1
|
Qu H, Wang Y, Wang B, Li C. Pulsed electric field treatment of seeds altered the endophytic bacterial community and promotes early growth of roots in buckwheat. BMC Microbiol 2023; 23:290. [PMID: 37833633 PMCID: PMC10571398 DOI: 10.1186/s12866-023-02943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Endophytic bacteria provide nutrients and stimulate systemic resistance during seed germination and plant growth and development, and their functional properties in combating various stresses make them a powerful tool in green agricultural production. In this paper we explored the function of the endophyte community in buckwheat seeds in order to provide a theoretical basis for the application and scientific research of endophytes in buckwheat cultivation. We used pulsed electric field (PEF) technology to treat buckwheat seeds, monitored the effect of high-voltage pulse treatment on buckwheat seed germination, and analyzed the diversity of endophytic bacteria in buckwheat seeds using the amplicon sequencing method. RESULTS PEF treatment promoted root development during buckwheat seed germination. A total of 350 Operational taxonomic units (OTUs) that were assigned into 103 genera were obtained from control and treatment groups using 16SrRNA amplicon sequencing technology. Additionally, PEF treatment also caused a significant decrease in the abundance of Actinobacteria, Proteobacteria, and Bacteroidetes. The abundance of 28 genera changed significantly as well: 11 genera were more abundant, and 17 were less abundant. The number of associated network edges was reduced from 980 to 117, the number of positive correlations decreased by 89.1%, and the number of negative correlations decreased by 86.6%. CONCLUSION PEF treatment promoted early root development in buckwheat and was able to alter the seed endophytic bacterial community. This study thus makes a significant contribution to the field of endophyte research and to the application of PEF technology in plant cultivation.
Collapse
Affiliation(s)
- Hao Qu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Trans-boundary Pests, Yunnan Agricultural University, Kunming, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, China.
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Trans-boundary Pests, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
2
|
Linden M, Flegler A, Feuereisen MM, Weber F, Lipski A, Schieber A. Effects of flavonoids on membrane adaptation of food-associated bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184137. [PMID: 36746312 DOI: 10.1016/j.bbamem.2023.184137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
The effects of naringenin and the biflavonoids amentoflavone and tetrahydroamentoflavone on select bacterial lipids (carotenoids, fatty acids, and menaquinones) and membrane fluidity based on Laurdan generalized polarization were investigated. For this purpose, the pigment-forming food-associated microorganisms Staphylococcus xylosus (DSM 20266T and J70), Staphylococcus carnosus DSM 20501T, and Micrococcus luteus (ATCC 9341 and J3) were studied. The results suggest an envelope stress response by microorganisms due to flavonoids and an employment of adaptive mechanisms using carotenoids, fatty acids, and menaquinones. The flavonoid monomer naringenin impacted carotenoids, fatty acids, menaquinones, and membrane fluidity. Naringenin significantly influenced the carotenoid profile, particularly by an increase in the relative proportion of 4,4'-diaponeurosporenoic acid in Staphylococcus xylosus. Amentoflavone caused changes mainly in the membrane of Micrococcus luteus and decreased the menaquinone content. Tetrahydroamentoflavone mainly affected the carotenoids in the investigated strains. The noticeably different CCS value of tetrahydroamentoflavone compared to naringenin and amentoflavone revealed further insights into the structure-dependent effects of flavonoids. This study provides valuable insights into the response of pigment-forming food-associated microorganisms to naringenin, amentoflavone, and tetrahydroamentoflavone, which is important for the targeted and safe application of the latter as natural preservatives and useful for further research on the mechanisms of action.
Collapse
Affiliation(s)
- Maria Linden
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Alexander Flegler
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Michelle M Feuereisen
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - André Lipski
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| |
Collapse
|
3
|
Zhou J, Cai Y, Liu Y, An H, Deng K, Ashraf MA, Zou L, Wang J. Breaking down the cell wall: Still an attractive antibacterial strategy. Front Microbiol 2022; 13:952633. [PMID: 36212892 PMCID: PMC9544107 DOI: 10.3389/fmicb.2022.952633] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Since the advent of penicillin, humans have known about and explored the phenomenon of bacterial inhibition via antibiotics. However, with changes in the global environment and the abuse of antibiotics, resistance mechanisms have been selected in bacteria, presenting huge threats and challenges to the global medical and health system. Thus, the study and development of new antimicrobials is of unprecedented urgency and difficulty. Bacteria surround themselves with a cell wall to maintain cell rigidity and protect against environmental insults. Humans have taken advantage of antibiotics to target the bacterial cell wall, yielding some of the most widely used antibiotics to date. The cell wall is essential for bacterial growth and virulence but is absent from humans, remaining a high-priority target for antibiotic screening throughout the antibiotic era. Here, we review the extensively studied targets, i.e., MurA, MurB, MurC, MurD, MurE, MurF, Alr, Ddl, MurI, MurG, lipid A, and BamA in the cell wall, starting from the very beginning to the latest developments to elucidate antimicrobial screening. Furthermore, recent advances, including MraY and MsbA in peptidoglycan and lipopolysaccharide, and tagO, LtaS, LspA, Lgt, Lnt, Tol-Pal, MntC, and OspA in teichoic acid and lipoprotein, have also been profoundly discussed. The review further highlights that the application of new methods such as macromolecular labeling, compound libraries construction, and structure-based drug design will inspire researchers to screen ideal antibiotics.
Collapse
Affiliation(s)
- Jingxuan Zhou
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Cai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Ying Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Haoyue An
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Kaihong Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Muhammad Awais Ashraf
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jun Wang
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- *Correspondence: Jun Wang,
| |
Collapse
|
4
|
He R, Zhang Z, Xu L, Chen W, Zhang M, Zhong Q, Chen H, Chen W. Antibacterial mechanism of linalool emulsion against Pseudomonas aeruginosa and its application to cold fresh beef. World J Microbiol Biotechnol 2022; 38:56. [PMID: 35165818 DOI: 10.1007/s11274-022-03233-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is the dominant spoilage bacterium in cold fresh beef. The current strategy is undertaken to overcome the low water solubility of linalool by encapsulating linalool into emulsions. The results of field emission scanning electron microscopy and particle size distribution revealed that the appearance of the bacterial cells was severely disrupted after exposure to linalool emulsion (LE) with an minimum inhibitory concentration (MIC) of 1.5 mL/L. Probes combined with fluorescence spectroscopy were performed to detect cell membrane permeability, while intracellular components (protein and ion leakage) and crystal violet staining were further measured to characterize cell membrane integrity and biofilm formation ability. The results confirmed that LE could destroy the structure of the cell membrane, thereby leading to the leakage of intracellular material and effective removal of biofilms. Molecular docking confirmed that LE can interact with the flagellar cap protein (FliD) and DNA of P. aeruginosa, inhibiting biofilm formation and causing genetic damage. Furthermore, the results of respiratory metabolism and reactive oxygen species (ROS) accumulation revealed that LE could significantly inhibit the metabolic activity of P. aeruginosa and induce oxidative stress. In particular, the inhibition rate of LE on P. aeruginosa was 23.03% and inhibited mainly the tricarboxylic acid cycle (TCA). Finally, LE was applied to preserve cold fresh beef, and the results showed that LE could effectively inhibit the activity of P. aeruginosa and delay the quality change of cold fresh beef during the storage period. These results are of great significance to developing natural preservatives and extending the shelf life of cold fresh beef.
Collapse
Affiliation(s)
- Rongrong He
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Zhengke Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Lilan Xu
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Weijun Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Ming Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Qiuping Zhong
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Haiming Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China.
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China. .,Spice and Beverage Research Institute, Chinese Academy of Tropical Agriculture Science, Wanning, Hainan, 571533, People's Republic of China.
| |
Collapse
|
5
|
Action mode of cuminaldehyde against Staphylococcus aureus and its application in sauced beef. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Li Q, Yu S, Han J, Wu J, You L, Shi X, Wang S. Synergistic antibacterial activity and mechanism of action of nisin/carvacrol combination against Staphylococcus aureus and their application in the infecting pasteurized milk. Food Chem 2022; 380:132009. [PMID: 35077986 DOI: 10.1016/j.foodchem.2021.132009] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 11/04/2022]
Abstract
Synergistic antibacterial effect is a promising way to overcome the challenge of microbial contamination in food. In this study, we detected the synergistic interactions of nisin and carvacrol. The MIC of nisin and carvacrol against S. aureus were 60 and 125 μg/mL, respectively. The FICI and FBCI were 0.28125 and 0.09375, which suggested that the nisin/carvacrol combination presented synergistic antibacterial effect against S. aureus. The antibacterial activity of nisin/carvacrol combination was much higher than their individuals and the dose of antibacterials was obviously reduced. The combination could completely kill S. aureus within 8 h, accelerate the destruction of cell membrane, and inhibit formation of biofilm. Under the intervention of nisin, more CAR could enter cell to hunt intracellular targets, leading to an increase in intracellular antibacterial level. Besides, in the storage of pasteurized milk, the combinational treatment successfully inhibited microbial reproduction at 25 °C and 4 °C. Thus, the combination of nisin and carvacrol was a potential synergistic strategy for food preservation.
Collapse
Affiliation(s)
- Qingxiang Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Shuna Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Jinzhi Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Jiulin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| | - Lijun You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Xiaodan Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
7
|
Cui H, Wang Y, Li C, Chen X, Lin L. Antibacterial efficacy of Satureja montana L. essential oil encapsulated in methyl-β-cyclodextrin/soy soluble polysaccharide hydrogel and its assessment as meat preservative. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Wang R, Li J, Niu DB, Xu FY, Zeng XA. Protective effect of baicalein on DNA oxidative damage and its binding mechanism with DNA: An in vitro and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119605. [PMID: 33667888 DOI: 10.1016/j.saa.2021.119605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
In this work, the protective effect of baicalein on DNA oxidative damage and its possible protection mechanisms were investigated. 2-thiobarbituric acid (TBA) colorimetry and agarose gel electrophoresis study found that baicalein protected the deoxyribose residue and double-stranded backbone of DNA from the damage of hydroxyl radicals. Antioxidant analysis results showed that baicalein has excellent radicals scavenging effects and Fe2+ chelating ability, which might be the mechanism of baicalein protecting DNA. DNA binding studies indicated that baicalein bound to the minor groove of DNA with moderate binding affinity (K = (7.35 ± 0.91) × 103 M-1). Hydrogen bonding and van der Waals forces played a major role in driving the binding process. Molecular docking further confirmed the experimental results. This binding could stabilize DNA double helix structure, thereby protecting DNA from oxidative damage. This study may provide theoretical basis for designing new functional foods of baicalein for DNA damage protection.
Collapse
Affiliation(s)
- Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - De-Bao Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Fei-Yue Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
9
|
Ning HQ, Li YQ, Lin H, Wang JX. Apoptosis-induction effect of ε-poly-lysine against Staphylococcus aureus and its application on pasteurized milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Wijesundara NM, Lee SF, Cheng Z, Davidson R, Rupasinghe HPV. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci Rep 2021; 11:1487. [PMID: 33452275 PMCID: PMC7811018 DOI: 10.1038/s41598-020-79713-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pyogenes is an important human pathogen worldwide. The identification of natural antibacterial phytochemicals has renewed interest due to the current scarcity of antibiotic development. Carvacrol is a monoterpenoid found in herbs. We evaluated carvacrol alone and combined with selected antibiotics against four strains of S. pyogenes in vitro. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of carvacrol against S. pyogenes were 125 µg/mL (0.53 mM) and 250 µg/mL (1.05 mM), respectively. Kill curve results showed that carvacrol exhibits instantaneous bactericidal activity against S. pyogenes. We also demonstrated the potential mechanism of action of carvacrol through compromising the cell membrane integrity. Carvacrol induced membrane integrity changes leading to leakage of cytoplasmic content such as lactate dehydrogenase enzymes and nucleic acids. We further confirmed dose-dependent rupturing of cells and cell deaths using transmission electron microscopy. The chequerboard assay results showed that carvacrol possesses an additive-synergistic effect with clindamycin or penicillin. Carvacrol alone, combined with clindamycin or penicillin, can be used as a safe and efficacious natural health product for managing streptococcal pharyngitis.
Collapse
Affiliation(s)
- Niluni M Wijesundara
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada.,Department of Biology, Faculty of Science, Dalhousie University, Halifax, NS, Canada.,Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Song F Lee
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada.,Canadian Center for Vaccinology, Nova Scotia Health Authority, and the Izaak Walton Killam Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Zhenyu Cheng
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ross Davidson
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Canadian Center for Vaccinology, Nova Scotia Health Authority, and the Izaak Walton Killam Health Centre, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Division of Microbiology at the Queen Elizabeth II Health Sciences Centre, Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada. .,Department of Biology, Faculty of Science, Dalhousie University, Halifax, NS, Canada. .,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada. .,National Institute of Fundamental Studies, Kandy, Sri Lanka.
| |
Collapse
|
11
|
Shi YG, Zhang RR, Zhu CM, Xu MF, Gu Q, Ettelaie R, Lin S, Wang YF, Leng XY. Antimicrobial mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus and its combined effect with electrospun nanofibers on Chinese Taihu icefish preservation. Food Chem 2020; 346:128949. [PMID: 33418419 DOI: 10.1016/j.foodchem.2020.128949] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/29/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
Abstract
The objective of this study was to investigate the antibacterial activity and potential mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus. Results show that the length of the alkyl chain plays a pivotal role in eliciting the activity and octyl gallate (OG) exerted excellent bactericidal activity through a multiple bactericidal mechanism. OG functions against both bacteria through damaging bacterial cell wall integrity, permeating into cells and then interacting with DNA, as well as disturbing the activity of the respiratory electron transport chain to induce a high-level toxic ROS (hydroxyl radicals) generation and up-regulation of the ROS genes. Also, electrospun nanofibers with OG have unique superiorities for maintaining the freshness of the icefish (4 °C). This research not only provides a more in-depth understanding of the interaction between OG and microorganisms but also highlights the great promise of using OG as a safe multi-functionalized food additive for food preservations.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Run-Run Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Chen-Min Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ming-Feng Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Shan Lin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yi-Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Xin-Yi Leng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| |
Collapse
|
12
|
Gao W, Jiang L, Wan Z, Zeng XA. Antibacterial and probiotic promotion potential of a new soluble soybean polysaccharide‑iron(III) complex. Int J Biol Macromol 2020; 163:2306-2313. [PMID: 32941899 DOI: 10.1016/j.ijbiomac.2020.09.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
In this study soluble soybean polysaccharide‑iron(III) (SSPS-Fe(III)) was synthesized to investigate the effects on the growth of Escherichia coli, Staphylococcus aureus and Bacillus licheniformis. Two new detection methods of real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and microcalorimetry were used to evaluate the effects of different concentrations of SSPS-Fe(III) on the growth of three bacteria. The copy numbers of three bacteria showed that SSPS-Fe(III) had different impacts on the growth of E. coli, S. aureus and B. licheniformis. E. coli growth was inhibited by SSPS-Fe(III) in the higher concentration range and S. aureus growth was inhibited at any concentration, however B. licheniformis growth was promoted. The thermogenic curves for growth metabolism of E. coli and S. aureus presented peak shapes while those of B. licheniformis did platform shapes. As SSPS-Fe(III) concentration increased, the peak heights lowered for E. coli and S. aureus, and the time reaching stationary phase advanced for B. licheniformis. These findings demonstrate that SSPS-Fe(III) has an inhibitory effect on the foodborne pathogens of E. coli and S. aureus, and an enhancement on the probiotics of B. licheniformis.
Collapse
Affiliation(s)
- Wenhong Gao
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| | - Liyuan Jiang
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | | | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
13
|
Palyzová A, Řezanka T. Separation and identification of diacylglycerols containing branched chain fatty acids by liquid chromatography-mass spectrometry. J Chromatogr A 2020; 1635:461708. [PMID: 33223151 DOI: 10.1016/j.chroma.2020.461708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
A combination of two chromatographic and two enzymatic methods was used for the analysis of molecular species of lipids from Gram-positive bacteria of the genus Kocuria. Gram-positive bacteria contain a majority of branched fatty acids (FAs), especially iso- and/or anteiso-FAs. Two strains K. rhizophila were cultivated at three different temperatures (20, 28, and 37°C) and the majority phospholipid, i.e., the mixture of molecular species of phosphatidylglycerols (PGs) was separated by means of hydrophilic interaction liquid chromatography (HILIC). After enzymatic hydrolysis of PGs by phospholipase C and derivatization of the free OH group, the sn-1,2-diacyl-3-acetyl triacylglycerols (AcTAGs) were separated by reversed phase HPLC. Molecular species such as i-15:0/i-15:0/2:0, ai-15:0/ai-15:0/2:0, and 15:0/15:0/2:0 (straight chains) were identified by liquid chromatography-positive electrospray ionization mass spectrometry. The tandem mass spectra of both standards and natural compounds containing iso, anteiso and straight chain FAs with the same carbons were identical. Therefore, for identification of the ratio of two regioisomers, i.e. i-15:0/ai-15:0/2:0 vs. ai-15:0/i-15:0/2:0, they were cleavage by pancreatic lipase. The mixture of free fatty acids (FFAs) and 2-monoacylglycerols (2-MAGs) was obtained. After their separation by TLC and esterification and/or transesterification, the fatty acid methyl esters were quantified by GC-MS and thus the ratio of regioisomers was determined. It has been shown that the ratio of PG (containing as majority i-15: 0 / i-15: 0, i-15: 0 / ai-15: 0 and / or ai-15: 0 / i-15: 0 and ai-15: 0 / ai-15: 0 molecular species) significantly affected the membrane flow of bacterial cells cultured at different temperatures.
Collapse
Affiliation(s)
- Andrea Palyzová
- Institute of Microbiology, the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology, the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
14
|
Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res Int 2020; 137:109715. [PMID: 33233287 DOI: 10.1016/j.foodres.2020.109715] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
With the improvement of living standards, growing consumer demand for high-quality and natural foods has led to the development of new mild processes to enhance or replace conventional thermal and chemical methods for food processing. Pulsed electric fields (PEF) is an emerging and promising non-thermal food processing technology, which is ongoing from laboratory and pilot plant level to the industrial level. Chinese researchers have made tremendous advances in the potential applications of PEF for processing a wide range of food commodities over the last few years, which contributes to the current understanding and development of PEF technology. The objective of this paper is to conduct a systematic review on the achievements of PEF technology used for food processing in China and the corresponding processing principles. Research on the applicability of PEF in food processing suggests that PEF can be used alone or in combination with other methods, not only to inactivate microorganisms and extract active constituents, but also to modify biomacromolecules, enhance chemical reactions and accelerate the aging of fermented foods, which are mainly related to permeabilization of biomembranes, occurrence of electrochemical and electrolytic reactions, polarization and realignment of molecules, and reduction of activation energy of chemical reactions induced by PEF treatments. In addition, some of the most important challenges for the successful implementation of large-scale industrial applications of PEF technology in the food industry are discussed. The results bring out the benefits of both researchers and the industry.
Collapse
|
15
|
Ni P, Wang L, Deng B, Jiu S, Ma C, Zhang C, Almeida A, Wang D, Xu W, Wang S. Combined Application of Bacteriophages and Carvacrol in the Control of Pseudomonas syringae pv. actinidiae Planktonic and Biofilm Forms. Microorganisms 2020; 8:microorganisms8060837. [PMID: 32498472 PMCID: PMC7356356 DOI: 10.3390/microorganisms8060837] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is the causative agent of the bacterial canker of kiwifruit (Actinidia spp.). Phage therapy has been suggested as a viable alternative approach to controlling this disease, but its efficacy is limited by the emergence of phage-resistant mutants. Carvacrol is an essential oil that may be useful for the control of Psa. Combination therapies can be used to overcome resistance development. Here, the combination of phages (single phage suspensions of phages PN05 and PN09, and a cocktail of both phages) and carvacrol was investigated in controlling Psa planktonic and biofilm forms in vitro. The phage therapy alone (with phages PN05 and PN09), and the carvacrol alone (minimum inhibitory concentration 2.0 mg/mL), inhibited Psa growth, but the combined effect of both therapies was more effective. The phages alone effectively inhibited Psa growth for 24 h, but Psa regrowth was observed after this time. The carvacrol (2.0 mg/mL) alone prevented the biofilm formation for 48 h, but did not destroy the pre-formed biofilms. The combined treatment, phages and carvacrol (2.0 mg/mL), showed a higher efficacy, preventing Psa regrowth for more than 40 h. In conclusion, the combined treatment with phages and carvacrol may be a promising, environment-friendly and cost-effective approach to controlling Psa in the kiwifruit industry.
Collapse
Affiliation(s)
- Peien Ni
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.)
| | - Lei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.)
| | - Bohan Deng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.)
| | - Songtao Jiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.)
| | - Chao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.)
| | - Caixi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.)
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Dapeng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.)
| | - Wenping Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.)
- Correspondence: (W.X.); (S.W.)
| | - Shiping Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.)
- Correspondence: (W.X.); (S.W.)
| |
Collapse
|
16
|
Ye Z, Tan X, Liu Z, Aadil RM, Tan Y, Inam‐ur‐Raheem M. Mechanisms of breakdown of
Haematococcus pluvialis
cell wall by ionic liquids, hydrochloric acid and multi‐enzyme treatment. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhang Ye
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Xing‐He Tan
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Zhi‐Wei Liu
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Yi‐Cheng Tan
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
17
|
Chen X, He Z, Wu X, Mao D, Feng C, Zhang J, Chen G. Comprehensive study of the interaction between Puerariae Radix flavonoids and DNA: From theoretical simulation to structural analysis to functional analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118109. [PMID: 32062512 DOI: 10.1016/j.saa.2020.118109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Puerariae Radix (PR) is a natural herb whose active ingredient is mainly flavonoids. To explore the interaction between PR flavonoids and DNA not only has important biological implications for understanding the mechanism of action, but also helps develop PR products for the design of appropriate dietary interventions to aid cancer treatment. In this work, we comprehensively studied the interaction between six kinds of PR flavonoids and DNA from four different and progressive levels, including molecular docking, multi-spectral analysis, and functional analysis in vitro and in cell. Results show that the DNA binding affinity of six flavonoids is in an order of quercetin > formononetin > daidzein > puerarin > 4'-methoxy puerarin > puerarin 6″-O-xyloside (POS), in which quercetin can significantly inhibit DNA amplification owing to its strongest binding affinity. The binding between quercetin and DNA is further revealed to be intercalated binding, which can cause conformational changes in DNA, thereby exhibiting an activity of cell cycle arrest and anti-proliferative. This property of quercetin can be utilized for the further development of flavonoids with anticancer activity. In addition to the potential application, this work also provides a platform for the comprehensive study of the interaction between micromolecules and DNA.
Collapse
Affiliation(s)
- Xu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China; Experimental Center for Life Sciences, Shanghai University, Shanghai, PR China
| | - Ziyu He
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Xianyong Wu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China.
| |
Collapse
|
18
|
Duan X, Chen S, Duan S, Lan C, Yang Z, Cao Y, Miao J. Antibiotic activities of the natural antimicrobial substance produced by Lactobacillus paracasei FX-6 against Pseudomonas putida. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Peng F, Chen QS, Li FZ, Ou XY, Zong MH, Lou WY. Using deep eutectic solvents to improve the biocatalytic reduction of 2-hydroxyacetophenone to (R)-1-phenyl-1,2-ethanediol by Kurthia gibsonii SC0312. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Multi-target antibacterial mechanism of eugenol and its combined inactivation with pulsed electric fields in a hurdle strategy on Escherichia coli. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Berdejo D, Pagán E, García-Gonzalo D, Pagán R. Exploiting the synergism among physical and chemical processes for improving food safety. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Siddeeg A, Zeng XA, Rahaman A, Manzoor MF, Ahmed Z, Ammar AF. Effect of Pulsed Electric Field Pretreatment of Date Palm Fruits on Free Amino Acids, Bioactive Components, and Physicochemical Characteristics of the Alcoholic Beverage. J Food Sci 2019; 84:3156-3162. [PMID: 31599973 DOI: 10.1111/1750-3841.14825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
This research is aimed to observe the impact of pulsed electric field (PEF) application on the free amino acids, physicochemical characteristics, and bioactive components of alcoholic beverages processed from date palm fruits. The fruits were treated by PEF (frequency: 10 Hz, treatment time: 100 µs, pulses number: 40 µs for electric field: 1.38, 2.02, and 2.92 kV/cm, respectively). A significant increase (P < 0.05) in the total free amino acids and phenolic and flavonoid contents (2.92 > 2.02 > 1.38 kV/cm) was observed. There was a minor significant difference among the treated samples in the total soluble solid, alcohol, and total sugar contents, while there were no significant changes in the other parameters, including the color attributes. PRACTICAL APPLICATION: This study observed whether PEF treatment has a positive impact on the processing of alcoholic beverages of date palm fruits. PEF was found to improve the bioactive components and nutritional value of alcoholic beverages processed from date palm fruits. This finding suggests that PEF can be a better technique to enhance the quality characteristics of date palm fruit alcoholic beverages.
Collapse
Affiliation(s)
- Azhari Siddeeg
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, 510640, China.,Dept. of Food Engineering and Technology, Faculty of Engineering and Technology, Univ. of Gezira, Wad Medani, 21111, Sudan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, 510640, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, 510640, China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, 510640, China
| | - Zahoor Ahmed
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, 510640, China
| | - Al-Farga Ammar
- College of Sciences, Biochemistry Dept., Univ. of Jeddah, Jeddah, 22244, Saudi Arabia
| |
Collapse
|
23
|
Siddeeg A, Zeng XA, Rahaman A, Manzoor MF, Ahmed Z, Ammar AF. Quality characteristics of the processed dates vinegar under influence of ultrasound and pulsed electric field treatments. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:4380-4389. [PMID: 31478007 PMCID: PMC6706503 DOI: 10.1007/s13197-019-03906-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/08/2019] [Accepted: 06/25/2019] [Indexed: 02/02/2023]
Abstract
This research aimed to evaluate the influences of the pulsed electric field (PEF), ultrasound (US), and combination between them (PEF + US) on the quality of vinegar processed from date palm fruits compared with untreated vinegar (UT). Physicochemical properties, free amino acids (FAA), volatile components, organic acids, total phenolics and flavonoids, and sensory analysis were determined. The results showed that there were no significant differences in pH, total titratable acidity, ethanol content, and total sugar in all treated vinegar compared with UT. However, the values were found to be decreased (PEF + US < PEF < US < UT). Twenty-eight compounds were identified in the vinegar treated by PEF + US as the highest number of components, followed by PEF and US (23 and 22 components, respectively), compared with 19 compounds identified in UT. Compared with UT, there was a significant increase (p < 0.05) in the total FAA in dates vinegar among all treated samples (UT < US < PEF < PEF + US). Total phenolic and flavonoids contents results indicated that there was a significant increase (p < 0.05) in the treated vinegar compared with UT. Sensory analysis results indicated that no significant difference (p < 0.05) in all the parameters, except for a quite significant difference (p < 0.05) in the overall acceptability between the treated vinegar. In this study, vinegar was successfully produced from date palm fruits. Therefore, PEF + US are capable not only in enhancing the extraction process but also in the production of vinegar with good quality.
Collapse
Affiliation(s)
- Azhari Siddeeg
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zahoor Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Al-Farga Ammar
- College of Sciences, Biochemistry Department, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Lofa A, Velasco V, Gerding M, López MD, Vallejos D, Bonilla AM, Logue CM. Antibiotic-resistant Staphylococcus aureus strains of swine origin: molecular typing and susceptibility to oregano (Origanum vulgare L.) essential oil and maqui (Aristotelia chilensis (Molina) Stuntz) extract. J Appl Microbiol 2019; 127:1048-1056. [PMID: 31328837 DOI: 10.1111/jam.14393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/26/2019] [Accepted: 07/10/2019] [Indexed: 01/17/2023]
Abstract
AIM The molecular typing and the susceptibility of Staphylococcus aureus strains of swine origin to antibiotics, oregano (Origanum vulgare L.) essential oil (EO) and Chilean blackberry maqui (Aristotelia chilensis (Molina) Stuntz) extract were determined. METHODS AND RESULTS Twenty S. aureus strains of swine origin were subjected to molecular typing, of which six strains were selected for antimicrobial susceptibility testing. The epsilon test (Etest) was used to determine the antibiotic susceptibility. The susceptibility to natural antimicrobials (NAs): oregano EO, maqui extract, thymol (Thy) and carvacrol (Carv), was carried out using the disk diffusion method. The S. aureus strains were genetically diverse. All strains were resistant to at least one class of antibiotic, and two strains were multidrug-resistant. The minimum inhibitory concentration of oregano EO, Thy and Carv was 0·01-0·04%. Maqui extract did not show antistaphylococcal activity. CONCLUSIONS Natural antimicrobials extracted from oregano have an inhibitory activity against S. aureus strains from swine origin, with no effect using maqui extract. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides information about the characteristics of S. aureus strains of swine origin, and about the potential use of NAs from oregano to enhance the control of antibiotic-resistant S. aureus strains in the pork supply chain.
Collapse
Affiliation(s)
- A Lofa
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile.,Departamento de Ciências, Faculdade de Medicina Veterinária, Universidade José Eduardo dos Santos, Huambo, Angola
| | - V Velasco
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile
| | - M Gerding
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile
| | - M D López
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile
| | - D Vallejos
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile
| | - A M Bonilla
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile
| | - C M Logue
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
25
|
Wang LH, Wen QH, Zeng XA, Han Z, Brennan CS. Influence of naringenin adaptation and shock on resistance of Staphylococcus aureus and Escherichia coli to pulsed electric fields. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Xu L, Tang Z, Wen Q, Zeng X, Brennan C, Niu D. Effects of pulsed electric fields pretreatment on the quality of jujube wine. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ling‐Fang Xu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology Guangzhou China
| | - Zhong‐Sheng Tang
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology Guangzhou China
| | - Qing‐Hui Wen
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology Guangzhou China
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology Guangzhou China
| | - Charles Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln, Canterbury New Zealand
| | - Debao Niu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology Guangzhou China
| |
Collapse
|
27
|
Rahaman A, Siddeeg A, Manzoor MF, Zeng XA, Ali S, Baloch Z, Li J, Wen QH. Impact of pulsed electric field treatment on drying kinetics, mass transfer, colour parameters and microstructure of plum. Journal of Food Science and Technology 2019; 56:2670-2678. [PMID: 31168149 PMCID: PMC6525704 DOI: 10.1007/s13197-019-03755-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to scrutiny the impact of pulsed electric field (PEF) as a pre-treatment method on the convective drying kinetics, cell disintegration, colours and microstructural changes of fresh plums. In this study, the PEF intensities of 1-3 kV/cm, pulses number 30 and 70 °C drying temperature was applied to detect the drying kinetics. The specific energy consumption generated by PEF treatment was 10-90 kJ/kg. It was explored that the cell disintegration index increased from 0.147 to 0.572 with increased electric field intensity from 1 to 3 kV/cm. Further, we found that high cell disintegration leads to increase in drying rate and shorten drying time. The rates of water diffusion coefficient also increase with increasing PEF intensity from 0.27 to 16.47 × 10-9 m2/s. PEF pre-treatment followed by convective drying results in enhanced lightness and chroma as compared to untreated plum. Furthermore, the microscopic analysis by scanning electron microscopy at 200 × revealed that the PEF treatment at 3 kV/cm had caused shrinkage in the plum tissues which might be responsible for higher diffusion rate of water in the plum. In this work was investigated that drying kinetics and mass transfer after PEF treatment to improve quality of dried plum.
Collapse
Affiliation(s)
- Abdul Rahaman
- 1School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Azhari Siddeeg
- 1School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,2Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Muhammad Faisal Manzoor
- 1School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Xin-An Zeng
- 1School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Shahid Ali
- 1School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zulqarnain Baloch
- 4College of Veterinary Medicine, South China Agriculture University, Guangzhou, China
| | - Jian Li
- 1School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Qing-Hui Wen
- 1School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| |
Collapse
|
28
|
Wang R, Ou Y, Zeng X, Guo C. Membrane fatty acids composition and fluidity modification in
Salmonella
Typhimurium by culture temperature and resistance under pulsed electric fields. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ruo‐Yong Wang
- Institute of Environmental and Operational Medicine Tianjin 300050 China
- Air Force Medical Center PLA Beijing 100142 China
| | - Yun Ou
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Chang‐Jiang Guo
- Institute of Environmental and Operational Medicine Tianjin 300050 China
| |
Collapse
|
29
|
Ning HQ, Li YQ, Tian QW, Wang ZS, Mo HZ. The apoptosis of Staphylococcus aureus induced by glycinin basic peptide through ROS oxidative stress response. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Liu ZW, Yue Z, Zeng XA, Cheng JH, Aadil RM. Ionic liquid as an effective solvent for cell wall deconstructing through astaxanthin extraction from Haematococcus pluvialis. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhi-Wei Liu
- College of Food Science and Technology; Hunan Agricultural University; Changsha 410128 China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; Changsha 410128 China
| | - Zhou Yue
- College of Food Science and Technology; Hunan Agricultural University; Changsha 410128 China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; Changsha 410128 China
| | - Xin-An Zeng
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Jun-Hu Cheng
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Rana Muhammad Aadil
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Institute of Food Science and Technology; University of Agriculture; Faisalabad 38000 Pakistan
| |
Collapse
|
31
|
Wu J, Chu Z, Ruan Z, Wang X, Dai T, Hu X. Changes of Intracellular Porphyrin, Reactive Oxygen Species, and Fatty Acids Profiles During Inactivation of Methicillin-Resistant Staphylococcus aureus by Antimicrobial Blue Light. Front Physiol 2018; 9:1658. [PMID: 30546315 PMCID: PMC6279940 DOI: 10.3389/fphys.2018.01658] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/02/2018] [Indexed: 11/26/2022] Open
Abstract
Antimicrobial blue light (aBL) has attracted increasing interest for its antimicrobial properties. However, the underlying bactericidal mechanism has not yet been verified. One hypothesis is that aBL causes the excitation of intracellular chromophores; leading to the generation of reactive oxygen species (ROS) and the resultant oxidization of various biomolecules. Thus, monitoring the levels of redox-sensitive intracellular biomolecules such as coproporphyrins, as well as singlet oxygen and various ROS may help to uncover the physiological changes induced by aBL and aid in establishing the underlying mechanism of action. Furthermore, the identification of novel targets of ROS, such as fatty acids, is of potential significance from a therapeutic perspective. In this study, we sought to investigate the molecular impact of aBL treatment on methicillin-resistant Staphylococcus aureus (MRSA). The results showed that aBL (5–80 J/cm2) exhibited a bactericidal effect on MRSA, and almost no bacteria survived when 80 J/cm2 had been delivered. Further studies revealed that the concentrations of certain intracellular molecules varied in response to aBL irradiation. Coproporphyrin levels were found to decrease gradually, while ROS levels increased rapidly. Moreover, imaging revealed the emergence and increase of singlet oxygen molecules. Concomitantly, the lipid peroxidation product malondialdehyde (MDA) increased in abundance and intracellular K+ leakage was observed, indicating permeability of the cell membrane. Atomic force microscopy showed that the cell surface exhibited a coarse appearance. Finally, fatty acid profiles at different illumination levels were monitored by GC-MS. The relative amounts of three unsaturated fatty acids (C16:1, C20:1, and C20:4) were decreased in response to aBL irradiation, which likely played a key role in the aforementioned membrane injuries. Collectively, these data suggest that the cell membrane is a major target of ROS during aBL irradiation, causing alterations to membrane lipid profiles, and in particular to the unsaturated fatty acid component.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhaojuan Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tianhong Dai
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
32
|
Marchese A, Arciola CR, Coppo E, Barbieri R, Barreca D, Chebaibi S, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM, Daglia M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: mechanisms, synergies and bio-inspired anti-infective materials. BIOFOULING 2018; 34:630-656. [PMID: 30067078 DOI: 10.1080/08927014.2018.1480756] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Carvacrol (5-isopropyl-2-methyl phenol) is a natural compound that occurs in the leaves of a number of plants and herbs including wild bergamot, thyme and pepperwort, but which is most abundant in oregano. The aim of this review is to analyse the scientific data from the last five years (2012-2017) on the antimicrobial and anti-biofilm activities of carvacrol, targeting different bacteria and fungi responsible for human infectious diseases. The antimicrobial and anti-biofilm mechanisms of carvacrol and its synergies with antibiotics are illustrated. The potential of carvacrol-loaded anti-infective nanomaterials is underlined. Carvacrol shows excellent antimicrobial and anti-biofilm activities, and is a very interesting bioactive compound against fungi and a wide range of Gram-positive and Gram-negative bacteria, and being active against both planktonic and sessile human pathogens. Moreover, carvacrol lends itself to being combined with nanomaterials, thus providing an opportunity for preventing biofilm-associated infections by new bio-inspired, anti-infective materials.
Collapse
Affiliation(s)
- Anna Marchese
- a Microbiology Section DISC-Ospedale Policlinico San Martino , University of Genoa , Genoa , Italy
| | - Carla Renata Arciola
- b Department of Experimental, Diagnostic and Specialty Medicine , University of Bologna , Bologna , Italy
- c Research Unit on Implant Infections , Rizzoli Orthopaedic Institute , Bologna , Italy
| | - Erika Coppo
- d Microbiology Section DISC , University of Genoa , Genoa , Italy
| | - Ramona Barbieri
- d Microbiology Section DISC , University of Genoa , Genoa , Italy
| | - Davide Barreca
- e Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Salima Chebaibi
- f Department of Health and Environment, Science Faculty , University Moulay Ismail , Meknes , Morocco
| | - Eduardo Sobarzo-Sánchez
- g Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy , University of Santiago de Compostela , Spain
- h Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud , Universidad Central de Chile , Chile
| | - Seyed Fazel Nabavi
- i Applied Biotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Seyed Mohammad Nabavi
- i Applied Biotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Maria Daglia
- j Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section , University of Pavia , Pavia , Italy
| |
Collapse
|
33
|
Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules 2018; 23:molecules23061399. [PMID: 29890713 PMCID: PMC6100501 DOI: 10.3390/molecules23061399] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/06/2023] Open
Abstract
Even though essential oils (EOs) have been used for therapeutic purposes, there is now a renewed interest in the antimicrobial properties of phytochemicals and EOs in particular. Their demonstrated low levels of induction of antimicrobial resistance make them interesting for bactericidal applications, though their complex composition makes it necessary to focus on the study of their main components to identify the most effective ones. Herein, the evaluation of the antimicrobial action of different molecules present in EOs against planktonic and biofilm-forming Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was assessed. The bactericidal mechanisms of the different molecules, as well as their cytocompatibility, were also studied. Carvacrol, cinnamaldehyde, and thymol exhibit the highest in vitro antimicrobial activities against E. coli and S. aureus, with membrane disruption the bactericidal mechanism identified. The addition of those compounds (≥0.5 mg/mL) hampers S. aureus biofilm formation and partially eliminates preformed biofilms. The subcytotoxic values of the tested EO molecules (0.015–0.090 mg/mL) are lower than the minimum inhibitory and bactericidal concentrations obtained for bacteria (0.2–0.5 mg/mL) but are higher than that obtained for chlorhexidine (0.004 mg/mL), indicating the reduced cytotoxicity of EOs. Therefore, carvacrol, cinnamaldehyde, and thymol are molecules contained in EOs that could be used against E. coli– and S. aureus–mediated infections without a potential induction of bactericidal resistance and with lower cell toxicity than the conventional widely used chlorhexidine.
Collapse
|
34
|
Liu ZW, Zeng XA, Cheng JH, Liu DB, Aadil RM. The efficiency and comparison of novel techniques for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13810] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhi-Wei Liu
- School of Food Science and Technology; Hunan Agricultural University; Changsha 410128 China
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Xin-An Zeng
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Jun-Hu Cheng
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - De-Bao Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Rana Muhammad Aadil
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Institute of Food Science and Technology; University of Agriculture; Faisalabad Pakistan
| |
Collapse
|
35
|
Wei JN, Zeng XA, Tang T, Jiang Z, Liu YY. Unfolding and nanotube formation of ovalbumin induced by pulsed electric field. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Determination of membrane disruption and genomic DNA binding of cinnamaldehyde to Escherichia coli by use of microbiological and spectroscopic techniques. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:623-630. [DOI: 10.1016/j.jphotobiol.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/25/2017] [Accepted: 11/09/2017] [Indexed: 01/05/2023]
|
37
|
Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:481-490. [PMID: 29138066 DOI: 10.1016/j.bbamem.2017.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/11/2017] [Accepted: 11/10/2017] [Indexed: 11/24/2022]
Abstract
In this work, modifications of cell membrane fluidity, fatty acid composition and fatty acid biosynthesis-associated genes of Escherichia coli ATCC 25922 (E. coli) and Staphylococcus aureus ATCC 6538 (S. aureus), during growth in the presence of naringenin (NAR), one of the natural antibacterial components in citrus plants, was investigated. Compared to E. coli, the growth of S. aureus was significantly inhibited by NAR in low concentrations. Combination of gas chromatography-mass spectrometry with fluorescence polarization analysis revealed that E. coli and S. aureus cells increased membrane fluidity by altering the composition of membrane fatty acids after exposure to NAR. For example, E. coli cells produced more unsaturated fatty acids (from 18.5% to 43.3%) at the expense of both cyclopropane and saturated fatty acids after growth in the concentrations of NAR from 0 to 2.20mM. For S. aureus grown with NAR at 0 to 1.47mM, the relative proportions of anteiso-branched chain fatty acids increased from 37.2% to 54.4%, whereas iso-branched and straight chain fatty acids decreased from 30.0% and 33.1% to 21.6% and 23.7%, respectively. Real time q-PCR analysis showed that NAR at higher concentrations induced a significant down-regulation of fatty acid biosynthesis-associated genes in the bacteria, with the exception of an increased expression of fabA gene. The minimum inhibitory concentration (MIC) of NAR against these two bacteria was determined, and both of bacteria underwent morphological changes after exposure to 1.0 and 2.0 MIC.
Collapse
|
38
|
Wang S, Wang Q, Zeng X, Ye Q, Huang S, Yu H, Yang T, Qiao S. Use of the Antimicrobial Peptide Sublancin with Combined Antibacterial and Immunomodulatory Activities To Protect against Methicillin-Resistant Staphylococcus aureus Infection in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8595-8605. [PMID: 28906115 DOI: 10.1021/acs.jafc.7b02592] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the major pathogen causing serious hospital infections worldwide. With the emergence and rapid spread of drug-resistant bacteria, there is extraordinary interest in antimicrobial peptides (AMPs) as promising candidates for the treatment of antibiotic-resistant bacterial infections. Sublancin, a glycosylated AMP produced by Bacillus subtilis 168, has been reported to possess protective activity against bacterial infection. This study was performed to evaluate the efficacy of sublancin in the prevention of MRSA ATCC43300 intraperitoneal infection in mice. We determined that sublancin had a minimal inhibitory concentration of 15 μM against MRSA ATCC43300. The antimicrobial action of sublancin involved the destruction of the bacterial cell wall. Dosing of mice with sublancin greatly alleviated (p < 0.05) the bacterial burden caused by MRSA intraperitoneal infection and considerably reduced the mortality and weight loss (19.2 ± 0.62 g vs 20.6 ± 0.63 g for MRSA vs 2.0 mg/kg sublancin, respectively, on day 3) of MRSA-challenged mice (p < 0.05). Sublancin was further found to balance the immune response during infection and relieve intestinal inflammation through inhibition of NF-κB activation (p < 0.01). With their combined antibacterial and immunomodulatory activities, sublancin may have potent therapeutic potential for drug-resistant infections and sepsis.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
- Department of Animal Nutrition and Feed Science, College of Animal Science & Technology, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| | - Qingwei Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Tianren Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| |
Collapse
|
39
|
Effect of pulsed electric fields (PEFs) on the pigments extracted from spinach ( Spinacia oleracea L.). INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Li S, Pan J, Zhang G, Xu J, Gong D. Characterization of the groove binding between di-(2-ethylhexyl) phthalate and calf thymus DNA. Int J Biol Macromol 2017; 101:736-746. [DOI: 10.1016/j.ijbiomac.2017.03.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/03/2023]
|
41
|
Nostro A, Marino A, Ginestra G, Cellini L, Di Giulio M, Bisignano G. Effects of adaptation to carvacrol on Staphylococcus aureus in the planktonic and biofilm phases. BIOFOULING 2017; 33:470-480. [PMID: 28521511 DOI: 10.1080/08927014.2017.1323080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The effect of exposure to sub-minimum inhibitory concentrations of carvacrol, for either 3-10 days, on direct (carvacrol) or cross-protection (cinnamaldehyde, eugenol, antibiotics) and the influence on planktonic and biofilm growth of four Staphylococcus aureus strains were reported. The sequential exposure to carvacrol resulted in a direct protection that was more evident in two of the four strains after 10 days. No significant cross-protection against cinnamaldehyde, eugenol and antibiotics was detected. An adaptive response was associated with a prolonged lag phase, a lower yield of bacteria, a colony phenotype likely to be associated to small colony variants and an increase in biofilm production. Generally, the biofilm of the adapted strains was less susceptible to subMICs of carvacrol compared to the biofilms of non-adapted strains. In contrast, it was demonstrated that in the case of mature biofilms the susceptibility was similar. The exposure of S. aureus to carvacrol at concentrations above the MIC resulted in a very low mutation frequency.
Collapse
Affiliation(s)
- Antonia Nostro
- a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Andreana Marino
- a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Giovanna Ginestra
- a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Luigina Cellini
- b Department of Pharmacy , University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy
| | - Mara Di Giulio
- b Department of Pharmacy , University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy
| | - Giuseppe Bisignano
- a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| |
Collapse
|
42
|
Zhao GP, Li YQ, Sun GJ, Mo HZ. Antibacterial Actions of Glycinin Basic Peptide against Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5173-5180. [PMID: 28590128 DOI: 10.1021/acs.jafc.7b02295] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glycinin basic peptide (GBP) is an antibacterial ingredient that occurs naturally in the basic parts of soybean glycinin. The antibacterial actions of GBP against Escherichia coli ATCC 8739 were investigated in this study. The minimum inhibitory concentration of GBP against E. coli was 200 μg/mL. The exposure of E. coli cells to GBP induced significant cell damage and inactivated intracellular esterases (stressed and dead cells, 70.9% ± 0.04 for 200 μg/mL of GBP and 91.9% ± 0.06 for 400 μg/mL of GBP), as determined through dual staining in flow cytometry. GBP resulted in the exposure of phosphatidylserine in E. coli cells. The analyses of flow cytometry-manifested GBP treatment led to the shrinkage of the cell surface and the complication of cell granularity. The observations in transmission electron microscopy demonstrated that 400 μg/mL of GBP severely disrupted the membrane integrity, resulting in ruptures or pores in the membrane, outflows of intracellular contents, or aggregation of the cytoplasm. Release of alkaline phosphatase, lipopolysaccharide, and reducing sugar further verified that the membrane damage was due to GBP. In addition, GBP treatment changed the helicity and base staking of DNA, as determined by circular dichroism spectroscopy. These results showed that GBP had strong antibacterial activity against E. coli via membrane damage and DNA perturbation. Additionally, GBP exhibited no cytotoxicity on the viability of human embryonic kidney cells. Thus, GBP may be a promising candidate as a natural antibacterial agent.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- School of Food Science & Engineering, Qilu University of Technology , No. 3501 University Road of Changqing District, 250353, Jinan, Shandong Province China
| | - Ying-Qiu Li
- School of Food Science & Engineering, Qilu University of Technology , No. 3501 University Road of Changqing District, 250353, Jinan, Shandong Province China
| | - Gui-Jin Sun
- School of Food Science & Engineering, Qilu University of Technology , No. 3501 University Road of Changqing District, 250353, Jinan, Shandong Province China
| | - Hai-Zhen Mo
- School of Food Science, Henan Institute of Science and Technology , Xinxiang, 453003, China
| |
Collapse
|
43
|
Tang ZS, Zeng XA, Brennan CS, Xie WQ. A Novel Method for Detection of Fusel Oil in Wine by the Use of Headspace Gas Chromatography. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Wang LH, Wang MS, Zeng XA, Xu XM, Brennan CS. Membrane and genomic DNA dual-targeting of citrus flavonoid naringenin against Staphylococcus aureus. Integr Biol (Camb) 2017; 9:820-829. [DOI: 10.1039/c7ib00095b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naringenin exerts its antibacterial action by disruption of the cytoplasmic membrane and DNA targeting effects inStaphylococcus aureus.
Collapse
Affiliation(s)
- Lang-Hong Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Man-Sheng Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- Institute of Bast Fiber Crops
| | - Xin-An Zeng
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xi-Ming Xu
- Institute of Bioinformatics and Medical Engineering
- School of Electrical and Information Engineering
- Jiangsu University of Technology
- Changzhou 213000
- China
| | - Charles S. Brennan
- Department of Wine
- Food and Molecular Biosciences
- Lincoln University
- Canterbury
- New Zealand
| |
Collapse
|
45
|
Wang LH, Zhang ZH, Zeng XA, Gong DM, Wang MS. Combination of microbiological, spectroscopic and molecular docking techniques to study the antibacterial mechanism of thymol against Staphylococcus aureus: membrane damage and genomic DNA binding. Anal Bioanal Chem 2016; 409:1615-1625. [PMID: 27900434 DOI: 10.1007/s00216-016-0102-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
Thymol (2-isopropyl-5-methylphenol) is a natural ingredient used as flavor or preservative agent in food products. The antibacterial mechanism of thymol against Gram-positive, Staphylococcus aureus was investigated in this work. A total of 15 membrane fatty acids were identified in S. aureus cells by gas chromatography-mass spectrometry. Exposure to thymol at low concentrations induced obvious alterations in membrane fatty acid composition, such as decreasing the proportion of branched 12-methyltetradecanoic acid and 14-methylhexadecanoic acid (from 22.4 and 17.3% to 7.9 and 10.3%, respectively). Membrane permeability assay and morphological image showed that thymol at higher concentrations disrupted S. aureus cell membrane integrity, which may decrease cell viability. Moreover, the interaction of thymol with genomic DNA was also investigated using multi-spectroscopic techniques, docking and atomic force microscopy. The results indicated that thymol bound to the minor groove of DNA with binding constant (K a) value of (1.22 ± 0.14) × 104 M-1, and this binding interaction induced a mild destabilization in the DNA secondary structure, and made DNA molecules to be aggregated. Graphical Abstract Thymol exerts its antibacterial effect throught destruction of bacterial cell membrane and binding directly to genomic DNA.
Collapse
Affiliation(s)
- Lang-Hong Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China.,Food Green Processing and Nutrition Regulation Research Center of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Zhi-Hong Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China.,Food Green Processing and Nutrition Regulation Research Center of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China. .,Food Green Processing and Nutrition Regulation Research Center of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - De-Ming Gong
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Man-Sheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, Hunan, 410205, China
| |
Collapse
|