1
|
Chen Q, Mueed A, Zhu L, Deng Z, Peng H, Li H, Zhang B. HPLC-QQQ-MS/MS-based authentication and determination of free and bound sialic acids content in human, bovine, sheep, goat milk, and infant formula. J Food Sci 2024; 89:4178-4191. [PMID: 38847763 DOI: 10.1111/1750-3841.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
An accurate method for qualitative and quantitative analysis of lipid-bound (LB), protein-bound (PB), oligosaccharides-bound, and free sialic acids in milk was developed by using high-performance liquid chromatography -triple quadrupole-tandem mass spectrometer. The profile of free and bound sialic acids in milk (human, bovine, goat, and sheep) and infant formula (IF) was examined in the present study. Human milk contains only N-acetylneuraminic acid (Neu5Ac) and was mainly present in the form of oligosaccharide-bound. The content of total Neu5Ac (T-Neu5Ac), free and bound Neu5Ac in human milk decreased with the prolongation of lactation. The most intriguing finding was the increase in the proportion of PB and LB sialic acids. The sialic acids in bovine and sheep milk were mainly PB and oligosaccharides-bound Neu5Ac. T-Neu5Ac in goat milk (GM) was 67.44-89.72 µg/mL and was mainly PB Neu5Ac, but total N-glycolylneuraminic acid (T-Neu5Gc) content of GM can be as high as 100.01 µg/mL. The concentration of T-Neu5Gc in sheep and GM was significantly higher than that of bovine milk (BM). T-Neu5Gc content of GM -based IF was 264.86 µg/g, whereas T-Neu5Gc content of BM -based IF was less (2.26-17.01 µg/g). Additionally, our results found that there were also sialic acids in IF ingredients, which were mainly bound with protein and oligosaccharides, primarily derived from desalted whey powder and whey protein concentrate.
Collapse
Affiliation(s)
- Qingyan Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Liu F, van der Molen J, Kuipers F, van Leeuwen SS. Quantitation of bioactive components in infant formulas: Milk oligosaccharides, sialic acids and corticosteroids. Food Res Int 2023; 174:113589. [PMID: 37986455 DOI: 10.1016/j.foodres.2023.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Human milk is considered the optimal food for infants with abundant nutrients and bioactive components, which play key roles in infant health and development. Infant formulas represent appropriate substitutes for human milk. There are many brands of infant formula with different ingredient sources and functions on the market. The present study aims to quantify important bioactive components, i.e., milk oligosaccharides (MOS), sialic acids (Sia) and corticosteroids, in different infant formulas and compare these to human milk. In total, 12 different infant formulas available on the Dutch market were analyzed in this study. The concentrations of MOS and Sia were characterized by UHPLC-FLD and LC-MS, while corticosteroids were determined using established UHPLC-MS/MS methods. Among infant formulas, 15 structures of oligosaccharides were identified, of which 2'-Fucosyllactose (2'FL), 3'-Galactosyllactose (3'GL) and 6'-Galactosyllactose (6́'GL) were found in all infant formulas. The oligosaccharide concentrations differed between milk source and brands and were 3-5 times lower than in human milk. All infant formulas contained Sia, N-acetylneuraminic acid (Neu5Ac) was dominant in bovine milk-based formulas, while N-glycolylneuraminic acid (Neu5Gc) was major in goat milk-based formula. All infant formulas contained corticosteroids, yet, at lower concentrations than human milk. Insight in concentrations of bioactive components in infant formula compared to human milk may give direction to dietary advices and/or novel formula design.
Collapse
Affiliation(s)
- Fan Liu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Jan van der Molen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Sander S van Leeuwen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
3
|
Golden RK, Sutkus LT, Bauer LL, Donovan SM, Dilger RN. Determining the safety and efficacy of dietary supplementation with 3'-sialyllactose or 6'-sialyllactose on growth, tolerance, and brain sialic acid concentrations. Front Nutr 2023; 10:1278804. [PMID: 37927504 PMCID: PMC10620723 DOI: 10.3389/fnut.2023.1278804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Sialylated oligosaccharides, including 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), comprise a large portion of human milk and have been known to support development over the first year of life. While research has investigated the impact of early-life supplementation, longer-term supplementation remains relatively unexplored. Consequently, the following study assesses the impact of supplementation of either 3'-SL or 6'-SL on growth performance, tolerance, and brain sialic acid concentrations. Two-day-old piglets (n = 75) were randomly assigned to a commercial milk replacer ad libitum without or with 3'-SL or 6'-SL (added at 0.2673% on an as-is basis). Daily body weight and feed disappearance were recorded to assess growth performance and tolerance. Pigs were euthanized for sample collection on postnatal day 33 (n = 30) or 61 (n = 33), respectively. Across growth performance, clinical chemistry and hematology, histomorphology, and sialic acid quantification, dietary differences were largely unremarkable at either time-point. Overall, SA was well-tolerated both short-term and long-term.
Collapse
Affiliation(s)
- Rebecca K. Golden
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Loretta T. Sutkus
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Laura L. Bauer
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N. Dilger
- Neuroscience Program, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
4
|
Huang C, Wang R, Wang Y, Liu H, Chen XT, Gu X, Wang HL. Sialic Acid Enhanced the Antistress Capability under Challenging Situations by Increasing Synaptic Transmission. J Nutr 2023; 153:2561-2570. [PMID: 37543214 DOI: 10.1016/j.tjnut.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND In early life, sialic acid (SA) plays a crucial role in neurodevelopment and neuronal function. However, it remains unclear whether and how SA supplementation in early life promotes behavioral response to stress in adolescence. OBJECTIVES This study aimed to examine the effects and mechanisms of SA on the antistress capability under challenging situations. METHODS In this study, C57BL/6 mice were daily supplemented with 1 μL SA solution/g body weight at the dose of 10 mg/kg/d from postnatal day (PND) 5-45. The antistress behaviors, including open field, elevated plus maze, forced swimming test, and tail suspension test, were performed at PND 46, PND 48, PND 50, and PND 52 to detect the antistress ability of SA, respectively. RESULTS Our results showed that SA-treated mice were more active in facing challenging situations. The fiber photometry experiment showed that SA promoted the excitatory neuronal response in the medial prefrontal cortex (mPFC), which was extensively interconnected to stress. Besides, electrophysiological results revealed SA enhanced synaptic transmission rather than neuronal excitability of mPFC excitatory neurons. It was also supported by the increasing spine density of mPFC excitatory neurons. At the molecular amount, the SA elevated the transmitter release-related proteins of mPFC, including Synapsin 1 and vesicular glutamate transporter 1 (VGlut 1). Furthermore, SA supplementation enhanced synaptic transmission mainly by altering the kinetics of synaptic transmission. CONCLUSIONS The SA supplementation enhanced the response capability to stress under challenging situations, and the enhanced synaptic transmission of mPFC excitatory neurons may be the neurological basis of active response under challenging situations. In general, our findings suggested that SA supplementation in early life can promote stress resistance in adolescence.
Collapse
Affiliation(s)
- Chengqing Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| | - Rongrong Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| | - Yi Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haoyu Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiang-Tao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaozhen Gu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
5
|
Ouyang R, Zheng S, Wang X, Li Q, Ding J, Ma X, Zhuo Z, Li Z, Xin Q, Lu X, Zhou L, Ren Z, Mei S, Liu X, Xu G. Crosstalk between Breast Milk N-Acetylneuraminic Acid and Infant Growth in a Gut Microbiota-Dependent Manner. Metabolites 2023; 13:846. [PMID: 37512553 PMCID: PMC10385641 DOI: 10.3390/metabo13070846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The healthy growth of infants during early life is associated with lifelong consequences. Breastfeeding has positive impacts on reducing obesity risk, which is likely due to the varied components of breast milk, such as N-acetylneuraminic acid (Neu5Ac). However, the effect of breast milk Neu5Ac on infant growth has not been well studied. In this study, targeted metabolomic and metagenomic analyses were performed to illustrate the association between breast milk Neu5Ac and infant growth. Results demonstrated that Neu5Ac was significantly abundant in breast milk from infants with low obesity risk in two independent Chinese cohorts. Neu5Ac from breast milk altered infant gut microbiota and bile acid metabolism, resulting in a distinct fecal bile acid profile in the high-Neu5Ac group, which was characterized by reduced levels of primary bile acids and elevated levels of secondary bile acids. Taurodeoxycholic acid 3-sulfate and taurochenodeoxycholic acid 3-sulfate were correlated with high breast milk Neu5Ac and low obesity risk in infants, and their associations with healthy growth were reproduced in mice colonized with infant-derived microbiota. Parabacteroides might be linked to bile acid metabolism and act as a mediator between Neu5Ac and infant growth. These results showed the gut microbiota-dependent crosstalk between breast milk Neu5Ac and infant growth.
Collapse
Affiliation(s)
- Runze Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Juan Ding
- Department of Quality Control, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiao Ma
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihong Zhuo
- Department of Pediatric, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Xin
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| |
Collapse
|
6
|
Muñoz-Provencio D, Yebra MJ. Gut Microbial Sialidases and Their Role in the Metabolism of Human Milk Sialylated Glycans. Int J Mol Sci 2023; 24:9994. [PMID: 37373145 DOI: 10.3390/ijms24129994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sialic acids (SAs) are α-keto-acid sugars with a nine-carbon backbone present at the non-reducing end of human milk oligosaccharides and the glycan moiety of glycoconjugates. SAs displayed on cell surfaces participate in the regulation of many physiologically important cellular and molecular processes, including signaling and adhesion. Additionally, sialyl-oligosaccharides from human milk act as prebiotics in the colon by promoting the settling and proliferation of specific bacteria with SA metabolism capabilities. Sialidases are glycosyl hydrolases that release α-2,3-, α-2,6- and α-2,8-glycosidic linkages of terminal SA residues from oligosaccharides, glycoproteins and glycolipids. The research on sialidases has been traditionally focused on pathogenic microorganisms, where these enzymes are considered virulence factors. There is now a growing interest in sialidases from commensal and probiotic bacteria and their potential transglycosylation activity for the production of functional mimics of human milk oligosaccharides to complement infant formulas. This review provides an overview of exo-alpha-sialidases of bacteria present in the human gastrointestinal tract and some insights into their biological role and biotechnological applications.
Collapse
Affiliation(s)
- Diego Muñoz-Provencio
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - María J Yebra
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
7
|
Feng D, Wang D, Wang D, Zhong Q, Li G, Zhang L, Chen N, Lin X, Miao S. Stable isotope ratio analysis of carbon to distinguish sialic acid from freshly stewed bird's nest products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4386-4392. [PMID: 36281988 DOI: 10.1039/d2ay01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Freshly stewed bird's nest products are easily adulterated with exogenous synthetic sialic acid to enhance the grade of the products and sell at high prices. This paper identifies the carbon stable isotope characteristics of sialic acid from natural and commercially synthetic sources using stable isotope ratio mass spectrometry (IRMS). Specifically, an off-line pretreatment technique combined with on-line LC-IRMS was developed to accurately determine δ13C values of sialic acid in a freshly stewed bird's nest. This method has no obvious isotope fractionation and good reproducibility. EA-IRMS was used to determine the δ13C values of commercial sialic acid. The results showed that the δ13C values of sialic acid from natural and synthetic sources were -29.90% ± 0.42% and -16.26% ± 3.91%, respectively, with distinct carbon stable isotope distribution characteristics. By defining a δ13C threshold value of -28.54% for natural SA, additional commercial SA from a minimum of 10% can be identified. Therefore, δ13C was proposed as a suitable tool for verifying the authenticity of fresh stewed bird's nests on the market.
Collapse
Affiliation(s)
- Di Feng
- Technology Innovation Center of Light Industrial Consumer Goods Quality and Safety, Beijing 100015, China.
- Sinolight Technology Innovation Center Co. Ltd, Beijing 100015, China
- China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Daobing Wang
- Technology Innovation Center of Light Industrial Consumer Goods Quality and Safety, Beijing 100015, China.
- Sinolight Technology Innovation Center Co. Ltd, Beijing 100015, China
| | - Dongliang Wang
- Beijing Xiaoxiandun Biotechnology Co., Ltd., Beijing 100020, China
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Langfang 065700, China
| | - Qiding Zhong
- Technology Innovation Center of Light Industrial Consumer Goods Quality and Safety, Beijing 100015, China.
- Sinolight Technology Innovation Center Co. Ltd, Beijing 100015, China
- China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
- Sinolight Inspection & Certification Co., Ltd., Beijing 100016, China
| | - Guohui Li
- Technology Innovation Center of Light Industrial Consumer Goods Quality and Safety, Beijing 100015, China.
- Sinolight Technology Innovation Center Co. Ltd, Beijing 100015, China
| | - Luoqi Zhang
- Technology Innovation Center of Light Industrial Consumer Goods Quality and Safety, Beijing 100015, China.
- Sinolight Technology Innovation Center Co. Ltd, Beijing 100015, China
| | - Nannan Chen
- Food Industry Promotion Center, Beijing 100015, China
| | - Xiaoxian Lin
- Beijing Xiaoxiandun Biotechnology Co., Ltd., Beijing 100020, China
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Langfang 065700, China
| | - Shu Miao
- Beijing Xiaoxiandun Biotechnology Co., Ltd., Beijing 100020, China
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Langfang 065700, China
| |
Collapse
|
8
|
Jin W, Lu Y, Li C, Zou M, Chen Q, Nan L, Wei M, Wang C, Huang L, Wang Z. Improved Glycoqueuing Strategy Reveals Novel α2,3-Linked Di-/Tri-Sialylated Oligosaccharide Isomers in Human Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13996-14004. [PMID: 36278935 DOI: 10.1021/acs.jafc.2c04499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sialylated human milk oligosaccharides (SHMOs) possess unique biological activities. Qualitative and quantitative analyses of SHMOs at different lactation stages are limited by interference from neutral oligosaccharides, glycan structural complexity, and low detection sensitivity. Herein, our previously developed glycoqueuing strategy was improved and applied to enable an isomer-specific quantitative comparison of SHMOs between colostrum milk (CM) and mature milk (MM). A total of 49 putative structures were determined, including 1 α2,6-linked and 13 α2,3-linked isomers separated from seven newly discovered SHMO compositions. The content of most oligosaccharides was more than 50% lower in MM than in CM, and α2,3-sialylation was observed in 43.74% of SHMOs from CM and 22.95% of SHMOs from MM. Finally, the fucosylation level of the SHMOs increased from 16.45 to 22.28% with prolonged lactation. These findings provide the basis for further studies on the structure-activity relationship of SHMOs and a blueprint to improve infant formula.
Collapse
Affiliation(s)
- Wanjun Jin
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
- College of Life Science, Yuncheng University, Yuncheng 044000, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Cheng Li
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Meiyi Zou
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qinghui Chen
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Lijing Nan
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Ming Wei
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Chengjian Wang
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
9
|
Wang X, Li Z, Li W, Li C, Liu J, Lu Y, Fan J, Ren H, Huang L, Wang Z. Gestational diabetes mellitus affects the fucosylation and sialylation levels of N/O-glycans in human milk glycoproteins. Carbohydr Polym 2022; 301:120312. [DOI: 10.1016/j.carbpol.2022.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
10
|
Liu F, Simpson AB, D'Costa E, Bunn FS, van Leeuwen SS. Sialic acid, the secret gift for the brain. Crit Rev Food Sci Nutr 2022; 63:9875-9894. [PMID: 35531941 DOI: 10.1080/10408398.2022.2072270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The human brain grows rapidly in early life which requires adequate nutrition. Human milk provides optimal nutrition for the developing brain, and breastfeeding significantly improves the cognition development of infants. These benefits have been largely attributed to human milk oligosaccharides (HMOS), associated with sialic acid (Sia). Subsequently, sialylated HMOS present a vital source of exogenous Sia to infants. Sialic acid is a key molecule essential for proper development of gangliosides, and therefore critical in brain development and function. Recent pre-clinical studies suggest dietary supplementation with Sia or sialylated oligosaccharides enhances intelligence and cognition performance in early and later life. Furthermore, emerging evidence suggests the involvement of Sia in brain homeostasis and disbalance correlates with common pathologies such as Alzheimer's disease (AD). Therefore, this review will discuss early brain health and development and the role of Sia in this process. Additionally, studies associating breastfeeding and specific HMOS to benefits in cognitive development are critically assessed. Furthermore, the review will assess studies implying the potential role of HMOS and microbiota in brain development via the gut-brain axis. Finally, the review will summarize recent advances regarding the role of Sia in neurodegenerative disease in later life and potential roles of dietary Sia sources.
Collapse
Affiliation(s)
- Fan Liu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna Bella Simpson
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Esmée D'Costa
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fanny Sophia Bunn
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander S van Leeuwen
- Department of Laboratory Medicine, Sector Human Nutrition and Health, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Bian D, Wang X, Huang J, Chen X, Li H. Maternal Neu5Ac Supplementation During Pregnancy Improves Offspring Learning and Memory Ability in Rats. Front Nutr 2021; 8:641027. [PMID: 34722600 PMCID: PMC8548574 DOI: 10.3389/fnut.2021.641027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Sialic acids are postulated to improve cognitive abilities. This study aimed to evaluate the effects of sialic acid on behavior when administered in a free form as N-acetylneuraminic acid (Neu5Ac) to pregnant mothers or rat pups. The experiment involved 40 male 21-day-old rat pups and 20 15-day-pregnant rats that were randomized into four Neu5Ac treated groups: 0 (control), or 10, 20, and 40 mg/kg. Morris water maze test and shuttle box test were performed on the rat pups and maternal Neu5Ac-supplemented offspring on day 100 to evaluate their cognitive performance. The Neu5Ac levels in the cerebral cortex and hippocampus were tested with high-performance liquid chromatography-fluorescence detection (HPLC-FLD). We found that the maternal Neu5Ac-supplemented offspring showed better cognitive performance, less escape latency in the Morris water maze test, and less electric shock time shuttle box test, compared with the untreated control. In the meantime, the Neu5Ac level in the cerebral cortex and hippocampus of the offspring was higher in the Neu5Ac treatment group than that in the untreated control group. However, no significant differences were observed between rat pups in the treated and the untreated control groups in terms of cognitive performance and Neu5Ac content in the cerebral cortex and hippocampus. Maternal Neu5Ac supplementation during pregnancy could effectively promote the brain Neu5Ac content of the offspring and enhance their cognitive performance, but Neu5Ac had no such effect on rat pups while directly supplemented with Neu5Ac.
Collapse
Affiliation(s)
- DongSheng Bian
- School of Public Health, Xiamen University, Xiamen, China.,Department of Clinical Nutrition, School of Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xinyue Wang
- Department of Clinical Nutrition, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Jiale Huang
- School of Public Health, Xiamen University, Xiamen, China
| | - Xiaoxuan Chen
- School of Public Health, Xiamen University, Xiamen, China
| | - Hongwei Li
- School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Ling AJW, Chang LS, Babji AS, Latip J, Koketsu M, Lim SJ. Review of sialic acid's biochemistry, sources, extraction and functions with special reference to edible bird's nest. Food Chem 2021; 367:130755. [PMID: 34390910 DOI: 10.1016/j.foodchem.2021.130755] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Sialic acids are a group of nine-carbon α-keto acids. Sialic acid exists in more than 50 forms, with the natural types discovered as N-acetylneuraminic acid (Neu5Ac), deaminoneuraminic acid (2-keto-3-deoxy-nonulononic acid or Kdn), and N-glycolylneuraminic acid (Neu5Gc). Sialic acid level varies depending on the source, where edible bird's nest (EBN), predominantly Neu5Ac, is among the major sources of sialic acid. Due to its high nutritive value and complexity, sialic acid has been studied extensively through acid, aqueous, and enzymatic extraction. Although detection by chromatographic methods or mass spectrometry is common, the isolation and recovery work remained limited. Sialic acid is well-recognised for its bioactivities, including brain and cognition development, immune-enhancing, anti-hypertensive, anticancer, and skin whitening properties. Therefore, sialic acid can be used as a functional ingredient in the various industries. This paper reviews the current trend in the biochemistry, sources, extraction, and functions of sialic acids with special reference to EBN.
Collapse
Affiliation(s)
- Alvin Jin Wei Ling
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Lee Sin Chang
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Abdul Salam Babji
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Centre for Innovation and Technology Transfer (INOVASI@UKM), Chancellery, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Jalifah Latip
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
13
|
Tolenaars L, Romanazzi D, Carpenter E, Gallier S, Prosser CG. Minor dietary components intrinsic to goat milk and goat milk formulas. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Hobbs M, Jahan M, Ghorashi SA, Wang B. Current Perspective of Sialylated Milk Oligosaccharides in Mammalian Milk: Implications for Brain and Gut Health of Newborns. Foods 2021; 10:foods10020473. [PMID: 33669968 PMCID: PMC7924844 DOI: 10.3390/foods10020473] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most abundant solid component after lactose and lipids of breast milk. All mammal milk contains soluble oligosaccharides, including neutral milk oligosaccharides (NMOs) without sialic acid (Sia) moieties and acidic oligosaccharides or sialylated milk oligosaccharides (SMOs) with Sia residues at the end of sugar chains. The structural, biological diversity, and concentration of milk oligosaccharides in mammalian milk are significantly different among species. HMOs have multiple health benefits for newborns, including development of immune system, modification of the intestinal microbiota, anti-adhesive effect against pathogens, and brain development. Most infant formulas lack oligosaccharides which resemble HMOs. Formula-fed infants perform poorly across physical and psychological wellbeing measures and suffer health disadvantages compared to breast-fed infants due to the differences in the nutritional composition of breast milk and infant formula. Of these milk oligosaccharides, SMOs are coming to the forefront of research due to the beneficial nature of Sia. This review aims to critically discuss the current state of knowledge of the biology and role of SMOs in human milk, infant formula milks, and milk from several other species on gut and brain health of human and animal offspring.
Collapse
Affiliation(s)
- Madalyn Hobbs
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
| | - Marefa Jahan
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Seyed A. Ghorashi
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
15
|
Jin W, Li C, Zou M, Lu Y, Wei M, Nan L, Jia Y, Wang C, Huang L, Wang Z. A preliminary study on isomer-specific quantification of sialylated N-glycans released from whey glycoproteins in human colostrum and mature milk using a glycoqueuing strategy. Food Chem 2020; 339:127866. [PMID: 32858386 DOI: 10.1016/j.foodchem.2020.127866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 11/19/2022]
Abstract
Sialylated N-glycans are an integral component of whey proteins in human milk and play an irreplaceable role in infant growth and development. Currently, there are few studies on quantitative comparison of sialylated N-glycans in milk obtained at different lactation stages. Here, a preliminary isomer-specific quantification of whey sialylated N-glycans of human colostrum milk (CM) and mature milk (MM) was performed by using our recently developed glycoqueuing strategy. Such a preliminary comparison revealed that the whey sialylated N-glycan content was 86.4% lower in MM than in CM. Twenty-three α2,6-linked sialylated N-glycan isomers were detected with no α2,3-linked isomer observed. For the first time, three mono-sialylated and four bi-sialylated glycan isomers were reported. With the prolongation of lactation, the relative abundance of mono-sialylated glycans increased, whilst the relative abundance of bi-sialylated glycans decreased significantly. These findings contribute to the understanding of the structure-function relationship of sialylated N-glycans in the human whey fraction.
Collapse
Affiliation(s)
- Wanjun Jin
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Cheng Li
- Shannxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Meiyi Zou
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Yu Lu
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Ming Wei
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Lijing Nan
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Yue Jia
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Chengjian Wang
- Shannxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- College of Life Science, Northwest University, Xi'an 710069, China; Shannxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- College of Life Science, Northwest University, Xi'an 710069, China; Shannxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
16
|
Effects of sialylated lactulose on the mouse intestinal microbiome using Illumina high-throughput sequencing. Appl Microbiol Biotechnol 2019; 103:9067-9076. [DOI: 10.1007/s00253-019-10169-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/12/2019] [Accepted: 10/08/2019] [Indexed: 01/19/2023]
|
17
|
Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Biotechnol Adv 2019; 37:787-800. [DOI: 10.1016/j.biotechadv.2019.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
|
18
|
Song Y, Wang X, Zhang J. Enhancement of bioconversion gangliosides to monosialotetrahexosylganglioside by in situ sialic acid removal and recovery. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yansong Song
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xuedong Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jianguo Zhang
- Institute of Food Science and Engineering, School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China
| |
Collapse
|
19
|
Zhou Y, Huangfu H, Yang J, Dong H, liu L, Xu M. Potentiometric analysis of sialic acid with a flexible carbon cloth based on boronate affinity and molecularly imprinted polymers. Analyst 2019; 144:6432-6437. [DOI: 10.1039/c9an01600g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A potentiometric sensor for sialic acid detection was designed based on a boronic acid-containing MIP modified carbon cloth electrode.
Collapse
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| | - Huijie Huangfu
- Henan Key Laboratory of Biomolecular Recognition and Sensing
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| | - Jie Yang
- Henan Key Laboratory of Biomolecular Recognition and Sensing
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| | - Lantao liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| |
Collapse
|
20
|
Wylie AD, Zandberg WF. Quantitation of Sialic Acids in Infant Formulas by Liquid Chromatography-Mass Spectrometry: An Assessment of Different Protein Sources and Discovery of New Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8114-8123. [PMID: 29730930 DOI: 10.1021/acs.jafc.8b01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycosidically bound, but not free, dietary sialic acids are used for the biosynthesis of new glycoconjugates in humans, making the quantitation of these two forms in infant food sources important, as in neonates the demand for sialic acid may exceed the de novo biosynthetic supply. Here, a rapid high-performance liquid chromatography-mass spectrometry method was developed to identify and quantitate glycosidically bound and free sialic acids in infant formulas. The sialic acid contents of eight commercially available infant formulas with varying protein source or manufacturer were investigated. The formula protein sources (whey vs casein) did not have a large impact on the ratios of free to bound sialic acids, nor did protein hydrolysis or sample form (solid vs liquid). Hydrolyzed bovine whey protein-based formulas were found to contain the highest amount of the most abundant human sialic acid, 5- N-acetylneuraminic acid (Neu5Ac). O-Acetylated Neu5Ac was quantified in all formulas tested and, for the first time, 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (Kdn) was detected in several infant formulas.
Collapse
Affiliation(s)
- Aaron D Wylie
- The University of British Columbia , Chemistry Department, Charles E. Fipke Centre for Innovative Research , 3247 University Way , Kelowna , British Columbia , V1V 1V7 , Canada
| | - Wesley F Zandberg
- The University of British Columbia , Chemistry Department, Charles E. Fipke Centre for Innovative Research , 3247 University Way , Kelowna , British Columbia , V1V 1V7 , Canada
| |
Collapse
|
21
|
Hamdan IJA, Sanchez-Siles LM, Garcia-Llatas G, Lagarda MJ. Sterols in Infant Formulas: A Bioaccessibility Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1377-1385. [PMID: 29369630 DOI: 10.1021/acs.jafc.7b04635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The design of infant formulas (IFs) seeks to resemble human milk (HM) composition and functionality. The fat sources used usually comprise vegetable oil blends to mimic the fatty acid composition of HM and introduce changes in the animal/plant sterol ratio. In contrast, the use of milk fat globule membrane (MFGM)-rich ingredients could improve this aspect by increasing the ratio. The present study evaluates the bioaccessibility (BA) of sterols (cholesterol, desmosterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol) in three IFs (with or without MFGM) using an in vitro digestion method simulating infant conditions. Analytical parameters confirmed the suitability of the method for all of these sterols. Results showed the presence of MFGM to increase cholesterol content (6-7 vs 2 mg/100 mL), this being the most bioaccessible sterol in the IFs. Although the BA of cholesterol was reduced in MFGM-enriched IF (65.6-80.4% vs 99.7%), the intake of bioaccessible cholesterol from these IFs was higher.
Collapse
Affiliation(s)
- Islam J A Hamdan
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avenida Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Luis Manuel Sanchez-Siles
- R&D Department, Institute of Infant Nutrition, Hero Group , Avenida Murcia 1, Alcantarilla , Murcia 30820, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avenida Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - María Jesús Lagarda
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avenida Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| |
Collapse
|