1
|
Mishra K, Green A, Burkard J, Gubler I, Borradori R, Kohler L, Meuli J, Krähenmann U, Bergfreund J, Siegrist A, Schnyder M, Mathys A, Fischer P, Windhab EJ. Valorization of cocoa pod side streams improves nutritional and sustainability aspects of chocolate. NATURE FOOD 2024; 5:423-432. [PMID: 38773278 PMCID: PMC11132982 DOI: 10.1038/s43016-024-00967-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/27/2024] [Indexed: 05/23/2024]
Abstract
Chocolate production faces nutritional, environmental and socio-economic challenges present in the conventional cocoa value chain. Here we developed an approach that addresses these challenges by repurposing the often-discarded pectin-rich cocoa pod endocarp and converting it into a gel. This is done using cocoa pulp juice concentrate to replace traditional sugar from sugar beets. Although swelling of fibres, proteins and starches can limit gel incorporation, our proposed chocolate formulation contains up to 20 wt% gel. It also has comparable sweet taste as traditional chocolate while offering improved nutritional value with higher fibre and reduced saturated fatty acid content. A cradle-to-factory life cycle assessment shows that large-scale production of this chocolate could reduce land use and global warming potential compared with average European dark chocolate production. The process also provides opportunities for diversification of farmers' income and technology transfer, offering potential socio-economic benefits for cocoa-producing regions.
Collapse
Affiliation(s)
- Kim Mishra
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland.
| | - Ashley Green
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Johannes Burkard
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Irina Gubler
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Roberta Borradori
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Lucas Kohler
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | | | | | - Jotam Bergfreund
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Armin Siegrist
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Maria Schnyder
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Alexander Mathys
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Erich J Windhab
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Chen X, Guan X, Tang Y, Deng J, Zhang X. Effects of cocoa products intake on cardiometabolic biomarkers of type 2 diabetes patients: a systematic review and meta-analysis based on both long-term and short-term randomised controlled trials. Int J Food Sci Nutr 2022; 73:571-587. [DOI: 10.1080/09637486.2022.2046711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoxian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yujun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Hernández-González T, González-Barrio R, Escobar C, Madrid JA, Periago MJ, Collado MC, Scheer FAJL, Garaulet M. Timing of chocolate intake affects hunger, substrate oxidation, and microbiota: A randomized controlled trial. FASEB J 2021; 35:e21649. [PMID: 34164846 DOI: 10.1096/fj.202002770rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Eating chocolate in the morning or in the evening/at night, may differentially affect energy balance and impact body weight due to changes in energy intake, substrate oxidation, microbiota (composition/function), and circadian-related variables. In a randomized controlled trial, postmenopausal females (n = 19) had 100 g of chocolate in the morning (MC), in the evening/at night (EC), or no chocolate (N) for 2 weeks and ate any other food ad libitum. Our results show that 14 days of chocolate intake did not increase body weight. Chocolate consumption decreased hunger and desire for sweets (P < .005), and reduced ad libitum energy intake by ~300 kcal/day during MC and ~150 kcal/day during EC (P = .01), but did not fully compensate for the extra energy contribution of chocolate (542 kcal/day). EC increased physical activity by +6.9%, heat dissipation after meals +1.3%, and carbohydrate oxidation by +35.3% (P < .05). MC reduced fasting glucose (4.4%) and waist circumference (-1.7%) and increased lipid oxidation (+25.6%). Principal component analyses showed that both timings of chocolate intake resulted in differential microbiota profiles and function (P < .05). Heat map of wrist temperature and sleep records showed that EC induced more regular timing of sleep episodes with lower variability of sleep onset among days than MC (60 min vs 78 min; P = .028). In conclusion, having chocolate in the morning or in the evening/night results in differential effects on hunger and appetite, substrate oxidation, fasting glucose, microbiota (composition and function), and sleep and temperature rhythms. Results highlight that the "when" we eat is a relevant factor to consider in energy balance and metabolism.
Collapse
Affiliation(s)
- Teresa Hernández-González
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain
| | - Rocío González-Barrio
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain.,Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of Internacional Excellence, University of Murcia, Murcia, Spain
| | - Carolina Escobar
- Department of Anatomy, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Juan Antonio Madrid
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain
| | - Maria Jesús Periago
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain.,Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of Internacional Excellence, University of Murcia, Murcia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Spain
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Marta Garaulet
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain.,Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Fanton S, Cardozo LFMF, Combet E, Shiels PG, Stenvinkel P, Vieira IO, Narciso HR, Schmitz J, Mafra D. The sweet side of dark chocolate for chronic kidney disease patients. Clin Nutr 2020; 40:15-26. [PMID: 32718711 DOI: 10.1016/j.clnu.2020.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Chocolate is a widely appreciated foodstuff with historical appreciation as a food from the gods. In addition to its highly palatable taste, it is a rich source of (poly)phenolics, which have several proposed salutogenic effects, including neuroprotective anti-inflammatory, anti-oxidant and cardioprotective capabilities. Despite the known benefits of this ancient foodstuff, there is a paucity of information on the effects of chocolate in the context of chronic kidney disease (CKD). This review focusses on the potential salutogenic contribution of chocolate intake, to mitigate inflammatory and oxidative burden in CKD, its potential, for cardiovascular protection and on the maintenance of diversity in gut microbiota, as well as clinical perspectives, on regular chocolate intake by CKD patients.
Collapse
Affiliation(s)
- Susane Fanton
- Renal Vida Association, Blumenau, SC, Brazil; Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil
| | - Emilie Combet
- School of Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, UK
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | | | | | | | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil; Graduate Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| |
Collapse
|
5
|
Effects of Cocoa Antioxidants in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2017; 6:antiox6040084. [PMID: 29088075 PMCID: PMC5745494 DOI: 10.3390/antiox6040084] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 02/05/2023] Open
Abstract
Type 2 Diabetes mellitus (T2D) is the most common form of diabetes and one of the most common chronic diseases. Control of hyperglycaemia by hypoglycaemic drugs is insufficient in for patients and nutritional approaches are currently being explored. Natural dietary compounds such as flavonoids, abundant in fruits and vegetables, have received broad attention because of their potential capacity to act as anti-diabetic agents. Especially cocoa flavonoids have been proved to ameliorate important hallmarks of T2D. In this review, an update of the most relevant reports published during the last decade in cell culture, animal models and human studies is presented. Most results support an anti-diabetic effect of cocoa flavonoids by enhancing insulin secretion, improving insulin sensitivity in peripheral tissues, exerting a lipid-lowering effect and preventing the oxidative and inflammatory damages associated to the disease. While it could be suggested that daily consumption of flavanols from cocoa or dark chocolate would constitute a potential preventive tool useful for the nutritional management of T2D, this recommendation should be cautious since most of commercially available soluble cocoa products or chocolates contain low amount of flavanols and are rich in sugar and calories that may aggravate glycaemic control in T2D patients.
Collapse
|
6
|
Protective effects of tea, red wine and cocoa in diabetes. Evidences from human studies. Food Chem Toxicol 2017; 109:302-314. [PMID: 28893620 DOI: 10.1016/j.fct.2017.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Prevention of diabetes through the diet has recently received an increasing interest, and polyphenolic compounds, such as flavanols, have become important potential chemopreventive natural agents due to their proved benefits on health, with low toxicity and cost. Tea, red wine and cocoa are good sources of flavanols and these highly consumed foods might contribute to prevent diabetes. In this regard, there is increasing evidence for a protective effect of tea, red wine and cocoa consumption against this disorder. This review summarizes the available epidemiological and interventional human studies providing evidence for and against this effect. Overall observational data suggest a benefit, but results are still equivocal and likely confounded by lifestyle and background dietary factors. The weight of data indicate favourable effects on diabetes risk factors for tea, red wine and cocoa intake, and a number of plausible mechanisms have been elucidated in human studies. However, despite the growing evidence it remains uncertain whether tea, red wine and cocoa consumption should be recommended to the general population or to patients as a strategy to reduce the risk of diabetes.
Collapse
|
7
|
Zhang Y, Wong AIC, Wu J, Abdul Karim NB, Huang D. Lepisanthes alata (Malay cherry) leaves are potent inhibitors of starch hydrolases due to proanthocyanidins with high degree of polymerization. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Martin MÁ, Goya L, Ramos S. Antidiabetic actions of cocoa flavanols. Mol Nutr Food Res 2016; 60:1756-69. [DOI: 10.1002/mnfr.201500961] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Maria Ángeles Martin
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC); Ciudad Universitaria; Madrid Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC); Ciudad Universitaria; Madrid Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC); Ciudad Universitaria; Madrid Spain
| |
Collapse
|
9
|
Mellor DD, Naumovski N. Effect of cocoa in diabetes: the potential of the pancreas and liver as key target organs, more than an antioxidant effect? Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Duane D. Mellor
- Discipline of Nutrition and Dietetics; School of Public Health and Nutrition; Faculty of Health; University of Canberra; Bruce 2617 Canberra ACT Australia
- Division of Nutritional Sciences; School of Biosciences; University of Nottingham; Sutton Bonington Campus College Road Sutton Bonington Loughborough Leicestershire LE12 5RD UK
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics; School of Public Health and Nutrition; Faculty of Health; University of Canberra; Bruce 2617 Canberra ACT Australia
| |
Collapse
|