1
|
Abu Jadayil SM, Alsaed AK, Mahmoud IF, Ahmad LM, Afaneh F, Khalaf H, Soudi MZ. Proximate analysis and vitamin B contents of fresh-made, canned chickpea and broad bean dips commercially produced in Jordan. PLoS One 2024; 19:e0311149. [PMID: 39739948 DOI: 10.1371/journal.pone.0311149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/13/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Chickpea and broad bean dips are among the most popular legume-based dishes in the Middle Eastern countries. They are either made freshly by restaurants or sold in cans. Various manufacturing processes may enhance or reduce the chemical compositions of any food products, including these dips, which in turn can affect their nutritional values and health benefits. Therefore, this study aimed to evaluate the nutritional values of the chickpea and broad bean dips and examine the possible differences between those made freshly and those sold as canned products. METHODS Fresh-made and canned chickpea and broad bean dips were obtained from various restaurants and factories in Jordan and were analyzed for their proximate analysis, titratable acidity, and pH value. Furthermore, vitamins B were analyzed using liquid chromatography-mass spectrometry. RESULTS Significant differences were detected between fresh-made and canned chickpea dips, with the former containing higher quantities of fiber (10.96g ± 0.32) while the latter containing higher quantities of proteins (8.06g ± 0.29), fats (8.05g ± 1.08), and the vitamins B1 (0.46 ± 0.02) and B5 (0.87 ± 0.02). On the other hand, a significant difference was detected between fresh-made and canned broad bean dips, while the latter contained higher quantities of carbohydrates (20.94g ± 0.78) and tested B-vitamins (except for B6). These detected differences may be due to different variances of chickpeas and broad beans used, preparation methods, and/or the addition of other ingredients. CONCLUSION Our results indicate that both chickpea and broad bean dips prepared/sold in Jordan were of high nutrition values in terms of proximate analysis, and vitamins B, with higher quantities observed in the canned dips. Higher titratable acidity and lower pH were also significantly found in the canned dips. This study adds to the existing literature regarding the fresh-made and canned chickpea and broad beans dips produced and sold in Jordan. Moreover, this study shows that canned chickpea and broad beans dips can provide consumers with comparable nutrient values to those provided by the freshly made dips. Nevertheless, these findings warrant more investigations.
Collapse
Affiliation(s)
- Seham M Abu Jadayil
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Ali K Alsaed
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Iman F Mahmoud
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
- Department of Basic Human Sciences, Faculty of Arts and Sciences, University of Petra, Amman, Jordan
| | - Leena M Ahmad
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Fatena Afaneh
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Hanaa Khalaf
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Mohammed Z Soudi
- General Manager for Jordan Valley Food Industrial Company, Amman, Jordan
| |
Collapse
|
2
|
Ajay A, Gaur SS, Shams R, Dash KK, Mukarram SA, Kovács B. Chickpeas and gut microbiome: Functional food implications for health. Heliyon 2024; 10:e39314. [PMID: 39498070 PMCID: PMC11532829 DOI: 10.1016/j.heliyon.2024.e39314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Chickpea is considered a rich source of nutrients, especially protein and dietary fibre. Besides, chickpea has potential benefits for the maintenance of gut health by improving intestinal integrity and serving as a source of energy for the gut microbiota. Moreover, chickpea consumption has been found to possess anti-cancer, anti-inflammatory, and antioxidant activity. On undergoing certain treatments like soaking, dehulling, roasting, and germination, the anti-nutritional profile of chickpeas can be reduced. Observing these benefits, this review explores the impact of chickpea and its components on maintaining gut health, emphasizing various benefits. Besides, the paper comprehensively covers the nutritional composition of chickpeas and factors influencing the bioavailability of its components concerning gut health. Additionally, it outlines the mechanisms through which chickpeas influence gastrointestinal health, providing valuable insights into complex processes and potential therapeutic applications. Furthermore, the review identifies contributions that can guide future research, encouraging further exploration of chickpeas' role in gut health and the development of interventions. As a result of the presented review, chickpeas can be used as an affordable source of food, which is nutritionally stable and prevents gastrointestinal diseases.
Collapse
Affiliation(s)
- Aswani Ajay
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Supriya Singh Gaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
3
|
Hong S, Xiao R, Chen G, Zhu Y, Garay A, Yang J, Xu Y, Li Y. Effect of cooking conditions on chickpea flour functionality and its protein physicochemical properties. J Food Sci 2024; 89:6253-6267. [PMID: 39183682 DOI: 10.1111/1750-3841.17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
Chickpea is an important food legume that usually undergoes various processing treatments to enhance nutritional value and functional properties. This study aimed to investigate the effects of different cooking conditions on physicochemical, structural, and functional properties of chickpea, especially its protein macromolecules. Kabuli chickpea seeds were processed by water cooking at different temperatures (63, 79, 88, and 96°C), followed by evaluating flour solubility, water-holding capacity (WHC), pasting property, as well as the total protein profile and fractionated protein distributions. Cooking treatments significantly decreased flour solubility (from 39.45 to 25.21 g/100 g flour) and pasting viscosity (peak and final viscosities, from 1081 to 300.5 cP and 1323 to 532 cP, respectively), while increasing WHC (from 0.862 to 1.144 g H2O/g flour) of chickpea flour (p < 0.05). These behaviors were enhanced by increasing cooking temperature. Meanwhile, cooking induced a significant change of chickpea proteins, modifying the albumin- and globulin-like fractions of chickpea protein to display glutelin-like behavior. The current study provides potential approaches for manipulating chickpea flour functionalities (e.g., solubility, viscosity, and WHC) to address the process and product challenges and favor product innovation.
Collapse
Affiliation(s)
- Shan Hong
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Ruoshi Xiao
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Gengjun Chen
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Yi Zhu
- PepsiCo R&D, PepsiCo, Plano, Texas, USA
| | | | - Jun Yang
- PepsiCo R&D, PepsiCo, Plano, Texas, USA
| | - Yixiang Xu
- Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
4
|
Mastrorilli C, Chiera F, Arasi S, Giannetti A, Caimmi D, Dinardo G, Gracci S, Pecoraro L, Miraglia Del Giudice M, Bernardini R. IgE-Mediated Legume Allergy: A Pediatric Perspective. J Pers Med 2024; 14:898. [PMID: 39338152 PMCID: PMC11433522 DOI: 10.3390/jpm14090898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Legumes are an inexpensive and essential protein source worldwide. The most consumed legumes include peanuts, soybeans, lentils, lupines, peas, common bean and chickpeas. In addition, the food industry is growing interested in expanding the use of legumes to partially replace or substitute cereals. Legumes were described to cause IgE-mediated allergies, and their growing use may also increase the incidence of allergy. The epidemiology of legume allergy varies by region; peanuts and soybeans are the legumes most involved in food allergies in Western countries, whereas lentils, peas, and chickpeas are reported as culprit allergens mainly in the Mediterranean area and India. This review, edited by the Italian Society of Pediatric Allergology and Immunology, summarizes the scientific literature on legume allergy in children and proposes a diagnostic workup and therapeutic approach.
Collapse
Affiliation(s)
- Carla Mastrorilli
- Department of Pediatrics, University Hospital Consortium Corporation Polyclinic of Bari, Pediatric Hospital Giovanni XXIII, 70124 Bari, Italy
| | - Fernanda Chiera
- Pediatric Unit, Giovanni Paolo II Hospital, ASP Catanzaro, 88046 Lamezia Terme, Italy
| | - Stefania Arasi
- Area of Translational Research in Pediatric Specialities, Allergy Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Arianna Giannetti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Davide Caimmi
- Allergy Unit, CHU de Montpellier, Université de Montpellier, 34295 Montpellier, France
- IDESP, UMR A11, Université de Montpellier, 34093 Montpellier, France
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80129 Naples, Italy; (G.D.); (M.M.D.G.)
| | - Serena Gracci
- Pediatrics and Neonatology Unit, Maternal and Child Department, San Giuseppe Hospital, Azienda USL Toscana Centro, 50053 Empoli, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80129 Naples, Italy; (G.D.); (M.M.D.G.)
| | - Roberto Bernardini
- Pediatrics and Neonatology Unit, Maternal and Child Department, San Giuseppe Hospital, Azienda USL Toscana Centro, 50053 Empoli, Italy
| |
Collapse
|
5
|
Skrzypczak K, Wirkijowska A, Przygoński K, Terpiłowski K, Blicharz-Kania A. Quality and functional properties of bread containing the addition of probiotically fermented Cicer arietinum. Food Chem 2024; 448:139117. [PMID: 38608398 DOI: 10.1016/j.foodchem.2024.139117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
This study aimed to determine the impact of supplementation with probiotically fermented chickpea (Cicer arietinum L) seeds on the quality parameters and functional characteristics of wheat bread. The addition of chickpea seeds caused significant changes in the chemical composition of the control wheat bread. The legume-supplemented products exhibited higher values of a* and b* color parameters and higher hardness after 24 h of storage than the control. The application of fermented or unfermented chickpeas contributed to an increase in total polyphenol and flavonoid contents, iron chelating capacity, and antioxidant properties of the final product. The variant containing unfermented seeds had the highest riboflavin content (29.53 ± 1.11 µg/100 g d.w.), Trolox equivalent antioxidant capacity (227.02 ± 7.29 µmol·L-1 TX/100 g d.w.), and free radical scavenging activity (71.37 ± 1.30 % DPPH inhibition). The results of this preliminary research have practical importance in the production of innovative bakery products with potential properties of functional food.
Collapse
Affiliation(s)
- Katarzyna Skrzypczak
- Department of Plant Food Technology and Gastronomy, Sub-department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Anna Wirkijowska
- Department of Plant Food Technology and Gastronomy, Department of Engineering and Technology of Grains, Faculty of Food Science and Biotechnology University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Krzysztof Przygoński
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Food Concentrates and Starch Products Department, Starołęcka 40, 61-361 Poznań, Poland
| | - Konrad Terpiłowski
- Department of Interfacial Phenomena, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Agata Blicharz-Kania
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| |
Collapse
|
6
|
Felisiak K, Przybylska S, Tokarczyk G, Tabaszewska M, Słupski J, Wydurska J. Effect of Chickpea ( Cicer arietinum L.) Flour Incorporation on Quality, Antioxidant Properties, and Bioactive Compounds of Shortbread Cookies. Foods 2024; 13:2356. [PMID: 39123550 PMCID: PMC11311373 DOI: 10.3390/foods13152356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
High nutritional value and antioxidant properties make chickpea flour a valuable substitute for wheat flour, although its texture-forming abilities are different. The aim of this study was to investigate the possibility of increasing the content of bioactive compounds and antioxidant properties of shortbread cookies by simple partial or complete replacement of wheat flour with chickpea flour without considerable changes in texture, color, sensory properties, or acceptability. Shortbread cookies were made from wheat flour (0% of chickpea flour), wheat flour and chickpea flour (replacement of 25%, 50%, and 75%), and chickpea flour (100%). Generally, the increase in chickpea flour share resulted in an increase in protein, fat, and ash content, as well as antioxidant properties. Polyphenol content, flavonoid content, and antioxidant activities increased three- to sixfold in shortbread cookies containing chickpea flour in comparison to wheat cookies. The level of proteins increased about 50% and the antioxidant properties were three to six times higher than in wheat cookies. Cookies containing up to 75% chickpea flour were assessed as very good or good quality, while only cookies without wheat flour were assessed as sufficient quality. It could be concluded that part of the wheat flour content in shortbread cookies can be replaced by chickpea flour. Application of a 25% proportion of chickpea flour increases physicochemical properties without changes in sensory properties. Sensory quality was up to 75% lower, but antioxidant properties were increased. However, complete replacement of wheat flour in shortbread cookies without changing the recipe resulted in a product of slightly lower sensory quality.
Collapse
Affiliation(s)
- Katarzyna Felisiak
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 70-310 Szczecin, Poland; (S.P.); (G.T.)
| | - Sylwia Przybylska
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 70-310 Szczecin, Poland; (S.P.); (G.T.)
| | - Grzegorz Tokarczyk
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 70-310 Szczecin, Poland; (S.P.); (G.T.)
| | - Małgorzata Tabaszewska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Kraków, 30-149 Kraków, Poland; (M.T.); (J.S.)
| | - Jacek Słupski
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Kraków, 30-149 Kraków, Poland; (M.T.); (J.S.)
| | - Joanna Wydurska
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 70-310 Szczecin, Poland; (S.P.); (G.T.)
| |
Collapse
|
7
|
Mukherjee A, Gaurav AK, Chouhan GK, Singh S, Sarkar A, Abeysinghe S, Verma JP. Chickpea seed endophyte Enterobacter sp. mediated yield and nutritional enrichment of chickpea for improving human and livestock health. Front Nutr 2024; 11:1387130. [PMID: 38725576 PMCID: PMC11079264 DOI: 10.3389/fnut.2024.1387130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Chickpeas (Cicer arietinum L.) are used as a good source of proteins and energy in the diets of various organisms including humans and animals. Chickpea straws can serve as an alternative option for forage for different ruminants. This research mainly focussed on screening the effects of adding beneficial chickpea seed endophytes on increasing the nutritional properties of the different edible parts of chickpea plants. Two efficient chickpea seed endophytes (Enterobacter sp. strain BHUJPCS-2 and BHUJPCS-8) were selected and applied to the chickpea seeds before sowing in the experiment conducted on clay pots. Chickpea seeds treated with both endophytes showed improved plant growth and biomass accumulation. Notably, improvements in the uptake of mineral nutrients were found in the foliage, pericarp, and seed of the chickpea plants. Additionally, nutritional properties such as total phenolics (0.47, 0.25, and 0.55 folds), total protein (0.04, 0.21, and 0.18 folds), carbohydrate content (0.31, 0.32, and 0.31 folds), and total flavonoid content (0.45, 027, and 0.8 folds) were increased in different parts (foliage, pericarp, and seed) of the chickpea plants compared to the control plants. The seed endophyte-treated plants showed a significant increase in mineral accumulation and improvement in nutrition in the different edible parts of chickpea plants. The results showed that the seed endophyte-mediated increase in dietary and nutrient value of the different parts (pericarp, foliage, and seeds) of chickpea are consumed by humans, whereas the other parts (pericarp and foliage) are used as alternative options for forage and chaff in livestock diets and may have direct effects on their nutritional conditions.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Plant Microbes Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anand Kumar Gaurav
- Plant Microbes Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gowardhan Kumar Chouhan
- Plant Microbes Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Saurabh Singh
- Plant Microbes Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankita Sarkar
- Department of Mycology and Plant Pathology, Institute of Agricultural Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Saman Abeysinghe
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
| | - Jay Prakash Verma
- Plant Microbes Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
8
|
Mao H, Yuan S, Li Q, Zhao X, Zhang X, Liu H, Yu M, Wang M. Influence of germination on the bioactivity, structural, functional and volatile characteristics of different chickpea flours. Food Chem X 2024; 21:101195. [PMID: 38406762 PMCID: PMC10884441 DOI: 10.1016/j.fochx.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 02/27/2024] Open
Abstract
In this paper, the objective was to evaluated the impact of germination of chickpea cultivars (Muying1, Y2-514 and YZ-364) on the bioactivity, volatiles and functional properties. The results showed that the Vitamin C content of Muying1, Y2-514 and YZ-364 after germination significantly increased (p < 0.05). Moreover, the germination also caused a significant decrease in lower transition temperatures and enthalpy values in chickpea flours (p < 0.05). After germination treatment, β-sheet and random coils in protein secondary structures increased and β-turn decreased in YZ-364; α-helix, β-sheet and random coil in Y2-514 and Muying1 decreased, while β-turn increased. The germination significantly enhanced the functional properties of three chickpea flours (p < 0.05). It was proved that the germination significantly enhanced the total phenolic and flavonoids content, antioxidant activity and in vitro protein digestibility. The GC-IMS revealed that the germination could affect the contents of volatile compounds of chickpea flours.
Collapse
Affiliation(s)
- Hongyan Mao
- Research Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Shuo Yuan
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Qin Li
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Xiaoyan Zhao
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Xiaowei Zhang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Hongkai Liu
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Ming Yu
- Research Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Meng Wang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
9
|
Huang J, Zheng J, Dadihanc T, Gao Y, Zhang Y, Li Z, Wang X, Yu L, Mijiti W, Xie Z, Ma H. Isoflavones isolated from chickpea sprouts alleviate ovariectomy-induced osteoporosis in rats by dual regulation of bone remodeling. Biomed Pharmacother 2024; 171:116214. [PMID: 38290254 DOI: 10.1016/j.biopha.2024.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Osteoporosis is a common systemic skeletal disease and a predominant underlying factor in the increased occurrence of fractures. The structure of isoflavones resembles that of estrogen and can confer similar but weaker effects. This study investigated the potential inhibitory effects of isoflavones from chickpea sprouts (ICS) on ovariectomy (OVX)-induced osteoporosis in vitro and in vivo. Notably, we found that ICS treatment could attenuate bone loss and improve trabecular microarchitecture and biomechanical properties of the fourth lumbar vertebra in OVX-induced osteoporotic rats and could also inhibit the development of a hyperosteometabolic state in this model. The osteogenic differentiation of bone marrow stem cells (BMSCs) was significantly enhanced by ICS intervention in vitro, and we confirmed that estrogen receptor α signaling was required for this increased osteogenic differentiation. Additionally, ICS has been shown to inhibit bone resorption via ERa modulation of the OPG/RANKL pathway. RANKL-induced osteoclastogenesis was reduced under ICS treatment, supporting that NF-κB signaling was inhibited by ICS. Thus, ICS attenuates osteoporosis progression by promoting osteogenic differentiation and inhibiting osteoclastic resorption. These results support the further exploration and development of ICS as a pharmacological agent for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Jinyong Huang
- Clinical Medicine Institute, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 Xinjiang, China; Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China
| | - Jingjie Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China
| | - Tuerxunjiang Dadihanc
- Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China
| | - Yanhua Gao
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 Xinjiang, China
| | - Yong Zhang
- School of Life Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Experimental Animal Center, Xinjiang Medical University, Urumqi 830011 Xinjiang, China
| | - Xi Wang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China
| | - Li Yu
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Wubulikasimu Mijiti
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China
| | - Zengru Xie
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China.
| | - Hairong Ma
- Clinical Medicine Institute, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China.
| |
Collapse
|
10
|
Begum N, Khan QU, Liu LG, Li W, Liu D, Haq IU. Nutritional composition, health benefits and bio-active compounds of chickpea ( Cicer arietinum L.). Front Nutr 2023; 10:1218468. [PMID: 37854353 PMCID: PMC10580981 DOI: 10.3389/fnut.2023.1218468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
Chickpea (Cicer arietinum L.), an annual plant of the family Fabaceae is mainly grown in semiarid and temperate regions. Among pulses, cultivated worldwide chickpeas are considered an inexpensive and rich source of protein. Chickpea is a good source of protein and carbohydrate, fiber, and important source of essential minerals and vitamins. The quality of protein is better among other pulses. Consumption of chickpeas is related to beneficial health outcomes. Dietary peptides from the protein of chickpeas gaining more attention. Peptides can be obtained through acid, alkali, and enzymatic hydrolysis. Among all these, enzymatic hydrolysis is considered safe. Various enzymes are used for the production of peptides, i.e., flavorzyme, chymotrypsin, pepsin, alcalase, papain, and trypsin either alone or in combinations. Chickpea hydrolysate and peptides have various bioactivity including angiotensin 1-converting enzyme inhibition, digestive diseases, hypocholesterolemic, CVD, antioxidant activity, type 2 diabetes, anti-inflammatory, antimicrobial, and anticarcinogenic activity. This review summarizes the nutritional composition and bioactivity of hydrolysate and peptides obtained from chickpea protein. The literature shows that chickpea peptides and hydrolysate have various functional activities. But due to the limited research and technology, the sequences of peptides are unknown, due to which it is difficult to conduct the mechanism studies that how these peptides interact. Therefore, emphasis must be given to the optimization of the production of chickpea bioactive peptides, in vivo studies of chickpea bioactivity, and conducting human study trials to check the bioactivity of these peptides and hydrolysate.
Collapse
Affiliation(s)
- Nabila Begum
- School of Medicine, Foshan University, Foshan, Guangdong, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangdong, China
| | - Qudrat Ullah Khan
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, Guangdong, China
| | - Leyna G. Liu
- College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Wenwen Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Ijaz Ul Haq
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
11
|
Pérez-Ramírez IF, Escobedo-Alvarez DE, Mendoza-Sánchez M, Rocha-Guzmán NE, Reynoso-Camacho R, Acosta-Gallegos JA, Ramos-Gómez M. Phytochemical Profile and Composition of Chickpea ( Cicer arietinum L.): Varietal Differences and Effect of Germination under Elicited Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3093. [PMID: 37687340 PMCID: PMC10489618 DOI: 10.3390/plants12173093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Germination is a simple process that improves the nutritional and medicinal values of seeds such as chickpeas. However, the detailed analysis of the phytochemical profile after chemical elicitation during chickpea germination is indispensable when making inferences about its biological properties. Therefore, an evaluation was made of the effect of the chemical inducers salicylic acid (SA, 1 and 2 mM), chitosan (CH, 3.3 and 7 μM), and hydrogen peroxide (H2O2, 20 and 30 mM) during germination at 25 °C with 70% RH for 4 days on the content of antinutritional and bioactive compounds, including phenolics, sterols, and saponins, in three Mexican chickpea varieties (Blanoro, Patron, and San Antonio) using UPLC-ELSD-ESI-QqQ-MS/MS, UPLC-DAD-ESI-QqQ-MS/MS, and HPLC-DAD-sQ-MS. The highest increase in phenolics and saponins was found in the Blanoro sprouts induced with SA 2 mM, whereas the highest phytosterol content was detected in San Antonio sprouts induced with CH 7 μM. In addition, significant increases in mono-, di-, and oligosaccharides and decreases in antinutritional contents were achieved after germination with most of the elicitation conditions. More importantly, we identified new compounds in chickpea sprouts, such as the lignans matairesinol and secoisolariciresinol, the phenolic compounds epicatechin gallate and methyl gallate, some phytosterols, and the saponin phaseoside 1, which further increased after chemical elicitation.
Collapse
Affiliation(s)
- Iza Fernanda Pérez-Ramírez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las campanas S/N, Querétaro 76010, Mexico; (I.F.P.-R.)
| | - Diana E. Escobedo-Alvarez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las campanas S/N, Querétaro 76010, Mexico; (I.F.P.-R.)
| | - Magdalena Mendoza-Sánchez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las campanas S/N, Querétaro 76010, Mexico; (I.F.P.-R.)
| | - Nuria E. Rocha-Guzmán
- Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), TECNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Rosalía Reynoso-Camacho
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las campanas S/N, Querétaro 76010, Mexico; (I.F.P.-R.)
| | - Jorge A. Acosta-Gallegos
- Campo Experimental Bajío (CEBAJ-INIFAP), Carretera Celaya-San Miguel de Allende Km. 6.5, Guanajuato 38010, Mexico
| | - Minerva Ramos-Gómez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las campanas S/N, Querétaro 76010, Mexico; (I.F.P.-R.)
| |
Collapse
|
12
|
Ansari P, Samia JF, Khan JT, Rafi MR, Rahman MS, Rahman AB, Abdel-Wahab YHA, Seidel V. Protective Effects of Medicinal Plant-Based Foods against Diabetes: A Review on Pharmacology, Phytochemistry, and Molecular Mechanisms. Nutrients 2023; 15:3266. [PMID: 37513684 PMCID: PMC10383178 DOI: 10.3390/nu15143266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus (DM) comprises a range of metabolic disorders characterized by high blood glucose levels caused by defects in insulin release, insulin action, or both. DM is a widespread condition that affects a substantial portion of the global population, causing high morbidity and mortality rates. The prevalence of this major public health crisis is predicted to increase in the forthcoming years. Although several drugs are available to manage DM, these are associated with adverse side effects, which limits their use. In underdeveloped countries, where such drugs are often costly and not widely available, many people continue to rely on alternative traditional medicine, including medicinal plants. The latter serves as a source of primary healthcare and plant-based foods in many low- and middle-income countries. Interestingly, many of the phytochemicals they contain have been demonstrated to possess antidiabetic activity such as lowering blood glucose levels, stimulating insulin secretion, and alleviating diabetic complications. Therefore, such plants may provide protective effects that could be used in the management of DM. The purpose of this article was to review the medicinal plant-based foods traditionally used for the management of DM, including their therapeutic effects, pharmacologically active phytoconstituents, and antidiabetic mode of action at the molecular level. It also presents future avenues for research in this field.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Jannatul F Samia
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Joyeeta T Khan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Musfiqur R Rafi
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Md Sifat Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Akib B Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | | | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
13
|
Mironeasa S, Coţovanu I, Mironeasa C, Ungureanu-Iuga M. A Review of the Changes Produced by Extrusion Cooking on the Bioactive Compounds from Vegetal Sources. Antioxidants (Basel) 2023; 12:1453. [PMID: 37507991 PMCID: PMC10376774 DOI: 10.3390/antiox12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The demand for healthy ready-to-eat foods like snacks is increasing. Physical modification of vegetal food matrices through extrusion generates significant changes in the chemical composition of the final product. There is a great variety of food matrices that can be used in extrusion, most of them being based on cereals, legumes, fruits, vegetables, or seeds. The aim of this review was to summarize the main effects of the extrusion process on the bioactive compounds content, namely phenolics, terpenes, vitamins, minerals, and fibers of vegetal mixes, as well as on their biological activity. The literature reported contradictory results regarding the changes in bioactive compounds after extrusion, mainly due to the differences in the processing conditions, chemical composition, physicochemical properties, and nutritional value of the extruded material and quantification methods. The thermolabile phenolics and vitamins were negatively affected by extrusion, while the fiber content was proved to be enhanced. Further research is needed regarding the interactions between bioactive components during extrusion, as well as a more detailed analysis of the impact of extrusion on the terpenes since there are few papers dealing with this aspect.
Collapse
Affiliation(s)
- Silvia Mironeasa
- Faculty of Food Engineering, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Ionica Coţovanu
- Faculty of Food Engineering, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Costel Mironeasa
- Faculty of Mechanical Engineering, Automotive and Robotics, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Mădălina Ungureanu-Iuga
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD), "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
- Mountain Economy Center (CE-MONT), "Costin C. Kiriţescu" National Institute of Economic Researches (INCE), Romanian Academy, 49 Petreni Street, 725700 Vatra Dornei, Romania
| |
Collapse
|
14
|
Farias-Pereira R, Zuk JB, Khavaran H. Plant bioactive compounds from Mediterranean diet improve risk factors for metabolic syndrome. Int J Food Sci Nutr 2023; 74:403-423. [PMID: 37415346 PMCID: PMC10399461 DOI: 10.1080/09637486.2023.2232949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Mediterranean (Med) dietary pattern consists of moderate or high consumption of foods that are linked to reduced risk factors for metabolic syndrome (MetS). This comprehensive review evaluates studies on Med diet-representative foods and beverages, such as red wine and olive oil, to understand the inverse associations of Med diet and MetS. The intake of dietary fibre, unsaturated fatty acids, vitamins, and polyphenols - including flavonoids and stilbenes - help to explain the benefits of Med diet on abdominal adiposity, glucose intolerance, hyperlipidaemia, and high blood pressure to some extent. Antioxidant and anti-inflammatory properties of polyphenols as well as the effects of unsaturated fatty acids on lipid metabolism are part of the underlying mechanisms. Overall, this review shows that dietary interventions using Med diet components improve MetS health markers in humans and/or rodents.
Collapse
Affiliation(s)
- Renalison Farias-Pereira
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joshua B. Zuk
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Hannah Khavaran
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Huang J, Wang X, Zheng J, Jia Q, Wang X, Xie Z, Ma H. Mechanisms underlying the therapeutic effects of isoflavones isolated from chickpea sprouts in treating osteoporosis based on network pharmacology. Biochem Biophys Res Commun 2023; 671:26-37. [PMID: 37290281 DOI: 10.1016/j.bbrc.2023.05.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Osteoporosis is a systemic bone disease that is caused by multiple factors that lead to an imbalance in bone metabolism. Isoflavones can prevent and treat osteoporosis by regulating bone metabolism through a variety of pathways. The germination of chickpeas can significantly increase their isoflavone contents. However, the use of isoflavones isolated from chickpea sprouts (ICS) to prevent and treat osteoporosis by regulating bone metabolism has not been widely studied. In vivo experimental studies in ovariectomized rats showed that ICS significantly improved femoral bone mineral density (BMD) and trabecular structure, with effects similar to raloxifene. Furthermore, the chemical composition of ICS as well as the targets and signalling pathways its regulates in the prevention and treatment of osteoporosis were predicted by network pharmacological studies. ICS with drug-like properties were identified by Lipinski's 5 principles, and intersecting targets of isoflavones with osteoporosis were identified. The overlapping targets were analysed by PPI, GO and KEGG analyses, and the possible key targets, signalling pathways and biological processes by which ICS treats osteoporosis were predicted; the prediction results were verified by molecular docking technology. The results showed that ICS could play an important role in the treatment of osteoporosis through "multicomponent, multitarget and multipathway" mechanisms, and the MAKP, NF-kB and ER-related signalling pathways may be important pathways by which ICS regulates osteoporosis; these findings provide a new theoretical basis for further experimental studies.
Collapse
Affiliation(s)
- Jinyong Huang
- Clinical Medicine Institute, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Department of Trauma Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang(Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China; Xinjiang Clinical Research Centre for Orthopaedics, Urumqi, 830011, Xinjiang, China
| | - Xin Wang
- Department of Trauma Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang(Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China; Xinjiang Clinical Research Centre for Orthopaedics, Urumqi, 830011, Xinjiang, China
| | - Jingjie Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang(Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China; Xinjiang Clinical Research Centre for Orthopaedics, Urumqi, 830011, Xinjiang, China
| | - Qiyu Jia
- Department of Trauma Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang(Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China; Xinjiang Clinical Research Centre for Orthopaedics, Urumqi, 830011, Xinjiang, China
| | - Xi Wang
- Department of Trauma Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang(Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China; Xinjiang Clinical Research Centre for Orthopaedics, Urumqi, 830011, Xinjiang, China
| | - Zengru Xie
- Department of Trauma Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang(Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China; Xinjiang Clinical Research Centre for Orthopaedics, Urumqi, 830011, Xinjiang, China.
| | - Hairong Ma
- Clinical Medicine Institute, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang(Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China; Xinjiang Clinical Research Centre for Orthopaedics, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
16
|
Newton A, Majumder K. Germination and Simulated Gastrointestinal Digestion of Chickpea ( Cicer arietinum L.) in Exhibiting In Vitro Antioxidant Activity in Gastrointestinal Epithelial Cells. Antioxidants (Basel) 2023; 12:antiox12051114. [PMID: 37237980 DOI: 10.3390/antiox12051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Plant-based proteins, in particular pulse proteins, have grown in popularity worldwide. Germination, or sprouting, is an effective method to release peptides and other dietary compounds. However, the combination of germination and gastrointestinal digestion in enhancing the release of dietary compounds with potential health-beneficial biological activity has yet to be entirely elucidated. The present study illustrates the impact of germination and gastrointestinal digestion on the release of dietary compounds with antioxidant activity from chickpeas (Cicer arietinum L.). Germination up to 3 days (D0 to D3) increased the peptide content by denaturing chickpea storage proteins and increased the degree of hydrolysis (DH) in the gastric phase. The antioxidant activity was measured at three different dosages (10, 50, and 100 μg/mL) and compared between D0 and D3 on human colorectal adenocarcinoma cells (HT-29). A significant increase in antioxidant activity was observed in the D3 germinated samples in all three tested dosages. Further analysis identified 10 peptides and 7 phytochemicals differentially expressed between the D0 and D3 germinated samples. Among the differentially expressed compounds, 3 phytochemicals (2',4'-dihydroxy-3,4-dimethoxychalcone, isoliquiritigenin 4-methyl ether, and 3-methoxy-4,2',5'-trihydroxychalcone) and 1 peptide (His-Ala-Lys) were identified only in the D3 samples, indicating their potential contribution towards the observed antioxidant activity.
Collapse
Affiliation(s)
- Ashley Newton
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Kaustav Majumder
- 256 Food Innovation Center, Nebraska Innovation Campus, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| |
Collapse
|
17
|
Vergara-Barberán M, Catalá-Icardo M, Simó-Alfonso EF, Benavente F, Herrero-Martínez JM. Aptamer-functionalized stir bar sorptive extraction for selective isolation, identification, and determination of concanavalin A in food by MALDI-TOF-MS. Mikrochim Acta 2023; 190:219. [PMID: 37178355 PMCID: PMC10182934 DOI: 10.1007/s00604-023-05795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
An aptamer-functionalized stir bar sorptive extraction (SBSE) coating is described for the first time devoted to selective isolation and preconcentration of an allergenic food protein, concavanalin A (Con A), followed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS) determination. For this purpose, the polytetrafluoroethylene surface of commercial magnetic stir bars was properly modified and vinylized to immobilize a thiol-modified aptamer against Con A via straightforward "thiol-ene" click chemistry. The aptamer-functionalized stir bar was employed as SBSE sorbent to isolate Con A, and several parameters that can affect the extraction efficiency were investigated. Under the optimized conditions, Con A was extracted and desorbed during 30 and 45 min, respectively, at 25 °C and 600 rpm. The SBSE MALDI-TOF-MS method provided limits of detection of 0.5 μg mL-1 for Con A. Furthermore, the SBSE coating was highly selective to Con A compared to other lectins. The developed method was successfully applied to the determination of low levels of Con A in several food matrices (i.e., white beans as well as chickpea, lentils, and wheat flours). Recoveries ranged from 81 to 97% with relative standard deviations below 7%. The aptamer-based stir bars presented suitable physical and chemical long-term stability (1 month) and a reusability of 10 and 5 extraction cycles with standards and food extracts, respectively. The developed aptamer-affinity extraction devices open up the possibility of developing novel highly selective SBSE coatings for the extraction of proteins and peptides from complex samples.
Collapse
Affiliation(s)
- María Vergara-Barberán
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028, Barcelona, Spain
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50E, 46100, Burjassot, Valencia, Spain
| | - Mónica Catalá-Icardo
- Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Campus de Gandia, Universitat Politècnica de València, C/Paranimf 1, 46730, Grau de Gandia, Valencia, Spain
| | - Ernesto F Simó-Alfonso
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50E, 46100, Burjassot, Valencia, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - José Manuel Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50E, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
18
|
Influence of soaking and boiling on flavonoids and saponins of nine desi chickpea cultivars with potential antiproliferative effects. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
19
|
Köhler ZM, Szepesi Á. More Than a Diamine Oxidase Inhibitor: L-Aminoguanidine Modulates Polyamine-Related Abiotic Stress Responses of Plants. Life (Basel) 2023; 13:life13030747. [PMID: 36983901 PMCID: PMC10052680 DOI: 10.3390/life13030747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
L-aminoguanidine (AG) is an inhibitor frequently used for investigating plant abiotic stress responses; however, its exact mode of action is not well understood. Many studies used this compound as a specific diamine oxidase inhibitor, whereas other studies used it for reducing nitric oxide (NO) production. Recent studies suggest its antiglycation effect; however, this remains elusive in plants. This review summarises our current knowledge about different targets of AG in plants. Our recommendation is to use AG as a modulator of polyamine-related mechanisms rather than a specific inhibitor. In the future overall investigation is needed to decipher the exact mechanisms of AG. More careful application of AG could give more insight into plant abiotic stress responses.
Collapse
Affiliation(s)
- Zoltán Márton Köhler
- Department of Biochemistry, Albert Szent-Gyorgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Correspondence:
| | - Ágnes Szepesi
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
20
|
Astuti RM, Palupi NS, Suhartono MT, Kusumaningtyas E, Lioe HN. Effect of processing treatments on the allergenicity of nuts and legumes: A meta-analysis. J Food Sci 2023; 88:28-56. [PMID: 36444520 DOI: 10.1111/1750-3841.16381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
The effective food processing to reduce nuts and legumes allergenicity could not be easily and directly concluded from reading a few published reports. Therefore, we conducted a meta-analysis to investigate this issue. A literature search was conducted in eight electronic databases from January 2000 to June 11, 2021. The primary outcome of interest was the allergenicity of processed nuts or legumes determined by enzyme-linked immunosorbent assay from in vitro studies. Data with the standardized mean difference (SMD) of 95% confidence interval (CI) were pooled using a random-effect model by RevMan 5.4 software. Heterogeneity was assessed using Cochran's Q (PQ ) and I2 tests. The search strategy identified 18,793 articles. However, only 61 studies met the inclusion criteria and were included in this meta-analysis. There were 21 and 15 types of respective single and combined food processing treatments analyzed for their effects on reducing allergenicity. In single processing treatment, the extrusion and fermentation had the largest reduction in allergenicity, considering their SMD value, that is, -20.19 (95% CI: -22.22 to -18.17; the certainty of evidence: moderate) and -20.8 (95% CI: -24.10 to -17.50; the certainty of evidence: moderate), respectively. Whereas in the combination, the treatment of fermentation followed by proteolytic hydrolysis showed the most significant reduction (SMD: -53.34; 95% CI: -70.18 to -36.5) and the evidence quality of this treatment was considered moderate. In conclusion, these three food processing methods showed a desirable impact in reducing nuts or legumes allergenicity. PRACTICAL APPLICATION: Nuts and legumes play an essential role as protein sources in food consumption worldwide, but they usually contain allergens. Our study has investigated the food processing methods that effectively reduce their allergenicity by meta-analysis. The result gives valuable information for further laboratory investigation on allergens and can be used by food industries in providing foods from nuts and legumes with lower allergenicity.
Collapse
Affiliation(s)
- Rizki Maryam Astuti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia.,Department of Food Science and Technology, Bakrie University, Jakarta Selatan, Indonesia
| | - Nurheni Sri Palupi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia.,Southeast Asian Food and Agricultural Science and Technology Center, IPB University, Bogor, Indonesia
| | - Maggy Thenawidjaja Suhartono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Eni Kusumaningtyas
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, Bogor, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| |
Collapse
|
21
|
Community acceptance and social impacts of carbon capture, utilization and storage projects: A systematic meta-narrative literature review. PLoS One 2022; 17:e0272409. [PMID: 35917379 PMCID: PMC9345485 DOI: 10.1371/journal.pone.0272409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
This manuscript presents a systematic meta-narrative review of peer-reviewed publications considering community acceptance and social impacts of site-specific Carbon Capture Utilization and Storage (CCUS) projects to inform the design and implementation of CCUS projects who seek to engage with communities during this process, as well as similar climate mitigation and adaptation initiatives. A meta-narrative approach to systematic review was utilized to understand literature from a range of site specific CCUS studies. 53 peer-reviewed papers were assessed reporting empirical evidence from studies on community impacts and social acceptance of CCUS projects published between 2009 and 2021. Three separate areas of contestation were identified. The first contestation was on acceptance, including how acceptance was conceptualized, how the different CCUS projects engaged with communities, and the role of acceptance in social learning. The second contestation related to communities: how communities were represented, where the communities were located in relation to the CCUS projects, and how the communities were defined. The third contestation was around CCUS impacts and the factors influencing individuals’ perceptions of impacts, the role of uncertainty, and how impacts were challenged by local communities, politicians and scientists involved in the projects. The next step was to explore how these contestations were conceptualised, the aspects of commonality and difference, as well as the notable omissions. This facilitated a synthesis of the key dimensions of each contestation to inform our discussion regarding community awareness and acceptance of CCUS projects. This review concludes that each CCUS project is complex thus it is not advisable to provide best practice guidelines that will ensure particular outcomes. This systematic review shared recommendations in the literature as to how best to facilitate community engagement in relation to CCUS projects and similar place-based industrial innovation projects. These recommendations focus on the importance of providing transparency, acknowledging uncertainty and encouraging collaboration.
Collapse
|
22
|
Tan X, Zhang S, Malde AK, Tan X, Gilbert RG. Effects of chickpea protein fractions on α-amylase activity in digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Atudorei D, Atudorei O, Codină GG. The Impact of Germinated Chickpea Flour Addition on Dough Rheology and Bread Quality. PLANTS 2022; 11:plants11091225. [PMID: 35567225 PMCID: PMC9105507 DOI: 10.3390/plants11091225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
The research focused on the effect of germinated chickpea flour (GCF) in a lyophilized form on dough rheology, microstructure and bread quality. The GCF addition levels in refined wheat flour with a low α-amylase activity were 5%, 10%, 15% and 20%, up to an optimum falling number value of the mixed flour. Generally, the dough rheological properties of water absorption, tolerance to mixing, dough consistency, dough extensibility, index of swelling, baking strength and loss tangent (tan δ) for the temperature sweep test decreased with the increased level of GCF addition, whereas the total volume of gas production and G′ and G″ modules for the temperature sweep test increased. Dough microstructure analyzed by epifluorescence light microscopy (EFLM) clearly showed a change in the starch and gluten distribution from the dough system by an increase in protein and a decrease in starch granules phase with the increased level of GCF addition in wheat flour. The bread physical characteristics (loaf volume, porosity, elasticity) and sensory ones were improved with up to 15% GCF addition in wheat flour. The bread firmness increased, whereas the bread gumminess, cohesiveness and resilience decreased with increased GCF addition in wheat flour. The bread crust and crumb color of the bread samples become darker with an increased GCF addition in the bread recipe.
Collapse
|
24
|
Effect of sprouting on the proteome of chickpea flour and on its digestibility by ex vivo gastro-duodenal digestion complemented with jejunal brush border membrane enzymes. Food Res Int 2022; 154:111012. [DOI: 10.1016/j.foodres.2022.111012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/31/2022]
|
25
|
Sharma N, Orsat V. Optimization of extraction parameters for preparation of
Cicer arietinum
‐based beverage using Response Surface Methodology. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Neha Sharma
- Department of Bioresource Engineering McGill University Montreal
| | - Valerie Orsat
- Department of Bioresource Engineering McGill University Montreal
| |
Collapse
|
26
|
Fernandes TCR, Camargos LFD, Camilo PA, Jesus FGD, Siqueira APS. Caracterização tecnológica da farinha de grão-de-bico variedade BRS cristalino. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.08221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resumo O grão-de-bico é uma oleaginosa de elevada importância comercial e seu cultivo tem sido adaptado para as condições do Cerrado brasileiro. Diante disso, é necessário realizar pesquisas que envolvam essas espécies adaptadas, como o BRS Cristalino, para possibilitar uma maior inserção e expansão neste bioma. Este estudo avaliou características de composição físico-química e tecnológicas do grão cru e seco naturalmente, moído e refinado (farinha). As avalições realizadas foram de umidade, resíduo mineral fixo, lipídeos, proteína, fibras totais, carboidratos e valor energético. A capacidade de absorver água, óleo e leite, e as propriedades gelificantes foram analisadas como propriedades possivelmente interessantes para processos de industrialização. A farinha de grão-de-bico apresentou composição semelhante à da farinha de outras oleaginosas, com teor proteico próximo a 16%, teor de carboidrato de 61% e fibra total de 10%. Os índices tecnológicos demonstraram afinidade maior com água e leite, e boa capacidade de gelificação. A partir desses resultados, preparações com farinha de grão-de-bico como ingrediente em produtos alimentícios são motivadas.
Collapse
|
27
|
Wang J, Li Y, Li A, Liu RH, Gao X, Li D, Kou X, Xue Z. Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Res Int 2021; 150:110790. [PMID: 34865805 DOI: 10.1016/j.foodres.2021.110790] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022]
Abstract
Chickpea (Cicer arietinum L.), an annual plant of the Fabaceae family, is mainly grown in temperate and semiarid regions. Its biological activity and beneficial contribution to human health have been scientifically confirmed as an essential source of nutritional components. The objective of this review was to summarize and update latest available scientific data and information, on bioactive components in chickpea, bio-activities, and molecular mechanisms, which has mainly focused on the detection of relevant biochemical indicators, the regulation of signaling pathways, essential genes and proteins. The studies have shown that chickpea have significant multifunctional activities, which are closely related to the functionally active small molecule peptides and phytochemicals of chickpea. Significantly, numerous studies have only addressed the functional activity and mechanisms of single active components of chickpea, however, overlooking the synergy and antagonism between chickpea components, changes of functional active components in different processing methods, as well as the active form of the substances after human digestion and metabolism. Additionally, due to limitations in research methods and techniques, the structure of most functional active substances have not been determined, which makes it difficult to conduct interaction mechanism studies. Consequently, the significant bio-activity of the functional components of chickpea, synergistic and antagonistic effects and activity differences between bioactive components should be further studied.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Yonghui Li
- Cardiovascular Department, Tianjin Fourth Center Hospital, Tianjin 300140, China.
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Dan Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
28
|
Amoah YS, Rajasekharan SK, Reifen R, Shemesh M. Chickpea-Derived Prebiotic Substances Trigger Biofilm Formation by Bacillus subtilis. Nutrients 2021; 13:nu13124228. [PMID: 34959781 PMCID: PMC8704855 DOI: 10.3390/nu13124228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
Chickpea-based foods are known for their low allergenicity and rich nutritional package. As an essential dietary legume, chickpea is often processed into milk or hummus or as an industrial source of protein and starch. The current study explores the feasibility of using the chickpea-derived prebiotic substances as a scaffold for growing Bacillus subtilis (a prospective probiotic bacterium) to develop synbiotic chickpea-based functional food. We report that the chickpea-derived fibers enhance the formation of the B. subtilis biofilms and the production of the antimicrobial pigment pulcherrimin. Furthermore, electron micrograph imaging confirms the bacterial embedding onto the chickpea fibers, which may provide a survival tactic to shield and protect the bacterial population from environmental insults. Overall, it is believed that chickpea-derived prebiotic substances provide a staple basis for developing functional probiotics and synbiotic food.
Collapse
Affiliation(s)
- Yaa Serwaah Amoah
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7528809, Israel; (Y.S.A.); (S.K.R.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Satish Kumar Rajasekharan
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7528809, Israel; (Y.S.A.); (S.K.R.)
| | - Ram Reifen
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7528809, Israel; (Y.S.A.); (S.K.R.)
- Correspondence:
| |
Collapse
|
29
|
Tan X, Tan X, Li E, Bai Y, Nguyen TTL, Gilbert RG. Starch molecular fine structure is associated with protein composition in chickpea seed. Carbohydr Polym 2021; 272:118489. [PMID: 34420745 DOI: 10.1016/j.carbpol.2021.118489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
Chickpea (Cicer arietinum L.) seed is a nutritional food high in starch and protein. This study aims to find the relationships between the molecular fine structure of starch and the composition of storage proteins and metabolic enzymes, using different chickpea varieties. It is found that storage proteins and starch biosynthetic enzymes influence each other. The initial formation of amylopectin molecules is affected by storage proteins, as suggested by the positive correlation (p < 0.01) between the average molecular size of amylopectin and total protein content. In addition, a higher amount of seed globulin could be an indication of higher amylose content and more short - medium amylose chains (degree of polymerization, DP, 118-2000). This study might assist selection of chickpea varieties with desirable qualities, such as low starch digestibility.
Collapse
Affiliation(s)
- Xiaoyan Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Xinle Tan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Yeming Bai
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Thoa T L Nguyen
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Robert G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
30
|
Madurapperumage A, Tang L, Thavarajah P, Bridges W, Shipe E, Vandemark G, Thavarajah D. Chickpea ( Cicer arietinum L.) as a Source of Essential Fatty Acids - A Biofortification Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:734980. [PMID: 34712256 PMCID: PMC8545914 DOI: 10.3389/fpls.2021.734980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/13/2021] [Indexed: 06/12/2023]
Abstract
Chickpea is a highly nutritious pulse crop with low digestible carbohydrates (40-60%), protein (15-22%), essential fats (4-8%), and a range of minerals and vitamins. The fatty acid composition of the seed adds value because fats govern the texture, shelf-life, flavor, aroma, and nutritional composition of chickpea-based food products. Therefore, the biofortification of essential fatty acids has become a nutritional breeding target for chickpea crop improvement programs worldwide. This paper examines global chickpea production, focusing on plant lipids, their functions, and their benefits to human health. In addition, this paper also reviews the chemical analysis of essential fatty acids and possible breeding targets to enrich essential fatty acids in chickpea (Cicer arietinum) biofortification. Biofortification of chickpea for essential fatty acids within safe levels will improve human health and support food processing to retain the quality and flavor of chickpea-based food products. Essential fatty acid biofortification is possible by phenotyping diverse chickpea germplasm over suitable locations and years and identifying the candidate genes responsible for quantitative trait loci mapping using genome-wide association mapping.
Collapse
Affiliation(s)
- Amod Madurapperumage
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Leung Tang
- Agilent Technologies, Glasgow, United Kingdom
| | | | - William Bridges
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Emerson Shipe
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - George Vandemark
- Grain Legume Genetics and Physiology Research Unit, Washington State University, Pullman, WA, United States
| | - Dil Thavarajah
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
31
|
Rajasekharan SK, Paz‐Aviram T, Galili S, Berkovich Z, Reifen R, Shemesh M. Biofilm formation onto starch fibres by Bacillus subtilis governs its successful adaptation to chickpea milk. Microb Biotechnol 2021; 14:1839-1846. [PMID: 33080087 PMCID: PMC8313274 DOI: 10.1111/1751-7915.13665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/23/2020] [Indexed: 11/28/2022] Open
Abstract
Beneficial biofilms may confer effective adaptation to food matrices that assist bacteria in enduring hostile environmental conditions. The matrices, for instance, dietary fibres of various food products, might serve as a natural scaffold for bacterial cells to adhere and grow as biofilms. Here, we report on a unique interaction of Bacillus subtilis cells with the resistant starch fibresof chickpea milk (CPM), herein CPM fibres, along with the production of a reddish-pink pigment. Genetic analysis identified the pigment as pulcherrimin, and also revealed the involvement of Spo0A/SinI pathway in modulating the observed phenotypes. Besides, through successful colonization of the CPM fibres, the wild-type cells of B. subtilis displayed enhanced survivability and resilience to environmental stress, such as heat and in vitro gastrointestinal treatments. In total, we infer that the biofilm formation on CPM fibres is an adaptation response of B. subtilis for strategic survival.
Collapse
Affiliation(s)
- Satish Kumar Rajasekharan
- Departmet of Food ScienceInstitute of Postharvvest Technology and Food SciencesAgricultural Research Organization (ARO)The Volcani CenterRishon LeZion7528809Israel
| | - Tali Paz‐Aviram
- Departmet of Food ScienceInstitute of Postharvvest Technology and Food SciencesAgricultural Research Organization (ARO)The Volcani CenterRishon LeZion7528809Israel
| | - Shmuel Galili
- Department of Vegetable and Field CropsInstitute of Plant SciencesAgricultural Research Organization (ARO)The Volcani CenterRishon LeZion7528809Israel
| | - Zipi Berkovich
- Institute of Biochemistry, Food Science and NutritionThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Ram Reifen
- Institute of Biochemistry, Food Science and NutritionThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Moshe Shemesh
- Departmet of Food ScienceInstitute of Postharvvest Technology and Food SciencesAgricultural Research Organization (ARO)The Volcani CenterRishon LeZion7528809Israel
| |
Collapse
|
32
|
Herrera A C, Gonzalez de Mejia E. Feasibility of commercial breadmaking using chickpea as an ingredient: Functional properties and potential health benefits. J Food Sci 2021; 86:2208-2224. [PMID: 34028013 DOI: 10.1111/1750-3841.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023]
Abstract
The use of pulses, such as chickpea, has become more relevant in baking as they exhibit potential health benefits such as reduction of obesity, type 2 diabetes, and prevention of colon cancer. It is also a good source of highly bioavailable protein at a low cost. This allows companies to develop new innovative products that meet the demand for nutritional value-added baked goods. Further understanding of the baking properties and rheology of chickpea flours will allow the baking industry to overcome processing and quality challenges related to the effects caused by the addition of non-gluten-forming ingredients. Therefore, the objective of this review was to summarize the rheological properties of baking formulations using chickpea as an ingredient in order to produce quality products while preserving the nutritional aspects of this legume. It also covers health benefits linked to chickpea-specific compounds.
Collapse
Affiliation(s)
- Catherin Herrera A
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
33
|
Jameel S, Hameed A, Shah TM. Biochemical Profiling for Antioxidant and Therapeutic Potential of Pakistani Chickpea ( Cicer arietinum L.) Genetic Resource. FRONTIERS IN PLANT SCIENCE 2021; 12:663623. [PMID: 33927742 PMCID: PMC8076736 DOI: 10.3389/fpls.2021.663623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 05/05/2023]
Abstract
In Pakistan, chickpeas (Cicer arietinum L.) are the largest grown legume crops, especially in desert areas. Along with an excellent source of nutrition, chickpea seeds have discernible medicinal and antioxidant characteristics. The diverse set of 90 chickpea genotypes (66 desi and 24 kabuli) were collected from different research zones in Pakistan, and seed flour was used for biochemical profiling. Genotypes were significantly different (Tukey HSD test, P < 0.05) for the traits under investigation. In non-enzymatic antioxidants, highest seed total phenolic contents (TPC) (34725 ± 275 μM/g s. wt.) was found in CM-98 (desi), ascorbic acid (AsA) (69.23 ± 2.25 μg/g s. wt.) in WH-3 (desi), and total flavonoid content (TFC) (394.98 ± 13.06 μg/mL sample) was detected in WH-11 (desi). In the class of enzymatic antioxidants, the highest seed ascorbate peroxidase (APX) (1680 ± 40 Units/g s. wt.) was detected in Tamman-2013 (kabuli), peroxidases (POD) (2564.10 ± 233.10 Units/g s. wt.) activity in CM1235/08 (desi), and superoxide dismutase (SOD) (279.76 ± 50 Units/g s. wt.) was detected in CH24/11 (desi). Highest seed catalase activity (CAT) (893 ± 50 Units/g s. wt.) and proline content (272.50 ± 20.82 μg/g s. wt.) was detected in an ICC-4951 (desi). In hydrolytic enzymes, the highest activity of esterase (37.05 μM/min/g s. wt) was found in, CH56/09(Kabuli), protease (11080 ± 10 Units/g s. wt.) in Karak-2 (desi), and α-amylase (213.02 ± 3.20 mg/g s. wt.) was observed in CH74/08 (kabuli). In other biochemical parameters, the highest seed total oxidant status (TOS) (356 ± 17.50 μM/g s. wt.) was detected in CM3457/91 (desi); malondialdehyde (MDA) content (295.74 ± 3.097 uM/g s. wt.) was observed in CM-2008 (kabuli), and total antioxidant capacity (TAC) (8.36 ± 0.082 μM/g s. wt.) was found in CM-72 (desi). In case of pigment analysis, Sheenghar-2000 (desi) depicted highest lycopene (12.579 ± 0.313 μg/g s. wt.) and total carotenoids (58.430.23 ± 0.569 μg/g s. wt.) contents. For seed therapeutic potential, the highest seed α-amylase inhibition (82.33 ± 8.06%) was observed in CM-88 (desi), while WH-1, WH-6, and ICCV-96030 (desi) depicted the highest value for seed anti-inflammatory potential (78.88 ± 0.55%). Genotypes with the highest antioxidant and therapeutic potential can be utilized as a natural antioxidant source and in breeding programs aimed at improving these traits in new breeding lines.
Collapse
Affiliation(s)
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | | |
Collapse
|
34
|
Cavalcanti‐Mata MERM, Duarte MEM, Lira VV, Oliveira RF, Costa NL, Oliveira HML. A new approach to the traditional drying models for the thin‐layer drying kinetics of chickpeas. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Wangorsch A, Kulkarni A, Jamin A, Spiric J, Bräcker J, Brockmeyer J, Mahler V, Blanca‐López N, Ferrer M, Blanca M, Torres M, Gomez P, Bartra J, García‐Moral A, Goikoetxea MJ, Vieths S, Toda M, Zoccatelli G, Scheurer S. Identification and Characterization of IgE‐Reactive Proteins and a New Allergen (Cic a 1.01) from Chickpea (
Cicer arietinum
). Mol Nutr Food Res 2020; 64:e2000560. [DOI: 10.1002/mnfr.202000560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/04/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Andrea Wangorsch
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| | - Anuja Kulkarni
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
- Amity University Mumbai India
| | - Annette Jamin
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| | - Jelena Spiric
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| | - Julia Bräcker
- Analytical Food Chemistry University of Stuttgart Allmandring 5B 70569 Stuttgart Germany
| | - Jens Brockmeyer
- Analytical Food Chemistry University of Stuttgart Allmandring 5B 70569 Stuttgart Germany
| | - Vera Mahler
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| | | | - Marta Ferrer
- Department of Allergy, IdiSNA (Instituto de Investigación Sanitaria de Navarra) Clinica Universidad de Navarra Pio XII Pamplona 3631008 Spain
| | - Miguel Blanca
- Allergy Service Hospital Infanta Leonor Gran Via del Este 80 Madrid 28031 Spain
- Jefe de Servicio de Alergología Hospital Civil Plaza del Hospital Civil s/n, Pabellon 5, sotano Málaga 29009 Spain
| | - Maria Torres
- Jefe de Servicio de Alergología Hospital Civil Plaza del Hospital Civil s/n, Pabellon 5, sotano Málaga 29009 Spain
| | - Paqui Gomez
- Jefe de Servicio de Alergología Hospital Civil Plaza del Hospital Civil s/n, Pabellon 5, sotano Málaga 29009 Spain
| | - Joan Bartra
- Allergy Unit, Pneumology Department Clinic Hospital Sant Antoni Maria Claret, 167 Barcelona Catalunya 08025 Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) University of Barcelona Carrer del Rosselló, 149 Barcelona 08036 Spain
| | - Alba García‐Moral
- Allergy Unit, Pneumology Department Clinic Hospital Sant Antoni Maria Claret, 167 Barcelona Catalunya 08025 Spain
| | - María J. Goikoetxea
- Department of Allergy, IdiSNA (Instituto de Investigación Sanitaria de Navarra) Clinica Universidad de Navarra Pio XII Pamplona 3631008 Spain
| | - Stefan Vieths
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| | - Masako Toda
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science Tohoku University Aramaki 468‐1, Aoba‐ku Sendai‐city 980‐8572 Japan
| | - Gianni Zoccatelli
- Department of Biotechnology University of Verona Strada le Grazie 15 Verona 37134 Italy
| | - Stephan Scheurer
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| |
Collapse
|
36
|
Cid-Gallegos MS, Sánchez-Chino XM, Álvarez-González I, Madrigal-Bujaidar E, Vásquez-Garzón VR, Baltiérrez-Hoyos R, Villa-Treviño S, Dávila-Ortíz G, Jiménez-Martínez C. Modification of In Vitro and In Vivo Antioxidant Activity by Consumption of Cooked Chickpea in a Colon Cancer Model. Nutrients 2020; 12:E2572. [PMID: 32854249 PMCID: PMC7551972 DOI: 10.3390/nu12092572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chickpea has been classified as a nutraceutical food due to its phytochemical compounds, showing antioxidant, anti-inflammatory, and anticancer activity. To investigate this, we evaluated the effect of cooking on the nutritional and non-nutritional composition and the in vitro and in vivo antioxidant activity of chickpea seed. The latter was determined by the variation in the concentration of nitric oxide (NO), oxidized carbonyl groups (CO), malondialdehyde (MDA), and the expression of 4-hydroxy-2-nonenal (4-HNE) in the colon of male BALB/c mice fed with a standard diet with 10 and 20% cooked chickpea (CC). We induced colon cancer in mice by administering azoxymethane/dextran sulfate sodium (AOM/DSS); for the evaluation, these were sacrificed 1, 7, and 14 weeks after the induction. Results show that cooking does not significantly modify (p < 0.05) nutritional compounds; however, it decreases the concentration of non-nutritional ones and, consequently, in vitro antioxidant activity. The in vivo evaluation showed that animals administered with AOM/DSS presented higher concentrations of NO, CO, MDA, and 4-HNE than those in animals without AOM/DSS administration. However, in the three evaluated times, these markers were significantly reduced (p < 0.05) with CC consumption. The best effect on the oxidation markers was with the 20% CC diet, demonstrating the antioxidant potential of CC.
Collapse
Affiliation(s)
- María S. Cid-Gallegos
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (M.S.C.-G.); (G.D.-O.)
| | - Xariss M. Sánchez-Chino
- Catedra-CONACyT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Tabasco 86280, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Verónica R. Vásquez-Garzón
- Catedra-CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (V.R.V.-G.); (R.B.-H.)
| | - Rafael Baltiérrez-Hoyos
- Catedra-CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (V.R.V.-G.); (R.B.-H.)
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Gloria Dávila-Ortíz
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (M.S.C.-G.); (G.D.-O.)
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (M.S.C.-G.); (G.D.-O.)
| |
Collapse
|
37
|
Ahmed J, Thomas L, Mulla M. High‐pressure treatment of hummus in selected packaging materials: Influence on texture, rheology, and microstructure. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jasim Ahmed
- Food & Nutrition Program, Environment & Life Sciences Research CenterKuwait Institute for Scientific Research Safat Kuwait
| | - Linu Thomas
- Food & Nutrition Program, Environment & Life Sciences Research CenterKuwait Institute for Scientific Research Safat Kuwait
| | - Mehrajfatema Mulla
- Food & Nutrition Program, Environment & Life Sciences Research CenterKuwait Institute for Scientific Research Safat Kuwait
| |
Collapse
|
38
|
Nawaz MA, Tan M, Øiseth S, Buckow R. An Emerging Segment of Functional Legume-Based Beverages: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1762641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Malik Adil Nawaz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, Australia
| | - Melvin Tan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, Australia
| | - Sofia Øiseth
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, Australia
| | - Roman Buckow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, Australia
| |
Collapse
|
39
|
Abstract
A wide variety of plant species provide edible seeds. Seeds are the dominant source of human calories and protein. The most important and popular seed food sources are cereals, followed by legumes and nuts. Their nutritional content of fiber, protein, and monounsaturated/polyunsaturated fats make them extremely nutritious. They are important additions to our daily food consumption. When consumed as part of a healthy diet, seeds can help reduce blood sugar, cholesterol, and blood pressure.
Collapse
|
40
|
Lima-Cabello E, Alché JD, Jimenez-Lopez JC. Narrow-Leafed Lupin Main Allergen β-Conglutin (Lup an 1) Detection and Quantification Assessment in Natural and Processed Foods. Foods 2019; 8:foods8100513. [PMID: 31635336 PMCID: PMC6835513 DOI: 10.3390/foods8100513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022] Open
Abstract
The increasing prevalence of lupin allergy as a consequence to the functional characteristics of a growing number of sweet lupin-derived foods consumption makes the imperious necessity to develop analytical tools for the detection of allergen proteins in foodstuffs. The current study developed a new highly specific, sensitive and accurate ELISA method to detect, identify and quantify the lupin main allergen β-conglutin (Lup an 1) protein in natural and processed food. The implementation of accurate standards made with recombinant conglutin β1, and an anti-Lup an 1 antibody made from a synthetic peptide commonly shared among β-conglutin isoforms from sweet lupin species was able to detect up to 8.1250 ± 0.1701 ng (0.0406 ± 0.0009 ppm) of Lup an 1. This identified even lupin traces present in food samples which might elicit allergic reactions in sensitized consumers, such as β-conglutin proteins detection and quantification in processed (roasted, fermented, boiled, cooked, pickled, toasted, pasteurized) food, while avoiding cross-reactivity (false positive) with other legumes as peanut, chickpea, lentils, faba bean, and cereals. This study demonstrated that this new ELISA method constitutes a highly sensitive and reliable molecular tool able to detect, identify and quantify Lup an 1. This contributes to a more efficient management of allergens by the food industry, the regulatory agencies and clinicians, thus helping to keep the health safety of the consumers.
Collapse
Affiliation(s)
- Elena Lima-Cabello
- Department of Biochemistry, Cell & Molecular Biology of Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain.
| | - Juan D Alché
- Department of Biochemistry, Cell & Molecular Biology of Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain.
| | - Jose C Jimenez-Lopez
- Department of Biochemistry, Cell & Molecular Biology of Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain.
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6019, Australia.
| |
Collapse
|
41
|
Real Hernandez LM, Gonzalez de Mejia E. Enzymatic Production, Bioactivity, and Bitterness of Chickpea (
Cicer arietinum
) Peptides. Compr Rev Food Sci Food Saf 2019; 18:1913-1946. [DOI: 10.1111/1541-4337.12504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Luis M. Real Hernandez
- Dept. of Food Science and Human Nutrition Univ. of Illinois at Urbana–Champaign Urbana IL 61801 U.S.A
| | - Elvira Gonzalez de Mejia
- Dept. of Food Science and Human Nutrition Univ. of Illinois at Urbana–Champaign Urbana IL 61801 U.S.A
| |
Collapse
|
42
|
Liu C, Guo Y, Cheng Y, Qian H. An investigation on the production and stability of chickpea bean sprout beverage. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- School of Food Science and TechnologyJiangnan University Wuxi China
- International Joint Laboratory on Food SafetyJiangnan University Wuxi China
| | - Yahui Guo
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- School of Food Science and TechnologyJiangnan University Wuxi China
- International Joint Laboratory on Food SafetyJiangnan University Wuxi China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- School of Food Science and TechnologyJiangnan University Wuxi China
- International Joint Laboratory on Food SafetyJiangnan University Wuxi China
| | - He Qian
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- School of Food Science and TechnologyJiangnan University Wuxi China
- International Joint Laboratory on Food SafetyJiangnan University Wuxi China
| |
Collapse
|
43
|
Rosa‐Millán J, Orona‐Padilla JL, Flores‐Moreno VM, Serna‐Saldívar SO. Effect of jet‐cooking and hydrolyses with amylases on the physicochemical and in vitrodigestion performance of whole chickpea flours. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julián Rosa‐Millán
- Centro de Bioingenieria Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Epigmenio Gonzalez 500 Santiago de Querétaro Querétaro Mexico
| | - José Luis Orona‐Padilla
- Centro de Biotecnología FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey Nuevo León Mexico
| | - Víctor Manuel Flores‐Moreno
- Centro de Biotecnología FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey Nuevo León Mexico
| | - Sergio O. Serna‐Saldívar
- Centro de Biotecnología FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey Nuevo León Mexico
| |
Collapse
|
44
|
Bruno J, Konas D, Matthews E, Feldman C, Pinsley K, Kerrihard A. Sprouted and Non-Sprouted Chickpea Flours: Effects on Sensory Traits in Pasta and Antioxidant Capacity. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns/109280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
45
|
de Camargo AC, Favero BT, Morzelle MC, Franchin M, Alvarez-Parrilla E, de la Rosa LA, Geraldi MV, Maróstica Júnior MR, Shahidi F, Schwember AR. Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. Int J Mol Sci 2019; 20:E2644. [PMID: 31146372 PMCID: PMC6600242 DOI: 10.3390/ijms20112644] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023] Open
Abstract
Legume seeds are rich sources of protein, fiber, and minerals. In addition, their phenolic compounds as secondary metabolites render health benefits beyond basic nutrition. Lowering apolipoprotein B secretion from HepG2 cells and decreasing the level of low-density lipoprotein (LDL)-cholesterol oxidation are mechanisms related to the prevention of cardiovascular diseases (CVD). Likewise, low-level chronic inflammation and related disorders of the immune system are clinical predictors of cardiovascular pathology. Furthermore, DNA-damage signaling and repair are crucial pathways to the etiology of human cancers. Along CVD and cancer, the prevalence of obesity and diabetes is constantly increasing. Screening the ability of polyphenols in inactivating digestive enzymes is a good option in pre-clinical studies. In addition, in vivo studies support the role of polyphenols in the prevention and/or management of diabetes and obesity. Soybean, a well-recognized source of phenolic isoflavones, exerts health benefits by decreasing oxidative stress and inflammation related to the above-mentioned chronic ailments. Similar to soybeans, chickpeas are good sources of nutrients and phenolic compounds, especially isoflavones. This review summarizes the potential of chickpea as a substitute for soybean in terms of health beneficial outcomes. Therefore, this contribution may guide the industry in manufacturing functional foods and/or ingredients by using an undervalued feedstock.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Bruno Trevenzoli Favero
- University of Copenhagen, Department of Plant and Environmental Sciences, 2630 Taastrup, Denmark.
| | - Maressa Caldeira Morzelle
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Fernando Correa Avenue, P.O. box 2367, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Marina Vilar Geraldi
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas, SP 13083-862, Brazil.
| | | | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| |
Collapse
|
46
|
Gupta S, Liu C, Sathe SK. Quality of a Chickpea-Based High Protein Snack. J Food Sci 2019; 84:1621-1630. [PMID: 31112300 DOI: 10.1111/1750-3841.14636] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023]
Abstract
A chickpea-based high protein, ready-to-eat snack was prepared using six chickpea types. The chickpea seeds and their corresponding snack products were analyzed for proximate composition, antinutrients, and select quality parameters. Chickpea types had: lipid (4.25% to 6.98%), moisture (6.63% to 9.15%), protein (23.33% to 30.95%), and carbohydrate (54.60% to 60.40%) contents exhibiting significant (P ≤ 0.05) differences. Ash content (1.94% to 2.41%) did not register significant differences. Chickpea types did not show variability in either polypeptide profile or in vitro protein digestibility. In the tested seeds, hemagglutinins and α-amylase inhibitors were not detected, while trypsin (12.73 to 19.58 units/mg sample) and chymotrypsin inhibitors (62.91 to 84.91 units/mg sample) activity varied significantly (P ≤ 0.05). The chickpea-based snack product had intermediate-moisture (23.31% to 27.81%), was low in lipids (5.09% to 5.84%), free of antinutrients, and was a good source of proteins (12.45% to 14.10%), carbohydrates (51.86% to54.96%), and minerals (1.53% to 2.43%). The L* , a* , and b* values of the products ranged from 75.97 to 79.38, 3.46 to 4.75, and 27.65 to 34.65, respectively. The hardness, springiness, and fracturability of the product were 700.89 to 955.23 g, 43.38% to 47.14%, and 5.26 to 5.90 mm, respectively. PRACTICAL APPLICATION: Development of new bean-based products, such as a chickpea-based snack with an overall good nutrition and taste, may play an important role in increasing the consumption of underutilized dry beans in the United States, shown to promote better health and wellness.
Collapse
Affiliation(s)
- Sahil Gupta
- Dept. of Nutrition, Food & Exercise Sciences, Florida State Univ., Tallahassee, FL, 32306-1493, U.S.A
| | - Changqi Liu
- Dept. of Nutrition, Food & Exercise Sciences, Florida State Univ., Tallahassee, FL, 32306-1493, U.S.A
| | - Shridhar K Sathe
- Dept. of Nutrition, Food & Exercise Sciences, Florida State Univ., Tallahassee, FL, 32306-1493, U.S.A
| |
Collapse
|
47
|
Díaz O, Ferreiro T, Rodríguez-Otero JL, Cobos Á. Characterization of Chickpea ( Cicer arietinum L.) Flour Films: Effects of pH and Plasticizer Concentration. Int J Mol Sci 2019; 20:E1246. [PMID: 30871074 PMCID: PMC6429116 DOI: 10.3390/ijms20051246] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/04/2022] Open
Abstract
The use of flours as a material for biopolymer-based film preparation has gained interest due to the fact that they are a natural mixture of compatible macromolecules and due to their low cost. Chickpea flour shows a promising composition for the development of edible films. The aim of this study was to characterize and evaluate the properties of chickpea flour films as affected by pH (7 or 10) and plasticizer concentration (1% or 3% w/v) of film-forming solutions. Water vapor permeability, solubility, color, opacity, mechanical properties, thermal stability, structural changes by Fourier transform infrared analysis, and microstructure of the films were determined. Glycerol content and pH influenced chickpea flour film properties, microstructure and structural organization; interactions were also observed. The 1% glycerol films showed lower water vapor permeability, thickness, radical scavenging capacity, elongation at break and puncture deformation, and higher dry matter content, swelling, opacity, elastic modulus, and tensile and puncture strengths than 3% glycerol films. Film-forming solutions at pH 10 produced films with higher thickness and swelling, and were greener than those from solutions at neutral pH. The changes were more intense in 1% glycerol films. Glycerol concentration and pH could be combined in order to obtain chickpea flour films with different properties according to different food packaging requirements.
Collapse
Affiliation(s)
- Olga Díaz
- Área de Tecnología de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Tania Ferreiro
- Área de Tecnología de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - José Luis Rodríguez-Otero
- Área de Nutrición y Bromatología, Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Ángel Cobos
- Área de Tecnología de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
48
|
Milán‐Noris AK, De la Rosa‐Millan J, Serna‐Saldivar SO. Comparative analysis of techno‐functional properties, starch digestion and protein quality of pigmented chickpea flours. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ada Keila Milán‐Noris
- Laboratorio de Nutracéuticos (Lab 18) Facultad de Ciencias Químico Biológicas Universidad Autónoma de Sinaloa Blv. de las Américas y Josefa Ortiz de Domínguez, S/N Culiacán Sinaloa Mexico
- Tecnologico de Monterrey Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Av. Eugenio Garza Sada 2501 Sur Monterrey N.L. CP 64849 Mexico
| | - Julián De la Rosa‐Millan
- Tecnologico de Monterrey Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Av. Eugenio Garza Sada 2501 Sur Monterrey N.L. CP 64849 Mexico
| | - Sergio Othón Serna‐Saldivar
- Tecnologico de Monterrey Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Av. Eugenio Garza Sada 2501 Sur Monterrey N.L. CP 64849 Mexico
| |
Collapse
|
49
|
Inherent allergic potential of α-dioxygenase fragment: A pathogenesis related protein. Immunobiology 2019; 224:207-219. [DOI: 10.1016/j.imbio.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023]
|
50
|
Shi W, Hou T, Liu W, Guo D, He H. The hypolipidemic effects of peptides prepared from Cicer arietinum in ovariectomized rats and HepG2 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:576-586. [PMID: 29934949 DOI: 10.1002/jsfa.9218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The lack of estrogen in postmenopausal women is a key risk factor for disorders of lipid metabolism and for obesity. Except in cases where estrogen replacement therapy (ERT) is being used, chickpea peptides (ChPs) may be a potential candidate for treating hyperlipidemia. RESULTS In ovariectomized rats model, ChPs were found to decrease body weight, adipose tissue size, total cholesterol (TC), total triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and the atherogenic index (AI) in serum and liver TC and TG. Serum high-density lipoprotein cholesterol (HDL-C), bile acids in liver and feces, fecal TC and TG were observed to increase significantly (P < 0.05). ChPs play a role in inhibiting the activities of fatty acid synthetase (FAS) and HMG-CoA reductase (HMGR). The expression of peroxisome proliferator-activated receptors (PPAR)γ and sterol regulatory element-binding protein (SREBP)-1c were downregulated and the expression of liver X receptor (LXR) α, estrogen receptor(ER)α and ERβ were upregulated by ChPs. In HepG2 cell experiments, the cellular TC levels decreased and the uptake of NBD-cholesterol increased significantly after treatment with Mw < 1 kDa and Mw < 5 kDa ChPs fractions. Val-Phe-Val-Arg-Asn (VFVRN) could inhibit TC biosynthesis by decreasing the expression of HMGR. CONCLUSION We demonstrated that ChPs could effectively regulate lipid metabolism disorders and restrain obesity caused by estrogen deficiency. Val-Phe-Val-Arg-Asn identified from ChPs could reduce the expression of HMGR to inhibit cholesterol biosynthesis. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Weiwei Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|