1
|
Zhong Y, Huang W, Zheng Y, Chen T, Liu C. Alginate-coated pomelo pith cellulose matrix for probiotic encapsulation and controlled release. Int J Biol Macromol 2024; 262:130143. [PMID: 38367775 DOI: 10.1016/j.ijbiomac.2024.130143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
A novel carrier comprised of ethanol- and alkali-modified cellulosic pomelo pith matrix coated with alginate was developed to improve viability while enabling gastrointestinal release of probiotics. Scanning electron microscopy imaging revealed the agricultural byproduct had a honeycomb-structured cellulose framework, enabling high loading capacity of the probiotic Lactobacillus plantarum up to 9 log CFU/g. Ethanol treatment opened up pores with an average diameter of 97 μm, while alkali treatment increased swelling and porosity, with an average pore size of 51 μm. The survival rate through the stomach was increased from 89.76 % to 91.08 % and 91.24 % after ethanol and alkali modification, respectively. The control group displayed minimal release in the first 4 h followed by a burst release. Both ethanol modification and alkali modification resulted in constant linear release over time. The release time was prolonged when decreasing the width of the pomelo peel rolls from 10 mm to 5 mm while keeping the volume of the peel constant. After 8 weeks of refrigerated storage, the cellulose-encapsulated probiotics retained viability above 7 log CFU/g. This study demonstrates the potential of the structurally intact, sustainably-sourced cellulosic pomelo pith for probiotic encapsulation and controlled delivery.
Collapse
Affiliation(s)
- Yejun Zhong
- State Key Laboratory of Food Science and Resources, School of Food Science, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Wenrong Huang
- State Key Laboratory of Food Science and Resources, School of Food Science, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| | - Yawen Zheng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Resources, School of Food Science, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, School of Food Science, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
2
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
3
|
Wang J, Ghosh D, Maniruzzaman M. Using bugs as drugs: administration of bacteria-related microbes to fight cancer. Adv Drug Deliv Rev 2023; 197:114825. [PMID: 37075953 DOI: 10.1016/j.addr.2023.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Driven by the advancement of microbiology and cancer biology, bioengineering of bacteria-related microbes has demonstrated great potential in targeted cancer therapy. Presently, the major administration routes of bacteria-related microbes for cancer treatment include intravenous injection, intratumoral injection, intraperitoneal injection, and oral delivery. Administration routes of bacteria play a key role in anticancer therapeutic efficacy since different delivery approaches might exert an anticancer effect through diverse mechanisms. Herein, we provide an overview of the primary routes of bacteria administration as well as their advantages and limitations. Furthermore, we discuss that microencapsulation can overcome the current challenges of direct administration of free bacteria. We also review the latest advancements in combining functional particles with engineered bacteria to fight against cancer, which can be further coupled with conventional anticancer therapies to improve the therapeutic effect. Eventually, we highlight the application prospect of bioprinting in cancer bacteriotherapy, which enables the long-term sustained delivery and individualized dose regimen, representing a new paradigm for personalized cancer treatment.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Yang Y, Sha L, Zhao H, Guo Z, Wu M, Lu P. Recent advances in cellulose microgels: Preparations and functionalized applications. Adv Colloid Interface Sci 2023; 311:102815. [PMID: 36427465 DOI: 10.1016/j.cis.2022.102815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Microgels are soft, deformable, permeable, and stimuli-responsive microscopic polymeric particles that are now emerging as prospective multifunctional soft materials for delivery systems, interface stabilization, cell cultures and tissue engineering. Cellulose microgels are emerging biopolymeric microgels with unique characteristics such as abound hydroxyl structure, admirable designability, multiscale pore network and excellent biocompatibility. This review summarizes the fabrication strategies for microgel, then highlights the fabrication routes for cellulose microgels, and finally elaborates cellulose microgels' bright application prospects with unique characteristics in the fields of controlled release, interface stabilization, coating, purification, nutrition/drug delivery, and bio-fabrication. The challenges to be addressed for further applications and considerable scope for development in future of cellulose microgels are also discussed.
Collapse
Affiliation(s)
- Yang Yang
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Lishan Sha
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Han Zhao
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhaojun Guo
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
5
|
Amiri S, Nezamdoost-Sani N, Mostashari P, McClements DJ, Marszałek K, Mousavi Khaneghah A. Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Crit Rev Food Sci Nutr 2022; 64:2130-2156. [PMID: 36121429 DOI: 10.1080/10408398.2022.2121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotic products' economic value and market popularity have grown over time as more people discover their health advantages and adopt healthier lifestyles. There is a significant societal and cultural interest in these products known as foods or medicines. Products containing probiotics that claim to provide health advantages must maintain a "minimum therapeutic" level (107-106 CFU/g) of bacteria during their entire shelf lives. Since probiotic bacteria are susceptible to degradation and reduction by physical and chemical conditions (including acidity, natural antimicrobial agents, nutrient contents, redox potential, temperature, water activity, the existence of other bacteria, and sensitivity to metabolites), the most challenging problem for a food manufacturer is ensuring probiotic cells' survival and stability enhancement throughout the manufacturing stage. Currently, the use of plant-based hydrogels for improved and targeted probiotic delivery has gained substantial attention as a potential approach to overcoming the mentioned restrictions. To achieve the best possible results from hydrogels, whether used as a coating for encapsulated probiotics (with the goal of stomach protection) or as carriers for direct encapsulation of live microorganisms should be applied kind of procedures that ensure high bacterial survival during hydrogels application. This paper summarizes polysaccharides, proteins, and lipid-based hydrogels as carriers of encapsulated probiotics in delivery systems, reviews their structures, analyzes their advantages and disadvantages, studies their mechanical characteristics, and draws comparisons between them. The discussion then turns to how the criterion affects encapsulation, applications, and future possibilities.
Collapse
Affiliation(s)
- Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| |
Collapse
|
6
|
Wang J, Guo N, Hou W, Qin H. Coating bacteria for anti-tumor therapy. Front Bioeng Biotechnol 2022; 10:1020020. [PMID: 36185433 PMCID: PMC9520470 DOI: 10.3389/fbioe.2022.1020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic bacteria have shown great potential on anti-tumor therapy. Compared with traditional therapeutic strategy, living bacteria present unique advantages. Bacteria show high targeting and great colonization ability in tumor microenvironment with hypoxic and nutritious conditions. Bacterial-medicated antitumor therapy has been successfully applied on mouse models, but the low therapeutic effect and biosafe limit its application on clinical treatment. With the development of material science, coating living bacteria with suitable materials has received widespread attention to achieve synergetic therapy on tumor. In this review, we summarize various materials for coating living bacteria in cancer therapy and envision the opportunities and challenges of bacteria-medicated antitumor therapy.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ning Guo
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| | - Weiliang Hou
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| |
Collapse
|
7
|
Afzaal M, Saeed F, Ateeq H, Shah YA, Hussain M, Javed A, Ikram A, Raza MA, Nayik GA, Alfarraj S, Ansari MJ, Karabagias IK. Effect of Cellulose–Chitosan Hybrid-Based Encapsulation on the Viability and Stability of Probiotics under Simulated Gastric Transit and in Kefir. Biomimetics (Basel) 2022; 7:biomimetics7030109. [PMID: 35997429 PMCID: PMC9397047 DOI: 10.3390/biomimetics7030109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Encapsulation comprises a promising potential for the targeted delivery of entrapped sensitive agents into the food system. A unique combination of cellulose/chitosan (Cl-Ch)-based hybrid wall material was employed to encapsulate L. plantarum by emulsion technique. The developed beads were further subjected to morphological and in vitro studies. The viability of free and encapsulated probiotics was also evaluated in kefir during storage. The developed beads presented porous spherical structures with a rough surface. A 1.58 ± 0.02 log CFU/mL, 1.26 ± 0.01 log CFU/mL, and 1.82 ± 0.01 log CFU/mL reduction were noticed for Cl-Ch hybrid cells under simulated gastro-intestinal and thermal conditions, respectively. The encapsulated cells were found to be acidic and thermally resistant compared to the free cells. Similarly, encapsulated probiotics showed better viability in kefir at the end of the storage period compared to free cells. In short, the newly developed Cl-Ch hybrid-based encapsulation has a promising potential for the targeted delivery of probiotics, as career agents, in gastric transit, and in foods.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Huda Ateeq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Government Degree College Shopian, J&K 192303, India
- Correspondence: (G.A.N.); (I.K.K.)
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 244001, India
| | - Ioannis K. Karabagias
- Department of Food Science & Technology, School of Agricultural Sciences, University of Patras, G. Seferi 2, 30100 Agrinio, Greece
- Correspondence: (G.A.N.); (I.K.K.)
| |
Collapse
|
8
|
Luan Q, Zhang H, Chen C, Jiang F, Yao Y, Deng Q, Zeng K, Tang H, Huang F. Controlled Nutrient Delivery through a pH-Responsive Wood Vehicle. ACS NANO 2022; 16:2198-2208. [PMID: 35142211 DOI: 10.1021/acsnano.1c08244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To lower the risk of disease and improve health, many nutrients benefit from intestinal-targeted delivery. Here, we present a nutrient-delivery system based on a pH-responsive "wood scroll", in which nutrients are stored, protected, and controllably released through the rolled structure and natural microchannels of a flexible wood substrate, thus ensuring higher bioactivity as well as prolonged steady release of the nutrient load to the intestine. We loaded the wood's natural microchannels with probiotics as a proof-of-concept demonstration. The probiotic-loaded wood scrolls can survive the simulated conditions of the stomach with a high survival rate (95.40%) and exhibit prolonged release (8 h) of the probiotic load at a constant release rate (4.17 × 108 CFUs/h) in the simulated conditions of the intestine. Moreover, by modifying the macroscopic geometry and microstructures of the wood scrolls, both the nutrient loading and release behaviors can be tuned over a wide range for customized or personalized nutrient management. The wood scrolls can also deliver other types of nutrients, as we demonstrate for tea polyphenols and rapeseed oil. This wood scroll design illustrates a promising structurally controlled strategy for the delivery of enteric nutrients using readily available, low-cost, and biocompatible biomass materials that have a naturally porous structure for nutrient storage, protection, and controlled release.
Collapse
Affiliation(s)
- Qian Luan
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hao Zhang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yonggang Yao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qianchun Deng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kaizhu Zeng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hu Tang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
9
|
Clarà Saracho A, Lucherini L, Hirsch M, Peter HM, Terzis D, Amstad E, Laloui L. Controlling the calcium carbonate microstructure of engineered living building materials. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 9:24438-24451. [PMID: 34912560 PMCID: PMC8577622 DOI: 10.1039/d1ta03990c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
The fabrication of responsive soft materials that enable the controlled release of microbial induced calcium carbonate (CaCO3) precipitation (MICP) would be highly desirable for the creation of living materials that can be used, for example, as self-healing construction materials. To obtain a tight control over the mechanical properties of these materials, needed for civil engineering applications, the amount, location, and structure of the forming minerals must be precisely tuned; this requires good control over the dynamic functionality of bacteria. Despite recent advances in the self-healing of concrete cracks and the understanding of the role of synthesis conditions on the CaCO3 polymorphic regulation, the degree of control over the CaCO3 remains insufficient to meet these requirements. We demonstrate that the amount and location of CaCO3 produced within a matrix, can be controlled through the concentration and location of bacteria; these parameters can be precisely tuned if bacteria are encapsulated, as we demonstrate with the soil-dwelling bacterium Sporosarcina pasteurii that is deposited within biocompatible alginate and carboxymethyl cellulose (CMC) hydrogels. Using a competitive ligand exchange mechanism that relies on the presence of yeast extract, we control the timing of the release of calcium ions that crosslink the alginate or CMC without compromising bacterial viability. With this novel use of hydrogel encapsulation of bacteria for on-demand release of MICP, we achieve control over the amount and structure of CaCO3-based composites and demonstrate that S. pasteurii can be stored for up to 3 months at an accessible storage temperature of 4 °C, which are two important factors that currently limit the applicability of MICP for the reinforcement of construction materials. These composites thus have the potential to sense, respond, and heal without the need for external intervention.
Collapse
Affiliation(s)
| | - Lorenzo Lucherini
- Laboratory of Soil Mechanics, Swiss Federal Institute of Technology Lausanne Switzerland
| | - Matteo Hirsch
- Soft Matter Laboratory, Swiss Federal Institute of Technology Lausanne Switzerland
| | - Hannes M Peter
- Stream Biofilm and Ecosystem Research Laboratory, Swiss Federal Institute of Technology Lausanne Switzerland
| | - Dimitrios Terzis
- Laboratory of Soil Mechanics, Swiss Federal Institute of Technology Lausanne Switzerland
| | - Esther Amstad
- Soft Matter Laboratory, Swiss Federal Institute of Technology Lausanne Switzerland
| | - Lyesse Laloui
- Laboratory of Soil Mechanics, Swiss Federal Institute of Technology Lausanne Switzerland
| |
Collapse
|
10
|
Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106882] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Deng Z, Li J, Song R, Zhou B, Li B, Liang H. Carboxymethylpachymaran/alginate gel entrapping of natural pollen capsules for the encapsulation, protection and delivery of probiotics with enhanced viability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Gong Y, Liu L, Wang F, Pei Y, Liu S, Lyu R, Luo X. Aminated chitosan/cellulose nanocomposite microspheres designed for efficient removal of low-concentration sulfamethoxazole from water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Mettu S, Hathi Z, Athukoralalage S, Priya A, Lam TN, Ong KL, Choudhury NR, Dutta NK, Curvello R, Garnier G, Lin CSK. Perspective on Constructing Cellulose-Hydrogel-Based Gut-Like Bioreactors for Growth and Delivery of Multiple-Strain Probiotic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4946-4959. [PMID: 33890783 PMCID: PMC8154558 DOI: 10.1021/acs.jafc.1c00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 05/16/2023]
Abstract
The current perspective presents an outlook on developing gut-like bioreactors with immobilized probiotic bacteria using cellulose hydrogels. The innovative concept of using hydrogels to simulate the human gut environment by generating and maintaining pH and oxygen gradients in the gut-like bioreactors is discussed. Fundamentally, this approach presents novel methods of production as well as delivery of multiple strains of probiotics using bioreactors. The relevant existing synthesis methods of cellulose hydrogels are discussed for producing porous hydrogels. Harvesting methods of multiple strains are discussed in the context of encapsulation of probiotic bacteria immobilized on cellulose hydrogels. Furthermore, we also discuss recent advances in using cellulose hydrogels for encapsulation of probiotic bacteria. This perspective also highlights the mechanism of probiotic protection by cellulose hydrogels. Such novel gut-like hydrogel bioreactors will have the potential to simulate the human gut ecosystem in the laboratory and stimulate new research on gut microbiota.
Collapse
Affiliation(s)
- Srinivas Mettu
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Zubeen Hathi
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Sandya Athukoralalage
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Anshu Priya
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Tsz Nok Lam
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Khai Lun Ong
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Namita Roy Choudhury
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Naba Kumar Dutta
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rodrigo Curvello
- Bioresource
Processing Institute of Australia (BioPRIA), Department of Chemical
Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Gil Garnier
- Bioresource
Processing Institute of Australia (BioPRIA), Department of Chemical
Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Carol Sze Ki Lin
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| |
Collapse
|
14
|
Liu Y, Li Z, Wu Y, Jing X, Li L, Fang X. Intestinal Bacteria Encapsulated by Biomaterials Enhance Immunotherapy. Front Immunol 2021; 11:620170. [PMID: 33643302 PMCID: PMC7902919 DOI: 10.3389/fimmu.2020.620170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains thousands of bacterial species essential for optimal health. Aside from their pathogenic effects, these bacteria have been associated with the efficacy of various treatments of diseases. Due to their impact on many human diseases, intestinal bacteria are receiving increasing research attention, and recent studies on intestinal bacteria and their effects on treatments has yielded valuable results. Particularly, intestinal bacteria can affect responses to numerous forms of immunotherapy, especially cancer therapy. With the development of precision medicine, understanding the factors that influence intestinal bacteria and how they can be regulated to enhance immunotherapy effects will improve the application prospects of intestinal bacteria therapy. Further, biomaterials employed for the convenient and efficient delivery of intestinal bacteria to the body have also become a research hotspot. In this review, we discuss the recent findings on the regulatory role of intestinal bacteria in immunotherapy, focusing on immune cells they regulate. We also summarize biomaterials used for their delivery.
Collapse
Affiliation(s)
- Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiabin Jing
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Gong Y, Mohd S, Wu S, Liu S, Pei Y, Luo X. pH-Responsive Cellulose-Based Microspheres Designed as an Effective Oral Delivery System for Insulin. ACS OMEGA 2021; 6:2734-2741. [PMID: 33553891 PMCID: PMC7860066 DOI: 10.1021/acsomega.0c04946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Functional modified cellulose microsphere (CMs) materials exhibit great application potential in drug various fields. Here, we designed pH-responsive carboxylated cellulose microspheres (CCMs) by the citric/hydrochloric acid hydrolysis method to enhance oral bioavailability of insulin by a green route. The CMs were high purity cellulose that dissolved and regenerated from a green solvent by the green sol-gel method. The prepared microspheres were characterized by spectroscopic techniques, such as field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XPS), etc. The spherical porous structure and carboxylation of cellulose were confirmed by FESEM and FT-IR, respectively. Insulin was loaded into the CCMs by electrostatic interactions, and the insulin release was controlled through ionization of carboxyl groups and proton balance. In vitro insulin release profiles demonstrated the suppression of insulin release in artificial gastric fluid (AGF), while a significant increase at artificial intestinal fluid (AIF) was observed. The insulin release profile was fitted in Korsmeyer-Peppas kinetic model, and insulin release was governed by the Fickian diffusion mechanism. The stability of the secondary structure of insulin was studied by dichroism circular. Excellent biocompatibility and no cytotoxicity of designed CCMs cast them as a potential oral insulin carrier.
Collapse
Affiliation(s)
- Yaqi Gong
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Shabbir Mohd
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Simei Wu
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Shilin Liu
- College
of Food Science and Technology, Huazhong
Agricultural University, Wuhan, 430205 Hubei Province, China
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
| | - Ying Pei
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
- . Tel.: +86-182-39907053
| | - Xiaogang Luo
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
- ; . Tel.: +86-139-86270668
| |
Collapse
|
16
|
Rashidinejad A, Bahrami A, Rehman A, Rezaei A, Babazadeh A, Singh H, Jafari SM. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit Rev Food Sci Nutr 2020; 62:2470-2494. [PMID: 33251846 DOI: 10.1080/10408398.2020.1854169] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral administration of live probiotics along with prebiotics has been suggested with numerous beneficial effects for several conditions including certain infectious disorders, diarrheal illnesses, some inflammatory bowel diseases, and most recently, irritable bowel syndrome. Though, delivery of such viable bacteria to the host intestine is a major challenge, due to the poor survival of the ingested probiotic bacteria during the gastric transit, especially within the stomach where the pH is highly acidic. Although microencapsulation has been known as a promising approach for improving the viability of probiotics in the human digestive tract, the success rate is not satisfactory. For this reason, co-encapsulation of probiotics with probiotics has been practised as a novel alternative approach for further improvement of the oral delivery of viable probiotics toward their targeted release in the host intestine. This paper discusses the co-encapsulation technologies used for delivery of probiotics toward better stability and viability, as well the incorporation of co-encapsulated probiotics and prebiotics in functional/synbiotic dairy foods. The common encapsulation technologies (and the materials) used for this purpose, the stability and survival of co-encapsulated probiotics in the food, and the release behavior of the co-encapsulated probiotics in the gastrointestinal tract have also been explained. Most studies reported a significant improvement particularly in the viability of bacteria associated with the presence of prebiotics. Nevertheless, the previous research has mostly been carried out in the simulated digestion, meaning that future systematic research is to be carried out to investigate the efficacy of the co-encapsulation on the survival of the bacteria in the gut in vivo.
Collapse
Affiliation(s)
- Ali Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Akbar Bahrami
- Program of Applied Science and Technology, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Babazadeh
- Center for Motor Neuron Disease Research, Faculty of medicine, health and human sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engendering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
17
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
18
|
Zhang L, Lu YQ, Qian JY, Yue LN, Li Q, Xiao LX, Ding XL, Guan CR. Microstructures, physical and sustained antioxidant properties of hydroxypropyl methylcellulose based microporous photophobic films. Int J Biol Macromol 2020; 152:1002-1009. [DOI: 10.1016/j.ijbiomac.2019.10.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 02/02/2023]
|
19
|
Li W, Liu L, Tian H, Luo X, Liu S. Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability. Carbohydr Polym 2019; 223:115065. [DOI: 10.1016/j.carbpol.2019.115065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/01/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
|
20
|
Alehosseini A, Gomez del Pulgar EM, Fabra MJ, Gómez-Mascaraque LG, Benítez-Páez A, Sarabi-Jamab M, Ghorani B, Lopez-Rubio A. Agarose-based freeze-dried capsules prepared by the oil-induced biphasic hydrogel particle formation approach for the protection of sensitive probiotic bacteria. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Li W, Zhang L, Li Q, Wang S, Luo X, Deng H, Liu S. Porous structured cellulose microsphere acts as biosensor for glucose detection with "signal-and-color" output. Carbohydr Polym 2018; 205:295-301. [PMID: 30446108 DOI: 10.1016/j.carbpol.2018.10.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 01/23/2023]
Abstract
In order to develop a biosensor based on porous structured cellulose microspheres for glucose detection with "signal-and-color" output, in this work, active group carboxyl was introduced to cellulose matrix by using plasma technology, and then glucose oxidase (GOx) was chemically immobilized through EDC-NHS cross-linking reaction. The cellulose microgels containing 21.28 mg/g of enzymes exhibited a fast response to 0.003 M glucose within only 4 min. As for detecting subject with a lower concentration of glucose, the probe still worked. When the concentration of glucose solution was 0.005 M, it took only 2 min that the reaction mixture changed from colorless to yellow. By the introduction of starch, the reaction mixture presented as amaranth color. Besides, the porous-structured substrate and the facile plasma technology were also promising for constructing enzyme-driven catalytic systems with enhanced performance.
Collapse
Affiliation(s)
- Wei Li
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li Zhang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| | - Qi Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shenggao Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, 430073, China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, 430073, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
22
|
Sun Q, Zhang Z, Zhang R, Gao R, McClements DJ. Development of Functional or Medical Foods for Oral Administration of Insulin for Diabetes Treatment: Gastroprotective Edible Microgels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4820-4826. [PMID: 29701967 DOI: 10.1021/acs.jafc.8b00233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insulin and an antacid [Mg(OH)2] were co-encapsulated inside calcium alginate microgels (diameter = 280 μm) using a vibrating nozzle injector. Confocal microscopy indicated that insulin was successfully encapsulated inside the microgels and remained inside them after they were exposed to simulated gastric conditions. Localized fluorescence intensity measurements indicated that the internal pH of the antacid-loaded microgels was around pH 7.4 after incubation in acidic gastric fluids but below the limit of detection (pH < 4) in the antacid-free microgels. After incubation in small intestine conditions, around 30% of the insulin was released from the antacid-loaded microgels over a 2 h period. Encapsulation of insulin within the antacid-loaded microgels increased its biological activity after exposure to simulated gastric conditions. In particular, the encapsulated insulin significantly increased Akt phosphorylation at both Thr308 and Ser473 in L6 myotubes when compared to free insulin.
Collapse
Affiliation(s)
- Quancai Sun
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang , Jiangsu 212001 , People's Republic of China
| | - Zipei Zhang
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Ruojie Zhang
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Ruichang Gao
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang , Jiangsu 212001 , People's Republic of China
| | - David Julian McClements
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
23
|
Luan Q, Zhou W, Zhang H, Bao Y, Zheng M, Shi J, Tang H, Huang F. Cellulose-Based Composite Macrogels from Cellulose Fiber and Cellulose Nanofiber as Intestine Delivery Vehicles for Probiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:339-345. [PMID: 29224351 DOI: 10.1021/acs.jafc.7b04754] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cellulose-based composite macrogels made by cellulose fiber/cellulose nanofiber (CCNM) were used as an intestine delivery vehicle for probiotics. Cellulose nanofiber (CNF) was prepared by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation system, and the carboxyl groups in CNF acted as pore size and pH responsibility regulators in CCNMs to regulate the probiotics loading and controlled release property. The macrogel presented a porosity of 92.68% with a CNF content of 90%, and the corresponding released viable Lactobacillus plantarum (L. plantarum) was up to 2.68 × 108 cfu/mL. The porous structure and high porosity benefited L. plantarum cells to infiltrate into the core of macrogels. In addition, the macrogels made with high contents of CNF showed sustainable release of L. plantarum cells and delivered enough viable cells to the desired region of intestine tracts. The porous cellulose macrogels prepared by a green and environmental friendly method show potential in the application of fabricating targeted delivery vehicles of bioactive agents.
Collapse
Affiliation(s)
- Qian Luan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Weijie Zhou
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Hao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Yuping Bao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Mingming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Jie Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| |
Collapse
|
24
|
Wu X, Zhang L, Zhang X, Zhu Y, Wu Y, Li Y, Li B, Liu S, Zhao J, Ma Z. Ethyl cellulose nanodispersions as stabilizers for oil in water Pickering emulsions. Sci Rep 2017; 7:12079. [PMID: 28935939 PMCID: PMC5608756 DOI: 10.1038/s41598-017-12386-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022] Open
Abstract
Ethyl cellulose (EC) nanodispersions have been prepared through a facile procedure, a process involved the dissolution of EC into ethanol, followed by dipping it in Xanthan Gum (XG) solution (0.1%, used as anti-solvent), and then removed the ethanol. The influences of preparation conditions on the structure and properties of the EC nanodispersions were investigated. The prepared EC nanodispersion had a negative surface potential, which contributed to its stabilization. The particle size of the nanodispersions could be controlled by changing the concentration of EC. Furthermore, the EC nanodispersions had a potential application for the stabilization of oil/water Pickering emulsion. The obtained Pickering emulsions showed high stability.
Collapse
Affiliation(s)
- Xia Wu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430074, China.,Jiangsu Province Biomass Energy and Materials Laboratory, Nanjing, 210042, China
| | - Li Zhang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xingzhong Zhang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430074, China
| | - Ya Zhu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430074, China
| | - Yuehan Wu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430074, China
| | - Yan Li
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430074, China
| | - Bin Li
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430074, China
| | - Shilin Liu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430074, China.,Jiangsu Province Biomass Energy and Materials Laboratory, Nanjing, 210042, China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| | - Zhaocheng Ma
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430074, China.
| |
Collapse
|
25
|
Zhang H, Yang M, Luan Q, Tang H, Huang F, Xiang X, Yang C, Bao Y. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3785-3791. [PMID: 28436656 DOI: 10.1021/acs.jafc.6b05815] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Minmin Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Qian Luan
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Hu Tang
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Fenghong Huang
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Xia Xiang
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Chen Yang
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Yuping Bao
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| |
Collapse
|
26
|
McClements DJ. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Adv Colloid Interface Sci 2017; 240:31-59. [PMID: 28034309 DOI: 10.1016/j.cis.2016.12.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given.
Collapse
|
27
|
Probiotics in cellulose houses: Enhanced viability and targeted delivery of Lactobacillus plantarum. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|