1
|
Shanmugasundaram R, Kappari L, Pilewar M, Jones MK, Olukosi OA, Pokoo-Aikins A, Applegate TJ, Glenn AE. Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens. Toxins (Basel) 2025; 17:16. [PMID: 39852969 PMCID: PMC11769399 DOI: 10.3390/toxins17010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Fusarium mycotoxins often co-occur in broiler feed, and their presence negatively impacts health even at subclinical concentrations, so there is a need to identify the concentrations of these toxins that do not adversely affect chickens health and performance. The study was conducted to evaluate the least toxic effects of combined mycotoxins fumonisins (FUM), deoxynivalenol (DON), and zearalenone (ZEA) on the production performance, immune response, intestinal morphology, and nutrient digestibility of broiler chickens. A total of 960 one-day-old broilers were distributed into eight dietary treatments: T1 (Control); T2: 33.0 FUM + 3.0 DON + 0.8 ZEA; T3: 14.0 FUM + 3.5 DON + 0.7 ZEA; T4: 26.0 FUM + 1.0 DON + 0.2 ZEA; T5: 7.7 FUM + 0.4 DON + 0.1 ZEA; T6: 3.6 FUM + 2.5 DON + 0.9 ZEA; T7: 0.8 FUM + 1.0 DON + 0.3 ZEA; T8: 1.0 FUM + 0.5 DON + 0.1 ZEA, all in mg/kg diet. The results showed that exposure to higher mycotoxin concentrations, T2 and T3, had significantly reduced body weight gain (BWG) by 17% on d35 (p < 0.05). The T2, T3, and T4 groups had a significant decrease in villi length in the jejunum and ileum (p < 0.05) and disruption of tight junction proteins, occludin, and claudin-4 (p < 0.05). Higher mycotoxin groups T2 to T6 had a reduction in the digestibility of amino acids methionine (p < 0.05), aspartate (p < 0.05), and serine (p < 0.05); a reduction in CD4+, CD8+ T-cell populations (p < 0.05) and an increase in T regulatory cell percentages in the spleen (p < 0.05); a decrease in splenic macrophage nitric oxide production and total IgA production (p < 0.05); and upregulated cytochrome P450-1A1 and 1A4 gene expression (p < 0.05). Birds fed the lower mycotoxin concentration groups, T7 and T8, did not have a significant effect on performance, intestinal health, and immune responses, suggesting that these concentrations pose the least negative effects in broiler chickens. These findings are essential for developing acceptable thresholds for combined mycotoxin exposure and efficient feed management strategies to improve broiler performance.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Laharika Kappari
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Mohammad Pilewar
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Matthew K. Jones
- Southern Poultry Research Group, Inc., Watkinsville, GA 30677, USA
| | | | - Anthony Pokoo-Aikins
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Anthony E. Glenn
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| |
Collapse
|
2
|
Li Y, Wang K, Li C. Oxidative Stress in Poultry and the Therapeutic Role of Herbal Medicine in Intestinal Health. Antioxidants (Basel) 2024; 13:1375. [PMID: 39594517 PMCID: PMC11591273 DOI: 10.3390/antiox13111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The intensive broiler farming model has accelerated the development of the poultry farming industry. However, it has also inevitably brought about many stressors that lead to oxidative stress in the organism. The intestine is the leading site of nutrient digestion, absorption, and metabolism, as well as a secretory and immune organ. Oxidative stress in animal production can harm the intestine, potentially leading to significant losses for the farming industry. Under conditions of oxidative stress, many free radicals are produced in the animal's body, attacking the intestinal mucosal tissues and destroying the barrier integrity of the intestinal tract, leading to disease. Recently, herbs have been shown to have a favorable safety profile and promising application in improving intestinal oxidative stress in poultry. Therefore, future in-depth studies on the specific mechanisms of herbs and their extracts for treating intestinal oxidative stress can provide a theoretical basis for the clinical application of herbs and new therapeutic options for intestinal oxidative stress injury during poultry farming. This review focuses on the causes and hazards of oxidative stress in the intestinal tract of poultry, and on herbs and their extracts with therapeutic potential, to provide a reference for developing and applying new antioxidants.
Collapse
Affiliation(s)
| | | | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.W.)
| |
Collapse
|
3
|
Wang Q, Wang Y, Wang Y, Zhang Q, Mi J, Ma Q, Li T, Huang S. Agaro-oligosaccharides mitigate deoxynivalenol-induced intestinal inflammation by regulating gut microbiota and enhancing intestinal barrier function in mice. Food Funct 2024; 15:3380-3394. [PMID: 38498054 DOI: 10.1039/d3fo04898e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Agarose-derived agaro-oligosaccharides (AgaroS) have been extensively studied in terms of structures and bioactivities; they reportedly possess antioxidant and anti-inflammatory activities that maintain intestinal homeostasis and host health. However, the protective effects of AgaroS on deoxynivalenol (DON)-induced intestinal dysfunction remain unclear. We investigated the effects of AgaroS on DON-induced intestinal dysfunction in mice and explored the underlying protective mechanisms. In total, 32 mice were randomly allocated to four treatments (n = 8 each) for 28 days. From day 1 to day 21, the control (CON) and DON groups received oral phosphate-buffered saline (200 μL per day); the AgaroS and AgaroS + DON groups received 200 mg AgaroS per kg body weight once daily by orogastric gavage. Experimental intestinal injury was induced by adding DON (4.8 mg per kg body weight) via gavage from day 21 to day 28. Phosphate-buffered saline was administered once daily by gavage in the CON and AgaroS groups. Herein, AgaroS supplementation led to a higher final body weight and smaller body weight loss and a lower concentration of plasma inflammatory cytokines, compared with the DON group. The DON group showed a significantly reduced ileal villus height and villus height/crypt depth, compared with the CON and AgaroS + DON groups. However, AgaroS supplementation improved DON-induced intestinal injury in mice. Compared with the DON group, ileal and colonic protein expression levels of claudin, occludin, Ki67, and mucin2 were significantly higher in the AgaroS supplementation group. Colonic levels of the anti-inflammatory cytokine IL-1β tended to be higher in the DON group than in the AgaroS + DON group. AgaroS altered the gut microbiota composition, accompanied by increased production of short-chain fatty acids in mice. In conclusion, our findings highlight a promising anti-mycotoxin approach whereby AgaroS alleviate DON-induced intestinal inflammation by modulating intestinal barrier functional integrity and gut microbiota in mice.
Collapse
Affiliation(s)
- Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 21001, Liaoning, China
| | - Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| |
Collapse
|
4
|
Reisinger N, Doupovec B, Czabany T, Van Immerseel F, Croubels S, Antonissen G. Endotoxin Translocation Is Increased in Broiler Chickens Fed a Fusarium Mycotoxin-Contaminated Diet. Toxins (Basel) 2024; 16:167. [PMID: 38668592 PMCID: PMC11053883 DOI: 10.3390/toxins16040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024] Open
Abstract
Broiler chickens in livestock production face numerous challenges that can impact their health and welfare, including mycotoxin contamination and heat stress. In this study, we aimed to investigate the combined effects of two mycotoxins, deoxynivalenol (DON) and fumonisins (FBs), along with short-term heat stress conditions, on broiler gut health and endotoxin translocation. An experiment was conducted to assess the impacts of mycotoxin exposure on broilers, focusing on intestinal endotoxin activity, gene expression related to gut barrier function and inflammation, and the plasma concentration of the endotoxin marker 3-OH C14:0 either at thermoneutral conditions or short-term heat stress conditions. Independently of heat stress, broilers fed DON-contaminated diets exhibited reduced body weight gain during the starter phase (Day 1-12) compared to the control group, while broilers fed FB-contaminated diets experienced decreased body weight gain throughout the entire trial period (Day 1-24). Furthermore, under thermoneutral conditions, broilers fed DON-contaminated diets showed an increase in 3-OH C14:0 concentration in the plasma. Moreover, under heat stress conditions, the expression of genes related to gut barrier function (Claudin 5, Zonulin 1 and 2) and inflammation (Toll-like receptor 4, Interleukin-1 beta, Interleukin-6) was significantly affected by diets contaminated with mycotoxins, depending on the gut segment. This effect was particularly prominent in broilers fed diets contaminated with FBs. Notably, the plasma concentration of 3-OH C14:0 increased in broilers exposed to both DON- and FB-contaminated diets under heat stress conditions. These findings shed light on the intricate interactions between mycotoxins, heat stress, gut health, and endotoxin translocation in broiler chickens, highlighting the importance of understanding these interactions for the development of effective management strategies in livestock production to enhance broiler health and welfare.
Collapse
Affiliation(s)
- Nicole Reisinger
- dsm-firmenich Animal Nutrition and Health R&D Center Tulln, Technopark 1, 3430 Tulln, Austria; (B.D.); (T.C.)
| | - Barbara Doupovec
- dsm-firmenich Animal Nutrition and Health R&D Center Tulln, Technopark 1, 3430 Tulln, Austria; (B.D.); (T.C.)
| | - Tibor Czabany
- dsm-firmenich Animal Nutrition and Health R&D Center Tulln, Technopark 1, 3430 Tulln, Austria; (B.D.); (T.C.)
| | - Filip Van Immerseel
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.V.I.); (S.C.); (G.A.)
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.V.I.); (S.C.); (G.A.)
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.V.I.); (S.C.); (G.A.)
- Chair Poultry Health Sciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
5
|
Vidal JK, Simões CT, Mallmann AO, Tyska D, Pereira HV, Mallmann CA. A Three-Year Study on the Nutritional Composition and Occurrence of Mycotoxins of Corn Varieties with Different Transgenic Events Focusing on Poultry Nutrition. Vet Sci 2024; 11:97. [PMID: 38393115 PMCID: PMC10892366 DOI: 10.3390/vetsci11020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Corn is one of the most produced cereals in the world and plays a major role in poultry nutrition. As there is limited scientific information regarding the impact of transgenic technology on the quality and nutrient composition of the grains, this study investigated the effect of three major transgenic corn varieties-VT PRO3®, PowerCore® ULTRA, and Agrisure® Viptera 3-on the field traits, nutrient composition, and mycotoxin contamination of corn grains cultivated in southern Brazil during three consecutive harvests. VT PRO3®, while demonstrating superior crop yield, showed susceptibility to mycotoxins, particularly fumonisins. In contrast, PowerCore® ULTRA, with the lowest yield, consistently exhibited lower levels of fumonisins. VT PRO3® had higher AMEn than the other varieties, while PowerCore® ULTRA had the highest total and digestible amino acid contents over the three years. The study's comprehensive analysis reveals the distinct impact of transgenic corn technologies on both productivity and nutritional levels. Balancing the crops yield, mycotoxin resistance, and nutritional content of corn is crucial to meet the demands of the poultry feed industry. Such insights are essential for decision-making, ensuring sustainability and efficiency in agricultural production as well as meeting the demands of the poultry industry.
Collapse
Affiliation(s)
- Juliano Kobs Vidal
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.K.V.); (C.T.S.)
| | - Cristina Tonial Simões
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.K.V.); (C.T.S.)
| | | | - Denize Tyska
- Pegasus Science, Santa Maria 97105-030, RS, Brazil; (A.O.M.); (D.T.)
| | | | - Carlos Augusto Mallmann
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.K.V.); (C.T.S.)
| |
Collapse
|
6
|
Djouina M, Waxin C, Caboche S, Lecointe K, Steimle A, Beury D, Desai MS, Hot D, Dubuquoy L, Launay D, Vignal C, Body-Malapel M. Low dose dietary contamination with deoxynivalenol mycotoxin exacerbates enteritis and colorectal cancer in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165722. [PMID: 37482350 DOI: 10.1016/j.scitotenv.2023.165722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND The mycotoxin deoxynivalenol (DON) is a frequent contaminant of grain and cereal products worldwide. Exposure to DON can cause gastrointestinal inflammation, disturb gut barrier function, and induce gut dysbiosis in vivo under basal conditions, but little is known about the effects of DON ingestion in individuals with pre-existing gastrointestinal disease. OBJECTIVES Mice were orally exposed to 10 and 100 μg/kg bw/day of DON, corresponding to 10 to 100-fold human tolerable daily intake concentrations, and to the translation in mice of current human daily intake. The effects of DON exposure were explored under steady-state conditions, and in murine models of enteritis and colorectal cancer (CRC). RESULTS After 8 days of DON exposure, an increase of histomorphological and molecular parameters of epithelial proliferation were observed in normal mice, from the duodenum to the colon. The same exposure in a murine model of indomethacin-induced enteritis led to exacerbation of lesion development and induction of ileal cytokines. DON exposure also worsened the development of colitis-associated CRC in mice as shown by increases in endoscopic and histological colitis scores, tumor grades, and histological hyperplasia. In colon of DON-exposed mice, upstream and downstream ERK signaling genes were upregulated including Mapk1, Mapk3, Map 2k1, Map2k2 core ERK pathway effectors, and Bcl2 and Bcl2l1 antiapoptotic genes. The effects observed in the CRC model were associated with alterations in cecal microbiota taxonomic composition and metabolism of bacterial fucose and rhamnose. Strong Spearman's correlations were revealed between the relative abundance of the changed bacterial genera and CRC-related variables. DISCUSSION Ingestion of DON mycotoxin at concentrations representative of human real-world exposure worsened the development of indomethacin-induced enteritis and colitis-associated CRC in mice. Our results suggest that even at low doses, which are currently tolerated in the human diet, DON could promote the development of intestinal inflammatory diseases and CRC.
Collapse
Affiliation(s)
- Madjid Djouina
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France
| | - Karine Lecointe
- Inserm U1285, Univ. Lille, CHU de Lille, UMR CNRS 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Alexander Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Delphine Beury
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| |
Collapse
|
7
|
Hou L, Yuan H, Liu Y, Sun X, Chang J, Zhang H, Zhang J, Sun J, Wang Q, Chen F. Effect of deoxynivalenol on inflammatory injury on the glandular stomach in chick embryos. Poult Sci 2023; 102:102870. [PMID: 37660451 PMCID: PMC10491726 DOI: 10.1016/j.psj.2023.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 09/05/2023] Open
Abstract
Deoxynivalenol (DON) has a strong toxic effect on the gastrointestinal mucosa of poultry. In this study, we evaluated chicken embryo development and glandular stomach damage to clarify the immunotoxic effects of DON injected through the allantoic cavity of chicken embryos. The glandular stomach index, routine blood indices, plasma inflammatory factors, pathological changes in the glandular stomach, and transcriptome results were analyzed in the hatching chicks. The results showed that DON was supertoxic to chicken embryos, causing edema, shedding, and bleeding of the mucosa of the glandular stomach, which triggered inflammatory reactions. As the toxin concentration increased, the immune system was successively activated and inhibited, and regulation was carried out by the differential regulation of the mitogen-activated protein kinase (MAPK) signal pathway. These results suggested that the immunotoxic effect of DON on the glandular stomach of chicken embryos was closely related to the regulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Lele Hou
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Hao Yuan
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Yang Liu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Xinyuan Sun
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jiagao Chang
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Hao Zhang
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Junchao Zhang
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jieyu Sun
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Qiang Wang
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Fu Chen
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
8
|
Ruan H, Huang Y, Yue B, Zhang Y, Lv J, Miao K, Zhang D, Luo J, Yang M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4758-4785. [PMID: 37755064 DOI: 10.1111/1541-4337.13242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binyang Yue
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Miao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Yu J, Pedroso IR. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals and Pets. Toxins (Basel) 2023; 15:480. [PMID: 37624237 PMCID: PMC10467131 DOI: 10.3390/toxins15080480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Cereal grains are the most important food staples for human beings and livestock animals. They can be processed into various types of food and feed products such as bread, pasta, breakfast cereals, cake, snacks, beer, complete feed, and pet foods. However, cereal grains are vulnerable to the contamination of soil microorganisms, particularly molds. The toxigenic fungi/molds not only cause quality deterioration and grain loss, but also produce toxic secondary metabolites, mycotoxins, which can cause acute toxicity, death, and chronic diseases such as cancer, immunity suppression, growth impairment, and neural tube defects in humans, livestock animals and pets. To protect human beings and animals from these health risks, many countries have established/adopted regulations to limit exposure to mycotoxins. The purpose of this review is to update the evidence regarding the occurrence and co-occurrence of mycotoxins in cereal grains and cereal-derived food and feed products and their health impacts on human beings, livestock animals and pets. The effort for safe food and feed supplies including prevention technologies, detoxification technologies/methods and up-to-date regulation limits of frequently detected mycotoxins in cereal grains for food and feed in major cereal-producing countries are also provided. Some important areas worthy of further investigation are proposed.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | | |
Collapse
|
10
|
Yu S, Zou L, Zhao J, Zhu Y. Individual and Combined Cytotoxic Effects of Co-Occurring Fumonisin Family Mycotoxins on Porcine Intestinal Epithelial Cell. Foods 2023; 12:2555. [PMID: 37444293 PMCID: PMC10340252 DOI: 10.3390/foods12132555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Human health is seriously threatened by mycotoxin contamination, yet health risk assessments are typically based on just one mycotoxin, potentially excluding the additive or competitive interactions between co-occurring mycotoxins. In this investigation, we evaluated the individual or combined toxicological effects of three fumonisin-family B mycotoxins: fumonisin B1 (FB1), fumonisin B2 (FB2), and fumonisin B3 (FB3), by using porcine intestinal epithelial cells (IPEC). IPEC cells were exposed to various concentrations (2.5-40 μM) for 48 h, and a cell counting kit (CCK8) was used to determine cell vitality. Firstly, we discovered that they might inhibit cell viability. Additionally, the cytotoxicity of FB1 was significantly greater than that of FB2 and FB3. The results also indicated that the combinations of FB1-FB2, FB2-FB3, and FB1-FB2-FB3 showed synergistically toxicological effects at the ID10-ID50 levels and antagonistic effects at the ID75-ID90 levels. In addition, the FB1-FB3 exposure was also synergistic at the ID10-ID25 level. We also found that myriocin and resveratrol alleviated the cytotoxicity induced by fumonisin in IPEC cells. In all, this study may contribute to the determination of legal limits, the optimization of risk assessment for fumonisins in food and feed, and the development of new methods to alleviate fumonisin toxicity.
Collapse
Affiliation(s)
- Song Yu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (L.Z.); (J.Z.); (Y.Z.)
| | | | | | | |
Collapse
|
11
|
Kulcsár S, Kövesi B, Balogh K, Zándoki E, Ancsin Z, Erdélyi M, Mézes M. The Co-Occurrence of T-2 Toxin, Deoxynivalenol, and Fumonisin B1 Activated the Glutathione Redox System in the EU-Limiting Doses in Laying Hens. Toxins (Basel) 2023; 15:toxins15050305. [PMID: 37235340 DOI: 10.3390/toxins15050305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Different mycotoxins in feed lead to combined exposure, increasing adverse effects on animal health. Trichothecene mycotoxins have been associated with inducing oxidative stress, which is neutralized by the glutathione system within the antioxidant defense, depending on the dose and duration of exposure. T-2 toxin, deoxynivalenol (DON), and fumonisin B1 (FB1) are commonly found in feed commodities simultaneously. In the present study, the intracellular biochemical and gene expression changes were investigated in the case of multi-mycotoxin exposure, focusing on certain elements of the glutathione redox system. In a short-term feeding trial, an in vivo study was performed with low (EU-proposed) doses: T-2/HT-2 toxin: 0.25 mg; DON/2-AcDON/15-AcDON.: 5 mg; FB1: 20 mg/kg feed, and high doses (twice the low dose) in laying hens. The multi-mycotoxin exposure affected the glutathione system; GSH concentration and GPx activity was higher in the liver in the low-dose group on day 1 compared to the control. Furthermore, the gene expression of antioxidant enzymes increased significantly on day 1 in both exposure levels compared to the control. The results suggest that when EU-limiting doses are applied, individual mycotoxins may have a synergistic effect in the induction of oxidative stress.
Collapse
Affiliation(s)
- Szabina Kulcsár
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, 2100 Gödöllő, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
| | - Benjámin Kövesi
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, 2100 Gödöllő, Hungary
| | - Krisztián Balogh
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, 2100 Gödöllő, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
| | - Erika Zándoki
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
| | - Zsolt Ancsin
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, 2100 Gödöllő, Hungary
| | - Márta Erdélyi
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, 2100 Gödöllő, Hungary
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, 2100 Gödöllő, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
| |
Collapse
|
12
|
Balázs O, Dombi Á, Zsidó BZ, Hetényi C, Vida RG, Poór M. Probing the Interactions of 31 Mycotoxins with Xanthine Oxidase: Alternariol, Alternariol-3-Sulfate, and α-Zearalenol Are Allosteric Inhibitors of the Enzyme. Toxins (Basel) 2023; 15:250. [PMID: 37104188 PMCID: PMC10143053 DOI: 10.3390/toxins15040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are frequent toxic contaminants in foods and beverages, causing a significant health threat. Interactions of mycotoxins with biotransformation enzymes (e.g., cytochrome P450 enzymes, sulfotransferases, and uridine 5'-diphospho-glucuronosyltransferases) may be important due to their possible detoxification or toxic activation during enzymatic processes. Furthermore, mycotoxin-induced enzyme inhibition may affect the biotransformation of other molecules. A recent study described the strong inhibitory effects of alternariol and alternariol-9-methylether on the xanthine oxidase (XO) enzyme. Therefore, we aimed to test the impacts of 31 mycotoxins (including the masked/modified derivatives of alternariol and alternariol-9-methylether) on XO-catalyzed uric acid formation. Besides the in vitro enzyme incubation assays, mycotoxin depletion experiments and modeling studies were performed. Among the mycotoxins tested, alternariol, alternariol-3-sulfate, and α-zearalenol showed moderate inhibitory actions on the enzyme, representing more than tenfold weaker impacts compared with the positive control inhibitor allopurinol. In mycotoxin depletion assays, XO did not affect the concentrations of alternariol, alternariol-3-sulfate, and α-zearalenol in the incubates; thus, these compounds are inhibitors but not substrates of the enzyme. Experimental data and modeling studies suggest the reversible, allosteric inhibition of XO by these three mycotoxins. Our results help the better understanding of the toxicokinetic interactions of mycotoxins.
Collapse
Affiliation(s)
- Orsolya Balázs
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Róbert György Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
13
|
Schrenk D, Bignami M, Bodin L, del Mazo JKCJ, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Dänicke S, Nebbia CS, Oswald IP, Rovesti E, Steinkellner H, Hoogenboom L(R. Assessment of information as regards the toxicity of deoxynivalenol for horses and poultry. EFSA J 2023; 21:e07806. [PMID: 36751491 PMCID: PMC9892893 DOI: 10.2903/j.efsa.2023.7806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In 2017, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of deoxynivalenol (DON) and its acetylated and modified forms in food and feed. No observed adverse effect levels (NOAELs) and lowest observed adverse effect levels (LOAELs) were derived for different animal species. For horses, an NOAEL of 36 mg DON/kg feed was established, the highest concentration tested and not showing adverse effects. For poultry, an NOAEL of 5 mg DON/kg feed for broiler chickens and laying hens, and an NOAEL of 7 mg DON/kg feed for ducks and turkeys was derived. The European Commission requested EFSA to review the information regarding the toxicity of DON for horses and poultry and to revise, if necessary, the established reference points (RPs). Adverse effect levels of 1.9 and 1.7 mg DON/kg feed for, respectively, broiler chickens and turkeys were derived from reassessment of existing studies and newly available literature, showing that DON causes effects on the intestines, in particular the jejunum, with a decreased villus height but also histological damage. An RP for adverse animal health effects of 0.6 mg/kg feed for broiler chickens and turkeys, respectively, was established. For horses, an adverse effect level of 5.6 mg DON/kg feed was established from studies showing reduced feed intake, with an RP for adverse animal health effects of 3.5 mg/kg feed. For ducks and laying hens, RPs remain unchanged. Based on mean and P95 (UB) exposure estimates performed in the previous Opinion, the risk of adverse health effects of feeds containing DON was considered a potential concern for broiler chickens and turkeys. For horses, the risk for adverse health effects from feed containing DON is low.
Collapse
|
14
|
Huang Y, Eeckhaut V, Goossens E, Rasschaert G, Van Erum J, Roovers G, Ducatelle R, Antonissen G, Van Immerseel F. Bacterial chondronecrosis with osteomyelitis related Enterococcus cecorum isolates are genetically distinct from the commensal population and are more virulent in an embryo mortality model. Vet Res 2023; 54:13. [PMID: 36823606 PMCID: PMC9951403 DOI: 10.1186/s13567-023-01146-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) is a common cause of broiler lameness. Bacteria that are found in BCO lesions are intestinal bacteria that are proposed to have translocated through the intestinal epithelium and have spread systemically. One of the specific bacterial species frequently isolated in BCO cases is Enterococcus cecorum. In the current study, caecal isolates were obtained from birds derived from healthy flocks (12 isolates from 6 flocks), while isolates derived from caeca, colon, pericardium, caudal thoracic vertebrae, coxo-femoral joint, knee joint and intertarsal joint (hock) were obtained from broilers derived from BCO outbreaks (111 isolates from 10 flocks). Pulsed field gel electrophoresis was performed to determine similarity. Clonal E. cecorum populations were isolated from different bones/joints and pericardium from animals within the same flock, with intestinal strains carrying the same pulsotype, pointing to the intestinal origin of the systemically present bacteria. Isolates from the intestinal tract of birds from healthy flocks clustered away from the BCO strains. Isolates from the gut, bones/joints and pericardium of affected animals contained a set of genes that were absent in isolates from the gut of healthy animals, such as genes encoding for enterococcal polysaccharide antigens (epa genes), cell wall structural components and nutrient transporters. Isolates derived from the affected birds induced a significant higher mortality in the embryo mortality model as compared to the isolates from the gut of healthy birds, pointing to an increased virulence.
Collapse
Affiliation(s)
- Yue Huang
- grid.5342.00000 0001 2069 7798Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Venessa Eeckhaut
- grid.5342.00000 0001 2069 7798Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Evy Goossens
- grid.5342.00000 0001 2069 7798Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO)- Technology and Food Science Unit, 9090 Melle, Belgium
| | | | | | - Richard Ducatelle
- grid.5342.00000 0001 2069 7798Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Gunther Antonissen
- grid.5342.00000 0001 2069 7798Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
15
|
Mao X, Zhang P, Du H, Ge L, Liu S, Huang K, Chen X. The combined effect of deoxynivalenol and Fumonisin B1 on small intestinal inflammation mediated by pyroptosis in vivo and in vitro. Toxicol Lett 2023; 372:25-35. [DOI: 10.1016/j.toxlet.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
16
|
Qiu Y, Nie X, Yang J, Wang L, Zhu C, Yang X, Jiang Z. Effect of Resveratrol Supplementation on Intestinal Oxidative Stress, Immunity and Gut Microbiota in Weaned Piglets Challenged with Deoxynivalenol. Antioxidants (Basel) 2022; 11:antiox11091775. [PMID: 36139849 PMCID: PMC9495672 DOI: 10.3390/antiox11091775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Deoxynivalenol (DON) is a general mycotoxin that induces severe intestinal barrier injury in humans and animals. Resveratrol (RES) efficiently exerts anti-inflammatory and antioxidant effects. However, the information regarding RES protecting against DON-induced oxidative stress and intestinal inflammation in piglets is limited. (2) Methods: A total of 64 weaned piglets (Duroc × (Landrace × Yorkshire), 21-d-old, barrow) were randomly allocated to four groups (eight replicate pens per group, each pen containing two piglets) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. (3) Compared with unsupplemented DON-challenged piglets, RES supplementation in DON-challenged piglets increased ileal villus height and the abundance of ileal SOD1, GCLC and PG1-5 transcripts and Muc2 protein (p < 0.05), while decreasing the mRNA and proteins expression of ileal IL-1β, IL-6 and TNF-α, and malondialdehyde (MDA) levels in plasma and ileum in DON-challenged piglets (p < 0.05). Moreover, the abundances of class Bacilli, order Lactobacillales, family Lactobacillaceae and species Lactobacillus gasseri were increased in DON-challenged piglets fed a RES-supplemented diet compared with those in DON-challenged piglets(p ≤ 0.05). (4) Conclusions: our results indicated that RES supplementation in DON-challenged piglets efficiently attenuated intestinal inflammation and oxidative stress and improved gut microbiota, thereby alleviating DON-induced intestinal barrier injury.
Collapse
Affiliation(s)
- Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Xinzhi Nie
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Jun Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: (X.Y.); (Z.J.)
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: (X.Y.); (Z.J.)
| |
Collapse
|
17
|
von Buchholz JS, Ruhnau D, Hess C, Aschenbach JR, Hess M, Awad WA. Paracellular intestinal permeability of chickens induced by DON and/or C. jejuni is associated with alterations in tight junction mRNA expression. Microb Pathog 2022; 168:105509. [PMID: 35367310 DOI: 10.1016/j.micpath.2022.105509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Toxins, antigens, and harmful pathogens continuously challenge the intestinal mucosa. Therefore, regulation of the intestinal barrier is crucial for the maintenance of mucosal homeostasis and gut health. Intercellular complexes, namely, tight junctions (TJs), regulate paracellular permeability. TJs are mainly composed of claudins (CLDN), occludin (OCLN), tight junction associated MARVEL-domain proteins (TAMPS), the scaffolding zonula occludens (ZO) proteins and junction-adhesion molecules (JAMs). Different studies have shown that a Campylobacter infection can lead to a phenomenon so-called "leaky gut", including the translocation of luminal bacteria to the underlying tissue and internal organs. Based on the effects of C. jejuni on the chicken gut, we hypothesize that impacts on TJ proteins play a crucial role in the destructive effects of the intestinal barrier. Likewise, the mycotoxin deoxynivalenol (DON) can also alter gut permeability in chickens. Albeit DON and C. jejuni are widely distributed, no data are available on their effect on the tight junctions' barrier in the broiler intestine and consequences for permeability. Therefore, the aim of this study was to analyze the interaction between DON and C. jejuni on the gut barrier by linking permeability with gene expression of TJ proteins and to determine the relationships between the measurements. Following oral infection of birds with C. jejuni NCTC 12744 at 14 days of age, we demonstrate that the co-exposure with DON has considerable consequences on gut permeability as well as on gut TJ mRNA expression. Co-exposure of DON and C. jejuni enhanced the negative effect on paracellular permeability of the intestine, which was also noticed for the bacteria or the mycotoxin alone by the Ussing chamber technique at certain time points in both jejunum and caecum. Furthermore, the increased paracellular permeability was associated with significant changes in TJ mRNA expression in the small and large intestine. The actual study demonstrates that co-exposure of broiler chickens to DON and C. jejuni resulted in a decreased barrier function via up-regulation of pore-forming tight junctions (CLDN7 and CLDN10), as well as the cytosolic TJ protein occludin (OCLN) that can shift to various paracellular locations and are therefore able to alter the epithelial permeability. These findings indicate that the co-exposure of broiler chickens to DON and C. jejuni affects the paracellular permeability of the gut by altering the tight junction proteins. Furthermore, analysing of correlations between TJs revealed that the mRNA expression levels of most tight junctions were correlated with each other in both jejunum and caecum. Finally, the findings indicate that the molecular composition of tight junctions can be used as a marker for gut health and integrity.
Collapse
Affiliation(s)
- J Sophia von Buchholz
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jörg R Aschenbach
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
18
|
Latek U, Chłopecka M, Karlik W, Mendel M. Phytogenic Compounds for Enhancing Intestinal Barrier Function in Poultry-A Review. PLANTA MEDICA 2022; 88:218-236. [PMID: 34331305 DOI: 10.1055/a-1524-0358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
After the European Union ban of antibiotic growth promoters, works on different methods of improving gut health have intensified. The poultry industry is struggling with problems that were previously controlled by antibiotic growth promoters, therefore the search for optimal solutions continues. Simultaneously, there is also increasing social pressure to minimize the use of antibiotics and replace them with alternative feed additives. A variety of available alternatives is considered safe by consumers, among which phytogenics play a significant role. However, there are still some limitations that need to be considered. The most questionable are the issues related to bioavailability, metabolism of plant derivatives in birds, and the difficulty of standardizing commercial products. There is still a need for more evidence-based recommendations for the use of phytogenics in livestock. On the other hand, a positive influence of phytogenic compounds on the health of poultry has been previously described by many researchers and practical application of these compounds has auspicious perspectives in poultry production. Supplementation with phytogenic feed additives has been shown to protect birds from various environmental threats leading to impaired intestinal barrier function. Phytogenic feed additives have the potential to improve the overall structure of intestinal mucosa as well as gut barrier function on a molecular level. Recognition of the phytogenics' effect on the components of the intestinal barrier may enable the selection of the most suitable ones to alleviate negative effects of different agents. This review aims to summarize current knowledge of the influence of various phytogenic constituents on the intestinal barrier and health of poultry.
Collapse
Affiliation(s)
- Urszula Latek
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Wojciech Karlik
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Marta Mendel
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
19
|
Effects of Fumonisin B and Hydrolyzed Fumonisin B on Growth and Intestinal Microbiota in Broilers. Toxins (Basel) 2022; 14:toxins14030163. [PMID: 35324660 PMCID: PMC8954478 DOI: 10.3390/toxins14030163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Fumonisins are mainly produced by Fusarium verticillioides and proliferatum, which causes a variety of toxicities in humans and animals, including fumonisin Bs (FBs) as the main form. After they are metabolized by plants or microorganisms, modified fumonisins are difficult to detect by conventional methods, which result in an underestimation of their contamination level. Fumonisins widely contaminate maize and maize products, especially in broiler feed. As an economically important food, broilers are often adversely affected by mycotoxins, leading to food safety hazards and high economic losses. However, there are few studies regarding the adverse effects of FBs on broiler growth and health, especially modified FBs. Our data shows that after exposure to FBs or hydrolyzed fumonisin Bs (HFBs), the body weight and tissue weight of broilers decreased significantly, especially the testes. Moreover, they significantly affect the intestinal microbiota and the relative abundance of bacteria from phylum-to-species levels, with the differentially affected bacteria mainly belonging to Firmicutes and Proteobacteria. Our findings suggest that both the parent and hydrolyzed FBs could induce growth retardation, tissue damage and the imbalance of intestinal microbiota in broilers. This indicated that the harmful effects of HFBs cannot be ignored during food safety risk assessment.
Collapse
|
20
|
An S, Wang L, Zhou P, Luo Z, Feng R, Li X. Construction of Hohenbuehelia serotina polysaccharides-mucin nanoparticles and their sustain-release characteristics under simulated gastrointestinal digestion in vitro. Int J Biol Macromol 2021; 191:1-8. [PMID: 34537291 DOI: 10.1016/j.ijbiomac.2021.09.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
In this study, Hohenbuehelia serotina polysaccharides-mucin nanoparticles (HSP-MC NPs) were fabricated based on hydrogen bonding and hydrophobicity effects for improving the bioavailability of HSP. The structural characteristics and morphology of HSP-MC NPs prepared by different conditions were respectively identified and observed. The results showed that HSP-MC NPs (HSP/MC, 1/1, w/w) presented the optimal physicochemical characteristics, with the encapsulation efficiency of 88.09 ± 0.01%, average particle size of 509.4 ± 9.76 nm and zeta potential of -20.6 ± 0.7 mV. Furthermore, HSP-MC NPs (HSP/MC, 1/1, w/w), belonged to non-crystalline substances, exhibited the excellent physicochemical stabilities against temperature, pH and ionic strength, and had the uniform spherical morphological characteristics. In addition, under simulated gastrointestinal digestion in vitro, HSP-MC NPs (HSP/MC, 1/1, w/w) showed the good sustained release performances, that might effectively improve the absorption rate of HSP. The present research is meaningful for designing the polysaccharides-loaded nano-delivery system based on natural non-toxic carrier that can be used in function food field.
Collapse
Affiliation(s)
- Siying An
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiaoyu Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Nanobiotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
21
|
Duangnumsawang Y, Zentek J, Goodarzi Boroojeni F. Development and Functional Properties of Intestinal Mucus Layer in Poultry. Front Immunol 2021; 12:745849. [PMID: 34671361 PMCID: PMC8521165 DOI: 10.3389/fimmu.2021.745849] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023] Open
Abstract
Intestinal mucus plays important roles in protecting the epithelial surfaces against pathogens, supporting the colonization with commensal bacteria, maintaining an appropriate environment for digestion, as well as facilitating nutrient transport from the lumen to the underlying epithelium. The mucus layer in the poultry gut is produced and preserved by mucin-secreting goblet cells that rapidly develop and mature after hatch as a response to external stimuli including environmental factors, intestinal microbiota as well as dietary factors. The ontogenetic development of goblet cells affects the mucin composition and secretion, causing an alteration in the physicochemical properties of the mucus layer. The intestinal mucus prevents the invasion of pathogens to the epithelium by its antibacterial properties (e.g. β-defensin, lysozyme, avidin and IgA) and creates a physical barrier with the ability to protect the epithelium from pathogens. Mucosal barrier is the first line of innate defense in the gastrointestinal tract. This barrier has a selective permeability that allows small particles and nutrients passing through. The structural components and functional properties of mucins have been reviewed extensively in humans and rodents, but it seems to be neglected in poultry. This review discusses the impact of age on development of goblet cells and their mucus production with relevance for the functional characteristics of mucus layer and its protective mechanism in the chicken’s intestine. Dietary factors directly and indirectly (through modification of the gut bacteria and their metabolic activities) affect goblet cell proliferation and differentiation and can be used to manipulate mucosal integrity and dynamic. However, the mode of action and mechanisms behind these effects need to be studied further. As mucins resist to digestion processes, the sloughed mucins can be utilized by bacteria in the lower part of the gut and are considered as endogenous loss of protein and energy to animal. Hydrothermal processing of poultry feed may reduce this loss by reduction in mucus shedding into the lumen. Given the significance of this loss and the lack of precise data, this matter needs to be carefully investigated in the future and the nutritional strategies reducing this loss have to be defined better.
Collapse
Affiliation(s)
- Yada Duangnumsawang
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Faculty of Veterinary Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Farshad Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
22
|
Paraskeuas V, Griela E, Bouziotis D, Fegeros K, Antonissen G, Mountzouris KC. Effects of Deoxynivalenol and Fumonisins on Broiler Gut Cytoprotective Capacity. Toxins (Basel) 2021; 13:729. [PMID: 34679022 PMCID: PMC8538483 DOI: 10.3390/toxins13100729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
Mycotoxins are a crucial problem for poultry production worldwide. Two of the most frequently found mycotoxins in feedstuffs are deoxynivalenol (DON) and fumonisins (FUM) which adversely affect gut health and poultry performance. The current knowledge on DON and FUM effects on broiler responses relevant for gut detoxification, antioxidant capacity, and health is still unclear. The aim of this study was to assess a range of selected molecular intestinal biomarkers for their responsiveness to the maximum allowable European Union dietary levels for DON (5 mg/kg) and FUM (20 mg/kg) in broilers. For the experimental purpose, a challenge diet was formulated, and biomarkers relevant for detoxification, antioxidant response, stress, inflammation, and integrity were profiled across the broiler intestine. The results reveal that DON significantly (p < 0.05) induced aryl hydrocarbon receptor (AhR) and cytochrome P450 enzyme (CYP) expression mainly at the duodenum. Moreover, DON and FUM had specific significant (p < 0.05) effects on the antioxidant response, stress, inflammation, and integrity depending on the intestinal segment. Consequently, broiler molecular responses to DON and FUM assessed via a powerful palette of biomarkers were shown to be mycotoxin and intestinal site specific. The study findings could be highly relevant for assessing various dietary bioactive components for protection against mycotoxins.
Collapse
Affiliation(s)
- Vasileios Paraskeuas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.P.); (E.G.); (D.B.); (K.F.)
| | - Eirini Griela
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.P.); (E.G.); (D.B.); (K.F.)
| | - Dimitrios Bouziotis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.P.); (E.G.); (D.B.); (K.F.)
| | - Konstantinos Fegeros
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.P.); (E.G.); (D.B.); (K.F.)
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Konstantinos C. Mountzouris
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.P.); (E.G.); (D.B.); (K.F.)
| |
Collapse
|
23
|
Tsujikawa Y, Suzuki M, Sakane I. Isolation, identification, and impact on intestinal barrier integrity of Lactiplantibacillus plantarum from fresh tea leaves (Camellia sinensis). BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2021; 40:186-195. [PMID: 34631330 PMCID: PMC8484006 DOI: 10.12938/bmfh.2020-083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/19/2021] [Indexed: 11/05/2022]
Abstract
Lactic acid bacteria (LAB) are safe microorganisms that have been used in the processing of fermented food for centuries. The aim of this study was to isolate Lactobacillus from fresh tea leaves and examine the impact of an isolated strain on intestinal barrier integrity. First, the presence of Lactobacillus strains was investigated in fresh tea leaves from Kagoshima, Japan. Strains were isolated by growing on De Man, Rogosa and Sharpe (MRS) agar medium containing sodium carbonate, followed by the identification of one strain by polymerase chain reaction (PCR) and pheS sequence analysis, with the strain identified as Lactiplantibacillus plantarum and named L. plantarum LOC1. Second, the impact of strain LOC1 in its heat-inactivated form on intestinal barrier integrity was investigated. Strain LOC1, but not L. plantarum ATCC 14917T or L. plantarum ATCC 8014, significantly suppressed dextran sulfate sodium (DSS)-induced decreases in transepithelial electrical resistance values of Caco-2:HT29-MTX 100:0 and 90:10 co-cultures. Moreover, in Caco-2:HT29-MTX co-cultures (90:10 and 75:25), levels of occludin mRNA were significantly increased by strain LOC1 compared with untreated co-cultures, and strain LOC1 had higher mRNA levels of MUC2 and MUC4 mucins than L. plantarum ATCC 14917T and L. plantarum YT9. These results indicate that L. plantarum LOC1 may be used as a safe probiotic with beneficial effects on the intestinal barrier, suggesting that fresh tea leaves could be utilized as a safe source for isolating probiotics.
Collapse
Affiliation(s)
- Yuji Tsujikawa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 421-0516, Japan
| | - Masahiko Suzuki
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 421-0516, Japan
| | - Iwao Sakane
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 421-0516, Japan
| |
Collapse
|
24
|
Zhou Y, Qi S, Meng X, Lin X, Duan N, Zhang Y, Yuan W, Wu S, Wang Z. Deoxynivalenol photocatalytic detoxification products alleviate intestinal barrier damage and gut flora disorder in BLAB/c mice. Food Chem Toxicol 2021; 156:112510. [PMID: 34390814 DOI: 10.1016/j.fct.2021.112510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin, is one of the most globally prevalent mycotoxins mainly produced by Fusarium species. DON exposure can cause spectrum of symptoms such as nausea, vomiting, gastroenteritis, growth retardation, immunosuppression, and intestinal flora disorders in humans and animals. Therefore, the implication of DON degradation technology is of great significance for food safety. Recently, photocatalytic degradation technology has been applied for DON control. However, the toxicity of the intermediates identified in the degradation process was often ignored. In this work, based on previous successful degradation of DON and evaluation of the in vitro toxicity of DON photocatalytic detoxification products (DPDPs), we further studied the in vivo toxicity of DPDPs and mainly explored their effects on intestinal barrier function and intestinal flora in mice. The results demonstrated that the DPDPs treated with photocatalyst for 120 min effectively increased the expression of intestinal tight junction proteins and improved the disorder of gut flora. Meanwhile, compared with DON-exposed mice, the DPDPs reduced the level of inflammation and oxidative stress of intestinal tissue, and improved growth performance, enterohepatic circulation, energy metabolism, and autonomic activity. All the results indicated that the toxicity of the DPDPs irradiated for 120 min was much lower than that of DON or even nontoxic. Therefore, we hope that this photocatalytic degradation technology can be used as a promising tool for the detoxification of mycotoxins.
Collapse
Affiliation(s)
- You Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Xiangyi Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Wenbo Yuan
- Division of Clinical Pharmacology, The Affiliated Wuxi Maternity and Child Healthcare Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
25
|
Duarte V, Mallmann AO, Liberalesso D, Simões CT, Gressler LT, Molossi FA, Bracarense APFRL, Mallmann CA. Impact of deoxynivalenol on intestinal explants of broiler chickens: An ex vivo model to assess antimycotoxins additives. Toxicon 2021; 200:102-109. [PMID: 34217749 DOI: 10.1016/j.toxicon.2021.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022]
Abstract
The impact of deoxynivalenol (DON) upon intestinal tissue of broilers was assessed by using jejunal explants in Ussing chambers and analyzing histopathological and immunohistochemical parameters; this system was also applied to evaluate the efficacy of an antimycotoxins additive (AMA). The explants were subjected to the following treatments within each experiment for 120 min: Experiment 1) T1 (control) - buffer solution, and T2 - 10 mg/L DON; and Experiment 2) T1 (control) - buffer solution, T2 - 10 mg/L DON, T3 - AMA (0.5%), and T4 - 10 mg/L DON + 0.5% AMA. In Experiment 1, DON triggered a reduction in the size of enterocytes as well as of their nuclei, an increase in cytoplasmic vacuolization and apical denudation of villi. Apoptotic cells count was also greater in DON-exposed explants. In Experiment 2, the AMA mitigated DON harmful effects; cytoplasmic vacuolization of enterocytes was reduced and the size of their nuclei was preserved. The additive also promoted a partial decrease in microvillus integrity, in size of enterocytes and in apoptotic cells count. The tested ex vivo model demonstrated the impact of DON upon the intestine as well as the efficacy of the AMA against its damaging effects.
Collapse
Affiliation(s)
- Vinicius Duarte
- Federal University of Santa Maria (UFSM), Laboratory of Mycotoxicological Analyses (LAMIC), Santa Maria (SM), Rio Grande do Sul (RS), Brazil
| | | | - Diogo Liberalesso
- Institute of Analytical, Microbiological and Technological Solutions (SAMITEC), SM, RS, Brazil
| | - Cristina Tonial Simões
- Federal University of Santa Maria (UFSM), Laboratory of Mycotoxicological Analyses (LAMIC), Santa Maria (SM), Rio Grande do Sul (RS), Brazil
| | | | | | | | - Carlos Augusto Mallmann
- Federal University of Santa Maria (UFSM), Laboratory of Mycotoxicological Analyses (LAMIC), Santa Maria (SM), Rio Grande do Sul (RS), Brazil.
| |
Collapse
|
26
|
Changes in the Intestinal Histomorphometry, the Expression of Intestinal Tight Junction Proteins, and the Bone Structure and Liver of Pre-Laying Hens Following Oral Administration of Fumonisins for 21 Days. Toxins (Basel) 2021; 13:toxins13060375. [PMID: 34070555 PMCID: PMC8229214 DOI: 10.3390/toxins13060375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Fumonisins (FB) are metabolites found in cereal grains (including maize), crop products, and pelleted feed. There is a dearth of information concerning the effects of FB intoxication on the intestinal histomorphometry, the expression of intestinal tight junction proteins, and the bone structure and liver in pre-laying hens. The current experiment was carried out on hens from the 11th to the 14th week of age. The hens were orally administered an extract containing fumonisin B1 (FB1) and fumonisin B2 (FB2) at doses of 0.0 mg/kg b.w. (body weight), 1.0 mg/kg b.w., 4.0 mg/kg b.w., and 10.9 mg/kg b.w. for 21 days. Following FB intoxication, the epithelial integrity of the duodenum and jejunum was disrupted, and dose-dependent degenerative changes were observed in liver. An increased content of immature collagen was observed in the bone tissue of FB-intoxicated birds, indicating intensified bone turnover. A similar effect was observed with regards to the articular cartilage, where enhanced fibrillogenesis was observed mainly in the group of birds that received the FB extract at a dose of 10.9 mg/kg b.w. In conclusion, FB intoxication resulted in negative structural changes in the bone tissue of the hens, which could result in worsened bone mechanics and an increase in the risk of bone fractures. Fumonisin administration, even at a dose of 1.0 mg/kg b.w., can lead to degradation of the intestinal barrier and predispose hens to intestinal disturbances later in life.
Collapse
|
27
|
Wang S, Wu K, Xue D, Zhang C, Rajput SA, Qi D. Mechanism of deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction. Food Chem Toxicol 2021; 153:112214. [PMID: 33930483 DOI: 10.1016/j.fct.2021.112214] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/21/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022]
Abstract
Deoxynivalenol (DON) is a mycotoxin predominantly produced by Fusarium genus, and widely contaminates cereals and associated products all over the world. The intestinal toxicity of DON is well established. However, intestinal homeostasis involves mitochondria, which has rarely been considered in the context of DON exposure. We summarize the recent knowledge on mitochondria as a key player in maintaining intestinal homeostasis based on their functions in cellular energy metabolism, redox homeostasis, apoptosis, intestinal immune responses, and orchestrated bidirectional cross-talk with gut microbe. In addition, we discuss the pivotal roles of mitochondrial dysfunction in the intestinal toxicity of DON and highlight promising mitochondrial-targeted therapeutics for DON-induced intestinal injury. Recent studies support that the intestinal toxicity of DON is attributed to mitochondrial dysfunction as a critical factor. Mitochondrial dysfunction characterized by failure in respiratory capacities and ROS overproduction has been demonstrated in intestinal cells exposed to DON. Perturbation of mitochondrial respiration leading to ROS accumulation is implicated in the early initiation of apoptosis. DON-induced intestinal inflammatory response is tightly linked to the mitochondrial ROS, whereas immunosuppression is intimately associated with mitophagy inhibition. DON perturbs the orchestrated bidirectional cross-talk between gut microbe and host mitochondria, which may be involved in DON-induced intestinal toxicity.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Dongfang Xue
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Cong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
28
|
Bacou E, Walk C, Rider S, Litta G, Perez-Calvo E. Dietary Oxidative Distress: A Review of Nutritional Challenges as Models for Poultry, Swine and Fish. Antioxidants (Basel) 2021; 10:525. [PMID: 33801670 PMCID: PMC8066155 DOI: 10.3390/antiox10040525] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The redox system is essential for maintaining cellular homeostasis. When redox homeostasis is disrupted through an increase of reactive oxygen species or a decrease of antioxidants, oxidative distress occurs resulting in multiple tissue and systemic responses and damage. Poultry, swine and fish, raised in commercial conditions, are exposed to different stressors that can affect their productivity. Some dietary stressors can generate oxidative distress and alter the health status and subsequent productive performance of commercial farm animals. For several years, researchers used different dietary stressors to describe the multiple and detrimental effects of oxidative distress in animals. Some of these dietary challenge models, including oxidized fats and oils, exposure to excess heavy metals, soybean meal, protein or amino acids, and feeding diets contaminated with mycotoxins are discussed in this review. A better understanding of the oxidative distress mechanisms associated with dietary stressors allows for improved understanding and evaluation of feed additives as mitigators of oxidative distress.
Collapse
Affiliation(s)
- Elodie Bacou
- DSM Nutritional Products, Animal Nutrition and Health, F-68128 Village-Neuf, France; (S.R.); (E.P.-C.)
| | - Carrie Walk
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland; (C.W.); (G.L.)
| | - Sebastien Rider
- DSM Nutritional Products, Animal Nutrition and Health, F-68128 Village-Neuf, France; (S.R.); (E.P.-C.)
| | - Gilberto Litta
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland; (C.W.); (G.L.)
| | - Estefania Perez-Calvo
- DSM Nutritional Products, Animal Nutrition and Health, F-68128 Village-Neuf, France; (S.R.); (E.P.-C.)
| |
Collapse
|
29
|
Chen Z, Zhou L, Yuan Q, Chen H, Lei H, Su J. Effect of fumonisin B 1 on oxidative stress and gene expression alteration of nutrient transporters in porcine intestinal cells. J Biochem Mol Toxicol 2021; 35:e22706. [PMID: 33443779 DOI: 10.1002/jbt.22706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Fumonisin B1 (FB1 ) is a common environmental mycotoxin produced by molds such as Fusarium verticillioides. The toxin poses health risks to domestic animals, including pigs, through FB1 -contaminanted feed. However, the cytotoxicity of FB1 to porcine intestines has not been fully analyzed. In the present study, the effects of FB1 on oxidative stress and nutrient transporter-associated genes of the porcine intestinal IPEC-J2 cells were explored. FB1 decreased IPEC-J2 proliferation but did not trigger reactive oxygen species (ROS) overproduction. Meanwhile, FB1 reduced the expression levels of the transporters l-type amino acid transporter-1 (y+ LAT1), solute carrier family 7 member 1 (SLC7A1), solute carrier family 1 member 5 (ASCT2), and excitatory amino acid carrier 1 (EAAC1); in addition, FB1 reduced the levels of the fatty acid transporters long-chain fatty acid transport protein 1 (FATP1) and long-chain fatty acid transport protein 4 (FATP4) as well as glucose transporters Na+ /glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2). FB1 stimulation increased the expression levels of peptide transporter peptide transporter 1 (PepT1) and metal ion transport-related gene zinc transporter 1 (ZNT1). Moreover, metal ion transporter divalent metal transporter 1 (DMT1) expression was depressed by a higher dosage of FB1 . The data indicate that FB1 results in aberrant expression of nutrient transporters in IPEC-J2 cells, thereby exerting its toxicity even though it fails to exert ROS-dependent oxidative stress.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Lihua Zhou
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Qiaoling Yuan
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Huiyu Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Hongyu Lei
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianming Su
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
30
|
The Compromised Intestinal Barrier Induced by Mycotoxins. Toxins (Basel) 2020; 12:toxins12100619. [PMID: 32998222 PMCID: PMC7600953 DOI: 10.3390/toxins12100619] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are fungal metabolites that occur in human foods and animal feeds, potentially threatening human and animal health. The intestine is considered as the first barrier against these external contaminants, and it consists of interconnected physical, chemical, immunological, and microbial barriers. In this context, based on in vitro, ex vivo, and in vivo models, we summarize the literature for compromised intestinal barrier issues caused by various mycotoxins, and we reviewed events related to disrupted intestinal integrity (physical barrier), thinned mucus layer (chemical barrier), imbalanced inflammatory factors (immunological barrier), and dysfunctional bacterial homeostasis (microbial barrier). We also provide important information on deoxynivalenol, a leading mycotoxin implicated in intestinal dysfunction, and other adverse intestinal effects induced by other mycotoxins, including aflatoxins and ochratoxin A. In addition, intestinal perturbations caused by mycotoxins may also contribute to the development of mycotoxicosis, including human chronic intestinal inflammatory diseases. Therefore, we provide a clear understanding of compromised intestinal barrier induced by mycotoxins, with a view to potentially develop innovative strategies to prevent and treat mycotoxicosis. In addition, because of increased combinatorial interactions between mycotoxins, we explore the interactive effects of multiple mycotoxins in this review.
Collapse
|
31
|
Hui J, Li L, Li R, Wu M, Yang Y, Wang J, Fan Y, Zheng X. Effects of supplementation with β-carotene on the growth performance and intestinal mucosal barriers in layer-type cockerels. Anim Sci J 2020; 91:e13344. [PMID: 32219951 DOI: 10.1111/asj.13344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022]
Abstract
β-carotene is a robust modulator of mucosal barriers, and it can amplify the immunoglobulin A (IgA) response via the retinoic acid (RA)-mediated pathway. We investigated the influence of β-carotene on intestinal barriers in layer-type cockerels. In this study, β-carotene has a positive influence on growth performance and intestinal morphology. β-carotene remarkably enhanced serum secretory immunoglobulin A (sIgA) levels, jejunal mucosal sIgA, and IgA concentrations. β-Carotene significantly enhanced mRNA expression levels of IgA, CC chemokine receptor-9 (CCR9), polymeric immunoglobulin receptor (pIgR), and retinoic acid receptor α (RARα) in the ileal tissues and pIgR in the jejunal tissues. β-Carotene improves mRNA expression of intestinal barrier-related proteins including: mucin-2 (MUC-2), zonula occludens-2 (ZO-2), occludins (OCLN), and zonula occludens-1 (ZO-1) in the ileal tissues. Moreover, β-carotene decreased the levels of Escherichia coli and elevates the levels of Lactobacillus. The results indicate that β-carotene can promote growth performance and contribute to the gradual development of intestinal barriers in Hyline Brown chicks. This study enriches our knowledge about the effects of β-carotene on intestinal barrier and highlights a theoretical basis of β-carotene application in the poultry industry.
Collapse
Affiliation(s)
- Junnan Hui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Lingxi Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ruonan Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Min Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinghui Wang
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuanyuan Fan
- College of Foreign Languages, Jilin Agricultural University, Changchun, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
32
|
Zearalenone and Metabolites in Livers of Turkey Poults and Broiler Chickens Fed with Diets Containing Fusariotoxins. Toxins (Basel) 2020; 12:toxins12080525. [PMID: 32824220 PMCID: PMC7472091 DOI: 10.3390/toxins12080525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEN) and metabolites were measured in livers of turkeys and broilers fed a control diet free of mycotoxins, a diet that contained 0.5 mg/kg ZEN (ZEN diet), and a diet that contained 0.5, 5, and 20 mg/kg of ZEN, fumonisins, and deoxynivalenol, respectively (ZENDONFB diet). The feed was individually distributed to male Grade Maker turkeys from the 55th to the 70th day of age and to male Ross chickens from the 1st to the 35th day of age, without any signs of toxicity. Together, the free and conjugated forms of ZEN, α- and β-zearalenols (ZOLs), zearalanone (ZAN), and α- and β-zearalanols (ZALs) were measured by UHPLC-MS/MS with [13C18]-ZEN as an internal standard and immunoaffinity clean-up of samples. ZAN and ZALs were not detected. ZEN and ZOLs were mainly found in their conjugated forms. α-ZOL was the most abundant and was found at a mean concentration of 2.23 and 1.56 ng/g in turkeys and chickens, respectively. Consuming the ZENDONFB diet significantly increased the level of total metabolites in the livers of chickens. Furthermore, this increase was more pronounced for the free forms of α-ZOL than for the conjugated forms. An investigation of the presence of ZEN and metabolites in muscle with the methods validated for the liver failed to reveal any traces of these contaminants in this tissue. These results suggest that concomitant dietary exposure to deoxynivalenol (DON) and fumonisins (FB) may alter the metabolism and persistence of ZEN and its metabolites in the liver.
Collapse
|
33
|
de Souza M, Baptista AAS, Valdiviezo MJJ, Justino L, Menck-Costa MF, Ferraz CR, da Gloria EM, Verri WA, Bracarense APFRL. Lactobacillus spp. reduces morphological changes and oxidative stress induced by deoxynivalenol on the intestine and liver of broilers. Toxicon 2020; 185:203-212. [PMID: 32687887 DOI: 10.1016/j.toxicon.2020.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The mycotoxin deoxynivalenol (DON) contaminates animal feed worldwide, frequently resulting in poor performance and economic losses. Data concerning the effects on poultry health or focusing on intestinal toxicity or the response to oxidative stress are scarce. Also, there is a need for strategies to mitigate the negative effects of DON. This study aimed to investigate the effects of Lactobacillus spp. treatments on the intestine, liver and kidney of poultry fed a DON-contaminated diet. To achieve this aim, histological, morphometrical and histochemical assays were performed. The oxidative stress response was also analyzed by the tests: reduced glutathione, ferric reducing ability, reducing of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), nitro blue tetrazolium detection of superoxide anion, and thiobarbituric acid reactive substances. One-day-old broilers chickens (n 50) were submitted to the following treatments: control, DON (19.3 mg kg-1), viable Lactobacillus spp. + DON (VL + DON), heat-inactivated Lactobacillus spp. + DON (HIL + DON), Lactobacillus spp. culture supernatant + DON (LCS + DON). The animals received the contaminated diet for seven days. DON increased the intestinal and liver lesion score, while the Lactobacillus spp. treatments (LT) remained like the control. DON reduced the villi height and increased the crypt depths. The LT showed crypt depths similar to control, and higher villi: crypt ratio in duodenum and jejunum. In the ileum, the LT reduced the goblet cell count in relation to DON group. DON increased the number of intraepithelial lymphocytes (IEL) in jejunum and ileum, while the VL + DON treatment induced a significant decrease in IEL in comparison to DON. DON-diet induced an oxidative stress response in the intestine and liver, and also reduced the antioxidant capacity in these tissues, while LT treatments remained mostly similar to control. DON induced no change in redox balance in the kidney. The LT improved the intestinal health after DON acute exposure, reducing the oxidative stress damage mainly on jejunum and liver.
Collapse
Affiliation(s)
- Marielen de Souza
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil; Laboratory of Avian Medicine, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Ana Angelita S Baptista
- Laboratory of Avian Medicine, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Milton J J Valdiviezo
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Larissa Justino
- Laboratory of Avian Medicine, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Maísa F Menck-Costa
- Laboratory of Avian Medicine, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Camila R Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil
| | | | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
34
|
Han Q, Guo Y, Zhang B, Nie W. Effects of Dietary Zinc on Performance, Zinc Transporters Expression, and Immune Response of Aged Laying Hens. Biol Trace Elem Res 2020; 196:231-242. [PMID: 31773485 DOI: 10.1007/s12011-019-01916-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/20/2019] [Indexed: 11/26/2022]
Abstract
This study was to investigate the effects of dietary zinc (Zn) supplementation on performance, zinc transporter gene expression, and immune function in aged laying hens. In experiment 1, twenty 31-week-old hens (young) and twenty 60-week-old hens (old) with the same genetic background were fed with the same diet for 4 weeks. In experiment 2, a basal diet supplemented with zinc sulfate (ZnS) and zinc glycine chelate (ZnG) at 30, 60, 90, and 120 mg Zn/kg to constitute nine experimental diets. Eight hundred and ten 60-week-old layers were distributed in a completely randomized experimental design with 9 treatments, 6 replicates of 15 birds each, and birds were fed for 10 weeks. In experiment 1, results showed that zinc and metallothionein (MT) concentration in the shell gland of old hens was significantly lower than young layers (P < 0.05). Zinc transporters ZnT1, 4, 5, 6, and 7 messenger RNA (mRNA) abundance in old layers were significantly lower versus the young (P < 0.05). In experiment 2, results indicated that dietary zinc supplementation did not significantly affect the laying rate, average feed intake, egg weight, feed conversion efficiency, broken egg rate, or mortality (P > 0.05). Supplemental ZnG significantly improved eggshell breaking strength than ZnS, with a higher alkaline phosphatase (ALP) activity and more abundant ZnT4 expression in shell gland versus ZnS (P < 0.05). ZnG supplementation at 90 mg Zn/kg affected the duodenal mucus by significantly increasing ZnT1, 6, 7, ZIP13, and MT-4 mRNA level (P < 0.05). Zinc level significantly increased bovine serum albumin (BSA) antibody concentration on 14 day after BSA injection (P < 0.05). Supplementation of ZnG improved eggshell quality of aged layers by upgrading zinc transporter expression in the shell gland and intestine also enhanced humoral immunity.
Collapse
Affiliation(s)
- Qiqi Han
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuming Guo
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Bingkun Zhang
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Nie
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
35
|
Toxicokinetics of Hydrolyzed Fumonisin B 1 after Single Oral or Intravenous Bolus to Broiler Chickens Fed a Control or a Fumonisins-Contaminated Diet. Toxins (Basel) 2020; 12:toxins12060413. [PMID: 32575914 PMCID: PMC7354465 DOI: 10.3390/toxins12060413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 01/16/2023] Open
Abstract
The toxicokinetics (TK) of hydrolyzed fumonisin B1 (HFB1) were evaluated in 16 broiler chickens after being fed either a control or a fumonisins-contaminated diet (10.8 mg fumonisin B1, 3.3 mg B2 and 1.5 mg B3/kg feed) for two weeks, followed by a single oral (PO) or intravenous (IV) dose of 1.25 mg/kg bodyweight (BW) of HFB1. Fumonisin B1 (FB1), its partially hydrolyzed metabolites pHFB1a and pHFB1b, and fully hydrolyzed metabolite HFB1, were determined in chicken plasma using a validated ultra-performance liquid chromatography–tandem mass spectrometry method. None of the broiler chicken showed clinical symptoms of fumonisins (FBs) or HFB1 toxicity during the trial, nor was an aberration in body weight observed between the animals fed the FBs-contaminated diet and those fed the control diet. HFB1 was shown to follow a two-compartmental pharmacokinetic model with first order elimination in broiler chickens after IV administration. Toxicokinetic parameters of HFB1 demonstrated a total body clearance of 16.39 L/kg·h and an intercompartmental flow of 8.34 L/kg·h. Low levels of FB1 and traces of pHFB1b were found in plasma of chickens fed the FBs-contaminated diet. Due to plasma concentrations being under the limit of quantification (LOQ) after oral administration of HFB1, no toxicokinetic modelling could be performed in broiler chickens after oral administration of HFB1. Moreover, no phase II metabolites, nor N-acyl-metabolites of HFB1 could be detected in this study.
Collapse
|
36
|
Travel A, Metayer JP, Mika A, Bailly JD, Cleva D, Boissieu C, Le Guennec J, Albaric O, Labrut S, Lepivert G, Marengue E, Froment P, Tardieu D, Guerre P. Toxicity of Fumonisins, Deoxynivalenol, and Zearalenone Alone and in Combination in Turkeys Fed with the Maximum European Union-Tolerated Level. Avian Dis 2020; 63:703-712. [PMID: 31865686 DOI: 10.1637/aviandiseases-d-19-00073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/05/2019] [Indexed: 11/05/2022]
Abstract
Surveys of mycotoxins worldwide have shown that deoxynivalenol (DON), fumonisins (FB), and zearalenone (ZON) are the most abundant Fusarium mycotoxins (FUS) in European poultry feed, in both the level and the frequency of contamination. Previous studies reported that a combination of FUS at concentrations that individually are not toxic may negatively affect animals. However, although toxic thresholds and regulatory guidelines exist for FUS, none account for the risk of multiple contamination, which is the most frequent. The aim of this study was to compare DON, FB, and ZON toxicity, alone and in combination, in male turkey poults. Ground cultured toxigenic Fusarium strains were incorporated in corn-soybean-based feed in five experimental diets: control diet, containing no mycotoxins, DON diet (5 mg DON/kg), FB diet (20 mg FB1 + FB2/ kg), ZON diet (0.5 mg ZON/kg), and DONFBZON diet (5, 20, and 0.5 mg/kg of DON, FB1 + FB2, and ZON, respectively). Seventy male Grade Maker turkeys were reared in individual cages on mycotoxin-free diets from 0 to 55 days of age. On the 55th day, the turkeys were weighed and divided into five groups each comprising 14 birds. Each group was fed one of the five experimental diets for a period of 14 days. On the 70th day of age, feed was withheld for 8 hr, at which time a blood sample was collected, and then all the turkeys were killed, autopsied, and different tissues sampled. The weight of the different organs, analyses of performance, biochemistry, histopathology, oxidative damage, and testis toxicity revealed no significant effects attributable to FUS. Measurement of sphingolipids in the liver revealed an increase in the sphinganine to sphingosine ratio in turkeys fed diets containing FB, but had no apparent consequences in terms of toxicity. Finally, only slight differences were found in some variables and the results of this study showed no interactions between DON, FB, and ZON. Taken together, results thus suggest that the maximum tolerated levels established for individual contamination by DON, FB, and ZON can also be considered safe in turkeys fed with combinations of these FUS for a period of 14 days.
Collapse
Affiliation(s)
- Angélique Travel
- Intistitut Technique de l'Aviculture, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Jean-Paul Metayer
- Arvalis-Institut du Végétal, Station expérimentale, 91720 Boigneville, France
| | - Amandine Mika
- Intistitut Technique de l'Aviculture, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Jean-Denis Bailly
- Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Equipe Biosynthèse et toxicité des mycotoxines, Unité Mixte de Recherche Toxalim, F-31076 Toulouse, France
| | - Didier Cleva
- Chêne Vert Conseil, ZI Bellevue II-35220 Chateaubourg, France
| | - Cyril Boissieu
- Chêne Vert Conseil, ZI Bellevue II-35220 Chateaubourg, France
| | - Jean Le Guennec
- Finalab, 4 bis rue Th. Botrel, BP 351, 22603 Loudéac Cedex, France
| | - Olivier Albaric
- Oniris, Site de la Chantrerie, BP 40706, 44307 Nantes Cédex 3, France
| | - Sophie Labrut
- Oniris, Site de la Chantrerie, BP 40706, 44307 Nantes Cédex 3, France
| | - Gurvan Lepivert
- Labocea, 7 rue du Sabot, CS 30054, Zoopole, 22440 Ploufragan, France
| | - Eric Marengue
- Labocea, 7 rue du Sabot, CS 30054, Zoopole, 22440 Ploufragan, France
| | - Pascal Froment
- Team Sensor, Unité Mixte de Recherche 7247, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/ Université de Tours/IFCE 37380 Nouzilly, France
| | - Didier Tardieu
- Université de Toulouse, ENVT, 23 Chemin des capelles, BP 87614, 31076 Toulouse Cedex 3, France
| | - Philippe Guerre
- Université de Toulouse, ENVT, 23 Chemin des capelles, BP 87614, 31076 Toulouse Cedex 3, France,
| |
Collapse
|
37
|
Zhang C, Wang C, Chen K, Zhao X, Geng Z. Effect of l-theanine on growth performance, intestinal development and health, and peptide and amino acid transporters expression of broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1718-1725. [PMID: 31821574 DOI: 10.1002/jsfa.10192] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND l-Theanine has multiple beneficial biological activities. However, there is little information about the use of l-theanine in broiler production. Therefore, this study investigated the effect of l-theanine on growth performance, intestinal development and health, and the mRNA levels of intestinal peptide and amino acid (AA) transporters of broilers. RESULTS Body weight and average daily gain were increased by l-theanine, whereas feed to gain ratio was decreased (quadratic, P < 0.05). Notably, the relative weight of duodenum, jejunum and ileum, villus height, villus height to crypt depth ratio, the jejunal activities of glutathione peroxidase, total antioxidant capacity, catalase and total superoxide dismutase were increased linearly and/or quadratically by l-theanine (P < 0.05), whereas crypt depth, serum d-lactic acid, and jejunal protein carbonyls and malondialdehyde content were decreased linearly and/or quadratically (P < 0.05). Moreover, l-theanine enhanced the jejunal mRNA levels of occludin, claudin-1, E-cadherin, zona occludens-1, di- and tripeptide transporter, excitatory AA transporter 3, Na+ -independent cationic AA transporter 1, Na+ -independent cationic and zwitterionic AA transporter, Na+ - and Cl- -dependent neutral and cationic AA transporter, Na+ -independent cationic and Na+ -dependent neutral AA transporter (y+LAT) 1, y+LAT2, Na+ -independent branched-chain and aromatic AA transporter, and heavy chain corresponding to the b°,+ transport system (linear and/or quadratic, P < 0.05). CONCLUSIONS l-Theanine beneficially affected the growth performance of broilers by improving intestinal development and health, and the intestinal mRNA levels of AA and peptide transporters. Therefore, l-theanine has the potential to be a promising feed additive for broilers. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei, China
| | - Chi Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kaikai Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaohui Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei, China
| |
Collapse
|
38
|
Yang S, Li L, Yu L, Sun L, Li K, Tong C, Xu W, Cui G, Long M, Li P. Selenium-enriched yeast reduces caecal pathological injuries and intervenes changes of the diversity of caecal microbiota caused by Ochratoxin-A in broilers. Food Chem Toxicol 2020; 137:111139. [DOI: 10.1016/j.fct.2020.111139] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
|
39
|
Cimbalo A, Alonso-Garrido M, Font G, Manyes L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem Toxicol 2020; 137:111161. [PMID: 32014537 DOI: 10.1016/j.fct.2020.111161] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Mycotoxins are considered to be a major risk factor affecting human and animal health as they are one of the most dangerous contaminants of food and feed. This review aims to compile the research developed up to date on the toxicological effects that mycotoxins can induce on human health, through the examination of a selected number of studies in vivo. AFB1 shows to be currently the most studied mycotoxin in vivo, followed by DON, ZEA and OTA. Scarce data was found for FBs, PAT, CIT, AOH and Fusarium emerging mycotoxins. The majority of them concerned the investigation of immunotoxicity, whereas the rest consisted in the study of genotoxicity, oxidative stress, hepatotoxicity, cytotoxicity, teratogenicity and neurotoxicity. In order to assess the risk, a wide range of different techniques have been employed across the reviewed studies: qPCR, ELISA, IHC, WB, LC-MS/MS, microscopy, enzymatic assays, microarray and RNA-Seq. In the last decade, the attention has been drawn to immunologic and transcriptomic aspects of mycotoxins' action, confirming their toxicity at molecular level. Even though, more in vivo studies are needed to further investigate their mechanism of action on human health.
Collapse
Affiliation(s)
- A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain.
| | - M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| |
Collapse
|
40
|
Wan MLY, Turner PC, Co VA, Wang MF, Amiri KMA, El-Nezami H. Schisandrin A protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity, oxidative damage and inflammation. Sci Rep 2019; 9:19173. [PMID: 31844123 PMCID: PMC6915730 DOI: 10.1038/s41598-019-55821-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Extensive research has revealed the association of continued oxidative stress with chronic inflammation, which could subsequently affect many different chronic diseases. The mycotoxin deoxynivalenol (DON) frequently contaminates cereals crops worldwide, and are a public health concern since DON ingestion may result in persistent intestinal inflammation. There has also been considerable attention over the potential of DON to provoke oxidative stress. In this study, the cytoprotective effect of Schisandrin A (Sch A), one of the most abundant active dibenzocyclooctadiene lignans in the fruit of Schisandra chinensis (Turcz.) Baill (also known as Chinese magnolia-vine), was investigated in HT-29 cells against DON-induced cytotoxicity, oxidative stress and inflammation. Sch A appeared to protect against DON-induced cytotoxicity in HT-29 cells, and significantly lessened the DON-stimulated intracellular reactive oxygen species and nitrogen oxidative species production. Furthermore, Sch A lowered DON-induced catalase, superoxide dismutase and glutathione peroxidase antioxidant enzyme activities but maintains glutathione S transferase activity and glutathione levels. Mechanistic studies suggest that Sch A reduced DON-induced oxidative stress by down-regulating heme oxygenase-1 expression via nuclear factor (erythroid-derived 2)-like 2 signalling pathway. In addition, Sch A decreased the DON-induced cyclooxygenase-2 expression and prostaglandin E2 production and pro-inflammatory cytokine interleukin 8 expression and secretion. This may be mediated by preventing DON-induced translocation of nuclear factor-κB, as well as activation of mitogen-activated protein kinases pathways. In the light of these findings, we concluded that Sch A exerted a cytoprotective role in DON-induced toxicity in vitro, and it would be valuable to examine in vivo effects.
Collapse
Affiliation(s)
- Murphy L Y Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Paul C Turner
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Vanessa A Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - M F Wang
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Khaled M A Amiri
- College of Science, Biology Department, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
41
|
Tardieu D, Travel A, Metayer JP, Le Bourhis C, Guerre P. Fumonisin B1, B2 and B3 in Muscle and Liver of Broiler Chickens and Turkey Poults Fed with Diets Containing Fusariotoxins at the EU Maximum Tolerable Level. Toxins (Basel) 2019; 11:E590. [PMID: 31614665 PMCID: PMC6832716 DOI: 10.3390/toxins11100590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
Although provisional maximum tolerable daily intake and recommended guidelines have been established for fumonisins (FB) in food, few data are available concerning levels of FB in edible animal tissues. Such data are of particular interest in avian species that can tolerate relatively high levels of fumonisins in their feed. Also, even if multiple contamination of animal feed by toxins produced by Fusarium is very frequent, little is known about the consequences of multiple contamination for FB levels in tissues. The aim of this study was to analyze the concentrations of FB in the muscle and liver of chickens and turkeys fed with FB alone and with FB combined with deoxynivalenol (DON), and with zearalenone (ZEN). Experimental diets were formulated by incorporating ground cultured toxigenic Fusarium strains in corn-soybean based feeds. Control diets were free of mycotoxins, FB diets contained 20 mg FB1+FB2/kg, and FBDONZEN diets contained 20, 5, and 0.5 mg/kg of FB1+FB2, DON, and ZEN, respectively. Animals were reared in individual cages with free access to water and feed. The feed was distributed to male Ross chickens from the 1st to the 35th day of age and to male Grade Maker turkeys from the 55th to the 70th day of age. On the last day of the study, the birds were starved for eight hours, killed, and autopsied for tissues sampling. No sign of toxicity was observed. A UHPLC-MS/MS method with isotopic dilution and immunoaffinity clean-up of samples has been developed for analysis of FB in muscle (n = 8 per diet) and liver (n = 8 per diet). Only traces of FB that were below the LOQ of 0.25 µg/kg were found in most of the samples of animals fed with the control diets. Mean concentrations of FB1, FB2, and FB3 in muscle were 17.5, 3.39, and 1.26 µg/kg, respectively, in chickens, and 5.77, 1.52, and 0.54 µg/kg in turkeys, respectively. In the liver, the respective FB1, FB2, and FB3 concentrations were 44.7, 2.61, and 0.79 µg/kg in chickens, and 41.47, 4.23, and 1.41 µg/kg, in turkeys. Cumulated level of FB1+FB2+FB3 in the highly contaminated samples were above 60 and 100 µg/kg in muscle and liver, respectively. The concentrations of FB in the tissues of animals fed the FBDONZEN diet did not greatly differ from the concentrations measured in animals fed the diet containing only FB.
Collapse
Affiliation(s)
- Didier Tardieu
- Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France.
| | | | - Jean-Paul Metayer
- ARVALIS-Institut du Végétal, Station expérimentale, 91720 Boigneville, France.
| | - Celeste Le Bourhis
- INRA Unité Expérimentale 1295 PEAT, Centre INRA Val de Loire, 37380 Nouzilly, France.
| | - Philippe Guerre
- Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France.
| |
Collapse
|
42
|
Yang W, Huang L, Wang P, Wu Z, Li F, Wang C. The Effect of Low and High Dose Deoxynivalenol on Intestinal Morphology, Distribution, and Expression of Inflammatory Cytokines of Weaning Rabbits. Toxins (Basel) 2019; 11:toxins11080473. [PMID: 31412640 PMCID: PMC6722598 DOI: 10.3390/toxins11080473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Deoxynivalenol (DON) is a potential pathogenic factor to humans and animals, and intestinal tract is the primary target organ of DON. Data concerning the effects of DON on rabbits are scarce, especially for weaning rabbits. In this study, 45 weaning rabbits (35 d) were randomly and equally assigned into three groups. Group A was fed basic diet, while groups B and C were added DON at 0.5 mg/kg BW/d and 1.5 mg/kg BW/d, respectively, based on the basic diet. The experiment lasted for 24 days and the intestinal morphology, expression, and distribution of several cytokines in intestinal segments have been examined. The results indicated that ADG decreased while F/G increased significantly compared with the control group after DON added at 1.5 mg/kg BW/d. Some of the morphometric parameters (villi length, crypt depth, and goblet cells density) changed after DON was added. Meanwhile, the concentration as well as the expression levels of relative protein and mRNA of IL-1β, IL-2, IL-6, and IL-8 increased significantly. The immunohistochemistry results illustrated that the quantity and distribution of positive cells of inflammatory cytokines were changed after DON was added. In conclusion, the addition of DON damaged the intestinal morphology and changed the distribution and expression of inflammatory cytokines. The toxic effect depended on the dosage of DON.
Collapse
Affiliation(s)
- Wanying Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China
| | - Pengwei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China
| | - Zhichao Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China.
| | - Chunyang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China.
| |
Collapse
|
43
|
Ren Z, Guo C, Yu S, Zhu L, Wang Y, Hu H, Deng J. Progress in Mycotoxins Affecting Intestinal Mucosal Barrier Function. Int J Mol Sci 2019; 20:E2777. [PMID: 31174254 PMCID: PMC6600655 DOI: 10.3390/ijms20112777] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins, which are widely found in feed ingredients and human food, can exert harmful effects on animals and pose a serious threat to human health. As the first barrier against external pollutants, the intestinal mucosa is protected by a mechanical barrier, chemical barrier, immune barrier, and biological barrier. Firstly, mycotoxins can disrupt the mechanical barrier function of the intestinal mucosa, by destroying the morphology and tissue integrity of the intestinal epithelium. Secondly, mycotoxins can cause changes in the composition of mucin monosaccharides and the expression of intestinal mucin, which in turn affects mucin function. Thirdly, mycotoxins can cause damage to the intestinal mucosal immune barrier function. Finally, the microbiotas of animals closely interact with ingested mycotoxins. Based on existing research, this article reviews the effects of mycotoxins on the intestinal mucosal barrier and its mechanisms.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chaoyue Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hui Hu
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
44
|
The Effects of Deoxynivalenol (DON) on the Gut Microbiota, Morphology and Immune System of Chicken – A Review. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Feed contamination is a major cause of diseases outbreak in the poultry industry. There is a direct relationship between feeding, the intestinal microbiota and how the immune system responds to disease infestation. Cereals which form the bulk of poultry feed are mostly contaminated by mycotoxins of Fusarium origin. Adequate knowledge of mycotoxins and their effects on animals is necessary. Deoxynivalenol (DON) is a major contaminant of poultry feed. DON has the ability to bind with a large number of eukaryotic ribosomal subunits because of the presence of an epoxide group and these disrupt the activity of peptidyl transferase and the elongation or shortening of peptide chains. Deoxynivalenol has varying effect ranging from acute, overt diseases with high morbidity and death to chronic disease, decreased resistance to pathogens and reduced animal productivity. Deoxynivalenol also impairs the intestinal morphology, nutrient absorption, barrier function, and the innate immune response in chickens. This review highlights the impacts of deoxynivalenol on the immune system, intestinal microbiota composition and the morphology of chicken.
Collapse
|
45
|
Feeding of deoxynivalenol increases the intestinal paracellular permeability of broiler chickens. Arch Toxicol 2019; 93:2057-2064. [PMID: 31030221 DOI: 10.1007/s00204-019-02460-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Abstract
In recent years, the deleterious effects attributed to mycotoxins, in particular on the intestine, faced increased attention and it was shown that deoxynivalenol (DON) causes adverse effects on gut health. In this context, it has been repeatedly reported that DON can alter the intestinal morphology, disrupt the intestinal barrier and reduce nutrient absorption. The underlying mechanism of a compromised intestinal barrier caused by DON in chickens has yet to be illustrated. Although, DON is rapidly absorbed from the upper parts of the small intestine, the effects on the large intestine cannot be excluded. Additionally, a damaging effect of DON on the gut epithelium might decrease the resistance of the gut against infectious agents. Consequently, the objectives of the present studies were: (1) to investigate the impact of DON on the epithelial paracellular permeability by demonstrating the mucosal to serosal flux of 14C-mannitol in the small and large intestine applying Ussing chambers and (2) to delineate the effects of DON on the colonization and translocation of Escherichia coli. Both parameters are well suited as potential indicators for gut barrier failure. For this, a total of 75 one-day-old Ross 308 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were randomly allocated to three different groups (n = 25 with 5 replicates/group) and were fed for 5 weeks with either contaminated diets (5 or 10 mg DON/kg feed) or basal diets (control). Body weight (BW) and BW gain of birds in the group fed with 10 mg/kg DON were significantly lower than in group with 5 mg/kg DON and the control group. Moreover, the mannitol flux in jejunum and cecum was significantly (P < 0.05) higher in DON-fed groups compared to control birds. Consistent with this, DON enhanced the translocation of E. coli with a higher number of bacteria encountered in the spleen and liver. Altogether, the actual results verified that DON can alter the intestinal paracellular permeability in broiler chickens and facilitates the translocation of enteric microorganisms such as E. coli to extra-intestinal organs. Considering that moderate levels of DON are present in feed, the consumption of DON-contaminated feed can induce an intestinal breakdown with negative consequences on broiler health.
Collapse
|
46
|
Tang D, Wu J, Jiao H, Wang X, Zhao J, Lin H. The development of antioxidant system in the intestinal tract of broiler chickens. Poult Sci 2019; 98:664-678. [PMID: 30289502 DOI: 10.3382/ps/pey415] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/25/2018] [Indexed: 01/03/2023] Open
Abstract
The gastrointestinal tract is the site for the uptake of nutrients from the external environment. We hypothesized that the antioxidant system in the intestinal tract has a vital protective role from the oxidative damage induced by oxidants in foods. The aim of this study was to investigate the development of the antioxidant system in the intestine of chickens. The activity and gene expression of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and the content of the non-enzymatic substance glutathione (GSH) were measured in the duodenum, jejunum, and ileum of chickens at 1, 3, 7, 11, 14, 21, 35, and 42 d of age. The results showed that the small intestinal tract had relatively higher SOD activity and GSH concentration and lower CAT and GSH-Px activities, compared with those of other visceral organs. CAT and GSH-Px activities and GSH concentration showed a decreasing trend with age, whereas SOD activity was not significantly influenced by age. The gene expression of SOD1, SOD2, and GSH-Px7 showed a dramatic decrease from 3 d of age. The results indicated that SOD and GSH were highly expressed in the first week of age after hatching. To conclude, the results suggest that SOD and GSH play a vital protective role in the small intestine after hatching, which contributes to rapid development of the intestine.
Collapse
Affiliation(s)
- Dazhi Tang
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Jianmin Wu
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Hongchao Jiao
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Xiaojuan Wang
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Jingpeng Zhao
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Hai Lin
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| |
Collapse
|
47
|
Modulation of Mucin ( MUC2, MUC5AC and MUC5B) mRNA Expression and Protein Production and Secretion in Caco-2/HT29-MTX Co-Cultures Following Exposure to Individual and Combined Aflatoxin M1 and Ochratoxin A. Toxins (Basel) 2019; 11:toxins11020132. [PMID: 30813459 PMCID: PMC6409803 DOI: 10.3390/toxins11020132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA), which widely coexist in milk, may pose a serious threat to human health. Mucin is a major component of the intestinal mucus layer, which plays an important role in maintaining intestinal mucosal homeostasis. However, the effect of mycotoxins AFM1 and OTA on intestinal mucin production is still not clear. This study aimed to investigate individual and interactive effects of mycotoxins AFM1 and OTA on the intestinal barrier and the mRNA expression of intestinal mucin (MUC2, MUC5AC and MUC5B) and on protein production in Caco-2/HT29-MTX cultures after 48 h of exposure. Our results show that individual mycotoxins and their mixtures significantly reduced intestinal cell viability and transepithelial electrical resistance (TEER) values, as well as significantly altered intestinal mucin mRNA expression and protein abundance. Moreover, OTA showed toxicity similar to AFM1 in cell viability and TEER value at the same concentration. When the two mycotoxins acted in combination, the synergistic effects observed in the assessment of cell viability and protein abundance in all mono- and co-cultures. In general, this study provides evidence that AFM1 and OTA can damage the intestine, and it contributes to optimized maximum permissible limits of mycotoxins in milk.
Collapse
|
48
|
Lucke A, Böhm J, Zebeli Q, Metzler-Zebeli BU. Dietary deoxynivalenol and oral lipopolysaccharide challenge differently affect intestinal innate immune response and barrier function in broiler chickens. J Anim Sci 2019; 96:5134-5143. [PMID: 30289512 DOI: 10.1093/jas/sky379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
Dietary deoxynivalenol (DON) impairs the intestinal immune system and digestive functions of broiler chickens. However, little is known whether increasing doses of DON similarly affect the intestinal functions in different segments of the small intestine in chickens and whether a second oral challenge may potentiate those effects. The present objective was to investigate the effect of increasing dietary DON concentrations on the relative expression of genes for tight junction proteins, mucins, toll-like receptors (TLR), and cytokines in duodenum and jejunum, jejunal mucosal permeability, as well as on α-1-acid glycoprotein and IgA in serum with or without an additional oral lipopolysaccharide (LPS) challenge. Eighty 1-d-old chickens were fed diets with increasing DON concentrations (0, 2.5, 5, and 10 mg DON/kg diet) for 5 wk. One day before sampling, half of the chickens received an oral challenge with 1-mg Escherichia coli O55:B5 LPS/kg BW. Ussing chambers were used to measure the jejunal permeability in birds receiving 10-mg DON/kg feed with or without LPS challenge and 0-mg DON/kg feed without LPS. Increasing DON concentrations of up to 5-mg DON/kg increased (P < 0.05) the duodenal expression of TLR2, IL6, and Claudin 1 (CLDN1) by up to 84%, 88%, and 48%, respectively, compared with the noncontaminated diet. Likewise, jejunal CLDN1 expression increased up to 23% in the chickens fed DON concentrations of up to 5-mg DON/kg diet (P < 0.05). Moreover, increasing DON concentrations linearly and quadratically decreased (P < 0.05) the jejunal expression of TLR2 and transforming growth factor-β 1, respectively. The additional LPS challenge increased (P < 0.040) duodenal occludin expression by 10% as well as the jejunal tissue conductance in chickens of the 10 DON group (P = 0.050). In conclusion, dietary DON differently affected the duodenal and jejunal expression of genes for tight-junction proteins and proinflammatory signaling pathways. The additional LPS challenge did not potentiate the DON effect but it seemed to induce a certain up-regulation of the proinflammatory response in the duodenum and enhanced the mucosal permeability in the jejunum.
Collapse
Affiliation(s)
- Annegret Lucke
- Department of Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Josef Böhm
- Department of Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Qendrim Zebeli
- Department of Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara U Metzler-Zebeli
- Department of Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
49
|
Valgaeren B, Théron L, Croubels S, Devreese M, De Baere S, Van Pamel E, Daeseleire E, De Boevre M, De Saeger S, Vidal A, Di Mavungu JD, Fruhmann P, Adam G, Callebaut A, Bayrou C, Frisée V, Rao AS, Knapp E, Sartelet A, Pardon B, Deprez P, Antonissen G. The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: from field observations to toxicokinetics. Arch Toxicol 2018; 93:293-310. [PMID: 30535711 DOI: 10.1007/s00204-018-2368-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
A clinical case in Belgium demonstrated that feeding a feed concentrate containing considerable levels of deoxynivalenol (DON, 1.13 mg/kg feed) induced severe liver failure in 2- to 3-month-old beef calves. Symptoms disappeared by replacing the highly contaminated corn and by stimulating ruminal development via roughage administration. A multi-mycotoxin contamination was demonstrated in feed samples collected at 15 different veal farms in Belgium. DON was most prevalent, contaminating 80% of the roughage samples (mixed straw and maize silage; average concentration in positives: 637 ± 621 µg/kg, max. 1818 µg/kg), and all feed concentrate samples (411 ± 156 µg/kg, max. 693 µg/kg). In order to evaluate the impact of roughage provision and its associated ruminal development on the gastro-intestinal absorption and biodegradation of DON and its acetylated derivatives (3- and 15-ADON) in calves, a toxicokinetic study was performed with two ruminating and two non-ruminating male calves. Animals received in succession a bolus of DON (120 µg/kg bodyweight (BW)), 15-ADON (50 µg/kg BW), and 3-ADON (25 µg/kg) by intravenous (IV) injection or per os (PO) in a cross-over design. The absolute oral bioavailability of DON was much higher in non-ruminating calves (50.7 ± 33.0%) compared to ruminating calves (4.1 ± 4.5%). Immediately following exposure, 3- and 15-ADON were hydrolysed to DON in ruminating calves. DON and its acetylated metabolites were mainly metabolized to DON-3-glucuronide, however, also small amounts of DON-15-glucuronide were detected in urine. DON degradation to deepoxy-DON (DOM-1) was only observed to a relevant extent in ruminating calves. Consequently, toxicity of DON in calves is closely related to roughage provision and the associated stage of ruminal development.
Collapse
Affiliation(s)
- Bonnie Valgaeren
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Faculty of Science and Technology, University College Ghent, Melle, Belgium
| | - Léonard Théron
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Els Van Pamel
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit-Food Safety, Melle, Belgium
| | - Els Daeseleire
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit-Food Safety, Melle, Belgium
| | - Marthe De Boevre
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Arnau Vidal
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Philipp Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria.,Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Alfons Callebaut
- Veterinary and Agrochemical Research Centre, CODA-CERVA, Tervuren, Belgium
| | - Calixte Bayrou
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Vincent Frisée
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Anne-Sophie Rao
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Emilie Knapp
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Arnaud Sartelet
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Piet Deprez
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium. .,Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
50
|
Modified Palygorskite Improves Immunity, Antioxidant Ability, Intestinal Morphology, and Barrier Function in Broiler Chickens Fed Naturally Contaminated Diet with Permitted Feed Concentrations of Fusarium Mycotoxins. Toxins (Basel) 2018; 10:toxins10110482. [PMID: 30463306 PMCID: PMC6267430 DOI: 10.3390/toxins10110482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022] Open
Abstract
This study investigated effects of modified palygorskite (MPal) on immunity, antioxidant capacity, and intestinal barrier integrity in broiler chickens challenged with permitted feed Fusarium mycotoxin concentrations. One-day-old chicks were allocated into three treatments with eight replicates. Chickens in three groups were fed a basal diet with normal corn (control), contaminated diet containing moldy corn, with Fusarium mycotoxins contents in the diets lower than permitted feed mycotoxin concentrations, and the contaminated diet supplemented with 1 g/kg MPal for 42 days, respectively. Compared with control, moldy corn decreased bursa of Fabricius weight, jejunal secreted immunoglobulin A concentration, ileal superoxide dismutase (SOD) activity, jejunal and ileal villus height (VH) and VH/crypt depth (CD) ratio, and jejunal zonula occludens-1 and mucin 2 mRNA abundances at 42 days as well as ileal VH/CD ratio at 21 days; while they increased jejunal malondialdehyde accumulation at 21 and 42 days, jejunal SOD activity at 21 days, and serum diamine oxidase activity at 42 days, which were almost recovered by MPal. Moreover, dietary MPal upregulated ileal claudin-2 mRNA abundance compared with other two groups. The results indicated that MPal addition exerted protective effects on immunity, oxidative status, and intestinal barrier integrity in chickens challenged with permitted feed Fusarium mycotoxins levels.
Collapse
|