1
|
Xin J, He L, Li Y, Pu Q, Du X, Ban F, Han D. Sanguinarine chloride hydrate mitigates colitis symptoms in mice through the regulation of the intestinal microbiome and metabolism of short-chain fatty acids. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167579. [PMID: 39561858 DOI: 10.1016/j.bbadis.2024.167579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Sanguinarine constitutes the main components of Macleaya cordata, and exhibits diverse biological and pharmacological activities. This study investigated the effects of sanguinarine chloride hydrate (SGCH) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. Five groups were designed to investigate the effects of SGCH on the pathological symptoms, the mRNA expression levels of inflammatory cytokines, colonic mucosal barrier damage, microbiota composition, and SCFAs metabolism in UC mice. The administration of SGCH in DSS-induced UC mice resulted in the amelioration of pathological symptoms, as evidenced by an increase in body weight, a decrease in disease activity index score, elongation of colon length, reduction in spleen index, and improvement in colon injury. SGCH can regulate the expression of inflammatory cytokines (IL-6, TNF-α, IL-1β and IL-10) and tight junction proteins (ZO-1 and Occludin) associated with UC. SGCH exhibited a significant decrease in NF-κB P65 mRNA expression levels, accompanied by a significantly reduced protein level of NF-κB P-P65/P65. Further studies revealed SGCH effectively reversed the decrease in intestinal microbiota diversity induced by UC, thereby promoting the growth of beneficial bacteria such as Akkermansia, Alistipes, and norank_o_Clostridia_UCG-014. Correlation analysis demonstrated a positive association between butanoic acid, propanoic acid, isobutyric acid, isovaleric acid, valeric acid, hexanoic acid with Colidextribacter, while Coriobacteriaceae_UCG-002 exhibited a negative correlation with butanoic acid, acetic acid and propanoic acid. In conclusion, the administration of SGCH can ameliorate clinical symptoms in UC mice, regulate the expression of inflammatory cytokines and tight junction proteins, modulate intestinal microbiota metabolism and SCFAs production.
Collapse
Affiliation(s)
- Jige Xin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Lin He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yanlin Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Qiqi Pu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xuan Du
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Fuze Ban
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Diangang Han
- Technology Center of Kunming Customs, Kunming 650200, China.
| |
Collapse
|
2
|
Liu W, Liu Z, Fan X, Li D, Zhao T, Niu Y, Baima Y, Wen D, Li B, Huang X. Brassica rapa L. polysaccharide mitigates hypobaric hypoxia-induced oxidation and intestinal damage via microbiome modulation. NPJ Sci Food 2024; 8:112. [PMID: 39730362 DOI: 10.1038/s41538-024-00365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The high-altitude, low-pressure, and hypoxia environment poses a significant threat to human health, particularly causing intestinal damage and disrupting gut microbiota. This study investigates the protective effects of Brassica rapa L. crude polysaccharides (BRP) on intestinal damage in mice exposed to hypobaric hypoxic conditions. Results showed that oxidative stress and inflammation levels were elevated in the hypoxia group, while BRP intervention significantly increased antioxidant enzyme activities (SOD, GSH-Px, T-AOC) and reduced inflammatory markers (IL-6, IL-1β, TNF-α). BRP also restored intestinal barrier function by enhancing claudin-1, occludin, and ZO-1 expression. Notably Chromatographic and metagenomic analyses revealed that BRP enriched butyrate levels, promoted beneficial bacteria like Akkermansia muciniphila and Leuconostoc lactis, and upregulated L-arginine biosynthesis II and L-methionine biosynthesis III pathways to enhance antioxidant activity. Fecal microbiota transfer experiments confirmed the role of gut microbiota in mediating BRP's protective effects, providing valuable insights into prebiotic-based therapeutic strategies for hypobaric hypoxia-induced intestinal damage.
Collapse
Affiliation(s)
- Wei Liu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Xueni Fan
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Diantong Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Tingting Zhao
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Yuanlin Niu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Yangjin Baima
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China.
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China.
| |
Collapse
|
3
|
Wang H, Liu Z, Zhan K, Ma Q, Xu L, Li Y, Liu Y. Vitamin K2 alleviates dextran sulfate sodium-induced colitis via inflammatory responses, gut barrier integrity, and the gut microbiota in mice. Int J Biol Macromol 2024; 280:136091. [PMID: 39353519 DOI: 10.1016/j.ijbiomac.2024.136091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Vitamin K2 (VK2) has been shown to have potential benefits in improving intestinal integrity, but its potential and mechanisms for alleviating intestinal inflammation are still unclear. The present results showed that VK2 supplementation significantly alleviated the symptoms of colitis and maintained the intestinal barrier integrity. In addition, VK2 significantly down-regulated the mRNA expression levels of pro-inflammatory cytokines including IL-1β, IL-6, and TNF-α, while up-regulated the mRNA expression level of anti-inflammatory cytokines such as IL-10. Moreover, VK2 significantly alleviated DSS-induced intestinal epithelial barrier dysfunction by maintaining the tight junction function. Furthermore, VK2 also regulated DSS-induced gut microbiota dysbiosis by reshaping the structure of gut microbiota, such as increasing the relative abundance of Firmicutes, Euryarchaeota, Prevotellaceae, and Prevotella and reducing the relative abundance of Proteobacteria, Rikenellaceae, Enterobacteriaceae, Acetatifactor, and Alistioes. In conclusion, these results indicated that VK2 effectively alleviates DSS-induced colitis in mice by modulating the gut microbiota.
Collapse
Affiliation(s)
- Huakai Wang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhen Liu
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Kai Zhan
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Qiugang Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lei Xu
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yinghao Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Yun Liu
- Guangde City animal husbandry and veterinary aquatic services center, Xuancheng 242299, China
| |
Collapse
|
4
|
Wang H, Chen Y, Wang Z, Yuan Y, Yue T. Novel selenium-enriched Pichia kudriavzevii as a dietary supplement to alleviate dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota and host metabolism. Food Funct 2024; 15:10698-10716. [PMID: 39378068 DOI: 10.1039/d4fo02598a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Inflammatory bowel disease (IBD) poses persistent challenges due to its chronic and recurrent nature, exacerbated by the unsatisfactory outcomes of the traditional treatment approaches. In this study, we developed a dietary supplement, selenium-enriched Pichia kudriavzevii (SeY), to alleviate dextran sulfate sodium-induced colitis in mice. The newly developed functional food shows dual-functional activity, acting both as a probiotic and a reliable source of organic selenium. This study aimed to investigate the preventive effects of SeY against dextran sulfate sodium-induced colitis in mice and elucidate the underlying mechanisms. Results showed that SeY, especially at high doses (HSeY), significantly ameliorated colitis symptoms, reduced colonic damage, attenuated inflammatory responses, and mitigated oxidative stress. Furthermore, HSeY strengthened intestinal barrier function by increasing goblet cell numbers, upregulating MUC2 expression, and enhancing tight junction proteins (ZO-1, claudin-1, and occludin). Additionally, HSeY alleviated gut microbiota dysbiosis by promoting the colonization of beneficial bacteria such as norank-f-Muribaculaceae and Bacteroides, while suppressing harmful microorganisms such as norank-f-norank-o-Clostridia-UCG-014. The altered gut microbiota also affected gut metabolism, with differential metabolites primarily associated with amino acids, such as tryptophan metabolism, contributing to the mitigation of oxidative stress and inflammatory responses. Further studies involving antibiotic-mediated depletion of gut flora and fecal microbiota transfer trials corroborated that the preventive effect of HSeY against IBD relied on the gut microbiota. This study provides vital insights into colitis prevention and advances selenium-enriched fortified food-targeted nutritional interventions.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yue Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
5
|
Cao X, Tao S, Wang W, Wu S, Hong Y, Wang X, Ma Y, Qian H, Zha Z. Ternary inulin hydrogel with long-term intestinal retention for simultaneously reversing IBD and its fibrotic complication. Nat Commun 2024; 15:8428. [PMID: 39341804 PMCID: PMC11438902 DOI: 10.1038/s41467-024-52722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Excessive accumulation of reactive oxygen and nitrogen species (RONS) and dysbiosis of intestinal microbiota are pivotal symptoms for inflammatory bowel disease (IBD) and its associated complications, such as intestinal fibrosis. This research introduces a probiotic inulin hydrogel loaded with polypyrrole (PPy) nanozymes and antifibrotic drug pirfenidone (PFD) (PPy/PFD@Inulin gel) designed for the concurrent amelioration of IBD and its fibrotic complication. Upon oral administration, the inulin gel matrix could extend the gastrointestinal residence time of PPy nanozymes and PFD, facilitating the efficient reduction of pro-inflammatory cytokine levels and enhancement of the intestinal epithelial barrier repair as well as the suppression of intestinal fibrosis through sustained RONS scavenging, modulation of gut microbiota and attenuation of the TGF-β/Smad signaling pathway to inhibit fibroblast proliferation. Notably, the PPy/PFD@Inulin gel demonstrated significant prophylactic and therapeutic efficacy in acute and chronic colitis as well as intestinal fibrosis induced by dextran sodium sulfate (DSS) in mouse models. Thus, the engineered ternary PPy/PFD@Inulin gel offered a pioneered paradigm for simultaneous reversal of IBD and its associated complications, such as intestinal fibrosis, in a single therapeutic regimen.
Collapse
Affiliation(s)
- Xiangjing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shi Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Weitao Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Silong Wu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yang Hong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuyuan Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou, 450000, China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
6
|
Lu Q, Zhu R, Zhou L, Zhang R, Li Z, Xu P, Wang Z, Wu G, Ren J, Jiao D, Song Y, Li J, Wang W, Liang R, Ma X, Sun Y. Gut dysbiosis contributes to the development of Budd-Chiari syndrome through immune imbalance. mSystems 2024; 9:e0079424. [PMID: 39166878 PMCID: PMC11406926 DOI: 10.1128/msystems.00794-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Budd-Chiari syndrome (B-CS) is a rare and lethal condition characterized by hepatic venous outflow tract blockage. Gut microbiota has been linked to numerous hepatic disorders, but its significance in B-CS pathogenesis is uncertain. First, we performed a case-control study (Ncase = 140, Ncontrol = 63) to compare the fecal microbiota of B-CS and healthy individuals by metagenomics sequencing. B-CS patients' gut microbial composition and activity changed significantly, with a different metagenomic makeup, increased potentially pathogenic bacteria, including Prevotella, and disease-linked microbial function. Imbalanced cytokines in patients were demonstrated to be associated with gut dysbiosis, which led us to suspect that B-CS is associated with gut microbiota and immune dysregulation. Next, 16S ribosomal DNA sequencing on fecal microbiota transplantation (FMT) mice models examined the link between gut dysbiosis and B-CS. FMT models showed damaged liver tissues, posterior inferior vena cava, and increased Prevotella in the disturbed gut microbiota of FMT mice. Notably, B-CS-FMT impaired the morphological structure of colonic tissues and increased intestinal permeability. Furthermore, a significant increase of the same cytokines (IL-5, IL-6, IL-9, IL-10, IL-17A, IL-17F, and IL-13) and endotoxin levels in B-CS-FMT mice were observed. Our study suggested that gut microbial dysbiosis may cause B-CS through immunological dysregulation. IMPORTANCE This study revealed that gut microbial dysbiosis may cause Budd-Chiari syndrome (B-CS). Gut dysbiosis enhanced intestinal permeability, and toxic metabolites and imbalanced cytokines activated the immune system. Consequently, the escalation of causative factors led to their concentration in the portal vein, thereby compromising both the liver parenchyma and outflow tract. Therefore, we proposed that gut microbial dysbiosis induced immune imbalance by chronic systemic inflammation, which contributed to the B-CS development. Furthermore, Prevotella may mediate inflammation development and immune imbalance, showing potential in B-CS pathogenesis.
Collapse
Affiliation(s)
- Qinwei Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Lin Zhou
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruifang Zhang
- Department of Ultrasound Diagnosis, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Endovascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Xu
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Wu
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Song
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Xiuxian Ma
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| |
Collapse
|
7
|
He Y, Tian Y, Xiong H, Deng Z, Zhang H, Guo F, Sun Y. Rice Protein Peptides Ameliorate DSS-Induced Cognitive Impairment and Depressive Behavior in Mice by Modulating Phenylalanine Metabolism and the BDNF/TRKB/CREB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19812-19825. [PMID: 39208363 DOI: 10.1021/acs.jafc.4c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rice protein peptide (RPP) has been reported to alleviate the symptoms of dextran sulfate sodium (DSS)-induced colitis, but its potential protective effect and fundamental neurobiological mechanisms against DSS-induced inflammatory bowel disease (IBD), coupled with depression and cognitive impairment, remain unclear. In this study, RPP treatment in DSS-induced mice inhibited decreases in body weight and colon length and improved intestinal barrier function and behavioral performance. RPP treatment enhanced phenylalanine and tyrosine metabolism in the brains of mice, and it upregulated metabolites such as l-dopa, phenylethylamine, and 3,4-dihydroxyphenylacetate. Additionally, RPP treatment enhanced the brain-derived neurotrophic factor (BDNF) by upregulating the BDNF/TrkB/CREB signaling pathway. Spearman's correlation analysis revealed that the phenylalanine and tyrosine contents in the brain were significantly negatively correlated with the BDNF/TrkB/CREB signaling pathway and behavioral performance. In conclusion, this study suggested that RPP may serve as a unique nutritional strategy for preventing IBD and its associated cognitive impairment and depression symptoms.
Collapse
Affiliation(s)
- Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi 330052, China
| | - Yue Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi 330052, China
| |
Collapse
|
8
|
Yuan M, Chang L, Gao P, Li J, Lu X, Hua M, Li X, Liu X, Lan Y. Synbiotics containing sea buckthorn polysaccharides ameliorate DSS-induced colitis in mice via regulating Th17/Treg homeostasis through intestinal microbiota and their production of BA metabolites and SCFAs. Int J Biol Macromol 2024; 276:133794. [PMID: 38992530 DOI: 10.1016/j.ijbiomac.2024.133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic condition whose incidence has been rising globally. Synbiotic (SYN) is an effective means of preventing IBD. This study investigated the preventive effects and potential biological mechanisms of SYN (Bifidobacterium longum, Lactobacillus acidophilus, and sea buckthorn polysaccharides) on DSS-induced colitis in mice. The results indicated that dietary supplementation with SYN has a significant improvement effect on DSS mice. SYN ameliorated disease activity index (DAI), colon length, and intestinal barrier permeability in mice. In addition, RT-qPCR results indicated that after SYN intervention, the expression levels of pro-inflammatory factors (IL-6, IL-1β, TNF-α, and IL-17F) and transcription factor RORγt secreted by Th17 cells were significantly reduced, and the expression levels of anti-inflammatory factors (IL-10 and TGF-β) and transcription factor Foxp3 secreted by Treg cells were robustly increased. 16S rDNA sequencing analysis revealed that key intestinal microbiota related to Th17/Treg balance (Ligilactobacillus, Lactobacillus, Bacteroides, and Akkermansia) was significantly enriched. At the same time, a significant increase in microbial metabolites SCFAs and BAs was observed. We speculate that SYN may regulate the Th17/Treg balance by restructuring the structure and composition of the intestinal microbiota, thereby mitigating DSS-induced colitis.
Collapse
Affiliation(s)
- Mingyou Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lili Chang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Pan Gao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinyuan Lu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mingfang Hua
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ying Lan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
9
|
Xia B, Lin T, Li Z, Wang J, Sun Y, Wang D, Ye J, Zhang Y, Kou R, Zhao B, Yi J, Bai G, Liu X. Lactiplantibacillus plantarum Regulates Intestinal Physiology and Enteric Neurons in IBS through Microbial Tryptophan Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17989-18002. [PMID: 39082086 DOI: 10.1021/acs.jafc.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by visceral pain and gut dysmotility. However, the specific mechanisms by which Lactobacillus strains relieve IBS remain unclear. Here, we screened Lactobacillus strains from traditional Chinese fermented foods with potential IBS-alleviating properties through in vitro and in vivo experiments. We demonstrated that Lactiplantibacillus plantarum D266 (Lp D266) administration effectively modulates intestinal peristalsis, enteric neurons, visceral hypersensitivity, colonic inflammation, gut barrier function, and mast cell activation. Additionally, Lp D266 shapes gut microbiota and enhances tryptophan (Trp) metabolism, thus activating the aryl hydrocarbon receptor (AhR) and subsequently enhancing IL-22 production to maintain gut homeostasis. Mechanistically, Lp D266 potentially modulates colonic physiology and enteric neurons by microbial tryptophan metabolites. Further, our study indicates that combining Lp D266 with Trp synergistically ameliorates IBS symptoms. Together, our experiments identify the therapeutic efficacy of tryptophan-catabolizing Lp D266 in regulating gut physiology and enteric neurons, providing new insights into the development of probiotic-mediated nutritional intervention for IBS management.
Collapse
Affiliation(s)
- Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tongkui Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhiqing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jialin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuwei Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yajuan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Rongwei Kou
- School of Science, Xi'an University of Technology, Xi'an, 710048 Shaanxi, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 Yunnan, China
| | - Gaiyan Bai
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, 710068 Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
10
|
Kou RW, Li ZQ, Wang JL, Jiang SQ, Zhang RJ, He YQ, Xia B, Gao JM. Ganoderic Acid A Mitigates Inflammatory Bowel Disease through Modulation of AhR Activity by Microbial Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17912-17923. [PMID: 39078661 DOI: 10.1021/acs.jafc.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex gastrointestinal condition influenced by genetic, microbial, and environmental factors, among which the gut microbiota plays a crucial role and has emerged as a potential therapeutic target. Ganoderic acid A (GAA), which is a lanostane triterpenoid compound derived from edible mushroom Ganoderma lucidum, has demonstrated the ability to modulate gut dysbiosis. Thus, we investigated the impact of GAA on IBD using a dextran sodium sulfate (DSS)-induced colitis mouse model. GAA effectively prevented colitis, preserved epithelial and mucus layer integrity, and modulated the gut microbiota. In addition, GAA promoted tryptophan metabolism, especially 3-IAld generation, activated the aryl hydrocarbon receptor (AhR), and induced IL-22 production. Fecal microbiota transplantation validated the mediating role of the gut microbiota in the IBD protection conferred by GAA. Our study suggests that GAA holds potential as a nutritional intervention for ameliorating IBD by influencing the gut microbiota, thereby regulating tryptophan metabolism, enhancing AhR activity, and ultimately improving gut barrier function.
Collapse
Affiliation(s)
- Rong-Wei Kou
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Zhi-Qing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jia-Lin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Shi-Qi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Rui-Jing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yang-Qing He
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
11
|
Hu S, Tang B, Lu C, Wang S, Wu L, Lei Y, Tang L, Zhu H, Wang D, Yang S. Lactobacillus rhamnosus GG ameliorates triptolide-induced liver injury through modulation of the bile acid-FXR axis. Pharmacol Res 2024; 206:107275. [PMID: 38908615 DOI: 10.1016/j.phrs.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Triptolide (TP) is the principal bioactive compound of Tripterygium wilfordii with significant anti-tumor, anti-inflammatory and immunosuppressive activities. However, its severe hepatotoxicity greatly limits its clinical use. The underlying mechanism of TP-induced liver damage is still poorly understood. Here, we estimate the role of the gut microbiota in TP hepatotoxicity and investigate the bile acid metabolism mechanisms involved. The results of the antibiotic cocktail (ABX) and fecal microbiota transplantation (FMT) experiment demonstrate the involvement of intestinal flora in TP hepatotoxicity. Moreover, TP treatment significantly perturbed gut microbial composition and reduced the relative abundances of Lactobacillus rhamnosus GG (LGG). Supplementation with LGG reversed TP-induced hepatotoxicity by increasing bile salt hydrolase (BSH) activity and reducing the increased conjugated bile acids (BA). LGG supplementation upregulates hepatic FXR expression and inhibits NLRP3 inflammasome activation in TP-treated mice. In summary, this study found that gut microbiota is involved in TP hepatotoxicity. LGG supplementation protects mice against TP-induced liver damage. The underlying mechanism was associated with the gut microbiota-BA-FXR axis. Therefore, LGG holds the potential to prevent and treat TP hepatotoxicity in the clinic.
Collapse
Affiliation(s)
- Shiping Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Gastroenterology, No.983 Hospital of PLA Joint Logistics Support Force, Tianjin 300142, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lingyi Wu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongbin Zhu
- Department of Gastroenterology, No.983 Hospital of PLA Joint Logistics Support Force, Tianjin 300142, China
| | - Dongxu Wang
- Department of Gastroenterology, No.983 Hospital of PLA Joint Logistics Support Force, Tianjin 300142, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| |
Collapse
|
12
|
Ye J, Shi R, Fan H, Wang D, Xiao C, Yang T, Ye P, Xia B, Zhao B, Wang Y, Liu X. Stevioside Ameliorates Prenatal Obesity Induced Postpartum Depression: The Potential Role of Gut Barrier Homeostasis. Mol Nutr Food Res 2024; 68:e2300255. [PMID: 38100291 DOI: 10.1002/mnfr.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Indexed: 12/17/2023]
Abstract
SCOPE Postpartum depression and cognitive impairment are the common complications of prenatal obesity. Stevioside is a non-nutritive natural sweetener with antioxidant and anti-inflammatory. However, its effects on depression behaviors and cognitive impairment induced by a high-fat diet (HFD) remain unclear. METHODS AND RESULTS An 8-week HFD is used to establish a prenatal obesity model in female C57BL/6J mice to explore the improvement effects of stevioside (0.5 mg mL-1 in drinking water) on maternal depression and cognitive dysfunction after weaning. The results demonstrated that stevioside improves behavioral performance of obese maternal mice, and inhibits neuronal damage and 5-hydroxytryptamine (5-HT) abnormality induced by HFD. In addition, stevioside inhibits oxidative stress by reducing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) and glutathione (GSH) activities in the brains of obese maternal mice. Additionally, stevioside improves gut barrier integrity and prevented lipopolysaccharide (LPS) extravasation, and alleviates neuroinflammation. Correlation analysis shows that gut barrier and serum LPS are closely related to behavioral performance and brain biochemical indicators. CONCLUSION Stevioside is capable to prevent prenatal obesity-induced cognitive and mood disorders by restoring intestinal barrier damage and inhibiting inflammation.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyingzi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Xie L, Chen T, Li H, Xiao J, Wang L, Kim SK, Huang Z, Xie J. An Exopolysaccharide from Genistein-Stimulated Monascus Purpureus: Structural Characterization and Protective Effects against DSS-Induced Intestinal Barrier Injury Associated with the Gut Microbiota-Modulated Short-Chain Fatty Acid-TLR4/MAPK/NF-κB Cascade Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7476-7496. [PMID: 38511260 DOI: 10.1021/acs.jafc.3c09290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease is a major health problem that can lead to prolonged damage to the digestive system. This study investigated the effects of an exopolysaccharide from genistein-stimulated Monascus purpureus (G-EMP) in a mouse model of colitis to clarify its molecular mechanisms and identified its structures. G-EMP (Mw = 56.4 kDa) was primarily consisted of → 4)-α-D-Galp-(1 →, → 2,6)-α-D-Glcp-(1→ and →2)-β-D-Manp-(1 → , with one of the branches being α-D-Manp-(1 →. G-EMP intervention reduced the loss of body weight, degree of colonic damage and shortening, disease activity index scores, and histopathology scores, while restoring goblet cell production and oxidative homeostasis, repairing colonic functions, and regulating inflammatory cytokines. RNA sequencing and Western blot analysis indicated that G-EMP exerts anti-inflammatory properties by suppressing the TLR4/MAPK/NF-κB inflammatory signaling pathway. G-EMP modulated the gut microbiota by improving its diversities, elevating the relative abundances of beneficial bacteria, declining the Firmicutes/Bacteroidota value, and regulating the level of short-chain fatty acids (SCFAs). Correlation analysis demonstrated strong links between SCFAs, gut microbiota, and the inflammatory response, indicating the potential of G-EMP to prevent colitis.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jindan Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Linchun Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
14
|
Di Y, Song Y, Xu K, Wang Q, Zhang L, Liu Q, Zhang M, Liu X, Wang Y. Chicoric Acid Alleviates Colitis via Targeting the Gut Microbiota Accompanied by Maintaining Intestinal Barrier Integrity and Inhibiting Inflammatory Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6276-6288. [PMID: 38485738 DOI: 10.1021/acs.jafc.3c08363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Polyphenols have shown great potential to prevent ulcerative colitis. As a natural plant polyphenol, chicoric acid (CA) has antioxidant and anti-inflammatory properties. This study explored the intervention effects and potential mechanism of CA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that CA alleviated the symptoms of colitis and maintained the intestinal barrier integrity. CA significantly downregulated the mRNA expression levels of inflammatory factors including IL-6, IL-1β, TNF-α, IFN-γ, COX-2, and iNOS. In addition, CA modulated the gut microbiota by improving the microbial diversity, reducing the abundance of Gammaproteobacteriaand Clostridium_XI and increasing the abundance ofBarnesiellaandLachnospiraceae. Further fecal microbiota transplantation experiments showed that FM from CA donor mice significantly alleviated the symptoms of colitis, verifying the key role of gut microbiota. These results indicate that CA effectively relieves DSS-induced colitis via targeting gut microbiota along with preserving intestinal barrier function and suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yan Di
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Kejia Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qianxu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Li Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Min Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
15
|
Zhang L, Xue S, Fei C, Yu C, Li J, Li Y, Wang N, Chu F, Pan L, Duan X, Peng D. Protective effect of Tao Hong Si Wu Decoction against inflammatory injury caused by intestinal flora disorders in an ischemic stroke mouse model. BMC Complement Med Ther 2024; 24:124. [PMID: 38500092 PMCID: PMC10946105 DOI: 10.1186/s12906-024-04417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND AND AIMS Recent studies have shown that intestinal flora are involved in the pathological process of ischemic stroke (IS). The potential protective effect of the traditional Chinese prescription, Tao Hong Si Wu Decoction (THSWD), against inflammatory injury after IS and its underlying mechanisms of action were investigated in the current study. METHODS Fifty SPF(Specefic pathogen Free) male C57 mice were randomly assigned to sham operation, model, THSWD low-dose (6.5 g/kg), medium-dose (13 g/kg) and high-dose (26 g/kg) groups (10 mice per group). Mouse models of transient middle cerebral artery occlusion were prepared via thread embolism. Neurological function score, hematoxylin-eosin (HE) staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), 16S ribosomal DNA (rDNA) sequencing, quantitative reverse transcription PCR (qRT-PCR) and other methods were employed to elucidate the underlying molecular mechanisms. RESULTS Notably, THSWD induced a reduction in the neurological function score (P < 0.01) and neuronal injury in brain tissue, increase in protein expression of Claudin-5 and zonula occludens-1 (ZO-1) in brain tissue(P < 0.01), and decrease in serum lipopolysaccharide (LPS)(P < 0.01), diamine oxidase (DAO)(P < 0.01) and D-lactic acid(P < 0.01, P < 0.05) levels to a significant extent. THSWD also inhibited the levels of tumor necrosis factor-α (TNF-α)(P < 0.01) and interleukin - 1β (IL-1β)(P < 0.01) in brain tissue, and increased alpha and beta diversity in ischemic stroke mice, along with a certain reversal effect on different microflora. Finally, THSWD inhibited the polarization of microglia cells(P < 0.01) and decreased the protein and gene expression of toll-like receptor-4 (TLR-4)(P < 0.01, P < 0.05) and nuclear factor kappa B (NF-κB)(P < 0.01) in brain tissue. CONCLUSION Our data indicate that THSWD may interfere with inflammatory response in ischemic stroke by regulating intestinal flora and promoting intestinal barrier repair.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Sujun Xue
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Changyi Fei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Chao Yu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jingjing Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yumeng Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ni Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Furui Chu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lingyu Pan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Xianchun Duan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
16
|
Xu D, Xie Y, Cheng J, He D, Liu J, Fu S, Hu G. Amygdalin Alleviates DSS-Induced Colitis by Restricting Cell Death and Inflammatory Response, Maintaining the Intestinal Barrier, and Modulating Intestinal Flora. Cells 2024; 13:444. [PMID: 38474407 DOI: 10.3390/cells13050444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammatory bowel disease (IBD) refers to a cluster of intractable gastrointestinal disorders with an undetermined etiology and a lack of effective therapeutic agents. Amygdalin (Amy) is a glycoside extracted from the seeds of apricot and other Rosaceae plants and it exhibits a wide range of pharmacological properties. Here, the effects and mechanisms of Amy on colitis were examined via 16S rRNA sequencing, ELISA, transmission electron microscopy, Western blot, and immunofluorescence. The results showed that Amy administration remarkably attenuated the signs of colitis (reduced body weight, increased disease activity index, and shortened colon length) and histopathological damage in dextran sodium sulfate (DSS)-challenged mice. Further studies revealed that Amy administration significantly diminished DSS-triggered gut barrier dysfunction by lowering pro-inflammatory mediator levels, inhibiting oxidative stress, and reducing intestinal epithelial apoptosis and ferroptosis. Notably, Amy administration remarkably lowered DSS-triggered TLR4 expression and the phosphorylation of proteins related to the NF-κB and MAPK pathways. Furthermore, Amy administration modulated the balance of intestinal flora, including a selective rise in the abundance of S24-7 and a decline in the abundance of Allobaculum, Oscillospira, Bacteroides, Sutterella, and Shigella. In conclusion, Amy can alleviate colitis, which provides data to support the utility of Amy in combating IBD.
Collapse
Affiliation(s)
- Dianwen Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yachun Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ji Cheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dewei He
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
17
|
Jiang N, Liu Z, Wang H, Zhang L, Li M, Li G, Li C, Wang B, Zhao C, Liu L. Alterations in metabolome and microbiome: new clues on cathelicidin-related antimicrobial peptide alleviates acute ulcerative colitis. Front Microbiol 2024; 15:1306068. [PMID: 38380090 PMCID: PMC10877057 DOI: 10.3389/fmicb.2024.1306068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease of the gastrointestinal tract. This study aimed to determine the effect of cathelicidin-related antimicrobial peptide (Cramp) on dextran sulfate sodium (DSS)-induced acute experimental colitis in mice and to investigate the underlying mechanisms. Acute UC was induced in C57BL/6 mice with 3% DSS for 7 days, 4 mg/kg b.w. synthetic Cramp peptide was administrated once daily starting on day 4 of the experimental period. Mice were evaluated for body weight, colon length, colon histopathology, and inflammatory cytokines in colon tissue. Using 16 s rRNA sequencing, the composition structure of gut microbiota was characterized. Metabolomic profiling of the serum was performed. The results showed that DSS treatment significantly induced intestinal damage as reflected by disease activity index, histopathological features, and colon length, while Cramp treatment significantly prevented these trends. Meanwhile, Cramp treatment decreased the levels of inflammatory cytokines in both serum and colonic tissue on DSS-induced colitis. It was also observed that DSS damaged the integrity of the intestinal epithelial barrier, whereas Cramp also played a protective role by attenuating these deteriorated effects. Furthermore, Cramp treatment reversed the oxidative stress by increasing the antioxidant enzymes of GSH-PX and decreasing the oxidant content of MDA. Notably, compared to the DSS group, Cramp treatment significantly elevated the abundance of Verrucomicrobiota at the phylum level. Furthermore, at the genus level, Parasutterella and Mucispirllum abundance was increased significantly in response to Cramp treatment, although Roseburia and Enterorhabdus reduced remarkably. Metabolic pathway analysis of serum metabolomics showed that Cramp intervention can regulate various metabolic pathways such as α-linolenic acid, taurine and hypotaurine, sphingolipid, and arachidonic acid metabolism. The study concluded that Cramp significantly ameliorated DSS-induced colonic injury, colonic inflammation, and intestinal barrier dysfunction in mice. The underlying mechanism is closely related to the metabolic alterations derived from gut microbiota.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Trauma Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongyuan Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Haiyang Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Lichun Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Mengjiao Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Gaoqian Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Chang Li
- Department of Trauma Center and Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Bo Wang
- Department of Trauma Center and Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| |
Collapse
|
18
|
Li S, Qian Q, Yang H, Wu Z, Xie Y, Yin Y, Cui Y, Li X. Fucoidan alleviated dextran sulfate sodium-induced ulcerative colitis with improved intestinal barrier, reshaped gut microbiota composition, and promoted autophagy in male C57BL/6 mice. Nutr Res 2024; 122:1-18. [PMID: 38064857 DOI: 10.1016/j.nutres.2023.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 03/08/2024]
Abstract
Although previous research has unveiled the remedial effects of fucoidan, an extract from marine algae, on ulcerative colitis (UC), the precise mechanisms remain elusive. Animal studies have suggested a connection between autophagy and the beneficial influences of fucoidan intervention. We hypothesized that fucoidan's alleviative effects on dextran sulfate sodium (DSS)-induced UC could be ascribed to autophagy. For our study, we chose 36 male C57BL/6 mice and administered 100 or 400 mg/(kg/body weight/day) of fucoidan via gavage for 5 consecutive weeks. During the last week, the mice were given 3% DSS in drinking water to induce UC. In contrast to the DSS-induced UC model, fucoidan intervention prevented DSS-induced body weight loss, mitigated colon shortening, improved colon mucosa damage, enhanced the intestinal barrier, and reduced serum inflammatory factor concentrations. Furthermore, fucoidan intervention reshaped the gut microbiota compositions, increased the relative abundance of Bacteroidota, Muribaculaceae_unclassified, Clostridiales_unclassified, and Lachnospiraceae_NK4A136_group, and decreased the relative abundance of Firmicutes, Proteobacteria, and Escherichia-Shigella, which led to a lower Firmicutes/Bacteroidota ratio. Additionally, fucoidan treatment enhanced autophagy, as evidenced by upregulated protein expressions of BECLIN1, ATG5, ATG7, and an increased microtubule-associated-proteinlight-chain-3-II/microtubule-associated-proteinlight-chain-3-I ratio. Our findings corroborated the ameliorating effects of fucoidan intervention on DSS-induced UC through autophagy activation, reorganization of gut microbiota, and fortification of the intestinal barrier. This lends support to the therapeutic potential of fucoidan as a natural bioactive ingredient for future UC treatments in humans.
Collapse
Affiliation(s)
- Shilan Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qingfan Qian
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hao Yang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhengli Wu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yisha Xie
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yan Yin
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yuan Cui
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xinli Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P.R. China.
| |
Collapse
|
19
|
Ge W, Li Z, Yang Y, Liu X, Zhu Z, Bai L, Qin Z, Xu X, Li J, Li S. Synthesis and antibacterial activity of FST and its effects on inflammatory response and intestinal barrier function in mice infected with Escherichia coli O78. Int Immunopharmacol 2024; 127:111386. [PMID: 38109839 DOI: 10.1016/j.intimp.2023.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Pathogenic Escherichia coli (E. coli) can cause intestinal diseases in humans and livestock, damage the intestinal barrier, increase systemic inflammation, and seriously threaten human health and the development of animal husbandry. In this study, we designed and synthesized a novel conjugate florfenicol sulfathiazole (FST) based on drug combination principles, and investigated its antibacterial activity in vitro and its protective effect on inflammatory response and intestinal barrier function in E. coli O78-infected mice in vivo. The results showed that FST had superior antibacterial properties and minimal cytotoxicity compared with its prodrugs as florfenicol and sulfathiazole. FST protected mice from lethal E. coli infection, reduced clinical signs of inflammation, reduced weight loss, alleviated intestinal structural damage. FST decreased the expression of inflammatory cytokines IL-1β, IL-6, TNF-α, and increased the expression of claudin-1, Occludin, and ZO-1 in the jejunum, improved the intestinal barrier function, and promoted the absorption of nutrients. FST also inhibited the expression of TLR4, MyD88, p-p65, and p-p38 in the jejunum. The study may lay the foundation for the development of FST as new drugs for intestinal inflammation and injury in enteric pathogen infection.
Collapse
Affiliation(s)
- Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhun Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhaohan Zhu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Lixia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiao Xu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| |
Collapse
|
20
|
Wang ZH, Zhang GY, Sun C, Ning SX, Zhou DY, Song L. Targeting DSS-induced ulcerative colitis: evaluating the therapeutic potential of WPI-stachyose conjugates. Food Funct 2024; 15:96-109. [PMID: 38047401 DOI: 10.1039/d3fo03598k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The pursuit of food-based alternatives to conventional therapies for ulcerative colitis (UC) demands immediate attention. In prior investigations, we synthesized WPI-stachyose conjugates through the Maillard reaction, identifying them as functional prebiotics. However, their impact on in vivo regulation of gut microbiota remains inadequately explored. To bridge this gap, we delved into the therapeutic effects and mechanisms of WPI-stachyose conjugates as prebiotic-functional components in C57BL/6J mice afflicted with dextran sodium sulfate (DSS)-induced UC. The treatment involving WPI-stachyose conjugates led to significant therapeutic advancements, evident in the reduction of pro-inflammatory cytokine levels and restoration of gut microbiota composition. Noticeable enhancements were observed in UC-associated symptoms, including weight loss, colon length reduction, and tissue damage, notably improving in the treated mice. Remarkably, both the conjugates and the physical combination effectively lowered pro-inflammatory cytokines and oxidative stress, with the conjugates demonstrating enhanced effectiveness. Furthermore, the simultaneous administration of WPI-stachyose conjugates further amplified the presence of beneficial bacteria and elevated short-chain fatty acids, acknowledged for their favorable impact across various conditions. These findings underscore the potential therapeutic application of WPI-stachyose conjugates in addressing DSS-induced UC, offering insights into innovative therapeutic strategies.
Collapse
Affiliation(s)
- Zi-Han Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Guang-Yao Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Cong Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Shu-Xin Ning
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Da-Yong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Liang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
21
|
Majdalawieh AF, Ahari SH, Yousef SM, Nasrallah GK. Sesamol: A lignan in sesame seeds with potent anti-inflammatory and immunomodulatory properties. Eur J Pharmacol 2023; 960:176163. [PMID: 37925135 DOI: 10.1016/j.ejphar.2023.176163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Inflammation is associated with the development and progression of a plethora of diseases including joint, metabolic, neurological, hepatic, and renal disorders. Sesamol, derived from the seeds of Sesamum indicum L., has received considerable attention due to its well-documented multipotent phytotherapeutic effects, including its anti-inflammatory and immunomodulatory properties. However, to date, no comprehensive review has been established to highlight or summarize the anti-inflammatory and immunomodulatory properties of sesamol. Herein, we aim to address this gap in the literature by presenting a thorough review encapsulating evidence surrounding the range of inflammatory mediators and cytokines shown to be targeted by sesamol in modulating its anti-inflammatory actions against a range of inflammatory disorders. Additionally, evidence highlighting the role that sesamol has in modulating components of adaptive immunity including cellular immune responses and Th1/Th2 balance is underscored. Moreover, the molecular mechanisms and the signaling pathways underlying such effects are also highlighted. Findings indicate that this seemingly potent lignan mediates its anti-inflammatory actions, at least in part, via suppression of various pro-inflammatory cytokines like IL-1β and TNFα, and downregulation of a multitude of signaling pathways including NF-κB and MAPK. In conclusion, we anticipate that sesamol may be employed in future therapeutic regimens to aid in more effective drug development to alleviate immune-related and inflammatory conditions.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Sogand H Ahari
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Sarah M Yousef
- Department of Psychology, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Qi X, Guan K, Liu C, Chen H, Ma Y, Wang R. Whey protein peptides PEW and LLW synergistically ameliorate hyperuricemia and modulate gut microbiota in potassium oxonate and hypoxanthine-induced hyperuricemic rats. J Dairy Sci 2023; 106:7367-7381. [PMID: 37562644 DOI: 10.3168/jds.2023-23369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/29/2023] [Indexed: 08/12/2023]
Abstract
Pro-Glu-Trp (PEW) and Leu-Leu-Trp (LLW) are peptides derived from whey protein digestive products; both peptides exhibit xanthine oxidase inhibitory activity in vitro. However, it remains unclear whether these peptides can alleviate hyperuricemia (HUA) in vivo. In this study, we investigated the roles of PEW and LLW, both individually and in combination, in alleviating HUA induced by potassium oxonate and hypoxanthine. Together, PEW and LLW exhibited synergistic effects in reducing the serum levels of uric acid (UA), creatinine, and blood urea nitrogen, as well as increasing the fractional excretion of UA. The combined treatment with PEW and LLW inhibited UA synthesis, promoted UA excretion, and restored renal oxidative stress and mitochondrial damage. Moreover, the combined treatment alleviated dysbiosis of the gut microbiota, characterized by increased helpful microbial abundance, decreased harmful bacterial abundance, and increased production of short-chain fatty acids. Taken together, these results indicate that the combination of PEW and LLW mitigate HUA and kidney injury by rebalancing UA synthesis and excretion, modulating gut microbiota composition, and improving oxidative stress.
Collapse
Affiliation(s)
- Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Chunhong Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Haoran Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
23
|
Li C, Gong L, Jiang Y, Huo X, Huang L, Lei H, Gu Y, Wang D, Guo D, Deng Y. Sanguisorba officinalis ethyl acetate extract attenuates ulcerative colitis through inhibiting PI3K-AKT/NF-κB/ STAT3 pathway uncovered by single-cell RNA sequencing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155052. [PMID: 37717310 DOI: 10.1016/j.phymed.2023.155052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) accounts for the untreatable illness nowadays. Bloody stools are the primary symptom of UC, and the first-line drugs used to treat UC are associated with several drawbacks and negative side effects. S. officinalis has long been used as a medicine to treat intestinal infections and bloody stools. However, what the precise molecular mechanism, the exact etiology, and the material basis of the disease remain unclear. PURPOSE This work aimed to comprehensively explore pharmacological effects as well as molecular mechanisms underlying the active fraction of S. officinalis, and to produce a comprehensive and brand-new guideline map of its chemical base and mechanism of action. METHODS First, different polarity S. officinalis extracts were orally administered to the DSS-induced UC model mice for the sake of investigating its active constituents. Using the UPLC-orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS) technique, the most active S. officinalis (S. officinalis ethyl acetate fraction, SOEA) extract was characterized. Subsequently, the effectiveness of its active fraction on UC was evaluated through phenotypic observation (such as weight loss, colon length, and stool characteristics), and histological examination of pathological injuries, mRNA and protein expression. Cell profile, cell-cell interactions and molecular mechanisms of SOEA in different cell types of the colon tissue from UC mice were described using single-cell RNA sequencing (scRNA-seq). As a final step, the molecular mechanisms were validated by appropriate molecular biological methods. RESULTS For the first time, this study revealed the significant efficacy of SOEA in the treatment of UC. SOEA reduced DAI and body weight loss, recovered the colon length, and mitigated colonic pathological injuries along with mucosal barrier by promoting goblet cell proliferation. Following treatment with SOEA, inflammatory factors showed decreased mRNA and protein expression. SOEA restored the dynamic equilibrium of cell profile and cell-cell interactions in colon tissue. All of these results were attributed to the ability of SOEA to inhibit the PI3K-AKT/NF-κB/STATAT pathway. CONCLUSIONS By integrating the chemical information of SOEA derived from UPLC-Q-Orbitrap-HRMS with single-cell transcriptomic data extracted from scRNA-seq, this study demonstrates that SOEA exerts the therapeutic effect through suppressing PI3K-AKT/NF-B/STAT3 pathway to improve clinical symptoms, inflammatory response, mucosal barrier, and intercellular interactions in UC, and effectively eliminates the interference of cellular heterogeneity.
Collapse
Affiliation(s)
- Congcong Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leiqiang Gong
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Jiang
- Department of Nursing, Sichuan Nursing Vocational College, Deyang 618000, China
| | - Xueyan Huo
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijun Huang
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haoran Lei
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yucheng Gu
- Syngenta Limited, Jealott's Hill International Research Centre, Berkshire RG42 6EY, UK
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dale Guo
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
24
|
Zhang D, Ge F, Ji J, Li YJ, Zhang FR, Wang SY, Zhang SJ, Zhang DM, Chen M. β-sitosterol alleviates dextran sulfate sodium-induced experimental colitis via inhibition of NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Front Pharmacol 2023; 14:1218477. [PMID: 37954856 PMCID: PMC10637366 DOI: 10.3389/fphar.2023.1218477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Inflammation-related NLRP3/Caspase-1/GSDMD-mediated pyroptosis is involved in the progression of ulcerative colitis (UC). β-sitosterol (SIT) was reported to have anti-inflammatory effects on experimental colitis, while the regulation of SIT on pyroptosis is unclear. Therefore, the present study aimed to define the protective and healing effects of SIT on dextran sulfate sodium (DSS)-induced experimental UC rats and human epithelial colorectal adenocarcinoma cells (Caco-2) and explore the underlying mechanisms that are responsible for its effects on NLRP3/Caspase-1/GSDMD-mediated pyroptosis in UC. Methods: UC model rats were established by oral 4% DSS. Following colitis injury, the animals received SIT (doses of 50, 100, and 200 mg/kg) treatment for 2 weeks. For in vitro study, we exposed Caco-2-50 mg/mL DSS with or without SIT (concentrations of 8 and 16 μg/mL). Disease activity index (DAI) and histopathological injury were assessed in vivo. Activation proteins of nuclear factor kappa B (NF-κB) signaling axis, and tight junction-related proteins of zonula occludens-1 (ZO-1) and occludin were detected in colon tissues. TNF-α, IL-1β, and IL-18 in serum and cell supernatant were measured by enzyme-linked immunosorbent assay (ELISA). Changes in NLRP3/Caspase-1/GSDMD-mediated pyroptosis signaling pathway activation were analyzed both in tissues and cells. Results: Our findings suggested that SIT treatment attenuated the severity of 4% DSS-induced UC by protecting rats from weight and colon length loss, and macroscopic damage. SIT also reduced proinflammatory factors production (TNF-α, IL-1β, and IL-18) in serum and cell supernatant. Mechanistically, SIT downregulated the expression levels of pyroptosis-related proteins including Caspase-1, cleaved-Caspase-1, NLRP3, GSDMD, and GSDMD-N in colon tissues and Caco-2 cells. Further analysis indicated that SIT maintained the colonic barrier integrity by enhancing the protein expression of ZO-1 and occludin. Conclusion: We confirmed that SIT exerts protective and therapeutic effects on DSS-induced colitis injury by suppressing NLRP3/Caspase-1/GSDMD-mediated pyroptosis and inflammation response. These findings demonstrated that SIT could be a potential medication for UC treatment.
Collapse
Affiliation(s)
- Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Jing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fu-Rong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Jing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dong-Mei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Soriano-Lerma A, García-Burgos M, Alférez MJ, Crespo-Pérez JV, Pérez-Carrasco V, Ortiz-Gonzalez M, Linde-Rodriguez Á, Sanchez-Martin V, Soriano M, Garcia-Salcedo JA, López-Aliaga I. Fermented Goat's Milk Contributes to the Recovery of Iron Deficiency Anemia via Modulation of the Gut Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15668-15679. [PMID: 37830350 PMCID: PMC11006235 DOI: 10.1021/acs.jafc.3c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
Iron deficiency anemia (IDA) is a global public health concern affecting 1.6 billion people worldwide. The administration of iron supplements during the treatment of IDA adversely affects the intestinal barrier function and the composition and functionality of the intestinal microbiome, both of which are already altered during IDA. For this reason, it is of great interest to develop nutritional strategies aimed at alleviating these gut alterations associated with IDA and its treatment. In this sense, fermented goat's milk (FGM) was studied due to its nutritional quality. Our findings showed that in anemic animals the consumption of a FGM-based diet, compared to a standard diet, had positive modulatory effects on the intestinal microbiome. FGM-based diet restored intestinal dysbiosis, the intestinal barrier functionality, and bacterial translocation, contributing to a more efficient recovery of IDA. Therefore, FGM is a useful nutritional tool to ease intestinal alterations occurring during IDA and during its treatment.
Collapse
Affiliation(s)
- Ana Soriano-Lerma
- Department
of Physiology (Faculty of Pharmacy, Campus Universitario de Cartuja),
Institute of Nutrition and Food Technology “José Mataix
Verdú”, University of Granada, E-18071 Granada, Spain
- GENYO,
Centre for Genomics and Oncological Research: Pfizer/University of
Granada/Andalusian Regional Government, PTS Granada, E-18016 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, E-18012 Granada, Spain
| | - María García-Burgos
- Department
of Physiology (Faculty of Pharmacy, Campus Universitario de Cartuja),
Institute of Nutrition and Food Technology “José Mataix
Verdú”, University of Granada, E-18071 Granada, Spain
- GENYO,
Centre for Genomics and Oncological Research: Pfizer/University of
Granada/Andalusian Regional Government, PTS Granada, E-18016 Granada, Spain
| | - María José
M. Alférez
- Department
of Physiology (Faculty of Pharmacy, Campus Universitario de Cartuja),
Institute of Nutrition and Food Technology “José Mataix
Verdú”, University of Granada, E-18071 Granada, Spain
| | - Jorge Valentín Crespo-Pérez
- Service
of Anatomical Pathology, Intercenter Regional Unit Granada, University Hospital Virgen de las Nieves, E-18014 Granada, Spain
| | - Virginia Pérez-Carrasco
- GENYO,
Centre for Genomics and Oncological Research: Pfizer/University of
Granada/Andalusian Regional Government, PTS Granada, E-18016 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, E-18012 Granada, Spain
- Microbiology
Unit, University Hospital Virgen de las
Nieves, E-18014 Granada, Spain
| | - Matilde Ortiz-Gonzalez
- GENYO,
Centre for Genomics and Oncological Research: Pfizer/University of
Granada/Andalusian Regional Government, PTS Granada, E-18016 Granada, Spain
- Center for
Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| | - Ángel Linde-Rodriguez
- GENYO,
Centre for Genomics and Oncological Research: Pfizer/University of
Granada/Andalusian Regional Government, PTS Granada, E-18016 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, E-18012 Granada, Spain
- Microbiology
Unit, University Hospital Virgen de las
Nieves, E-18014 Granada, Spain
| | - Victoria Sanchez-Martin
- GENYO,
Centre for Genomics and Oncological Research: Pfizer/University of
Granada/Andalusian Regional Government, PTS Granada, E-18016 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, E-18012 Granada, Spain
- Microbiology
Unit, University Hospital Virgen de las
Nieves, E-18014 Granada, Spain
| | - Miguel Soriano
- Center for
Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| | - Jose A. Garcia-Salcedo
- GENYO,
Centre for Genomics and Oncological Research: Pfizer/University of
Granada/Andalusian Regional Government, PTS Granada, E-18016 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, E-18012 Granada, Spain
- Microbiology
Unit, University Hospital Virgen de las
Nieves, E-18014 Granada, Spain
| | - Inmaculada López-Aliaga
- Department
of Physiology (Faculty of Pharmacy, Campus Universitario de Cartuja),
Institute of Nutrition and Food Technology “José Mataix
Verdú”, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
26
|
Wu S, Wu Z, Chen Y. Effect of Cordyceps militaris Powder Prophylactic Supplementation on Intestinal Mucosal Barrier Impairment and Microbiota-Metabolites Axis in DSS-Injured Mice. Nutrients 2023; 15:4378. [PMID: 37892453 PMCID: PMC10610503 DOI: 10.3390/nu15204378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease with an unknown pathogenesis and increasing incidence. The objective of this study is to investigate the impact of prophylactic treatment with Cordyceps militaris on UC. The findings demonstrate that prophylactic supplementation of C. militaris powder effectively mitigates disease symptoms in DSS-injured mice, while also reducing the secretion of pro-inflammatory cytokines. Furthermore, C. militaris powder enhances the integrity of the intestinal mucosal barrier by up-regulating MUC2 protein expression and improving tight junction proteins (ZO-1, occludin, and claudin 1) in DSS-injured mice. Multiomics integration analyses revealed that C. militaris powder not only reshaped gut microbiota composition, with an increase in Lactobacillus, Odoribacter, and Mucispirillum, but also exerted regulatory effects on various metabolic pathways including amino acid, glyoxylates, dicarboxylates, glycerophospholipids, and arachidonic acid. Subsequent analysis further elucidated the intricate interplay of gut microbiota, the intestinal mucosal barrier, and metabolites, suggesting that the microbiota-metabolite axis may involve the effect of C. militaris on intestinal mucosal barrier repair in UC. Moreover, in vitro experiments demonstrated that peptides and polysaccharides, derived from C. militaris, exerted an ability to change the gut microbiota structure of UC patients' feces, particularly by promoting the growth of Lactobacillus. These findings suggest that regulatory properties of C. militaris on gut microbiota may underlie the potential mechanism responsible for the protective effect of C. militaris in UC. Consequently, our study will provide support for the utilization of C. militaris as a whole food-based ingredient against the occurrence and development of UC.
Collapse
Affiliation(s)
- Shujian Wu
- Shenzhen Clinical Research Center for Digestive Disease, Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China;
| | - Zaoxuan Wu
- State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China;
| | - Ye Chen
- Shenzhen Clinical Research Center for Digestive Disease, Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China;
- State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China;
| |
Collapse
|
27
|
Fang C, Cheng J, Jia W, Xu Y. Akkermansia muciniphila Ameliorates Alcoholic Liver Disease in Experimental Mice by Regulating Serum Metabolism and Improving Gut Dysbiosis. Metabolites 2023; 13:1057. [PMID: 37887381 PMCID: PMC10608788 DOI: 10.3390/metabo13101057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Alcoholic liver disease (ALD) represents a significant global health concern, yet the available treatment options remain limited. Numerous studies have shown that gut microbiota is a critical target for the treatment of ALD. Additionally, there is increasing evidence that host metabolism also plays a crucial role in the development of ALD. Akkermansia muciniphila has been demonstrated to ameliorate experimental ALD through its modulatory effects on the intestinal vascular barrier, enhancement of mucus layer thickness, and promotion of intestinal tight junction proteins. Nevertheless, there is a dearth of studies investigating the impact of A. muciniphila on host metabolism and gut microbiota. Here, C57BL/6 mice were utilized to establish a modified NIAAA model in order to investigate the impact of the oral administration of A. muciniphila during the development of ALD. Furthermore, we employed targeted metabolomics to analyze the serum metabolomic profiles of the mice and 2bRAD-M sequencing to comprehensively examine the underlying mechanisms of the efficacy of A. muciniphila on ALD. Our results illustrated that the oral administration of A. muciniphila alleviated alcohol-induced liver injury in conjunction with encouraged serum levels of ornithine and diminished the elevation of oxalic acid levels induced by alcohol intake. In addition, A. muciniphila also inhibited the proliferation of harmful bacteria, such as Escherichia coli and Helicobacter hepaticus, induced by alcohol consumption while promoting the growth of butyrate-producing and commensal bacteria, including Paramuribaculum intestinale and Bacteroides ovatus. In conclusion, this study suggests that A. muciniphila restores ALD by regulating the gut microbiota, and this corrective effect is associated with alterations in the serum metabolism. Our research supplies a theoretical basis for developing A. muciniphila as an innovative generation of probiotic for preventing and managing ALD.
Collapse
Affiliation(s)
- Cheng Fang
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (C.F.); (J.C.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinyan Cheng
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (C.F.); (J.C.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China;
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (C.F.); (J.C.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Mao J, Zhao Y, Wang L, Wu T, Jin Y, Meng J, Zhang M. Sea Cucumber Peptide Alleviates Ulcerative Colitis Induced by Dextran Sulfate Sodium by Alleviating Gut Microbiota Imbalance and Regulating miR-155/SOCS1 Axis in Mice. Foods 2023; 12:3434. [PMID: 37761144 PMCID: PMC10530247 DOI: 10.3390/foods12183434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Sea cucumber peptides have been proven to exhibit a variety of biological activities. Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the mucosa of the rectum and colon with increasing incidence and long duration, and is difficult to cure. The effect of sea cucumber peptide on UC is currently unknown. In this study, 1.5% dextran sulfate sodium (DSS) was added to the drinking water of mice to induce a UC model, and the daily doses of sea cucumber peptide (SP) solution of 200 mg/kg·BW, 500 mg/kg·BW, and 1000 mg/kg·BW were given to UC mice to detect the relieving effect of SP. The results showed that SP can reduce the disease activity index (DAI) of UC mice induced by DSS and can alleviate colon shortening, intestinal tissue damage, and the loss of intestinal tight junction proteins (Claudin-1, Occludin). SP decreased the spleen index, pro-inflammatory factors (IL-1β, IL-6, TNF-α), and myeloperoxidase (MPO) levels in UC mice. SP can alleviate the imbalance of gut microbiota in UC mice, increase the abundance of the Lachnospiraceae NK4A136 group, Prevotellaceae UCG-001, and Ligilactobacillus, and reduce the abundance of Bacteroides and the Eubacterium rum group, as well as alleviating the decrease in short-chain fatty acid (SCFA) content in the feces of UC mice. Notably, SP inhibited miR-155 expression in the colon tissue of UC mice and increased its target protein, suppressor of cytokine signaling 1 (SOCS1), which acts as an inflammatory inhibitor. In summary, the ameliorative effect of SP on UC may be achieved by improving the imbalance of gut microbiota and regulating the miR-155/SOCS1 axis. This study provides a new idea for developing SP as a nutritional supplement to maintain intestinal health.
Collapse
Affiliation(s)
- Jing Mao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Min Zhang
- China−Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
29
|
Wang Y, Zhang Y, Wang X, Li Q, Zhao Y, Jiang Y, Guo R, Liu X, Yuan T, Liu Z. Sesamol Mitigates Chronic Iron Overload-Induced Cognitive Impairment and Systemic Inflammation via IL-6 and DMT1 Regulation. Mol Nutr Food Res 2023; 67:e2300012. [PMID: 37452409 DOI: 10.1002/mnfr.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/27/2023] [Indexed: 07/18/2023]
Abstract
SCOPE Excessive iron contributes to oxidative damage and cognitive decline in Alzheimer's disease. Sesamol, a compound in sesame oil that exhibits both anti-inflammatory and neuroprotective properties, is examined in this study for its ability to alleviate cognitive impairments in iron overload mice model. METHODS AND RESULTS An iron overload model is established by intraperitoneally injecting dextran iron (250 mg kg-1 body weight) twice a week for 6 weeks, while sesamol (100 mg kg-1 body weight) is administered daily for the same length of time. The results demonstrate that sesamol protects spatial working memory and learning ability in iron overload mice, and inhibits neuronal loss and brain atrophy induced by iron overload. Moreover, sesamol significantly decreases interleukin-6 and malondialdehyde, and increases glutathione peroxidase 4 in the brains of iron overload mice. Additionally, sesamol maintains iron homeostasis in the brain by regulating the expressions of transferrin receptors, divalent metal transporter 1, and hepcidin, and reducing iron accumulation. Furthermore, sesamol suppresses disturbed systemic iron homeostasis and inflammation, particularly liver interleukin-6 expression. CONCLUSION These findings suggest that sesamol may be effective in mitigating neuroinflammatory responses and cognitive impairments induced by iron overload, potentially through its involvement in mediating the liver-brain axis.
Collapse
Affiliation(s)
- Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingyuan Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yishan Jiang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
30
|
Wang F, Yuan M, Shao C, Ji N, Zhang H, Li C. Momordica charantia-Derived Extracellular Vesicles Provide Antioxidant Protection in Ulcerative Colitis. Molecules 2023; 28:6182. [PMID: 37687011 PMCID: PMC10488752 DOI: 10.3390/molecules28176182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Plant-derived extracellular vesicles are functional nanovesicles that have significant applications in both disease prevention and treatment, as well as for use as drug carriers. Momordica charantia is a widely consumed food that has both medicinal and nutritional properties and has shown intervention in diabetes and inflammation caused by oxidative damage. In this study, Momordica charantia-derived extracellular vesicles (MCEVs) were extracted and demonstrated to have excellent antioxidant activity by characterization, lipid composition analysis, protein domain analysis, and in vitro antioxidant measurement. In addition, in vivo studies indicated that the MCEVs could restore ulcerative colitis by regulating oxidation and inflammatory factors. Therefore, the antioxidant properties of MCEVs may be important in protecting the colon from inflammation, which provides new insights into the application of MCEVs as drugs or vectors for intervention in ulcerative colitis.
Collapse
Affiliation(s)
- Feng Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
| | - Meng Yuan
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
| | - Chenqi Shao
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
| | - Nan Ji
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
| | - Haifeng Zhang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225009, China
| | - Chunmei Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
31
|
Wan Y, Zhou Q, Zhao M, Hou T. Byproducts of Sesame Oil Extraction: Composition, Function, and Comprehensive Utilization. Foods 2023; 12:2383. [PMID: 37372594 DOI: 10.3390/foods12122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Sesame is principally used to generate oil, which is produced by chemical refining or pressing. Sesame meal, as a main byproduct of sesame oil extraction, is usually discarded, causing resource waste and economic loss. Sesame meal is rich in sesame protein and three types of sesame lignans (sesamin, sesamolin, and sesamol). Sesame protein extracted via a physical method and an enzymic method has balanced amino acid composition and is an important protein source, and thus it is often added to animal feed and used as a human dietary supplement. Extracted sesame lignan exhibits multiple biological activities such as antihypertensive, anticancer, and cholesterol-lowering activities, and therefore it is used to improve the oxidative stability of oils. This review summarizes the extraction methods, functional activities, and comprehensive utilization of four active substances (sesame protein, sesamin, sesamolin, and sesamol) in sesame meal with the aim to provide theoretical guidance for the maximum utilization of sesame meal.
Collapse
Affiliation(s)
- Yuan Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Qiaoyun Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
32
|
Xia P, Hou T, Jin H, Meng Y, Li J, Zhan F, Geng F, Li B. A critical review on inflammatory bowel diseases risk factors, dietary nutrients regulation and protective pathways based on gut microbiota during recent 5 years. Crit Rev Food Sci Nutr 2023; 64:8805-8821. [PMID: 37096497 DOI: 10.1080/10408398.2023.2204147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The treatment of inflammatory bowel diseases (IBDs) has become a worldwide problem. Intestinal flora plays an important role in the development and progression of IBDs. Various risk factors (psychology, living habits, dietary patterns, environment) influence the structure and composition of the gut microbiota and contribute to the susceptibility to IBDs. This review aims to provide a comprehensive overview on risk factors regulating intestinal microenvironment which was contributed to IBDs. Five protective pathways related to intestinal flora were also discussed. We hope to provide systemic and comprehensive insights of IBDs treatment and to offer theoretical guidance for personalized patients with precision nutrition.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yaqi Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
33
|
Shin JH, Lee Y, Song EJ, Lee D, Jang SY, Byeon HR, Hong MG, Lee SN, Kim HJ, Seo JG, Jun DW, Nam YD. Faecalibacterium prausnitzii prevents hepatic damage in a mouse model of NASH induced by a high-fructose high-fat diet. Front Microbiol 2023; 14:1123547. [PMID: 37007480 PMCID: PMC10060964 DOI: 10.3389/fmicb.2023.1123547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionNonalcoholic steatohepatitis (NASH) is an advanced nonalcoholic fatty liver disease characterized by chronic inflammation and fibrosis. A dysbiosis of the gut microbiota has been associated with the pathophysiology of NASH, and probiotics have proven helpful in its treatment and prevention. Although both traditional and next-generation probiotics have the potential to alleviate various diseases, studies that observe the therapeutic effect of next-generation probiotics on NASH are lacking. Therefore, we investigated whether a next-generation probiotic candidate, Faecalibacterium prausnitzii, contributed to the mitigation of NASH.MethodsIn this study, we conducted 16S rRNA sequencing analyses in patients with NASH and healthy controls. To test F. prausnitzii could alleviate NASH symptoms, we isolated four F. prausnitzii strains (EB-FPDK3, EB-FPDK9, EB-FPDK11, and EB-FPYYK1) from fecal samples collected from four healthy individuals. Mice were maintained on a high-fructose high-fat diet for 16 weeks to induce a NASH model and received oral administration of the bacterial strains. Changes in characteristic NASH phenotypes were assessed via oral glucose tolerance tests, biochemical assays, and histological analyses.Results16S rRNA sequencing analyses confirmed that the relative abundance of F. prausnitzii reduced significantly in patients with NASH compared to healthy controls (p < 0.05). In the NASH mice, F. prausnitzii supplementation improved glucose homeostasis, prevented hepatic lipid accumulation, curbed liver damage and fibrosis, restored damaged gut barrier functions, and alleviated hepatic steatosis and liver inflammation. Furthermore, real-time PCR assays documented that the four F. prausnitzii strains regulated the expression of genes related to hepatic steatosis in these mice.DiscussionOur study, therefore, confirms that the administration of F. prausnitzii bacteria can alleviate NASH symptoms. We propose that F. prausnitzii has the potential to contribute to the next-generation probiotic treatment of NASH.
Collapse
Affiliation(s)
- Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yoonmi Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Seo-Yul Jang
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hye Rim Byeon
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Moon-Gi Hong
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
- *Correspondence: Jae-Gu Seo,
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University, College of Medicine, Seoul, Republic of Korea
- Dae Won Jun,
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Young-Do Nam,
| |
Collapse
|
34
|
Yang J, Wang L, Mei M, Guo J, Yang X, Liu S. Electroacupuncture repairs intestinal barrier by upregulating CB1 through gut microbiota in DSS-induced acute colitis. Chin Med 2023; 18:24. [PMID: 36894930 PMCID: PMC9999655 DOI: 10.1186/s13020-023-00733-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND A few studies have reported that electroacupuncture (EA) can repair the intestinal barrier through unknown mechanisms. Cannabinoid receptor 1 (CB1) was shown to play an important role in the protection of the gut barrier in recent studies. Gut microbiota can influence the expression of CB1. In this study, we explored the effect of EA on the gut barrier in acute colitis and its mechanism. METHODS A dextran sulfate sodium (DSS)-induced acute colitis model, CB1 antagonist model and fecal microbiota transplantation (FMT) model were used in this study. The disease activity index (DAI) score, colon length, histological score, and inflammatory factors were detected to evaluate colonic inflammation. Methods for detecting intestinal barrier functions included the expression of tight junction proteins, intestinal permeability, and the number of goblet cells. Moreover, 16S rRNA sequencing was applied to analyze alterations in the gut microbiota. Western blotting and RT-PCR were performed to assess the levels of CB1 and autophagy-related proteins. Autophagosomes were observed by transmission electron microscopy. RESULTS EA reduced the DAI score, histological score, levels of inflammatory factors, and restored the colon length. Moreover, EA increased the expression of tight junction proteins and the number of goblet cells, and decreased intestinal permeability. In addition, EA remodeled the community structure of the gut microbiota, increased the expression of CB1, and enhanced the degree of autophagy. However, the therapeutic effects were reversed by CB1 antagonists. In addition, FMT in the EA group exhibited similar effects to EA and upregulated CB1. CONCLUSIONS We concluded that EA may protect intestinal barrier functions by increasing the expression of CB1 to enhance autophagy through gut microbiota in DSS-induced acute colitis.
Collapse
Affiliation(s)
- Jingze Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingli Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Minhui Mei
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinlu Guo
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shi Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
35
|
Wang K, Qin L, Cao J, Zhang L, Liu M, Qu C, Miao J. κ-Selenocarrageenan Oligosaccharides Prepared by Deep-Sea Enzyme Alleviate Inflammatory Responses and Modulate Gut Microbiota in Ulcerative Colitis Mice. Int J Mol Sci 2023; 24:ijms24054672. [PMID: 36902109 PMCID: PMC10003262 DOI: 10.3390/ijms24054672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
κ-Selenocarrageenan (KSC) is an organic selenium (Se) polysaccharide. There has been no report of an enzyme that can degrade κ-selenocarrageenan to κ-selenocarrageenan oligosaccharides (KSCOs). This study explored an enzyme, κ-selenocarrageenase (SeCar), from deep-sea bacteria and produced heterologously in Escherichia coli, which degraded KSC to KSCOs. Chemical and spectroscopic analyses demonstrated that purified KSCOs in hydrolysates were composed mainly of selenium-galactobiose. Organic selenium foods through dietary supplementation could help regulate inflammatory bowel diseases (IBD). This study discussed the effects of KSCOs on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in C57BL/6 mice. The results showed that KSCOs alleviated the symptoms of UC and suppressed colonic inflammation by reducing the activity of myeloperoxidase (MPO) and regulating the unbalanced secretion of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10). Furthermore, KSCOs treatment regulated the composition of gut microbiota, enriched the genera Bifidobacterium, Lachnospiraceae_NK4A136_group and Ruminococcus and inhibited Dubosiella, Turicibacter and Romboutsia. These findings proved that KSCOs obtained by enzymatic degradation could be utilized to prevent or treat UC.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhan Cao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
- Correspondence: (C.Q.); (J.M.)
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
- Correspondence: (C.Q.); (J.M.)
| |
Collapse
|
36
|
Lan Y, Ma Z, Chang L, Peng J, Zhang M, Sun Q, Qiao R, Hou X, Ding X, Zhang Q, Peng Q, Dong J, Liu X. Sea buckthorn polysaccharide ameliorates high-fat diet induced mice neuroinflammation and synaptic dysfunction via regulating gut dysbiosis. Int J Biol Macromol 2023; 236:123797. [PMID: 36828095 DOI: 10.1016/j.ijbiomac.2023.123797] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/04/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Currently, definitive treatment for neurodegenerative diseases without side effects has not been developed, therefore, exploring natural polysaccharides with neuroprotection to prevent the occurrences and progressions of cognitive dysfunctions has important significance. The purpose of this study was to investigate the effects of sea buckthorn polysaccharide (SBP) on high-fat diet (HFD) induced mice cognitive dysfunctions and attempted to explore its biological mechanisms. Behavior tests (Y-maze and Barnes maze) suggested that SBP effectively alleviated the HFD induced behavioral disorders, which was in accordance with the inhibition of neuroinflammation via suppressing the NF-κB pathway and amelioration of synaptic dysfunction via upregulating CREB/BDNF/TrkB pathway in mice brain. Furthermore, SBP alleviated the gut barrier impairment, inflammatory responses, and lipopolysaccharide invasion into blood circulation via regulating the gut microbiome structure, especially correcting the reduction of Ileibacterium and increase of Lactobacillus, Dubosiella, Olsenella, Helicobacter, and Ruminiclostridium_9 in HFD mice. Therefore, the reversal effects of SBP on gut dysbiosis might be the important reason for its positive effects on cognitive dysfunction induced by HFD in mice.
Collapse
Affiliation(s)
- Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiyuan Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lili Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengqi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qingyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruixue Qiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinglin Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuechao Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Puredia Limited, Xining, China
| | - Juane Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
37
|
Ge H, Li T, Yang Q, Tang Y, Liu J, Yu Y, Zhang T. Egg white peptides administration in enhancing pathological immune response and regulating intestinal bacteria abundance: A new strategy for relieving young mice colitis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Huifang Ge
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Yuanhu Tang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| |
Collapse
|
38
|
Chen S, Wang J, Dong N, Fang Q, Zhang Y, Chen C, Cui SW, Nie S. Polysaccharides from natural Cordyceps sinensis attenuated dextran sodium sulfate-induced colitis in C57BL/6J mice. Food Funct 2023; 14:720-733. [PMID: 36598450 DOI: 10.1039/d2fo02555h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As potential candidates for treating ulcerative colitis (UC), polysaccharides have been attracting extensive interest in recent years. Cordyceps sinensis (C. sinensis) is a kind of traditional Chinese edible food, and its polysaccharide fractions have been found to be effective in regulating immunity and protecting the kidneys. To determine the potential function of polysaccharides from natural C. sinensis on UC, their effects in terms of histological, serological, biochemical, and immunological aspects on dextran sulphate sodium (DSS)-induced colitis mice model were investigated. Results showed that the polysaccharides significantly alleviated colitis by increasing the colon length, alleviating colon tissue damage, and inhibiting the activation of the NF-κB pathway. In addition, polysaccharides reduced the contents of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the serum, increased the number of goblet cells, and improved the expression of intestinal tight junction proteins (Occludin and Claudin-1). They also evidently enhanced the formation of IgA-secretory cells and sIgA contents. Furthermore, the polysaccharides modulated the gut microbiota by decreasing the relative abundance of Bilophila and increasing the relative abundance of Dehalobacterium, Coprococcus, Oscillospira, and Desulfovibrio, which is accompanied by an increase in the short chain fatty acids' (SCFAs) concentrations in cecal contents. These results suggested that C. sinensis polysaccharides possessed promising intervening effects on experimental acute UC in mice.
Collapse
Affiliation(s)
- Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang 330045, China.,State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Junqiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Nan Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Qiuyue Fang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| |
Collapse
|
39
|
Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023; 13:metabo13010096. [PMID: 36677021 PMCID: PMC9862976 DOI: 10.3390/metabo13010096] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing idiopathic inflammatory conditions affecting the gastrointestinal tract. They are mainly represented by two forms, ulcerative colitis (UC) and Crohn's disease (CD). IBD can be associated with the activation of nuclear factors, such as nuclear factor-kB (NF-kB), leading to increased transcription of pro-inflammatory mediators that result in diarrhea, abdominal pain, bleeding, and many extra-intestinal manifestations. Phytochemicals can interfere with many inflammation targets, including NF-kB pathways. Thus, this review aimed to investigate the effects of different phytochemicals in the NF-kB pathways in vitro and in vivo models of IBD. Fifty-six phytochemicals were included in this study, such as curcumin, resveratrol, kaempferol, sesamol, pinocembrin, astragalin, oxyberberine, berberine hydrochloride, botulin, taxifolin, naringin, thymol, isobavachalcone, lancemaside A, aesculin, tetrandrine, Ginsenoside Rk3, mangiferin, diosgenin, theanine, tryptanthrin, lycopene, gyngerol, alantolactone, mangostin, ophiopogonin D, fisetin, sinomenine, piperine, oxymatrine, euphol, artesunate, galangin, and nobiletin. The main observed effects related to NF-kB pathways were reductions in tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, interferon-gamma (IFN-γ), and cyclooxygenase-2 (COX-2), and augmented occludin, claudin-1, zonula occludens-1, and IL-10 expression levels. Moreover, phytochemicals can improve weight loss, stool consistency, and rectal bleeding in IBD. Therefore, phytochemicals can constitute a powerful treatment option for IBD in humans.
Collapse
|
40
|
Zou MY, Wang YJ, Liu Y, Xiong SQ, Zhang L, Wang JH. Huangshan Floral Mushroom Polysaccharide Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Modulating Th17/Treg Balance in a Gut Microbiota-Dependent Manner. Mol Nutr Food Res 2023; 67:e2200408. [PMID: 36418892 DOI: 10.1002/mnfr.202200408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/19/2022] [Indexed: 11/25/2022]
Abstract
SCOPE Ulcerative colitis (UC) is a common chronic recurrent inflammatory bowel disease. This study attempts to reveal the improvement mechanism of floral mushroom polysaccharide (FMPS) on UC from the perspective of coordinated interaction between intestinal microbes and intestinal helper T cell 17 (Th17)/regulatory T cell (Treg) balance. METHODS AND RESULTS Dextran sulfate sodium (DSS)-induced colitis mice model is used for the experiment. The results suggest that FMPS up-regulated the expression of occludin, ZO-1, and MUC2, and down-regulated the secretion of TNF-α, IL-1β, and IL-6 in colitis mice. Importantly, FMPS restores intestinal Th17/Treg balance. Meanwhile, FMPS can regulate intestinal microorganisms and improve the level of short-chain fatty acids (SCFAs) in colitis mice. Intestinal microbial depletion and fecal microbiota transplantation (FMT) experiments reveal that FMPS ameliorated UC is mediated by intestinal microbiome. Flow cytometry further proves that FMPS restores intestinal Th17/Treg balance in a microbial-dependent manner. CONCLUSION These results indicate that FMPS has the potential to improve UC, and its mechanism depends on the restoration of Th17/Treg balance mediated by intestinal microorganisms. Therefore, it is suggested that FMPS dietary supplement can be potentially used to intervene UC.
Collapse
Affiliation(s)
- Ming-Yue Zou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu-Jing Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shan-Qiang Xiong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lei Zhang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230061, China
| | - Jun-Hui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
41
|
Xia X, Lin H, Luo F, Wu X, Zhu L, Chen S, Luo H, Ye F, Peng X, Zhang Y, Yang G, Lin Q. Oryzanol Ameliorates DSS-Stimulated Gut Barrier Damage via Targeting the Gut Microbiota Accompanied by the TLR4/NF-κB/NLRP3 Cascade Response In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15747-15762. [PMID: 36474430 DOI: 10.1021/acs.jafc.2c04354] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a global chronic disease with a long duration and repeated relapse. Currently, there is still a lack of effective approaches to prevent IBD. Food-derived oryzanol (ORY) possesses extensive biological activities, such as ameliorating bowel diseases, antioxidation, and antiobesity. However, the mechanism of ORY in preventing colitis remains unclear. The present research aims to explore the potential mechanism of ORY in dextran sulfate sodium (DSS)-stimulated colitis in a rat model. The results showed that the symptoms of colitis were significantly improved with the administration of ORY. Mechanismly, the expression levels of Zonula occludens-1 (ZO-1), Claudin-1, Occludin, MUC2, and TFF3 were elevated through ORY treatment, suggesting that oral ORY relieved the degree of gut barrier damage of colitis rats. Meanwhile, 16S sequencing results found that ORY supplementation increased the abundances of Alloprevotella, Roseburia, Treponema, Muribaculaceae, and Ruminococcus, which are associated with the synthesis of short-chain fatty acids (SCFAs). Moreover, GC-MS results confirmed that ORY supplementation reversed the DSS-induced reduction of acetic acid, butyric acid, and total acid. Further research indicated that ORY intervention downregulated the TLR4/NF-κB/NLRP3 pathway, which is closely linked to the expression of proinflammatory cytokines and colon injury. Taken together, ORY ameliorates DSS-stimulated gut barrier damage and inflammatory responses via the gut microbiota-TLR4/NF-κB/NLRP3 signaling axis.
Collapse
Affiliation(s)
- Xinxin Xia
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- National Center of Dark Tea Product Quality Inspection & Testing (Hunan), Yiyang Testing Institute of Product and Commodity Quality Supervision, Yiyang 413000, Hunan, China
| | - Hai Lin
- National Center of Dark Tea Product Quality Inspection & Testing (Hunan), Yiyang Testing Institute of Product and Commodity Quality Supervision, Yiyang 413000, Hunan, China
| | - Feijun Luo
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiuxiu Wu
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Lingfeng Zhu
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410004, Hunan, China
| | - Shuilian Chen
- National Center of Dark Tea Product Quality Inspection & Testing (Hunan), Yiyang Testing Institute of Product and Commodity Quality Supervision, Yiyang 413000, Hunan, China
| | - Han Luo
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Fan Ye
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xia Peng
- National Center of Dark Tea Product Quality Inspection & Testing (Hunan), Yiyang Testing Institute of Product and Commodity Quality Supervision, Yiyang 413000, Hunan, China
| | - Yan Zhang
- National Center of Dark Tea Product Quality Inspection & Testing (Hunan), Yiyang Testing Institute of Product and Commodity Quality Supervision, Yiyang 413000, Hunan, China
| | - Guliang Yang
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qinlu Lin
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
42
|
An Elemental Diet Enriched in Amino Acids Alters the Gut Microbial Community and Prevents Colonic Mucus Degradation in Mice with Colitis. mSystems 2022; 7:e0088322. [PMID: 36468853 PMCID: PMC9765100 DOI: 10.1128/msystems.00883-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The role of dietary amino acids or intact proteins in the progression of colitis remains controversial, and the mechanism involving gut microbes is unclear. Here, we investigated the effects of an elemental diet (ED) enriched in amino acids and a polymeric diet enriched in intact protein on the pathogenesis of dextran sulfate sodium (DSS)-induced colitis in mice. Our results showed that the ED induced remission of colitis in mice. Notably, ED treatment reduced the abundance of the mucolytic bacteria Akkermansia and Bacteroides, which was attributed to decreased colonic protein fermentation. Consistently, the activities of mucolytic enzymes were decreased, leading to protection against mucus layer degradation and microbial invasion. Fecal microbiota transplantation from ED-fed mice reshaped microbial ecology and alleviated intestinal inflammation in recipient mice. The ED failed to induce remission of colitis in pseudogermfree mice. Together, our results demonstrate the critical role of the gut microbiota in the prevention of colitis by an ED. IMPORTANCE The prevalence of inflammatory bowel disease is rapidly increasing and has become a global burden. Several specific amino acids have been shown to benefit mucosal healing and colitis remission. However, the role of amino acids or intact proteins in diets and enteral nutrition formulas is controversial, and the mechanisms involving gut microbes remain unclear. In this study, we investigated the effects of an elemental diet (ED) enriched in amino acids and a polymeric diet enriched in intact protein on the pathogenesis of colitis in mice. The underlying mechanisms were explored by utilizing fecal microbiota transplantation and pseudogermfree mice. ED treatment reduced the abundance of mucolytic bacteria, thereby protecting the mucus layer from microbial invasion and degradation. For the first time, we convincingly demonstrated the critical role of gut microbiota in the effects of the ED. This study may provide new insights into the gut microbiota-diet interaction and its role in human health.
Collapse
|
43
|
Fu R, Wang L, Meng Y, Xue W, Liang J, Peng Z, Meng J, Zhang M. Apigenin remodels the gut microbiota to ameliorate ulcerative colitis. Front Nutr 2022; 9:1062961. [PMID: 36590200 PMCID: PMC9800908 DOI: 10.3389/fnut.2022.1062961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Ulcerative colitis (UC), a chronic non-specific colorectal inflammatory disease with unclear etiology, has long plagued human health. Gut microbiota dysbiosis destroy homeostasis of the colon, which is closely related to ulcerative colitis progress. Apigenin, a flavonoid widely present in celery, has been found to improve ulcerative colitis. However, the potential molecular mechanism of apigenin ameliorating ulcerative colitis through protecting intestinal barrier and regulating gut microbiota remains undefined. Methods Dextran sodium sulfate (DSS)-induced colitis mouse model was conducted to evaluate the effect of apigenin on UC. Disease activity index score of mice, colon tissue pathological, cytokines analysis, intestinal tight junction proteins expression, and colonic content short-chain fatty acids (SCFAs) and 16S rRNA gene sequencing were conducted to reflect the protection of apigenin on UC. Results The results indicated that apigenin significantly relieved the intestinal pathological injury, increased goblet cells quantity and mucin secretion, promoted anti-inflammatory cytokines IL-10 expression, and inhibited the expression of proinflammatory cytokines, TNF-α, IL-1β, IL-6 and MPO activity of colon tissue. Apigenin increased ZO-1, claudin-1 and occludin expressions to restore the integrity of the intestinal barrier. Moreover, apigenin remodeled the disordered gut microbiota by regulating the abundance of Akkermansia, Turicibacter, Klebsiella, Romboutsia, etc., and its metabolites (SCFAs), attenuating DSS-induced colon injury. We also investigated the effect of apigenin supplementation on potential metabolic pathways of gut microbiota. Conclusion Apigenin effectively ameliorated DSS-induced UC via balancing gut microbiome to inhibit inflammation and protect gut barrier. With low toxicity and high efficiency, apigenin might serve as a potential therapeutic strategy for the treatment of UC via regulating the interaction and mechanism between host and microorganism.
Collapse
Affiliation(s)
- Rongrong Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ying Meng
- Department of Rehabilitation Medicine, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Wenqing Xue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingjie Liang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zimu Peng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China,Tianjin International Joint Academy of Biomedicine, Tianjin, China,*Correspondence: Jing Meng,
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China,China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin, China,Min Zhang,
| |
Collapse
|
44
|
Xu D, Zhuang L, Gao S, Ma H, Cheng J, Liu J, Liu D, Fu S, Hu G. Orally Administered Ginkgolide C Attenuates DSS-Induced Colitis by Maintaining Gut Barrier Integrity, Inhibiting Inflammatory Responses, and Regulating Intestinal Flora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14718-14731. [PMID: 36375817 DOI: 10.1021/acs.jafc.2c06177] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ulcerative colitis (UC), one of the foremost common forms of inflammatory bowel disease, poses a serious threat to human health. Currently, safe and effective treatments are not available. This study investigated the protective effect of ginkgolide C (GC), a terpene lactone extracted from Ginkgo biloba leaves, on UC and its underlying mechanism. The results showed that GC remarkably mitigated the severity of DSS-induced colitis in mice, as demonstrated by decreased body weight loss, reduced disease activity index, mitigated tissue damage, and increased colon length. Furthermore, GC inhibited DSS-induced hyperactivation of inflammation-related signaling pathways (NF-κB and MAPK) to reduce the production of inflammatory mediators, thereby mitigating the inflammatory response in mice. GC administration also restored gut barrier function by elevating the number of goblet cells and boosting the levels of tight junction-related proteins (claudin-3, occludin, and ZO-1). In addition, GC rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora, elevating the abundance of beneficial bacteria, such as Lactobacillus and Allobaculum, and decreasing the abundance of harmful bacteria, such as Bacteroides, Oscillospira, Ruminococcus, and Turicibacter. Taken together, these results suggest that GC administration effectively alleviates DSS-induced colitis by inhibiting the inflammatory response, maintaining mucosal barrier integrity, and regulating intestinal flora. This study may provide a scientific basis for the rational use of GC in preventing colitis and other related diseases.
Collapse
Affiliation(s)
- Dianwen Xu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Lu Zhuang
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing 100853, China
- Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing 100000, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, China
| | - Shan Gao
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - He Ma
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Ji Cheng
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| |
Collapse
|
45
|
Yan C, Kwek E, Ding HF, He Z, Ma KY, Zhu H, Chen ZY. Dietary Oxidized Cholesterol Aggravates Chemically Induced Murine Colon Inflammation and Alters Gut Microbial Ecology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13289-13301. [PMID: 36198042 DOI: 10.1021/acs.jafc.2c05001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Western diet with a higher intake of fat and cholesterol has been claimed as an intestinal inflammation trigger. Human diet contains both cholesterol and oxidized cholesterol. Oxidized cholesterol has been claimed to be associated with various inflammation diseases, but its effects on colitis and gut microbiome remain largely unknown. The present study was the first time to investigate the effect of the oxidized cholesterol on gut microbiota and dextran sodium sulfate-induced colitis using mice as a model. The results showed that oxidized cholesterol promoted colitis by exacerbating bleeding, body weight decrease, colon shortening, gut barrier damage, oxidative stress, and gut inflammation, whereas non-oxidized cholesterol had no effect. Meanwhile, oxidized cholesterol could adversely modulate the gut microbiota by increasing the relative abundance of pro-inflammatory bacteria (including Escherichia-Shigella and Bacteroides) and decreasing that of beneficial bacteria (Lachnospiraceae_NK4A136_group and Odoribacter). In addition, oxidized cholesterol significantly reduced the production of fecal short-chain fatty acids in colitis mice. It was concluded that oxidized cholesterol was a potential dietary factor of gut dysbiosis.
Collapse
Affiliation(s)
- Chi Yan
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Erika Kwek
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Hua-Fang Ding
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Zouyan He
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- School of Public Health, Guanxi Medical University, Nanning 530021, China
| | - Ka Ying Ma
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Hanyue Zhu
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- School of Food Science and Engineering/South China Food Safety Research Center, Foshan University, Foshan 528000, Guangdong, China
| | - Zhen-Yu Chen
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
46
|
Li S, Yuan N, Guo W, Chai Y, Song Y, Zhao Y, Zeng M, Wu H. Antioxidant and anti-inflammatory protective effects of yellowtail ( Seriola quinqueradiata) milt hydrolysates on human intestinal epithelial cells in vitro and dextran sodium sulphate-induced mouse colitis in vivo. Food Funct 2022; 13:9169-9182. [PMID: 36069409 DOI: 10.1039/d2fo00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Milt is an underutilized fish processing by-product containing valuable nutrients for human health. Here, a gastrointestinal hydrolysate of degreased yellowtail (Seriola quinqueradiata) milt contained 70.6% arginine-rich protein, 20% nucleic acids, 7.1% minerals and 2.3% carbohydrates. Yellowtail milt hydrolysates (YMH) effectively attenuated the H2O2-induced burst of intracellular reactive oxygen species, plasma membrane impairment, loss of cell viability, interleukin 8 production and the expression of claudin-4 and occludin in Caco-2 cells with its protein fraction playing a greater antioxidant role than its nucleic acid fraction. YMH also significantly counteracted the tumor necrosis factor α- and interleukin 1β-stimulated interleukin 8 production and cyclooxygenase-2 and inducible nitric oxide synthase expression in Caco-2 cells and inhibited the production of nitric oxide and proinflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells depending on its protein fraction, rather than its nucleic acid fraction. YMH and a positive drug 5-aminosalicylic acid were intragastrically administered to C57BL/6 mice daily for 7 days during and after 4-day dextran sodium sulphate exposure. Based on clinical signs, colon histopathology and biochemical analysis of colonic tight junction proteins, mucus compositions and goblet cells, YMH ameliorated mouse colitis symptoms and intestinal epithelial barrier dysfunction more effectively than 5-aminosalicylic acid. According to myeloperoxidase activity, proinflammatory cytokines and NF-κB, YMH and 5-aminosalicylic acid exerted equivalent inhibitory effects on colonic and systemic inflammation. Overall, YMH have considerable antioxidant and anti-inflammatory efficacies to maintain gut health.
Collapse
Affiliation(s)
- Shiyang Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, China.
| | - Ning Yuan
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Wei Guo
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, China
| | - Yuan Chai
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, China.
| | - Yi Song
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, China.
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, China.
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, China.
| |
Collapse
|
47
|
Qian Y, Ma L, Zeng M, Liu Z. Amelioration of dextran sulfate sodium-induced colitis by autoinducer-2-deficient Lactiplantibacillus plantarum is mediated by anti-inflammatory effects and alleviation of dysbiosis of the gut microbiota. Front Microbiol 2022; 13:1013586. [PMID: 36187993 PMCID: PMC9515423 DOI: 10.3389/fmicb.2022.1013586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Lactic acid bacteria (LAB) attenuate dextran sulfate sodium (DSS)-induced colitis in mice by restoring gut flora homeostasis and modulating the immune response. Because synchronous behavior can be controlled by autoinducer-2 (AI-2)/LuxS-mediated quorum sensing, the Caco-2 cell model and DSS-induced model in C57BL/6 mice were used to explore the unknown effects of these communications involving AI-2 among various intestinal symbiotic species. The results of the cell viability and lactate dehydrogenase leakage assays indicated that the tested strains (the wild-type strains and AI-2-deficient mutants) were characterized by equal cytoprotection from hydrogen peroxide-induced injury independently of AI-2. The results of the assays of multiple indicators and proinflammatory cytokines characteristic for the symptoms of colitis in mice showed that oral administration of AI-2-deficient mutants for 7 days was more effective in ameliorating inflammation than the treatment with the wild-type strains. The treatment with AI-2-deficient mutants enriched potential probiotics (e.g., Lactobacillaceae) and controlled the proliferation of potentially harmful bacteria (e.g., Helicobacteraceae) to achieve the transformation of intestinal flora. These mutants regulated short-chain fatty acids and the intestinal epithelial barrier, thereby promoting the maintenance of relatively favorable intestinal homeostasis. These results demonstrated that the AI-2-deficient mutants provided a more pronounced ameliorative effect on colitis in a mouse model, suggesting that the background of the LAB effect is associated with the alterations in colonic flora induced by AI-2.
Collapse
Affiliation(s)
- Yilin Qian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
| | - Lei Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
- *Correspondence: Zunying Liu,
| |
Collapse
|
48
|
Yin Y, Cai J, Zhou L, Xing L, Zhang W. Dietary oxidized beef protein alters gut microbiota and induces colonic inflammatory damage in C57BL/6 mice. Front Nutr 2022; 9:980204. [PMID: 36118776 PMCID: PMC9478438 DOI: 10.3389/fnut.2022.980204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to investigate the effect of oxidized beef protein on colon health. C57BL/6 mice were fed diets containing in vitro oxidized beef protein (carbonyl content 5.83/9.02 nmol/mg protein) or normal beef protein (control group, carbonyl content 2.27 nmol/mg protein) for 10 weeks. Histological observations showed that oxidized beef protein diet induced notable inflammatory cell infiltrations in colon. The analysis of high-throughput sequencing indicated oxidized beef protein largely altered the composition of gut microbiota (GM) by increasing proinflammatory bacteria (Desulfovibrio, Bacteroides, Enterorhabdus) while reducing beneficial bacteria (Lactobacillus, Akkermansia). In addition, oxidized beef protein remarkably increased protein fermentation in the colon, which was evidenced by the elevated i-butyrate, i-valerate, and ammonia levels in feces. Furthermore, consuming oxidized beef protein destroyed colon barrier functions by decreasing tight junction proteins expression. These changes in colonic ecosystem activated the proinflammatory pathway of lipopolysaccharide/toll-like receptor-4/nuclear factor kappa B (LPS/TLR-4/NF-κB), eventually leading to colonic inflammatory damage in mice. Taken together, these results imply that consuming oxidized beef protein detrimentally regulates GM and impairs colon health.
Collapse
|
49
|
Li C, Wang L, Zhao J, Wei Y, Zhai S, Tan M, Guan K, Huang Z, Chen C. Lonicera rupicola Hook.f.et Thoms flavonoids ameliorated dysregulated inflammatory responses, intestinal barrier, and gut microbiome in ulcerative colitis via PI3K/AKT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154284. [PMID: 35777121 DOI: 10.1016/j.phymed.2022.154284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lonicera rupicola Hook.f.et Thoms (LRH) is used as a customary medicinal herb in Tibetans. And LRH flavonoids have excellent anti-inflammatory and antioxidant pharmacological activities. However, the specific effects of LRH and its mechanism remain unknown, and there is a deficiency of systematic research, leading to the waste of LRH as a medicinal resource. PURPOSE In this study, in an attempt to rationalize the development and utilization of Tibetan herbal resources, the therapeutic efficacy and the underlying molecular mechanisms of LRH flavonoids on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) were investigated, establishing the favorable basis for the pharmacodynamic material basis of LRH and providing a scientific basis for the discovery of new drugs for the treatment of UC. METHODS Firstly, ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used for identification and detection of the flavonoid components of LRH. Meanwhile, their potential targets, biological functions and signaling pathways were predicted with the assistance of network pharmacology analysis. Subsequently, pharmacological efficacy of LRH were evaluated by body weight loss, colon length, disease activity index (DAI), histology observation and the expression levels of inflammatory mediators, messenger RNA (mRNA) and tight junction proteins. Moreover, in the present investigation, we also profiled the gut microbiome via high-throughput sequencing of the V3-V4 region of 16S ribosomal DNA (rDNA) for bacterial community composition and diversity by Illumina MiSeq platforms. Finally, the key regulatory proteins in the PI3K/AKT pathways were measured to investigate their underlying molecular mechanisms. RESULTS A total of 37 LRH flavonoid components were identified and detected by UPLC-MS/MS, and 12 potential active components were obtained after screening. 137 of their common targets with UC were further predicted. GO and KEGG pathway enrichment analysis and molecular docking experiments demonstrated that LRH flavonoids could interfere with UC through "multi-component-multi-target-multi-pathway". In the animal experiments, LRH flavonoids could significantly attenuate UC as demonstrated by reducing the body weight loss and DAI, restoring colon length, decreasing oxidative stress, and improving the intestinal epithelial cell barrier. The mRNA and proteins expression levels of inflammatory mediators were returned to dynamic balance following LRH flavonoids treatment. 16S rDNA sequence analysis indicated that LRH flavonoids promoted the recovery of gut microbiome. And the PI3K/AKT pathway was significantly suppressed by LRH flavonoids. CONCLUSIONS LRH flavonoids exhibited multifaceted protective effects against DSS-induced UC in mice through mitigating colon inflammation and oxidative stress, restoring epithelial barrier function, and improving the gut microenvironment potentially through modulation of the PI3K/AKT pathway. This finding demonstrated that LRH flavonoids possessed great potential for becoming an excellent drug for the treatment of UC.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Lu Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Juebo Zhao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yucai Wei
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Shuo Zhai
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Min Tan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Kuikui Guan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Zhihong Huang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.
| | - Chaoxi Chen
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
50
|
Du G, Chang S, Guo Q, Yan X, Chen H, Shi K, Yuan Y, Yue T. Protective effects of Tibetan kefir in mice with ochratoxin A-induced cecal injury. Food Res Int 2022; 158:111551. [DOI: 10.1016/j.foodres.2022.111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/28/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
|