1
|
Ruan J, Xia Y, Ma Y, Xu X, Luo S, Yi J, Wu B, Chen R, Wang H, Yu H, Yang Q, Wu W, Sun D, Zhong J. Milk-derived exosomes as functional nanocarriers in wound healing: Mechanisms, applications, and future directions. Mater Today Bio 2025; 32:101715. [PMID: 40242483 PMCID: PMC12003018 DOI: 10.1016/j.mtbio.2025.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Wound healing presents a significant challenge in healthcare, imposing substantial physiological and economic burdens. While traditional treatments and stem cell therapies have shown benefits, milk-derived exosomes (MDEs) offer distinct advantages as a cell-free therapeutic approach. MDEs, isolated from mammalian milk, are characterized by their biocompatibility, ease of acquisition, and high yield, making them a promising tool for enhancing wound repair. This review provides a comprehensive analysis of the composition, sources, and extraction methods of MDEs, with a focus on their therapeutic role in both acute and diabetic chronic wounds. MDEs facilitate wound healing through the delivery of bioactive molecules, modulating key processes such as inflammation, angiogenesis, and collagen synthesis. Their ability to regulate complex wound-healing pathways underscores their potential for widespread clinical application. This review highlights the importance of MDEs in advancing wound management and proposes strategies to optimize their use in regenerative medicine.
Collapse
Affiliation(s)
- Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yuping Xia
- Department of Burn and Plastic Surgery, Zigong Fourth People's Hospital, Zigong 643099, China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Xiyao Xu
- Department of Burn and Plastic Surgery, Zigong Fourth People's Hospital, Zigong 643099, China
| | - Shihao Luo
- Department of Burn and Plastic Surgery, Zigong Fourth People's Hospital, Zigong 643099, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Baihui Wu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Honggang Yu
- Hand and Foot Surgery, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, China
- Jin Feng Laboratory, Chongqing, 401329, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Junbo Zhong
- Department of Burn and Plastic Surgery, Zigong Fourth People's Hospital, Zigong 643099, China
| |
Collapse
|
2
|
Zheng Y, Wang T, Zhang J, Wei S, Wu Z, Li J, Shi B, Sun Z, Xu W, Zhu J. Plant-Derived Nanovesicles: A Promising Frontier in Tissue Repair and Antiaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40402864 DOI: 10.1021/acs.jafc.5c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
In recent years, mammal-derived extracellular vesicles (EVs) have been widely used in studies on tissue repair and antiaging. Their therapeutic potential lies in mediating intercellular communication through the transfer of various bioactive molecules. As research on nanovesicles progresses, plant-derived nanovesicles (PDNVs) have attracted growing attention as a promising alternative. As an emerging cross-species regulatory "natural force", PDNVs have attracted considerable interest due to their excellent biocompatibility, low immunogenicity, and remarkable therapeutic effects in tissue injury and aging-related diseases. In this review, we examine the bioactive components, drug delivery potential, and functional mechanisms of PDNVs, and we summarize recent advances in their applications for tissue repair and antiaging. In addition, we systematically discuss the major challenges and limitations hindering the clinical translation and industrialization of PDNVs, and we propose five strategic approaches along with future research directions. This review aims to promote further investigation of PDNVs in regenerative medicine and enhance their potential for clinical application.
Collapse
Affiliation(s)
- Yuzhou Zheng
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Tangrong Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Sen Wei
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Zhijing Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiali Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Beihao Shi
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Zixuan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jian Zhu
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| |
Collapse
|
3
|
Mitani T. Functional expression mechanisms of food-derived components based on target proteins. Biosci Biotechnol Biochem 2025; 89:523-532. [PMID: 39805718 DOI: 10.1093/bbb/zbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Food-derived polyphenols and some alkaloids have reported bioactivities related to the prevention of systemic metabolic disorders such as obesity, glucose intolerance, and dyslipidemia. For food-derived components to exert their functions in vivo, it is essential to interact with biological factors such as proteins, lipids, and nucleic acids. However, it is still unclear whether bioactive components in foods express functions related to their target factors. In this review, I introduce the target proteins in which food-derived components express functions in cells.
Collapse
Affiliation(s)
- Takakazu Mitani
- Division of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| |
Collapse
|
4
|
Gao C, Chen Y, Wen X, Han R, Qin Y, Li S, Tang R, Zhou W, Zhao J, Sun J, Li Z, Tan Z, Wang D, Zhou C. Plant-derived exosome-like nanoparticles in tissue repair and regeneration. J Mater Chem B 2025; 13:2254-2271. [PMID: 39817682 DOI: 10.1039/d4tb02394c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This article reviews plant-derived exosome-like nanoparticles (ELNs), and highlights their potential in regenerative medicine. Various extraction techniques, including ultracentrifugation and ultrafiltration, and their impact on ELN purity and yield were discussed. Characterization methods such as microscopy and particle analysis are found to play crucial roles in defining ELN properties. This review is focused on exploring the therapeutic potential of ELNs in tissue repair, immune regulation, and antioxidant activities. Further research and optimization methods for extraction of ELNs to realize clinical potential applications are necessary.
Collapse
Affiliation(s)
- Canyu Gao
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yang Chen
- Center of Medical Product Technical Inspection, Chengdu, 610015, China
| | - Xingyue Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuxiang Qin
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Sijie Li
- Department of Burn and Plastic Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Weikai Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junyu Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengyong Li
- Department of Burn and Plastic Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
5
|
Hsu P, Kamijyo Y, Koike E, Ichikawa S, Zheng Y, Ohno T, Katayama S. Exosome-like nanovesicles derived from kale juice enhance collagen production by downregulating Smad7 in human skin fibroblasts. Front Nutr 2025; 12:1486572. [PMID: 39996007 PMCID: PMC11847687 DOI: 10.3389/fnut.2025.1486572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Plant-derived exosome-like nanovesicles (ELNs) are critical mediators of cross-kingdom communication, modulating gene expression in animal cells despite their plant origin. In this study, we investigated the effects of glucoraphanin-enriched kale (GEK)-derived ELNs (GELNs) on collagen production in normal human dermal fibroblasts NB1RGB. The ELNs isolated from GEK juice powder had particle sizes similar to those of typical exosomes. GELNs increased type I collagen expression in NB1RGB cells significantly. Microarray analysis demonstrated that GELN-derived total RNA upregulated the expression of genes related to extracellular matrix formation, including those involved in collagen synthesis. Further investigation revealed that microRNA-enriched fraction of GELNs promoted collagen production by inhibiting the expression of Smad7. These findings suggest that GELNs and their microRNA content enhance collagen production through the downregulation of Smad7.
Collapse
Affiliation(s)
- Peihan Hsu
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Yuriko Kamijyo
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Emiri Koike
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Saki Ichikawa
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Yifeng Zheng
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | | | - Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| |
Collapse
|
6
|
Cox SN, Porcelli V, Romano S, Palmieri L, Fratantonio D. Blueberry-derived exosome like nanovesicles carry RNA cargo into HIEC-6 cells and down-regulate LPS-induced inflammatory gene expression: A proof-of-concept study. Arch Biochem Biophys 2025; 764:110266. [PMID: 39674567 DOI: 10.1016/j.abb.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Exosome-like nanovesicles (ELNs) of food origin have received great attention in the last decade, due to the hypothesis that they contain bioactive molecules. ELNs purified from edible species have been shown to be protective and are able to regulate intestinal homeostasis. Despite ELNs being potential rising stars in modern healthy diets and biomedical applications, further research is needed to address underlying knowledge gaps, especially related to the specific molecular mechanism through which they exert their action. Here, we investigate the cellular uptake of blueberry-derived ELNs (B-ELNs) using a human stabilized intestinal cell line (HIEC-6) and assess the ability of B-ELNs to modulate the expression of inflammatory genes in response to lipopolysaccharide (LPS). Our findings show that B-ELNs are internalized by HIEC-6 cells and transport labeled RNA cargo into them. Pretreatment with B-ELNs reduces LPS-induced ROS generation and cell viability loss, while modulating the expression of 28 inflammatory genes compared to control. Pathway analysis demonstrates their ability to suppress inflammatory responses triggered by LPS. In conclusion, our data indicate that B-ELNs are up taken by HIEC-6 cells and can modulate inflammatory responses after LPS stimulation, suggesting a therapeutic potential. This study demonstrates the role of B-ELNs in regulating crucial biological processes, like anti-inflammatory responses, which could support intestinal health.
Collapse
Affiliation(s)
- Sharon Natasha Cox
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy.
| | - Vito Porcelli
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy.
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, Federico II, 5, 80131, Naples, Italy.
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy.
| | | |
Collapse
|
7
|
Li J, Luo T, Wang D, Zhao Y, Jin Y, Yang G, Zhang X. Therapeutic application and potential mechanism of plant-derived extracellular vesicles in inflammatory bowel disease. J Adv Res 2025; 68:63-74. [PMID: 38341033 PMCID: PMC11785581 DOI: 10.1016/j.jare.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Plant-derived extracellular vesicles (PDEVs) are membrane vesicles characterized by a phospholipid bilayer as the basic skeleton that is wrapped by various functional components of proteins and nucleic acids. An increasing number of studies have confirmed that PDEVs can be a potential treatment of inflammatory bowel disease (IBD) and can, to some extent, compensate for the limitations of existing therapies. AIM OF REVIEW This review summarizes the recent advances and potential mechanisms underlying PDEVs obtained from different sources to alleviate IBD. In addition, the review discusses the possible applications and challenges of PDEVs, providing a theoretical basis for exploring novel and practical therapeutic strategies for IBD. KEY SCIENTIFIC CONCEPTS OF REVIEW In IBD, the crosstalk mechanism of PDEVs may regulate the intestinal microenvironment homeostasis, especially immune responses, the intestinal barrier, and the gut microbiota. In addition, drug loading enhances the therapeutic potential of PDEVs, particularly regarding improved tissue targeting and stability. In the future, not only immunotherapy based on PDEVs may be an effective treatment for IBD, but also the intestinal barrier and intestinal microbiota will be a new direction for the treatment of IBD.
Collapse
Affiliation(s)
- Jinling Li
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Yao Zhao
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China; Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, China.
| |
Collapse
|
8
|
Han R, Zhou D, Ji N, Yin Z, Wang J, Zhang Q, Zhang H, Liu J, Liu X, Liu H, Han Q, Su J. Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway. J Nanobiotechnology 2025; 23:41. [PMID: 39849554 PMCID: PMC11756199 DOI: 10.1186/s12951-025-03096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/04/2025] [Indexed: 01/25/2025] Open
Abstract
Rheumatoid arthritis (RA), a form of autoimmune inflammation, is marked by enduring synovial inflammation and the subsequent impairment of joint function. Despite the availability of conventional treatments, they are often marred by significant side effects and the associated high costs. Plant-derived extracellular vesicles (PEVs) offer a compelling alternative, owing to their abundant availability, affordability, low immunogenicity, high biocompatibility, and feasibility for large-scale production. These vesicles enhance intercellular communication by transferring intrinsic bioactive molecules. In our research, we delve into the capacity of PEVs to treat RA, highlighting the role of ginger-derived extracellular vesicles (GDEVs). By conjugating GDEVs with folic acid (FA), we have developed FA-GDEVs that maintain their inherent immunomodulatory properties. FA-GDEVs are designed to selectively target M1 macrophages in inflamed joints via the folate receptors (FRs). Our in vitro findings indicate that FA-GDEVs promote the polarization towards a reparative M2 macrophage phenotype by modulating the PI3K-AKT pathway. Further corroboration comes from in vivo studies, which demonstrate that FA-GDEVs not only concentrate efficiently in the affected joints but also markedly reduce the manifestations of RA. Synthesizing these findings, it is evident that FA-GDEVs emerge as a hopeful candidate for RA treatment, offering benefits such as safety, affordability, and therapeutic efficacy.
Collapse
Affiliation(s)
- Ruina Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Orthopedic Trauma Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Orthopedic Trauma Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xinru Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Qinglin Han
- Department of Orthopedics, The Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Orthopedic Trauma Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
9
|
Kacemi R, Campos MG. Bee Pollen Phytochemicals and Nutrients as Unequaled Pool of Epigenetic Regulators: Implications for Age-Related Diseases. Foods 2025; 14:347. [PMID: 39941940 PMCID: PMC11816923 DOI: 10.3390/foods14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Bee pollen is characterized by an exceptional diversity and abundance of micronutrients and bioactive phytochemicals. This richness remains very sparsely investigated, but accumulating evidence strongly supports a promising future for bee pollen in human nutrition and medicine. Epigenetic regulation is among the most compelling biomedical topics that remain completely untapped in bee pollen and bee derivative research. In our current research, we identified numerous ubiquitous compounds that are consistently present in this matrix, regardless of its botanical and geographical origins, and that have been well studied and documented as epigenetic regulators in recent years. Given the relative newness of both bee pollen biomedical research and epigenetic studies within nutritional, pharmaceutical, and medical sciences, this review aims to bridge these valuable fields and advance related experimental investigations. To the best of our knowledge, this is the first work that has aimed to comprehensively investigate the epigenetic modulatory potential of bee pollen compounds. Our findings have also unveiled several intriguing phenomena, such as a dual effect of the same compound depending on the cellular context or the effect of some compounds on the cross-generational heritability of epigenetic traits. Although experimental studies of epigenetic regulation by bee pollen as a whole or by its extract are still lacking, our current study clearly indicates that this research avenue is very promising and worth further investigations. We hope that our current work constitutes a foundational cornerstone of future investigations for this avenue of research.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
10
|
Chen W, Xu W, Ma L, Bi C, Yang M, Yang W. Inflammatory biomarkers and therapeutic potential of milk exosome-mediated CCL7 siRNA in murine intestinal ischemia-reperfusion injury. Front Immunol 2025; 15:1513196. [PMID: 39902039 PMCID: PMC11788141 DOI: 10.3389/fimmu.2024.1513196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Background Intestinal ischemia-reperfusion injury (IIRI) is a severe clinical condition associated with high morbidity and mortality. Despite advances in understanding the pathophysiology of IIRI, effective diagnostic and therapeutic strategies remain limited. Methods Using transcriptome sequencing in a mouse model of IIRI, we identified potential biomarkers that were significantly upregulated in the IIRI group compared to the sham group. Based on these findings, we developed and evaluated a therapeutic strategy using milk-derived exosomes loaded with siRNA targeting CCL7 (M-Exo/siCCL7). Results Focusing on Ccl7 as a hub gene, we explored the therapeutic efficacy of milk-derived exosomes loaded with siRNA targeting Ccl7 (M-Exo/siCCL7) in the IIRI model. M-Exo/siCCL7 treatment effectively attenuated intestinal inflammation and injury, as evidenced by reduced histological damage, decreased serum markers of intestinal barrier dysfunction, and attenuated systemic inflammation. Conclusion Our findings provide new insights into the molecular mechanisms underlying IIRI, identify potential diagnostic biomarkers, and highlight the promise of exosome-based siRNA delivery as a novel therapeutic approach for IIRI.
Collapse
Affiliation(s)
- WenDong Chen
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical
University, Kunming, Yunnan, China
| | | | | | | | | | | |
Collapse
|
11
|
Wang Y, Xiong J, Ouyang K, Ling M, Luo J, Sun J, Xi Q, Chen T, Zhang Y. Extracellular vesicles: From large-scale production and engineering to clinical applications. J Tissue Eng 2025; 16:20417314251319474. [PMID: 40322740 PMCID: PMC12048759 DOI: 10.1177/20417314251319474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising strategy for treating a wide spectrum of pathologies, as they can deliver their cargo to recipient cells and regulate the signaling pathway of these cells to modulate their fate. Despite the great potential of EVs in clinical applications, their low yield and the challenges of cargo loading remain significant obstacles, hindering their transition from experimental research to clinical practice. Therefore, promoting EV release and enhancing EV cargo-loading are promising fields with substantial research potential and broad application prospects. In this review, we summarize the clinical applications of EVs, the methods and technologies for their large-scale production, engineering, and modification, as well as the challenges that must be addressed during their development. We also discuss the future perspectives of this exciting field of research to facilitate its transformation from bench to clinical reality.
Collapse
Affiliation(s)
- Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiali Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Kun Ouyang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingwang Ling
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Rivero-Pino F, Marquez-Paradas E, Montserrat-de la Paz S. Food-derived vesicles as immunomodulatory drivers: Current knowledge, gaps, and perspectives. Food Chem 2024; 457:140168. [PMID: 38908244 DOI: 10.1016/j.foodchem.2024.140168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Extracellular vesicles (EVs) are lipid-bound membrane vesicles released from cells, containing active compounds, which can be found in different foods. In this review, the role of food-derived vesicles (FDVs) as immunomodulatory drivers is summarized, with a focus on sources, isolation techniques and yields, as well as bioavailability and potential health implications. In addition, gaps and perspectives detected in this research field have been highlighted. FDVs have been efficiently extracted from different sources, and differential ultracentrifugation seems to be the most adequate isolation technique, with yields ranging from 108 to 1014 EV particles/mL. Animal studies show promising results in how these FDVs might regulate different pathways related to inflammation. Further investigation on the production of stable components in a cost-effective way, as well as human studies demonstrating safety and health-promoting properties, since scarce information has been reported until now, in the context of modulating the immune system are needed.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| |
Collapse
|
13
|
Ding L, Chang C, Liang M, Dong K, Li F. Plant‐Derived Extracellular Vesicles as Potential Emerging Tools for Cancer Therapeutics. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 01/03/2025]
Abstract
AbstractExtracellular vesicles (EVs) are membranous structures secreted by cells that play important roles in intercellular communication and material transport. Due to its excellent biocompatibility, lipophilicity, and homing properties, EVs have been used as a new generation of drug delivery systems for the diagnosis and treatment of tumors. Despite the potential clinical benefits of animal‐derived extracellular vesicles (AEVs), their large‐scale production remains sluggish due to the exorbitant cost of cell culture, challenging quality control measures, and limited production capabilities. This constraint significantly hinders their widespread clinical application. Plant‐derived extracellular vesicles (PEVs) share similar functionalities with AEVs, yet they hold several advantages including a wide variety of source materials, cost‐effectiveness, ease of preparation, enhanced safety, more stable physicochemical properties, and notable efficacy. These merits position PEVs as promising contenders with broad potential in the biomedical sector. This review will elucidate the advantages of PEVs, delineating their therapeutic mechanisms in cancer treatment, and explore the prospective applications of engineered PEVs as targeted delivery nano‐system for drugs, microRNAs, small interfering RNAs, and beyond. The aim is to heighten researchers’ focus on PEVs and expedite the progression from fundamental research to the transformation of groundbreaking discoveries.
Collapse
Affiliation(s)
- Lin Ding
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| | - Chih‐Jung Chang
- School of Medicine and Medical Research Center Xiamen Chang Gung Hospital Hua Qiao University Xiamen Fujian 362017 China
- Department of Dermatology Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital Linkou Taoyuan 244330 Taiwan
| | - Min‐Li Liang
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| | - Kang‐Mei Dong
- Xiamen Lifeint Technology Co., Ltd. Fujian 361000 China
| | - Fu‐Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| |
Collapse
|
14
|
Wang J, Xie F, He Q, Gu R, Zhang S, Su X, Pan X, Zhang T, Karrar E, Li J, Wu W, Chen C. Hybrid nanovesicles derived from grapes and tomatoes with synergistic antioxidative activity. Biomater Sci 2024; 12:5631-5643. [PMID: 39377178 DOI: 10.1039/d4bm00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Edible plants, rich in antioxidant compounds, offer defense against oxidative stress-induced cellular damage. However, the antioxidative benefits of edible plant-derived molecules are limited due to their instability, poor solubility, and low bioavailability. Plant-derived nanovesicles (PDNVs) have emerged as the next-generation nanotherapeutics and delivery platforms; yet, challenges including low purity, significant heterogeneity, insufficient enrichment of bioactive component and compromised therapeutic efficacy limit their application. In this study, a solvent-assisted vesicle hybridization technique was developed to engineer hybrid plant-derived nanovesicles (PDNVs), exemplified by grape and tomato-derived nanovesicles (GT-HNVs), which outperform their natural counterparts. The GT-HNVs demonstrated superior stability, enhanced radical-scavenging capabilities, and greater cellular uptake efficiency. Notably, GT-HNVs significantly reduced reactive oxygen species (ROS) levels and improved antioxidative enzyme activities in L-02 cells. Moreover, they mitigated oxidative stress-induced mitochondrial damage, restoring the membrane potential and morphology. Collectively, these findings underscore the therapeutic potential of hybrid PDNVs and offer an innovative strategy for their future research.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Fangting Xie
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Qiuxia He
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Siqin Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Xueqi Su
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Xueping Pan
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Tianyu Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Emad Karrar
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Jian Li
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Weijing Wu
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian, 361018, China
| | - Chaoxiang Chen
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| |
Collapse
|
15
|
Zhu Y, Zhao J, Ding H, Qiu M, Xue L, Ge D, Wen G, Ren H, Li P, Wang J. Applications of plant-derived extracellular vesicles in medicine. MedComm (Beijing) 2024; 5:e741. [PMID: 39309692 PMCID: PMC11413507 DOI: 10.1002/mco2.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) are promising therapeutic agents owing to their natural abundance, accessibility, and unique biological properties. This review provides a comprehensive exploration of the therapeutic potential of plant-derived EVs and emphasizes their anti-inflammatory, antimicrobial, and tumor-inhibitory effects. Here, we discussed the advancements in isolation and purification techniques, such as ultracentrifugation and size-exclusion chromatography, which are critical for maintaining the functional integrity of these nanovesicles. Next, we investigated the diverse administration routes of EVs and carefully weighed their respective advantages and challenges related to bioavailability and patient compliance. Moreover, we elucidated the multifaceted mechanisms of action of plant-derived EVs, including their roles in anti-inflammation, antioxidation, antitumor activity, and modulation of gut microbiota. We also discussed the impact of EVs on specific diseases such as cancer and inflammatory bowel disease, highlighting the importance of addressing current challenges related to production scalability, regulatory compliance, and immunogenicity. Finally, we proposed future research directions for optimizing EV extraction and developing targeted delivery systems. Through these efforts, we envision the seamless integration of plant-derived EVs into mainstream medicine, offering safe and potent therapeutic alternatives across various medical disciplines.
Collapse
Affiliation(s)
- Yawen Zhu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Junqi Zhao
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haoran Ding
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Dongxue Ge
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Peng Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
16
|
Yoon HJ, Won JP, Lee HG, Seo HG. Green Onion-Derived Exosome-like Nanoparticles Prevent Ferroptotic Cell Death Triggered by Glutamate: Implication for GPX4 Expression. Nutrients 2024; 16:3257. [PMID: 39408223 PMCID: PMC11478619 DOI: 10.3390/nu16193257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
In recent years, alongside research on mammalian-derived exosomes, there has been increasing interest in the physiological activities of plant-derived exosome-like nanoparticles (PDEN). The biocompatibility, minimal side effects, and diverse bioactive ingredients contained in PDEN make them valuable as potential therapeutic agents for an extensive range of diseases. In this study, we cost-effectively isolated exosome-like nanoparticles from green onion (Allium fistulosum) using polyethylene glycol and examined their biological activity in HT-22 cells exposed to glutamate. The isolated green onion-derived exosome-like nanoparticle (GDEN) had an average diameter of 167.4 nm and a zeta potential of -16.06 mV. GDEN effectively inhibited glutamate-induced Ca2+ influx and lipid peroxidation, thereby preventing ferroptotic cell death in HT-22 mouse hippocampal cells. Additionally, GDEN reduced the intracellular iron accumulation by modulating the expression of proteins associated with iron metabolism, including transferrin receptor 1, ferroportin 1, divalent metal transporter 1, and ferritin. Notably, GDEN upregulated the expression of glutathione peroxidase 4, a potent antioxidant protein involved in ferroptosis, along with an increase in glutathione synthesis. These findings indicate that GDENs have the potential to serve as bioactives from natural sources against glutamate-induced neuronal cell death, like ferroptosis. This study advances the investigation into the potential medical applications of GDEN and may provide a new approach for the utilization of these bioactive components against neuronal disorders.
Collapse
Affiliation(s)
| | | | | | - Han Geuk Seo
- Department of Animal Food Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.J.Y.); (J.P.W.); (H.G.L.)
| |
Collapse
|
17
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Wang Q, Liu K, Cao X, Rong W, Shi W, Yu Q, Deng W, Yu J, Xu X. Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold. Bioeng Transl Med 2024; 9:e10646. [PMID: 39036078 PMCID: PMC11256167 DOI: 10.1002/btm2.10646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 07/23/2024] Open
Abstract
Plant-derived exosomes (PEs) possess an array of therapeutic properties, including antitumor, antiviral, and anti-inflammatory capabilities. They are also implicated in defensive responses to pathogenic attacks. Spinal cord injuries (SCIs) regeneration represents a global medical challenge, with appropriate research concentration on three pivotal domains: neural regeneration promotion, inflammation inhibition, and innovation and application of regenerative scaffolds. Unfortunately, the utilization of PE in SCI therapy remains unexplored. Herein, we isolated PE from the traditional Chinese medicinal herb, Lycium barbarum L. and discovered their inflammatory inhibition and neuronal differentiation promotion capabilities. Compared with exosomes derived from ectomesenchymal stem cells (EMSCs), PE demonstrated a substantial enhancement in neural differentiation. We encapsulated isoliquiritigenin (ISL)-loaded plant-derived exosomes (ISL@PE) from L. barbarum L. within a 3D-printed bionic scaffold. The intricate construct modulated the inflammatory response following SCI, facilitating the restoration of damaged axons and culminating in ameliorated neurological function. This pioneering investigation proposes a novel potential route for insoluble drug delivery via plant exosomes, as well as SCI repair. The institutional animal care and use committee number is UJS-IACUC-2020121602.
Collapse
Affiliation(s)
- Qilong Wang
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Kai Liu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Xia Cao
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wanjin Rong
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wenwan Shi
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Qintong Yu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wenwen Deng
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Jiangnan Yu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Ximing Xu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| |
Collapse
|
19
|
Hou J, Wei W, Geng Z, Zhang Z, Yang H, Zhang X, Li L, Gao Q. Developing Plant Exosomes as an Advanced Delivery System for Cosmetic Peptide. ACS APPLIED BIO MATERIALS 2024; 7:3050-3060. [PMID: 38598772 DOI: 10.1021/acsabm.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Peptides are a promising skincare ingredient, but due to their inherent instability and the barrier function of the skin's surface, they often have limited skin absorption and penetration, which can significantly hinder their skincare benefits. To address this, a novel technique called NanoGlow has been introduced for encapsulating peptide-based cosmetic raw materials into engineered nanosized plant-derived exosomes (pExo) to achieve the goal of a healthier and more radiant skin state. In this approach, pExo served as carriers for cosmetic peptides across the intact skin barrier, enhancing their biological effectiveness in skin beauty. The NanoGlow strategy combines chemical activation and physical proencapsulation, boasting a high success rate and straightforward and stable operation, making it suitable for large-scale production. Comprehensive analysis using in vitro cellular absorption and skin penetration models has demonstrated that the nanosized pExo carriers significantly improve peptide penetration into the skin compared to free peptides. Furthermore, in vivo tissue slice studies have shown that pExo carriers efficiently deliver acetyl hexapeptide-8 to the skin's dermis, surpassing the performance of free peptides. Cosmetic skincare effect analysis has also indicated that pExo-loaded cosmetic peptides deliver superior results. Therefore, the NanoGlow technique harnesses the natural size and properties of pExo to maximize the bioavailability of cosmetic peptides, holding great promise for developing advanced peptide delivery systems in both the cosmetic and medical drug industries.
Collapse
Affiliation(s)
- Jiali Hou
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Wei Wei
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Zaijun Geng
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Zhenxing Zhang
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Hui Yang
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Xuhui Zhang
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Li Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Gao
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| |
Collapse
|
20
|
Gao F, Wu S, Zhang K, Xu Z, Quan F. Goat milk exosomal microRNAs alleviate LPS-induced intestinal inflammation in mice. Int J Biol Macromol 2024; 268:131698. [PMID: 38642690 DOI: 10.1016/j.ijbiomac.2024.131698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Intestinal inflammation is a common digestive system disease. Milk-derived exosomes can participate in intercellular communication and transport a variety of bioactive components, and the microRNAs (miRNAs) they carry play important roles in a variety of biological processes in the body. At present, the preventive effect and mechanism of action of goat milk exosomes and their derived miRNAs on intestinal inflammation are still unclear. In this study, the protective effect of goat milk exosomes on LPS-induced intestinal inflammation was investigated using mouse intestinal inflammation model and IEC-6 cell inflammation model. Small RNA sequencing was used to analyze the miRNA expression profile of goat milk exosomes. In this study, C-Exo and M-Exo alleviated intestinal inflammation by reducing the LPS-induced release of proinflammatory cytokines, inhibiting the increase in the NLRP3 protein and the activation of the TLR4/NFκB signaling pathway. C-Exo has a more significant inhibitory effect on them, and better therapeutic efficacy than M-Exo. Notably, the target genes of miRNAs in C-Exo and M-Exo were significantly enriched in immune-related pathways. Furthermore, their derived miR-26a-5p and miR-30a-5p were found to ameliorate the IEC-6 inflammatory response. These findings suggest that miRNAs in goat milk exosomes have the potential to attenuate LPS-induced intestinal inflammation.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
21
|
Bai C, Liu J, Zhang X, Li Y, Qin Q, Song H, Yuan C, Huang Z. Research status and challenges of plant-derived exosome-like nanoparticles. Biomed Pharmacother 2024; 174:116543. [PMID: 38608523 DOI: 10.1016/j.biopha.2024.116543] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.
Collapse
Affiliation(s)
- Chunmei Bai
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Jianrong Liu
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China.
| | - Xumin Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Yang Li
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Qin Qin
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Haixia Song
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Caixia Yuan
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Ziwei Huang
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| |
Collapse
|
22
|
Meng Y, Sun J, Zhang G. Harnessing the power of goat milk-derived extracellular vesicles for medical breakthroughs: A review. Int J Biol Macromol 2024; 262:130044. [PMID: 38340922 DOI: 10.1016/j.ijbiomac.2024.130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Research into goat milk-derived extracellular vesicles (GMVs) has grown in popularity in recent years owing to their potential uses in several sectors, including medicine. GMVs are tiny, lipid-bound structures that cells secrete and use to transport bioactive substances like proteins, lipids, and nucleic acids. They may be extracted from different body fluids, including blood, urine, and milk, and have been found to play crucial roles in cell-to-cell communication. GMVs are a promising field of study with applications in preventing and treating various disorders. Their immune-modulating properties, for instance, have been investigated, and they have shown promise in treating autoimmune illnesses and cancer. They may be loaded with therapeutic compounds and directed to particular cells or tissues, but they have also been studied for their potential use as drug-delivery vehicles. Goat milk extracellular vesicles are an intriguing study topic with many possible benefits. Although more study is required to thoroughly understand their functioning and prospective applications, they provide a promising path for creating novel medical treatments and technology.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
23
|
Trentini M, Zanolla I, Tiengo E, Zanotti F, Sommella E, Merciai F, Campiglia P, Licastro D, Degasperi M, Lovatti L, Bonora M, Danese A, Pinton P, Zavan B. Link between organic nanovescicles from vegetable kingdom and human cell physiology: intracellular calcium signalling. J Nanobiotechnology 2024; 22:68. [PMID: 38369472 PMCID: PMC10875884 DOI: 10.1186/s12951-024-02340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Plant-derived nanovesicles (PDNVs) are a novelty in medical and agrifood environments, with several studies exploring their functions and potential applications. Among fruits, apples (sp. Malus domestica) have great potential as PDNVs source, given their widespread consumption, substantial waste production, and recognized health benefits. Notably, apple-derived nanovesicles (ADNVs) can interact with human cell lines, triggering anti-inflammatory and antioxidant responses. This work is dedicated to the comprehensive biochemical characterization of apple-derived nanovesicles (ADNVs) through proteomic and lipidomic analysis, and small RNAs sequencing. This research also aims to shed light on the underlying mechanism of action (MOA) when ADNVs interface with human cells, through observation of intracellular calcium signalling in human fibroblasts, and to tackles differences in ADNVs content when isolated from fruits derived from integrated and organic production methods cultivars. RESULTS The ADNVs fraction is mainly composed of exocyst-positive organelles (EXPOs) and MVB-derived exosomes, identified through size and molecular markers (Exo70 and TET-3-like proteins). ADNVs' protein cargo is heterogeneous and exhibits a diverse array of functions, especially in plant's protection (favouring ABA stress-induced signalling, pathogen resistance and Reactive Oxygen Species (ROS) metabolism). Noteworthy plant miRNAs also contribute to phytoprotection. In relation with human cells lines, ADNVs elicit spikes of intracellular Ca2+ levels, utilizing the cation as second messenger, and produce an antioxidant effect. Lastly, organic samples yield a substantial increase in ADNV production and are particularly enriched in bioactive lysophospholipids. CONCLUSIONS We have conclusively demonstrated that ADNVs confer an antioxidant effect upon human cells, through the initiation of a molecular pathway triggered by Ca2+ signalling. Within ADNVs, a plethora of bioactive proteins, small RNAs, and lipids have been identified, each possessing well-established functions within the realm of plant biology. While ADNVs predominantly function in plants, to safeguard against pathogenic agents and abiotic stressors, it is noteworthy that proteins with antioxidant power might act as antioxidants within human cells.
Collapse
Affiliation(s)
- Martina Trentini
- Department Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ilaria Zanolla
- Departiment of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elena Tiengo
- Department Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Federica Zanotti
- Department Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | | | | | - Luca Lovatti
- Department Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Massimo Bonora
- Departiment of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alberto Danese
- Departiment of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Departiment of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
24
|
Dolatshahi M, Bahrami AR, Sheikh QI, Ghanbari M, Matin MM. Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles. Arch Pharm Res 2024; 47:1-19. [PMID: 38151649 DOI: 10.1007/s12272-023-01477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies in the world, with a high mortality rate in both women and men. Conventional treatments, like chemotherapy, radiotherapy and surgery, are facing some drawbacks like acquired drug resistance and various side effects, leading to cancer recurrence and increased morbidity; thus, development of novel approaches in targeted therapy would be very beneficial. Exosomes, extracellular vesicles with a size distribution of sub-150 nm, interplay in physiological and pathophysiological cell-cell communications and can pave the way for targeted cancer therapy. Accumulating pieces of evidence have indicated that exosomes derived from mesenchymal stem cells (MSC-EXs) can act as a double-edged sword in some cancers. The purpose of this review is to assess the differences between stem cell therapy and exosome therapy. Moreover, our aim is to demonstrate how naïve MSCs transform into GC-MSCs in the tumor microenvironment. Additionally, the tumorigenic and anti-proliferation effects of MSC-EXs derived from different origins were investigated. Finally, we suggest potential modifications and combination options that involve utilizing MSC-EXs from the foreskin and umbilical cord as promising sources to enhance the efficacy of gastric cancer treatment. This approach is presented in contrast to bone marrow cells, which are more heterogeneous, age-related, and are also easily affected by the patient's circulation system.
Collapse
Affiliation(s)
- Maryam Dolatshahi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Qaiser Iftikhar Sheikh
- School of Biosciences, Western Bank, Firth Court, University of Sheffield, Sheffield, S10 2TN, England, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
25
|
López de Las Hazas MC, Tomé-Carneiro J, Del Pozo-Acebo L, Del Saz-Lara A, Chapado LA, Balaguer L, Rojo E, Espín JC, Crespo C, Moreno DA, García-Viguera C, Ordovás JM, Visioli F, Dávalos A. Therapeutic potential of plant-derived extracellular vesicles as nanocarriers for exogenous miRNAs. Pharmacol Res 2023; 198:106999. [PMID: 37984504 DOI: 10.1016/j.phrs.2023.106999] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cell-to-cell communication strategies include extracellular vesicles (EVs) in plants and animals. The bioactive molecules in a diet rich in vegetables and fruits are associated with disease-preventive effects. Plant-derived EVs (PDEVs) are biogenetically and morphologically comparable to mammalian EVs and transport bioactive molecules, including miRNAs. However, the biological functions of PDEVs are not fully understood, and standard isolation protocols are lacking. Here, PDEVs were isolated from four foods with a combination of ultracentrifugation and size exclusion chromatography, and evaluated as vehicles for enhanced transport of synthetic miRNAs. In addition, the role of food-derived EVs as carriers of dietary (poly)phenols and other secondary metabolites was investigated. EVs from broccoli, pomegranate, apple, and orange were efficiently isolated and characterized. In all four sources, 4 miRNA families were present in tissues and EVs. miRNAs present in broccoli and fruit-derived EVs showed a reduced RNase degradation and were ferried inside exposed cells. EVs transfected with a combination of ath-miR159a, ath-miR162a-3p, ath-miR166b-3p, and ath-miR396b-5p showed toxic effects on human cells, as did natural broccoli EVs alone. PDEVs transport trace amounts of phytochemicals, including flavonoids, anthocyanidins, phenolic acids, or glucosinolates. Thus, PDEVs can act as nanocarriers for functional miRNAs that could be used in RNA-based therapy.
Collapse
Affiliation(s)
- María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
| | - Joao Tomé-Carneiro
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
| | - Lorena Del Pozo-Acebo
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
| | - Andrea Del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain; Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
| | - Luis A Chapado
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
| | - Livia Balaguer
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
| | - Enrique Rojo
- Department of Plant Molecular Genetics, National Center for Biotechnology, CNB-CSIC, Madrid 28049, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Carmen Crespo
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
| | - Diego A Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus Universitario de Espinardo, Murcia 30100, Spain
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, 02111 MA, USA; Consorcio CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain; Consorcio CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain.
| |
Collapse
|
26
|
Yang L, Feng H. Cross-kingdom regulation by plant-derived miRNAs in mammalian systems. Animal Model Exp Med 2023; 6:518-525. [PMID: 38064180 PMCID: PMC10757204 DOI: 10.1002/ame2.12358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/15/2023] [Indexed: 12/31/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules ubiquitously distributed across diverse organisms, serving as pivotal regulators of genetic expression. Notably, plant-derived miRNAs have been demonstrated to have unique bioactivity and certain stability in mammalian systems, thereby facilitating their capacity for cross-kingdom modulation of gene expression. While there is substantial evidence supporting the regulation of mammalian cells by plant-derived miRNAs, several questions remain unanswered. Specifically, a comprehensive investigation of the mechanisms underlying the stability and transport of plant miRNAs and their cross-kingdom regulation of gene expression in mammals remains to be done. In this review, we summarized the origin, processing, and functional mechanisms of plant miRNAs in mammalian tissues and circulation, emphasizing their greater resistance to mammalian digestion and circulation systems compared to animal miRNAs. Additionally, we introduce four well-known plant miRNAs that have been extensively studied for their functions and mechanisms in mammalian systems. By delving into these aspects, we aim to offer a fundamental understanding of this intriguing field and shed light on the complex interactions between plant miRNAs and mammalian biology.
Collapse
Affiliation(s)
- Linpu Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Han Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
27
|
Kim NH, Kim J, Lee JY, Bae HA, Kim CY. Application of Milk Exosomes for Musculoskeletal Health: Talking Points in Recent Outcomes. Nutrients 2023; 15:4645. [PMID: 37960298 PMCID: PMC10647311 DOI: 10.3390/nu15214645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Milk is a nutrient-rich food source, and among the various milks, breast milk is a nutrient source provided by mothers to newborns in many mammals. Exosomes are nano-sized membranous extracellular vesicles that play important roles in cell-to-cell communication. Exosomes originate from endogenous synthesis and dietary sources such as milk. Discovered through electron microscopy as floating vesicles, the existence of exosomes in human milk was confirmed owing to a density between 1.10 and 1.18 g/mL in a sucrose gradient corresponding to the known density of exosomes and detection of MHC classes I and II, CD63, CD81, and CD86 on the vesicles. To date, milk exosomes have been used for treating many diseases, including cancers, and are widely proposed as promising carriers for the delivery of chemotherapeutic agents. However, few studies on milk exosomes focus on geriatric health, especially sarcopenia and osteoporosis related to bone and muscle. Therefore, the present study focused on milk exosomes and their cargoes, which are potential candidates for dietary supplements, and when combined with drugs, they can be effective in treating musculoskeletal diseases. In this review, we introduce the basic concepts, including the definition, various sources, and cargoes of milk exosomes, and exosome isolation and characterization methods. Additionally, we review recent literature on the musculoskeletal system and milk exosomes. Since inflammation and oxidative stress underly musculoskeletal disorders, studies reporting the antioxidant and anti-inflammatory properties of milk exosomes are also summarized. Finally, the therapeutic potential of milk exosomes in targeting muscle and bone health is proposed.
Collapse
Affiliation(s)
- Na-Hyung Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Hyeon-A Bae
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
28
|
Wei Y, Cai X, Wu Q, Liao H, Liang S, Fu H, Xiang Q, Zhang S. Extraction, Isolation, and Component Analysis of Turmeric-Derived Exosome-like Nanoparticles. Bioengineering (Basel) 2023; 10:1199. [PMID: 37892929 PMCID: PMC10604281 DOI: 10.3390/bioengineering10101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
As one kind of plant-derived extracellular vesicle, turmeric-derived exosome-like nanoparticles (TELNs) are composed of proteins, lipids, nucleic acids, and small-molecule compounds, which possess good biocompatibility and safety. They are especially rich in information from the "mother plant", which provides more applications in biological fields. In this study, we isolated and purified TELNs using differential centrifugation and ultracentrifugation and systematically detected their physicochemical properties using multi-omics. The TELNs possessed a typical teacup-like exosome morphology, and the extraction rate was approximately 1.71 ± 0.176 mg/g. The average particle size was 183.2 ± 10.9 nm, and the average zeta potential was -17.6 ± 1.19 mV. They were rich in lipids, mainly phosphatidylethanolamine (PE) (17.4%), triglyceride (TG) (12.3%), phosphatidylinositol (PI) (9.82%), and phosphatidylcholine (PC) (7.93%). All of them are the key lipids in the exosomes. The protein content was approximately 12% (M/M), mainly curcumin synthase and other proteins involved in secondary metabolite biosynthesis. In addition, there are critical essential genes for curcumin biosynthesis, such as curcumin synthase (CURS) and diketocoenzyme A synthase (DCS). More importantly, a greater variety of small-molecule compounds, primarily curcumin and curcumin analogs such as demethoxycurcumin and volatile oleoresins such as curcuminoids, have now been revealed. In conclusion, TELNs were successfully isolated, containing 0.17% (M/M) turmeric and a large amount of chemical information, the same as the parent-of-origin plant. This is the first time combining multi-omics to analyze the characteristics and nature of the TELNs, which laid a solid material foundation for the further development of turmeric.
Collapse
Affiliation(s)
- Yongsheng Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development of Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.W.); (H.F.)
- Biopharmaceutical R&D Center of Jinan University Co., Ltd., Guangzhou 510632, China; (X.C.); (Q.W.); (H.L.); (S.L.)
| | - Xiang Cai
- Biopharmaceutical R&D Center of Jinan University Co., Ltd., Guangzhou 510632, China; (X.C.); (Q.W.); (H.L.); (S.L.)
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, Jinan University, Guangzhou 510632, China
| | - Qiqi Wu
- Biopharmaceutical R&D Center of Jinan University Co., Ltd., Guangzhou 510632, China; (X.C.); (Q.W.); (H.L.); (S.L.)
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, Jinan University, Guangzhou 510632, China
| | - Hui Liao
- Biopharmaceutical R&D Center of Jinan University Co., Ltd., Guangzhou 510632, China; (X.C.); (Q.W.); (H.L.); (S.L.)
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, Jinan University, Guangzhou 510632, China
| | - Shuang Liang
- Biopharmaceutical R&D Center of Jinan University Co., Ltd., Guangzhou 510632, China; (X.C.); (Q.W.); (H.L.); (S.L.)
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, Jinan University, Guangzhou 510632, China
| | - Hongwei Fu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development of Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.W.); (H.F.)
- Biopharmaceutical R&D Center of Jinan University Co., Ltd., Guangzhou 510632, China; (X.C.); (Q.W.); (H.L.); (S.L.)
| | - Qi Xiang
- Biopharmaceutical R&D Center of Jinan University Co., Ltd., Guangzhou 510632, China; (X.C.); (Q.W.); (H.L.); (S.L.)
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, Jinan University, Guangzhou 510632, China
| | - Shu Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development of Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.W.); (H.F.)
| |
Collapse
|
29
|
Leng Y, Yang L, Zhu H, Li D, Pan S, Yuan F. Stability of Blueberry Extracellular Vesicles and Their Gene Regulation Effects in Intestinal Caco-2 Cells. Biomolecules 2023; 13:1412. [PMID: 37759813 PMCID: PMC10526224 DOI: 10.3390/biom13091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Plant extracellular vesicles (P-EVs) are considered promising functional food ingredients due to their various health benefits. In this study, blueberry extracellular vesicles (B-EVs) were collected and purified by size exclusion chromatography (SEC). The chemical compounds in B-EV extracts were analyzed by LC-MS/MS. In addition, the stability of B-EVs was evaluated during short- and long-term storage, heating, and in vitro digestion. The results showed that the B-EVs had a desirable particle size (88.2 ± 7.7 nm). Protein and total RNA concentrations were 582 ± 11.2 μg/mL and 15.4 μg/mL, respectively. The optimal storage temperatures for B-EVs were 4 °C and -80 °C for short- and long-term storage, respectively. Fluorescent labeling and qRT-PCR tests showed that B-EVs could be specifically internalized by Caco-2 cells, whereas virtually no cytotoxic or growth-inhibitory effects were observed. B-EVs down-regulated the expression levels of IL-1β and IL-8 and up-regulated the expression levels of NF-κβ and TLR5 in Caco-2 cells. Overall, the results proved that the intact structure of B-EVs could be preserved during food storage and processing conditions. B-EVs had the ability to reach the human intestine through oral delivery. Moreover, they could be absorbed by intestinal cells and affect human intestinal function.
Collapse
Affiliation(s)
- Yangfan Leng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (L.Y.); (H.Z.); (S.P.)
| | - Liubin Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (L.Y.); (H.Z.); (S.P.)
| | - Hangxin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (L.Y.); (H.Z.); (S.P.)
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China;
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (L.Y.); (H.Z.); (S.P.)
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Yuan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (L.Y.); (H.Z.); (S.P.)
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Liu R, Liu S, Wu S, Xia M, Liu W, Wang L, Dong M, Niu W. Milk-Derived Small Extracellular Vesicles Promote Osteogenic Differentiation and Inhibit Inflammation via microRNA-21. Int J Mol Sci 2023; 24:13873. [PMID: 37762176 PMCID: PMC10531249 DOI: 10.3390/ijms241813873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic apical periodontitis (CAP) is a disease with characteristics of inflammation and bone loss. In this study, our objective was to examine the function of small extracellular vesicles (sEVs) obtained from milk in encouraging osteogenic differentiation and inhibiting inflammation by miR-21 in CAP. The expression of miR-21 was detected using qRT-PCR in human CAP samples. The impact of miR-21 on the process of osteogenic differentiation was investigated using CCK-8, qRT-PCR, immunofluorescence staining, and Western blot analysis. The evaluation of RAW 264.7 cell polarization and the assessment of inflammatory factor expression were conducted through qRT-PCR. The influence of sEVs on MC3T3-E1 cells and RAW 264.7 cells was examined, with a particular emphasis on the involvement of miR-21. In human CAP samples, a decrease in miR-21 expression was observed. MiR-21 increased the expression of osteogenesis-related genes and M2 polarization genes while decreasing the expression of M1 polarization genes and inflammatory cytokines. Treatment with milk-derived sEVs also promoted osteogenesis and M2 polarization while inhibiting M1 polarization and inflammation. Conversely, the addition of miR-21 inhibitors resulted in opposite effects. Our results indicated that sEVs derived from milk had a positive effect on bone formation and activation of anti-inflammatory (M2) macrophages and simultaneously reduced inflammation by regulating miR-21 in CAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
31
|
Zhong Y, Zeng K, Adnan A, Li YZ, Hou XK, Pan Y, Li A, Zhu XM, Lv P, Du Z, Yang Y, Yao J. Discrimination of monozygotic twins using mtDNA heteroplasmy through probe capture enrichment and massively parallel sequencing. Int J Legal Med 2023; 137:1337-1345. [PMID: 37270462 DOI: 10.1007/s00414-023-03033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Differentiating between monozygotic (MZ) twins remains difficult because they have the same genetic makeup. Applying the traditional STR genotyping approach cannot differentiate one from the other. Heteroplasmy refers to the presence of two or more different mtDNA copies within a single cell and this phenomenon is common in humans. The levels of heteroplasmy cannot change dramatically during transmission in the female germ line but increase or decrease during germ-line transmission and in somatic tissues during life. As massively parallel sequencing (MPS) technology has advanced, it has shown the extraordinary quantity of mtDNA heteroplasmy in humans. In this study, a probe hybridization technique was used to obtain mtDNA and then MPS was performed with an average sequencing depth of above 4000. The results showed us that all ten pairs of MZ twins were clearly differentiated with the minor heteroplasmy threshold at 1.0%, 0.5%, and 0.1%, respectively. Finally, we used a probe that targeted mtDNA to boost sequencing depth without interfering with nuclear DNA and this technique can be used in forensic genetics to differentiate the MZ twins.
Collapse
Affiliation(s)
- Yang Zhong
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Kuo Zeng
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Atif Adnan
- Department of Forensic Sciences, College of Criminal Justice, Naif University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
| | - Yu-Zhang Li
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Xi-Kai Hou
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Ying Pan
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Ang Li
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Peng Lv
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Zhe Du
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Ying Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China.
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China.
- China Medical University Center of Forensic Investigation, Chengdu, China.
| |
Collapse
|
32
|
Li S, Ye Z, Zhao L, Yao Y, Zhou Z. Evaluation of Antioxidant Activity and Drug Delivery Potential of Cell-Derived Extracellular Vesicles from Citrus reticulata Blanco cv. 'Dahongpao'. Antioxidants (Basel) 2023; 12:1706. [PMID: 37760009 PMCID: PMC10525417 DOI: 10.3390/antiox12091706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Plant extracellular vesicles (PEVs) have attracted increasing attention due to their rich composition, good antioxidant and anti-inflammatory activity, and ability to transport drugs. As a common fruit, citrus is an ideal material for extracting PEVs because of the diversity and abundance of bioactive substances in it. In our study, citrus-derived extracellular vesicles (CEVs) were extracted from red mandarin (Citrus reticulata Blanco cv. 'Dahongpao') and it was found that they contain high levels of lipids, proteins, and carbohydrates. The high levels of total phenols and total flavonoids suggest that CEVs have good chemical antioxidant properties. We also demonstrated through cell experiments that CEVs have significant antioxidant and anti-inflammatory effects. Furthermore, we found that CEVs have an encapsulation rate of 71.5 ± 0.19% and a high drug-carrying capacity of 4.96 ± 0.22% and can enhance antioxidant and anti-inflammatory activity when loaded with tangeretin. Our results show that CEVs contain abundant bioactive components, have low toxicity, exhibit good antioxidant and anti-inflammatory properties, and can serve as drug delivery agents. This study has important implications for utilizing citrus materials and developing natural anti-oxidative and anti-inflammatory biomaterials.
Collapse
Affiliation(s)
- Shunjie Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (S.L.); (Z.Y.)
| | - Zimao Ye
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (S.L.); (Z.Y.)
| | - Lintao Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China;
| | - Yijun Yao
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China;
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (S.L.); (Z.Y.)
| |
Collapse
|
33
|
Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, Wu F, Zhang HH, Ying HZ, Yu CH. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed Pharmacother 2023; 165:115007. [PMID: 37327587 DOI: 10.1016/j.biopha.2023.115007] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (ELNs) have been proposed as a novel therapeutic tool for preventing human diseases. However, the number of well-verified plant ELNs remains limited. In this study, the microRNAs in ELNs derived from fresh Rehmanniae Radix, a well-known traditional Chinese herb for treating inflammatory and metabolic diseases, were determined by using microRNA sequencing to investigate the active components in the ELNs and the protection against lipopolysaccharide (LPS)-induced acute lung inflammation in vivo and in vitro. The results showed that rgl-miR-7972 (miR-7972) was the main ingredient in ELNs. It exerted stronger protective activities against LPS-induced acute lung inflammation than catalpol and acteoside, which are two well-known chemical markers in this herb. Moreover, miR-7972 decreased the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), reactive oxygen species (ROS) and nitric oxide (NO) in LPS-exposed RAW264.7 cells, thereby facilitating M2 macrophage polarization. Mechanically, miR-7972 downregulated the expression of G protein-coupled receptor 161 (GPR161), activating the Hedgehog pathway, and inhibited the biofilm form of Escherichia coli via targeting virulence gene sxt2. Therefore, miR-7972 derived from fresh R. Radix alleviated LPS-induced lung inflammation by targeting the GPR161-mediated Hedgehog pathway, recovering gut microbiota dysbiosis. It also provided a new direction for gaining novel bioactivity nucleic acid drugs and broadening the knowledge on cross-kingdom physiological regulation through miRNAs.
Collapse
Affiliation(s)
- Fen-Sheng Qiu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Jia-Feng Wang
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Chang-Yi Shi
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China; Westlake University, Hangzhou 310024, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China.
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China; Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
34
|
Meng Z, Zhou D, Lv D, Gan Q, Liao Y, Peng Z, Zhou X, Xu S, Chi P, Wang Z, Nüssler AK, Yang X, Liu L, Deng D, Yang W. Human milk extracellular vesicles enhance muscle growth and physical performance of immature mice associating with Akt/mTOR/p70s6k signaling pathway. J Nanobiotechnology 2023; 21:304. [PMID: 37644475 PMCID: PMC10463453 DOI: 10.1186/s12951-023-02043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Extracellular vesicles (EVs) play an important role in human and bovine milk composition. According to excellent published studies, it also exerts various functions in the gut, bone, or immune system. However, the effects of milk-derived EVs on skeletal muscle growth and performance have yet to be fully explored. Firstly, the current study examined the amino acids profile in human milk EVs (HME) and bovine milk EVs (BME) using targeted metabolomics. Secondly, HME and BME were injected in the quadriceps of mice for four weeks (1 time/3 days). Then, related muscle performance, muscle growth markers/pathways, and amino acids profile were detected or measured by grip strength analysis, rotarod performance testing, Jenner-Giemsa/H&E staining, Western blotting, and targeted metabolomics, respectively. Finally, HME and BME were co-cultured with C2C12 cells to detect the above-related indexes and further testify relative phenomena. Our findings mainly demonstrated that HME and BME significantly increase the diameter of C2C12 myotubes. HME treatment demonstrates higher exercise performance and muscle fiber densities than BME treatment. Besides, after KEGG and correlation analyses with biological function after HME and BME treatment, results showed L-Ornithine acts as a "notable marker" after HME treatment to affect mouse skeletal muscle growth or functions. Otherwise, L-Ornithine also significantly positively correlates with the activation of the AKT/mTOR pathway and myogenic regulatory factors (MRFs) and can also be observed in muscle and C2C12 cells after HME treatment. Overall, our study not only provides a novel result for the amino acid composition of HME and BME, but the current study also indicates the advantage of human milk on skeletal muscle growth and performance.
Collapse
Affiliation(s)
- Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Dong Zhou
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
- Department of Critical Care Medicine, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
| | - Dan Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, China
| | - Quan Gan
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
- Department of Critical Care Medicine, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Penglong Chi
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhipeng Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
35
|
Li A, Li D, Gu Y, Liu R, Tang X, Zhao Y, Qi F, Wei J, Liu J. Plant-derived nanovesicles: Further exploration of biomedical function and application potential. Acta Pharm Sin B 2023; 13:3300-3320. [PMID: 37655320 PMCID: PMC10465964 DOI: 10.1016/j.apsb.2022.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 03/09/2023] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer vesicles actively secreted by cells, that contain a variety of functional nucleic acids, proteins, and lipids, and are important mediums of intercellular communication. Based on their natural properties, EVs can not only retain the pharmacological effects of their source cells but also serve as natural delivery carriers. Among them, plant-derived nanovesicles (PNVs) are characterized as natural disease therapeutics with many advantages such as simplicity, safety, eco-friendliness, low cost, and low toxicity due to their abundant resources, large yield, and low risk of immunogenicity in vivo. This review systematically introduces the biogenesis, isolation methods, physical characterization, and components of PNVs, and describes their administration and cellular uptake as therapeutic agents. We highlight the therapeutic potential of PNVs as therapeutic agents and drug delivery carriers, including anti-inflammatory, anticancer, wound healing, regeneration, and antiaging properties as well as their potential use in the treatment of liver disease and COVID-19. Finally, the toxicity and immunogenicity, the current clinical application, and the possible challenges in the future development of PNVs were analyzed. We expect the functions of PNVs to be further explored to promote clinical translation, thereby facilitating the development of a new framework for the treatment of human diseases.
Collapse
Affiliation(s)
- Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rongmei Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fu Qi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Nanjing 210009, China
- Jiangsu Institute of Cancer Research, Nanjing 210009, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pharmacy, Shanghai Proton and Heavy Ion Center, Shanghai 201315, China
| |
Collapse
|
36
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
37
|
Chen YX, Cai Q. Plant Exosome-like Nanovesicles and Their Role in the Innovative Delivery of RNA Therapeutics. Biomedicines 2023; 11:1806. [PMID: 37509446 PMCID: PMC10376343 DOI: 10.3390/biomedicines11071806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes are single membrane-bound spheres released from cells carrying complex cargoes, including lipids, proteins, and nucleic acids. Exosomes transfer specific cargoes from donor to acceptor cells, playing important roles in cell-to-cell communication. Current studies have reported that plant exosomes are prominent in transferring small RNA between host and pathogens in a cross-kingdom manner. Plant exosomes are excellent RNA interference (RNAi) delivery agents with similar physical and chemical properties to mammalian exosomes and have potential applications in therapeutic delivery systems. Recent data have suggested that plant exosome-like nanovesicles (PENVs) and artificial PENV-derived nano-vectors (APNVs) are beneficial for delivering therapeutic small RNA in mammalian systems and exhibit excellent competitiveness in future clinical applications. This review features their preparation methods, composition, roles in small RNA delivery for health functionalities, and their potency as functional nanomedicine.
Collapse
Affiliation(s)
- Yu-Xin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
38
|
Wei X, Li X, Zhang Y, Wang J, Shen S. Advances in the Therapeutic Applications of Plant-Derived Exosomes in the Treatment of Inflammatory Diseases. Biomedicines 2023; 11:1554. [PMID: 37371649 DOI: 10.3390/biomedicines11061554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Plant-derived exosomes (PLDEs) are small extracellular vesicles that encapsulate proteins, nucleic acids and lipids, and they are usually involved in intercellular communication and molecular transport in plants. PLDEs are widely used in the therapy of diseases due to their abundance and easy availability. The diverse roles of PLDEs, which include transportation of drugs, acting as biomarkers for diagnosis of diseases and their roles in different therapies, suggest that there is a need to fully understand all the mechanisms involved in order to provide the optimum conditions for their therapeutic use. This review summarizes the biogenesis, components and functions of PLDEs and focuses on their use as therapeutic agents in the treatment of inflammatory diseases. It also explores new ideas for novel approaches in which PLDEs could potentially help patients with inflammatory diseases in the future.
Collapse
Affiliation(s)
- Xiaofang Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiuyu Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangyuan Academy of Agricultural Sciences, Guangyuan 628017, China
| | - Yuejun Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jian Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuibao Shen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
39
|
Xu Z, Xu Y, Zhang K, Liu Y, Liang Q, Thakur A, Liu W, Yan Y. Plant-derived extracellular vesicles (PDEVs) in nanomedicine for human disease and therapeutic modalities. J Nanobiotechnology 2023; 21:114. [PMID: 36978093 PMCID: PMC10049910 DOI: 10.1186/s12951-023-01858-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The past few years have witnessed a significant increase in research related to plant-derived extracellular vesicles (PDEVs) in biological and medical applications. Using biochemical technologies, multiple independent groups have demonstrated the important roles of PDEVs as potential mediators involved in cell-cell communication and the exchange of bio-information between species. Recently, several contents have been well identified in PDEVs, including nucleic acids, proteins, lipids, and other active substances. These cargoes carried by PDEVs could be transferred into recipient cells and remarkably influence their biological behaviors associated with human diseases, such as cancers and inflammatory diseases. This review summarizes the latest updates regarding PDEVs and focuses on its important role in nanomedicine applications, as well as the potential of PDEVs as drug delivery strategies to develop diagnostic and therapeutic agents for the clinical management of diseases, especially like cancers. CONCLUSION Considering its unique advantages, especially high stability, intrinsic bioactivity and easy absorption, further elaboration on molecular mechanisms and biological factors driving the function of PDEVs will provide new horizons for the treatment of human disease.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan, 421001, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
40
|
Sarasati A, Syahruddin MH, Nuryanti A, Ana ID, Barlian A, Wijaya CH, Ratnadewi D, Wungu TDK, Takemori H. Plant-Derived Exosome-like Nanoparticles for Biomedical Applications and Regenerative Therapy. Biomedicines 2023; 11:biomedicines11041053. [PMID: 37189671 DOI: 10.3390/biomedicines11041053] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs) comprise various bioactive biomolecules. As an alternative cell-free therapeutic approach, they have the potential to deliver nano-bioactive compounds to the human body, and thus lead to various anti-inflammatory, antioxidant, and anti-tumor benefits. Moreover, it is known that Indonesia is one of the herbal centers of the world, with an abundance of unexplored sources of PDENs. This encouraged further research in biomedical science to develop natural richness in plants as a source for human welfare. This study aims to verify the potential of PDENs for biomedical purposes, especially for regenerative therapy applications, by collecting and analyzing data from the latest relevant research and developments.
Collapse
|
41
|
Abe C, Bhaswant M, Miyazawa T, Miyazawa T. The Potential Use of Exosomes in Anti-Cancer Effect Induced by Polarized Macrophages. Pharmaceutics 2023; 15:pharmaceutics15031024. [PMID: 36986884 PMCID: PMC10054161 DOI: 10.3390/pharmaceutics15031024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The rapid development of aberrant cells outgrowing their normal bounds, which can subsequently infect other body parts and spread to other organs-a process known as metastasis-is one of the significant characteristics of cancer. The main reason why cancer patients die is because of widespread metastases. This abnormal cell proliferation varies in cancers of over a hundred types, and their response to treatment can vary substantially. Several anti-cancer drugs have been discovered to treat various tumors, yet they still have harmful side-effects. Finding novel, highly efficient targeted therapies based on modifications in the molecular biology of tumor cells is essential to reduce the indiscriminate destruction of healthy cells. Exosomes, an extracellular vesicle, are promising as a drug carrier for cancer therapy due to their good tolerance in the body. In addition, the tumor microenvironment is a potential target to regulate in cancer treatment. Therefore, macrophages are polarized toward M1 and M2 phenotypes, which are involved in cancer proliferation and are malignant. It is evident from recent studies that controlled macrophage polarization might contribute to cancer treatment, by the direct way of using miRNA. This review provides an insight into the potential use of exosomes to develop an 'indirect', more natural, and harmless cancer treatment through regulating macrophage polarization.
Collapse
Affiliation(s)
- Chizumi Abe
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
42
|
Shen L, Ma J, Yang Y, Liao T, Wang J, Chen L, Zhang S, Zhao Y, Niu L, Hao X, Jiang A, Li X, Gan M, Zhu L. Cooked pork-derived exosome nanovesicles mediate metabolic disorder-microRNA could be the culprit. J Nanobiotechnology 2023; 21:83. [PMID: 36894941 PMCID: PMC9999493 DOI: 10.1186/s12951-023-01837-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
In this study, exosomes from cooked meat were extracted by ultra-high-speed centrifugation. Approximately 80% of exosome vesicles were within 20-200 nm. In addition, the surface biomarkers of isolated exosomes were evaluated using flow cytometry. Further studies showed the exosomal microRNA profiles were different among cooked porcine muscle, fat and liver. Cooked pork-derived exosomes were chronically administered to ICR mice by drinking for 80 days. The mice plasma levels of miR-1, miR-133a-3p, miR-206 and miR-99a were increased to varying degrees after drinking exosome enriched water. Furthermore, GTT and ITT results confirmed an abnormal glucose metabolism and insulin resistance in mice. Moreover, the lipid droplets were significantly increased in the mice liver. A transcriptome analysis performed with mice liver samples identified 446 differentially expressed genes (DEGs). Functional enrichment analysis found that DEGs were enriched in metabolic pathways. Overall, the results suggest that microRNAs derived form cooked pork may function as a critical regulator of metabolic disorder in mice.
Collapse
Affiliation(s)
- Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianfeng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiting Yang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxia Hao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anan Jiang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuewei Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
43
|
Li D, Cao G, Yao X, Yang Y, Yang D, Liu N, Yuan Y, Nishinari K, Yang X. Tartary buckwheat-derived exosome-like nanovesicles against starch digestion and their interaction mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|