-applied pesticides for enhanced food safety.
Collapse
Affiliation(s)
- Wanjun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China; Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Ruiqi Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China; Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yongchen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Mengqin Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Xiaoyan Yuan
- Center of Disease Control and Prevention, PLA, Beijing, PR China; School of Nursing and Health, Henan University, Kaifeng, PR China
| | - Li Jia
- Center of Disease Control and Prevention, PLA, Beijing, PR China.
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
41
|
Zhang Y, Zhou Y, Duan T, Kaium A, Li X. Dissipation and dietary risk assessment of carbendazim and epoxiconazole in citrus fruits in China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1415-1421. [PMID: 34375005 DOI: 10.1002/jsfa.11474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Carbendazim and epoxiconazole are widely applied to control anthracnose and sand bark fungal diseases in citrus. The residues of these two fungicides in citrus and their potential risk to consumers have generated much public concern. We therefore sought to investigate the dissipation, residue, and dietary risk assessment of carbendazim and epoxiconazole in citrus. RESULTS The dissipation kinetics and residue levels of carbendazim and epoxiconazole in citrus under field conditions were measured using dispersive solid-phase extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry. The citrus samples were extracted with acetonitrile and purified by primary secondary amine sorbent. The mean recoveries of carbendazim and epoxiconazole ranged from 86.2 to 105.6% and relative standard deviations were ≤9.8%. The half-lives of carbendazim and epoxiconazole in whole citrus ranged from 2.0 to 18.0 days. Hazard quotient (HQ) and risk quotient (RQ) models were applied to whole citrus for dietary exposure risk assessment based on the terminal residue test. Hazard quotients ranged from 0.066 to 0.134% and RQs from 18.48 to 82.12%. CONCLUSION Carbendazim and epoxiconazole in citrus degraded rapidly following first-order kinetics models. The dietary risk of exposure to both carbendazim and epoxiconazole through citrus, based on HQ and RQ, was acceptable for human consumption. This study indicates scientifically validated maximum residue limits in citrus, which are currently lacking for epoxiconazole in China. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Zhang
- College of Plant Protection, Hunan Agricultural University, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Changsha, China
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yong Zhou
- College of Plant Protection, Hunan Agricultural University, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Changsha, China
- Institute of Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Tingting Duan
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Abdul Kaium
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Xiaogang Li
- College of Plant Protection, Hunan Agricultural University, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Changsha, China
| |
Collapse
|
42
|
Zhu GY, Shi XC, Wang SY, Wang B, Laborda P. Antifungal Mechanism and Efficacy of Kojic Acid for the Control of Sclerotinia sclerotiorum in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:845698. [PMID: 35360341 PMCID: PMC8963468 DOI: 10.3389/fpls.2022.845698] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Sclerotinia stem rot, which is caused by the fungal pathogen Sclerotinia sclerotiorum, is a soybean disease that results in enormous economic losses worldwide. The control of S. sclerotiorum is a difficult task due to the pathogen's wide host range and its persistent structures, called sclerotia. In addition, there is lack of soybean cultivars with medium to high levels of resistance to S. sclerotiorum. In this work, kojic acid (KA), a natural bioactive compound commonly used in cosmetic industry, was evaluated for the management of Sclerotinia stem rot. Interestingly, KA showed strong antifungal activity against S. sclerotiorum by inhibiting chitin and melanin syntheses and, subsequently, sclerotia formation. The antifungal activity of KA was not obviously affected by pH, but was reduced in the presence of metal ions. Treatment with KA reduced the content of virulence factor oxalic acid in S. sclerotiorum secretions. Preventive applications of 50 mM KA (7.1 mg/ml) completely inhibited S. sclerotiorum symptoms in soybean; whereas, in curative applications, the combination of KA with prochloraz and carbendazim improved the efficacy of these commercial fungicides. Taken together, the antifungal activity of KA against S. sclerotiorum was studied for the first time, revealing new insights on the potential application of KA for the control of Sclerotinia stem rot in soybean.
Collapse
Affiliation(s)
- Gui-Yang Zhu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Bo Wang
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Sweet Potato Research Institute, Xuzhou, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
43
|
Abasalizadeh A, Sorouraddin SM, Farajzadeh MA, Marzi E, Mogaddam MRA. Riboflavin as a green sorbent in dispersive micro solid phase extraction of several pesticides from fruit juices combined with dispersive liquid‐liquid microextraction. J Sep Sci 2022; 45:1550-1559. [DOI: 10.1002/jssc.202100916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Aysa Abasalizadeh
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
- Engineering Faculty Near East University North Cyprus, Mersin 10, 99138, Nicosia Turkey
| | - Elnaz Marzi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Food and Drug Control Department Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
44
|
Rana A, Nandi S, Biswas S. Sulfonic acid functionalized zirconium-based metal–organic framework for the selective detection of copper( ii) ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01068b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A sulphonic acid functionalized Zr(iv) MOF probe was used for the rapid, sensitive and selective sensing of Cu2+.
Collapse
Affiliation(s)
- Abhijeet Rana
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam, India
| | - Soutick Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam, India
- Department of Applied Science, Ghani Khan Choudhury Institute of Engineering & Technology, Malda, 732141 West Bengal, India
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam, India
| |
Collapse
|
45
|
Zheng D, Hu X, Fu X, Xia Z, Zhou Y, Peng L, Yu Q, Peng X. Flowerlike Ni-NiO composite as magnetic solid-phase extraction sorbent for analysis of carbendazim and thiabendazole in edible vegetable oils by liquid chromatography-mass spectrometry. Food Chem 2021; 374:131761. [PMID: 34896946 DOI: 10.1016/j.foodchem.2021.131761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/30/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023]
Abstract
A rapid, selective, and sensitive method was developed for the detection of carbendazim and thiabendazole in edible vegetable oil. Two benzimidazole analytes were pre-concentrated by magnetic solid phase extraction (MSPE) using flowerlike Ni-NiO composite as sorbents and followed by LC-MS/MS analysis. The flowerlike Ni-NiO composite sorbent displayed a high affinity towards benzimidazole analytes due to the reversible coordination interaction between the Ni(Ⅱ) ion and the electron-donating imidazole group. In comparison to the previous methods, this procedure is less time-consuming and simpler during sample preparation. The parameters affecting the extraction efficiency were optimized in detail. The method was validated according to SANTE/12682/2019. The limits of detection were in the range of 0.001-0.003 mg•kg-1. The recoveries ranged from 89.3% to 110.7% with inter-day and inter-day precision less than 10.9%. The results indicate that flowerlike Ni-NiO composite might be a promising alternative for MSPE of benzimidazole compounds in foods.
Collapse
Affiliation(s)
- Dan Zheng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China
| | - Xizhou Hu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China
| | - Xiaofang Fu
- Technology Center of Wuhan Customs District, Wuhan 430036, Hubei, PR China
| | - Zhenzhen Xia
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China
| | - Youxiang Zhou
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China
| | - Lijun Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China
| | - Qiongwei Yu
- Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Xitian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China.
| |
Collapse
|
46
|
Application of surface-enhanced Raman spectroscopy using silver and gold nanoparticles for the detection of pesticides in fruit and fruit juice. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Chen Y, Zhou YD, Laborda P, Wang HL, Wang R, Chen X, Liu FQ, Yang DJ, Wang SY, Shi XC, Laborda P. Mode of action and efficacy of quinolinic acid for the control of Ceratocystis fimbriata on sweet potato. PEST MANAGEMENT SCIENCE 2021; 77:4564-4571. [PMID: 34086397 DOI: 10.1002/ps.6495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/27/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ceratocystis fimbriata is a hazardous fungal pathogen able to cause black rot disease on sweet potato. The management of C. fimbriata strongly relies on the use of toxic fungicides, and there is a lack of efficient alternative strategies. RESULTS The antifungal properties of quinolinic acid (QA) were studied for the first time, indicating that QA shows selective antifungal activity against C. fimbriata. QA inhibited completely the mycelial growth of C. fimbriata at less than 0.8 mg mL-1 concentration (pH 4), and was able to produce alterations in the fungal cell wall, and to impede spore agglutination and mycelium formation. QA significantly reduced the concentration of ergosterol, and was able to associate to iron (II), suggesting that QA may be a lanosterol 14-α demethylase inhibitor. In preventive applications, QA reduced the disease incidence of C. fimbriata on sweet potato by 75%, achieving higher control efficacy in comparison with commercial fungicides prochloraz and carbendazim. CONCLUSIONS The first selective antifungal agent against C. fimbriata was discovered in this work, and showed suitable antifungal properties for the management of black rot disease. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Yi-Dong Zhou
- School of Life Sciences, Nantong University, Nantong, China
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Hai-Lin Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Rui Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xian Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dong-Jing Yang
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Sweet Potato Research Institute, Xuzhou, China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
48
|
Zhong W, Gao F, Zou J, Liu S, Li M, Gao Y, Yu Y, Wang X, Lu L. MXene@Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples. Food Chem 2021; 360:130006. [PMID: 33984559 DOI: 10.1016/j.foodchem.2021.130006] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/08/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
In this paper, a novel ratiometric electrochemical sensor for carbendazim (CBZ) detection was constructed by a composite of MXene@Ag nanoclusters and amino-functionalized multi-walled carbon nanotubes (MXene@AgNCs/NH2-MWCNTs). The Ag nanoclusters (AgNCs) embedded in the MXene not only could inhibit the aggregation of MXene flakes and enhance the electrocatalytic ability, but also serve as an internal reference probe for the ratiometric electrochemical detection. Moreover, the introduction of NH2-MWCNTs can further improve the electrochemical signals of CBZ and Ag, resulting in the enhanced signal amplification and higher sensitivity. Based on these characteristics of the MXene@AgNCs/NH2-MWCNTs composite, the proposed sensor exhibits a favorable linear relationship between ICBZ/IAgNCs and the concentration of CBZ ranging from 0.3 nM to 10 μM and a low limit of detection of 0.1 nM. Moreover, the proposed ratiometric electrochemical sensing platform also demonstrates high selectivity, good reproducibility, secular stability, and satisfactory applicability in vegetable samples.
Collapse
Affiliation(s)
- Wei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Feng Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shuwu Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Mingfang Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yansha Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Yongfang Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaoqiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
49
|
Colloidal gold-based lateral flow immunoassay with inline cleanup for rapid on-site screening of carbendazim in functional foods. Anal Bioanal Chem 2021; 413:3725-3735. [PMID: 33851226 DOI: 10.1007/s00216-021-03321-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
In this study, for the first time, we propose a sensitive colloidal gold-based lateral flow immunoassay (LFIA) that can be used to detect carbendazim residues in functional foods. The adoption of inline cleanup LFIA strips effectively improved background interference to reduce misjudgment of results. First, the hapten 2-(methylamino)-1H-benzo[d]imidazole-5-carboxylic acid was used to establish the carbendazim immunoassay method. Subsequently, colloidal gold-mAb preparation and LFIA detection conditions were systematically optimized. For root and fruit samples (ginseng, ginger, jujube, and Chinese wolfberry), the designed strips had a cutoff value of 8 ng/mL. For flower and seed samples (chrysanthemum, coix seed, and malt), the cutoff value was 12 ng/mL. Even in a complex matrix, the established LFIA method demonstrates satisfactory sensitivity and anti-interference ability. This method was successfully applied in detection of carbendazim residues in complex functional foods, and the assay results are consistent with those obtained via liquid chromatography-tandem mass spectrometry. In short, the proposed method is fast and sensitive and has strong anti-interference ability. Furthermore, it provides a new technical method highly relevant to the on-site rapid detection of carbendazim residues in complex sample matrix.
Collapse
|
50
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M. Synergy of the LaVO4/h-BN Nanocomposite: A Highly Active Electrocatalyst for the Rapid Analysis of Carbendazim. Inorg Chem 2021; 60:5271-5281. [DOI: 10.1021/acs.inorgchem.1c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N. Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| |
Collapse
|