1
|
Pan X, Zong Q, Liu C, Wu H, Fu B, Wang Y, Sun W, Zhai Y. Konjac glucomannan exerts regulatory effects on macrophages and its applications in biomedical engineering. Carbohydr Polym 2024; 345:122571. [PMID: 39227106 DOI: 10.1016/j.carbpol.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Konjac glucomannan (KGM) molecular chains contain a small amount of acetyl groups and a large number of hydroxyl groups, thereby exhibiting exceptional water retention and gel-forming properties. To meet diverse requirements, KGM undergoes modification processes such as oxidation, acetylation, grafting, and cationization, which reduce its viscosity, enhance its mechanical strength, and improve its water solubility. Researchers have found that KGM and its derivatives can regulate the polarization of macrophages, inducing their transformation into classically activated M1-type macrophages or alternatively activated M2-type macrophages, and even facilitating the interconversion between M1 and M2 phenotypes. Concurrently, the modulation of macrophage polarization states holds significant importance for chronic wound healing, inflammatory bowel disease (IBD), antitumor therapy, tissue engineering scaffolds, oral vaccines, pulmonary delivery, and probiotics. Therefore, KGM has the advantages of both immunomodulatory effects (biological activity) and gel-forming properties (physicochemical properties), giving it significant advantages in a variety of biomedical engineering applications.
Collapse
Affiliation(s)
- Xi Pan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou 570311, China
| | - Huiying Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Fu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Li J, Liu H, Fu H, Yang Y, Wu Z. An Isofibrous Diet with Fiber Konjac Glucomannan Ameliorates Salmonella typhimurium-Induced Colonic Injury by Regulating TLR2-NF-κB Signaling and Intestinal Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13415-13430. [PMID: 38824655 DOI: 10.1021/acs.jafc.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
This study aimed to investigate the hypothesis that dietary konjac glucomannan (KGM) could alleviate Salmonella typhimurium-induced colitis by modulating intestinal microbiota. Mice were fed an isocaloric and isofibrous diet supplemented with either 7% KGM or cellulose and were treated with 5 × 108 CFU of S. typhimurium. The results showed that KGM had an average molecular weight of 936 kDa and predominantly consisted of mannose and glucose at a molar ratio of 1:1.22. In vivo studies demonstrated that dietary KGM effectively mitigated colonic lesions, oxidative stress, disruption of tight junction protein 2 and occludin, and the inflammatory response induced by S. typhimurium. Moreover, KGM administration alleviated the dramatic upregulation of toll-like receptor 2 (TLR2) and phosphonuclear factor κB (NF-κB) protein abundance, induced by Salmonella treatment. Notably, dietary KGM restored the reduced Muribaculaceae and Lactobacillus abundance and increased the abundance of Blautia and Salmonella in S. typhimurium-infected mice. Spearman correlation analysis revealed that the gut microbiota improved by KGM contribute to inhibit inflammation and oxidative stress. These results demonstrated the protective effects of dietary KGM against colitis by modulating the gut microbiota and the TLR2-NF-κB signaling pathway in response to Salmonella infection.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, P. R. China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
3
|
Pason P, Tachaapaikoon C, Suyama W, Waeonukul R, Shao R, Wongwattanakul M, Limpaiboon T, Chonanant C, Ngernyuang N. Anticancer and anti-angiogenic activities of mannooligosaccharides extracted from coconut meal on colorectal carcinoma cells in vitro. Toxicol Rep 2024; 12:82-90. [PMID: 38259721 PMCID: PMC10801218 DOI: 10.1016/j.toxrep.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common malignancies, though there are no effective therapeutic regimens at present. This study aimed to investigate the inhibitory effects of mannooligosaccharides extracted from coconut meal (CMOSs) on the proliferation and migration of human colorectal cancer HCT116 cells in vitro. The results showed that CMOSs exhibited significant inhibitory activity against HCT116 cell proliferation in a concentration-dependent manner with less cytotoxic effects on the Vero normal cells. CMOSs displayed the ability to increase the activation of caspase-8, -9, and -3/7, as well as the generation of reactive oxygen species (ROS). Moreover, CMOSs suppressed HCT116 cell migration in vitro. Interestingly, treatment of human microvascular endothelial cells (HMVECs) with CMOSs resulted in the inhibition of cell proliferation, cell migration, and capillary-like tube formation, suggesting its anti-vascular angiogenesis. In summary, the results of this study indicate that CMOSs could be a valuable therapeutic candidate for CRC treatment.
Collapse
Affiliation(s)
- Patthra Pason
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Waralee Suyama
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rong Shao
- Shanghai Key Laboratory for Gallbladder Cancer-Related Gastroenterological Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200089, China
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chirapond Chonanant
- Department of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi 20131, Thailand
| | - Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
4
|
Song X, Li J, Chang Y, Mei X, Luan J, Jiang X, Xue C. The Discovery of a Multidomain Mannanase Containing Dual-Catalytic Domain of the Same Activity: Biochemical Properties and Synergistic Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10451-10458. [PMID: 38632679 DOI: 10.1021/acs.jafc.3c09611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
In recent years, the wide application of mannan has driven the demand for the exploration of mannanase. As one of the main components of hemicellulose, mannan is an important polysaccharide that ruminants need to degrade and utilize, making rumen a rich source of mannanases. In this study, gene mining of mannanases was performed using bioinformatics, and potential dual-catalytic domain mannanases were heterologously expressed to analyze their properties. The hydrolysis pattern and enzymatic products were identified by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). A dual-catalytic domain mannanase Man26/5 with the same function as the substrate was successfully mined from the genome of cattle rumen microbiota. Compared to the single-catalytic domain, its higher thermal stability (≤50 °C) and catalytic efficiency confirm the synergistic effect between the two catalytic domains. It exhibited a unique "crab-like" structure where the CBM located in the middle is responsible for binding, and the catalytic domains at both ends are responsible for cutting. The exploration of its multidomain structure and synergistic patterns could provide a reference for the artificial construction and molecular modification of enzymes.
Collapse
Affiliation(s)
- Xiao Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jiajing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xuanwei Mei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jiayi Luan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xiaoxiao Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
5
|
Wu Z, Zhang R, Wang J, Li T, Zhang G, Zhang C, Ye H, Zeng X. Characteristics of exopolysaccharides from Paecilomyces hepiali and their simulated digestion and fermentation in vitro by human intestinal microbiota. Int J Biol Macromol 2024; 266:131198. [PMID: 38552700 DOI: 10.1016/j.ijbiomac.2024.131198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The metabolic process of polysaccharides in gastrointestinal digestions and the effects of the resulting carbohydrates on the composition of gut microbes are important to explore their prebiotic properties. Therefore, the purpose of this study was to investigate the simulated digestion and fecal fermentation in vitro of three fractions (PHEPSs-1, PHEPSs-2 and PHEPSs-3) purified from the crude exopolysaccharides of Paecilomyces hepiali HN1 (PHEPSs) and to explore the potential prebiotic mechanisms. The three purified fractions were characterized by HPLC, UV, FT-IR, SEM and AFM, and they were all of galactoglucomannan family with molecular weight of 178, 232 and 119 kDa, respectively. They could resist the simulated gastrointestinal digestions, but they were metabolized in fecal fermentation in vitro. Furthermore, the mannose in PHEPSs showed a higher utilization rate than that of glucose or galactose. The proliferation effects of PHEPSs on Bifidobacterium and Lactobacillus were weaker significantly than those of fructooligosaccharides before 12 h of fecal fermentation, but stronger after 24 h of fecal fermentation. Meanwhile, higher levels of short-chain fatty acids were found in PHEPSs groups when the fecal fermentation extended to 36 h. Therefore, PHEPSs are expected to have a potent gut healthy activity and can be explored as functional food ingredients.
Collapse
Affiliation(s)
- Zhongwei Wu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Rongxian Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Jie Wang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Tenglong Li
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Guang Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Chaohui Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Lin Y, Zhang L, Li X, Zhai C, Liu J, Zhang R. Effect and characterization of konjac glucomannan on xanthan gum/κ-carrageenan/agar system. Int J Biol Macromol 2024; 257:128639. [PMID: 38056153 DOI: 10.1016/j.ijbiomac.2023.128639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
A mixed polysaccharide system is an important strategy to improve the performance of a single polysaccharide. Herein, quaternary polysaccharide gels were prepared by konjac glucomannan (KGM), xanthan gum (XG), κ-carrageenan (κ-CA), and agar (AR). The effects of KGM were evaluated by combining water holding capacity (WHC), rheological analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and texture profile analysis (TPA). More KGM gradually increased the springiness of the compounded gels. WHC increased and then decreased with the addition of KGM, performing best at KGM4 (KGM: κ-CA:XG:AR = 2:2:1:2). Rheological analysis showed that the compounded gels exhibited a pseudoplastic characteristic of shear thinning, KGM endowed the gel with a stronger shear thinning behavior and improved the solid-like nature of the gels at high temperatures. The thermal stability of the composite gel was improved by the participation of KGM. FTIR analysis showed that the interactions were mainly related to intermolecular hydrogen bonds and acetyl groups. The microscopic morphology of KGM4 was significantly continuous, smooth, and compact, exhibiting the best practical performance and taking the maximum advantage.
Collapse
Affiliation(s)
- Yicun Lin
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ling Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xinxin Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuang Zhai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiaming Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ran Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
8
|
Zeng M, van Pijkeren JP, Pan X. Gluco-oligosaccharides as potential prebiotics: Synthesis, purification, structural characterization, and evaluation of prebiotic effect. Compr Rev Food Sci Food Saf 2023; 22:2611-2651. [PMID: 37073416 DOI: 10.1111/1541-4337.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Prebiotics have long been used to modulate the gut microbiota and improve host health. Most established prebiotics are nondigestible carbohydrates, especially short-chain oligosaccharides. Recently, gluco-oligosaccharides (GlcOS) with 2-10 glucose residues and one or more O-glycosidic linkage(s) have been found to exert prebiotic potentials (not fully established prebiotics) because of their selective fermentation by beneficial gut bacteria. However, the prebiotic effects (non-digestibility, selective fermentability, and potential health effects) of GlcOS are highly variable due to their complex structure originating from different synthesis processes. The relationship between GlcOS structure and their potential prebiotic effects has not been fully understood. To date, a comprehensive summary of the knowledge of GlcOS is still missing. Therefore, this review provides an overview of GlcOS as potential prebiotics, covering their synthesis, purification, structural characterization, and prebiotic effect evaluation. First, GlcOS with different structures are introduced. Then, the enzymatic and chemical processes for GlcOS synthesis are critically reviewed, including reaction mechanisms, substrates, catalysts, the structures of resultant GlcOS, and the synthetic performance (yield and selectivity). Industrial separation techniques for GlcOS purification and structural characterization methods are discussed in detail. Finally, in vitro and in vivo studies to evaluate the non-digestibility, selective fermentability, and associated health effects of different GlcOS are extensively reviewed with a special focus on the GlcOS structure-function relationship.
Collapse
Affiliation(s)
- Meijun Zeng
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Zheng F, Basit A, Wang J, Zhuang H, Chen J, Zhang J. Biochemical analyses of a novel acidophilic GH5 β-mannanase from Trichoderma asperellum ND-1 and its application in mannooligosaccharides production from galactomannans. Front Microbiol 2023; 14:1191553. [PMID: 37362936 PMCID: PMC10288326 DOI: 10.3389/fmicb.2023.1191553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, an acidophilic GH5 β-mannanase (TaMan5) from Trichoderma asperellum ND-1 was efficiently expressed in Pichia pastoris (a 2.0-fold increase, 67.5 ± 1.95 U/mL). TaMan5 displayed the highest specificity toward locust bean gum (Km = 1.34 mg/mL, Vmax = 749.14 μmol/min/mg) at pH 4.0 and 65°C. Furthermore, TaMan5 displayed remarkable tolerance to acidic environments, retaining over 80% of its original activity at pH 3.0-5.0. The activity of TaMan5 was remarkably decreased by Cu2+, Mn2+, and SDS, while Fe2+/Fe3+ improved the enzyme activity. A thin-layer chromatography (TLC) analysis of the action model showed that TaMan5 could rapidly degrade mannan/MOS into mannobiose without mannose via hydrolysis action as well as transglycosylation. Site-directed mutagenesis results suggested that Glu205, Glu313, and Asp357 of TaMan5 are crucial catalytic residues, with Asp152 playing an auxiliary function. Additionally, TaMan5 and commercial α-galactosidase displayed a remarkable synergistic effect on the degradation of galactomannans. This study provided a novel β-mannanase with ideal characteristics and can be considered a potential candidate for the production of bioactive polysaccharide mannobiose.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Huan Zhuang
- Department of ENT and Head and Neck Surgery, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
10
|
Liu H, Xing Y, Wang Y, Ren X, Zhang D, Dai J, Xiu Z, Yu S, Dong Y. Dendrobium officinale Polysaccharide Prevents Diabetes via the Regulation of Gut Microbiota in Prediabetic Mice. Foods 2023; 12:2310. [PMID: 37372523 DOI: 10.3390/foods12122310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Dendrobium officinale polysaccharide (DOP), which serves as a prebiotic, exhibits a variety of biological activities, including hypoglycemic activities. However, the effects of DOP on diabetes prevention and its hypoglycemic mechanisms are still unclear. In this study, the effects of DOP treatment on the prediabetic mice model were studied and the mechanism was investigated. The results showed that 200 mg/kg/d of DOP reduced the relative risk of type 2 diabetes mellitus (T2DM) from prediabetes by 63.7%. Meanwhile, DOP decreased the level of LPS and inhibited the expression of TLR4 by regulating the composition of the gut microbiota, consequently relieving the inflammation and alleviating insulin resistance. In addition, DOP increased the abundance of SCFA (short chain fatty acid)-producing bacteria in the intestine, increased the levels of intestinal SCFAs, promoted the expression of short-chain fatty acid receptors FFAR2/FFAR3, and increased the secretion of the intestinal hormones GLP-1 and PYY, which helped to repair islet damage, suppress appetite, and improve insulin resistance. Our results suggested that DOP is a promising functional food supplement for the prevention of T2DM.
Collapse
Affiliation(s)
- Haodong Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Xing
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yinbo Wang
- Dianxi Research Institute, Dalian University of Technology, Baoshan 678000, China
| | - Xinxiu Ren
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Danyang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jianying Dai
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Dianxi Research Institute, Dalian University of Technology, Baoshan 678000, China
| | - Shiqiang Yu
- Dianxi Research Institute, Dalian University of Technology, Baoshan 678000, China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Dianxi Research Institute, Dalian University of Technology, Baoshan 678000, China
| |
Collapse
|
11
|
Jin Y, Lu Z. Preparation of carrageenan/konjac glucomannan/graphene oxide nanocomposite films with high mechanical and antistatic properties for food packaging. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
Tailor R, Medara N, Chopra A, Swarnamali H, Eberhard J, Jayasinghe TN. Role of prebiotic dietary fiber in periodontal disease: A systematic review of animal studies. Front Nutr 2023; 10:1130153. [PMID: 36998913 PMCID: PMC10043215 DOI: 10.3389/fnut.2023.1130153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundPeriodontitis is a chronic inflammatory condition affecting the supporting structures of a tooth in the oral cavity. The relationship between dietary fiber and periodontitis is poorly understood. The objective of this systematic review is to investigate if an intake of dietary fiber modulates periodontal disease in animal models and any concomitant effects on systemic inflammation, microbiota and their metabolites.MethodsAnimal studies using periodontitis models with any form of fiber intervention were included. Studies with comorbidities that were mutually inclusive with periodontitis and animals with physiological conditions were excluded. Search strategy with MeSH and free-text search terms were finalized and performed on the 22nd of September 2021.CINAHL Complete, EMBASE, MEDLINE, SciVerse Scopus® and Web of Science Core Collection databases were used to identify studies. SYRCLE’s risk of bias tool and CAMARADES were used for quality assessment. Results were synthesized utilizing Covidence© web-based platform software to remove duplicates, and the remaining studies were manually filtered.ResultsA total of 7,141 articles were retrieved from all databases. Out of 24 full-text articles assessed for eligibility, four studies (n = 4) were included. Four studies involved the use of β-(1,3/1,6)-glucan (n = 3) and mannan oligosaccharide (n = 1) at differing dosages for different study durations. All studies utilized a ligature-induced model of periodontitis in rats, either Wistar (n = 3) or Sprague–Dawley (n = 1). A dose-dependent relationship between the increased fiber intake and decrease in alveolar bone loss and pro-inflammatory markers was observed.ConclusionThe number of included studies is limited and narrow in scope. They highlight the importance of pre-clinical trials in this field with broader dietary fiber intervention groups before proceeding to clinical trials. The use of dietary fiber as an intervention shows promise in the reduction of inflammatory conditions like periodontitis. However, further research is required to delineate the relationship between diet and its effects on microbiota and their metabolites such as short chain fatty acids in animal models of periodontitis.
Collapse
Affiliation(s)
- Rohan Tailor
- The Charles Perkins Centre, The University of Sydney, Darlington, NSW, Australia
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Nidhi Medara
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hasinthi Swarnamali
- Health and Wellness Unit, Faculty of Medicine, University of Colombo, Colombo, Western Province, Sri Lanka
| | - Joerg Eberhard
- The Charles Perkins Centre, The University of Sydney, Darlington, NSW, Australia
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Thilini N. Jayasinghe
- The Charles Perkins Centre, The University of Sydney, Darlington, NSW, Australia
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
- *Correspondence: Thilini N. Jayasinghe,
| |
Collapse
|
13
|
Advances and challenges in interaction between heteroglycans and Bifidobacterium: Utilization strategies, intestinal health and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
14
|
Characteristics and bioactive properties of agro-waste and yeast derived manno-oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Reid JESJ, Yakubov GE, Lawrence SJ. Non-starch polysaccharides in beer and brewing: A review of their occurrence and significance. Crit Rev Food Sci Nutr 2022; 64:837-851. [PMID: 36004513 DOI: 10.1080/10408398.2022.2109585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has become apparent that beer (both alcoholic and nonalcoholic) contains appreciable amounts of non-starch polysaccharides, a broad subgroup of dietary fiber. It is worth noting that the occurrence of non-starch polysaccharides in alcoholic beer does not imply this should be consumed as a source of nutrition. But the popularity of nonalcoholic beer is growing, and the lessons learnt from non-starch polysaccharides in brewing can be largely translated to nonalcoholic beer. For context, we briefly review the origins of dietary fiber, its importance within the human diet and the significance of water-soluble dietary fiber in beverages. We review the relationship between non-starch polysaccharides and brewing, giving focus to the techniques used to quantify non-starch polysaccharides in beer, how they affect the physicochemical properties of beer and their influence on the brewing process. The content of non-starch polysaccharides in both regular and low/nonalcoholic beer ranges between 0.5 - 4.0 g/L and are predominantly composed of arabinoxylans and β-glucans. The process of malting, wort production and filtration significantly affect the soluble non-starch polysaccharide content in the final beer. Beer viscosity and turbidity are strongly associated with the content of non-starch polysaccharides.
Collapse
Affiliation(s)
- Joshua E S J Reid
- International Centre for Brewing Science, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Gleb E Yakubov
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen J Lawrence
- International Centre for Brewing Science, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
16
|
LUO W, Liu F, QI X, DONG G. Research progress of konjac dietary fibre in the prevention and treatment of diabetes. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.23322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Wanyu LUO
- Shandong Traditional Chinese Medicine University, China; Qingdao Chengyang District Yuhe Tang Chinese Medicine clinic, China
| | - Fanghua Liu
- Qingdao Chengyang District Yuhe Tang Chinese Medicine clinic, China
| | - Xin QI
- Guang’anmen Hospital of China Academy of Chinese Medical Sciences, China
| | | |
Collapse
|
17
|
Ye S, Zongo AWS, Shah BR, Li J, Li B. Konjac Glucomannan (KGM), Deacetylated KGM (Da-KGM), and Degraded KGM Derivatives: A Special Focus on Colloidal Nutrition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12921-12932. [PMID: 34713703 DOI: 10.1021/acs.jafc.1c03647] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Konjac flour, mainly obtained and purified from the tubers ofAmorphophallus konjac C. Koch, yields a high molecular weight (Mw) and viscous hydrocolloidal polysaccharide: konjac glucomannan (KGM). KGM has been widely applied in the food industry as a thickening and gelation agent as a result of its unique colloidal properties of effective viscosity enhancement and thermal-irreversible gelling. This review first narrates the typical commercial KGM source species, the industrial production, and the purification process of KGM flour. The structural information on native KGM, gelation mechanisms of alkali-induced deacetylated KGM (Da-KGM) hydrogel, progress on degraded KGM derivatives, cryoprotection effect, and colloidal nutrition are highlighted. Finally, the regulatory requirements of konjac flour and KGM among different countries are briefly introduced. The fine structure and physicochemical properties of KGM can be regulated in a great range via the deacetylation or degradation reaction. Here, the relationship between the physicochemical properties, such as viscosity, solubility, gelation, and nutritional effects, of native KGM, Da-KGM, and degraded KGM derivatives was preliminary established, which would provide theoretical guidance for designing KGM-based products with certain nutritional needs.
Collapse
Affiliation(s)
- Shuxin Ye
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Abel Wend-Soo Zongo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Bakht Ramin Shah
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in Ceske Budejovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Jing Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
- Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
18
|
Zhou N, Zheng S, Xie W, Cao G, Wang L, Pang J. Konjac glucomannan: A review of structure, physicochemical properties, and wound dressing applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Zhou
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Shengxuan Zheng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Wanzhen Xie
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Guoyu Cao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Lin Wang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Jie Pang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
19
|
Qaseem MF, Shaheen H, Wu AM. Cell wall hemicellulose for sustainable industrial utilization. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110996. [DOI: 10.1016/j.rser.2021.110996] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Cui H, Zhu X, Wang Z, Fang J, Yuan T. A Purified Glucomannan Oligosaccharide from Amorphophallus konjac Improves Colonic Mucosal Barrier Function via Enhancing Butyrate Production and Histone Protein H3 and H4 Acetylation. JOURNAL OF NATURAL PRODUCTS 2021; 84:427-435. [PMID: 33587639 DOI: 10.1021/acs.jnatprod.0c01125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A structurally defined konjac glucomannan oligosaccharide (KGMOS) with a relatively high molecular weight and narrow molecular weight distribution (molecular weight ranging from 3000 to 4000 Da, degree of polymerization (dp) 8-11) was prepared from native konjac glucomannan (KGM), and the beneficial effects and molecular mechanisms of KGMOS on colonic functions were investigated in C57BL/6 mice. The results are the first to reveal that KGMOS regulated intestinal microflora composition to facilitate the production of colonic butyrate. Elevated butyrate production further increased the acetylation of histone proteins H3 and H4 and thus enhanced the transcription of the major colonic mucin gene Muc2 and the secretion of mucin elements, which represents a new molecular mechanism of KGM oligosaccharide consumption. The findings indicate that KGM oligosaccharides with specific molecular sizes have highly desirable functional properties and potentially could improve gut health by promoting the barrier function of the colonic mucosa.
Collapse
Affiliation(s)
- Hao Cui
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Xinying Zhu
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhaoguang Wang
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jianping Fang
- GlycoNovo Technologies Co., Ltd., Shanghai 201318, People's Republic of China
| | - Tao Yuan
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
21
|
Verhertbruggen Y, Bouder A, Vigouroux J, Alvarado C, Geairon A, Guillon F, Wilkinson MD, Stritt F, Pauly M, Lee MY, Mortimer JC, Scheller HV, Mitchell RAC, Voiniciuc C, Saulnier L, Chateigner-Boutin AL. The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like mannan when expressed in yeast and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110693. [PMID: 33288007 DOI: 10.1016/j.plantsci.2020.110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Mannan is a class of cell wall polysaccharides widespread in the plant kingdom. Mannan structure and properties vary according to species and organ. The cell walls of cereal grains have been extensively studied due to their role in cereal processing and to their beneficial effect on human health as dietary fiber. Recently, we showed that mannan in wheat (Triticum aestivum) grain endosperm has a linear structure of β-1,4-linked mannose residues. The aim of this work was to study the biosynthesis and function of wheat grain mannan. We showed that mannan is deposited in the endosperm early during grain development, and we identified candidate mannan biosynthetic genes expressed in the endosperm. The functional study in wheat was unsuccessful therefore our best candidate genes were expressed in heterologous systems. The endosperm-specificTaCslA12 gene expressed in Pichia pastoris and in an Arabidopsis thaliana mutant depleted in glucomannan led to the production of wheat-like linear mannan lacking glucose residues and with moderate acetylation. Therefore, this gene encodes a mannan synthase and is likely responsible for the synthesis of wheat endosperm mannan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark D Wilkinson
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JK, UK
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mi Yeon Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | - Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
22
|
Jana UK, Suryawanshi RK, Prajapati BP, Kango N. Prebiotic mannooligosaccharides: Synthesis, characterization and bioactive properties. Food Chem 2020; 342:128328. [PMID: 33257024 DOI: 10.1016/j.foodchem.2020.128328] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Functional oligosaccharides are non-digestible food ingredients that confer numerous health benefits. Among these, mannooligosaccharides (MOS) are emerging prebiotics that have characteristic potential bio-active properties. Microbial mannanases can be used to break down mannan rich agro-residues to yield MOS. Various applications of MOS as health promoting functional food ingredient may open up newer opportunities in food and feed industry. Enzymatic hydrolysis is the widely preferred method over chemical hydrolysis for MOS production. Presently, commercial MOS is being derived from yeast cell wall mannan and is widely used as prebiotic in feed supplements for poultry and aquaculture. Apart from stimulating the growth of probiotic microflora, MOS impart anticancer and immunomodulatory effects by inducing different gene markers in colon cells. This review summarizes recent developments and future prospects of enzymatic synthesis of MOS from various mannans, their structural characteristics and their potential health benefits.
Collapse
Affiliation(s)
- Uttam Kumar Jana
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Rahul Kumar Suryawanshi
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Bhanu Pratap Prajapati
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| |
Collapse
|
23
|
Thermostable α-Glucan Phosphorylase-Catalyzed Enzymatic Copolymerization to Produce Partially 2-Deoxygenated Amyloses. Processes (Basel) 2020. [DOI: 10.3390/pr8091070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
α-Glucan phosphorylase catalyzes the enzymatic polymerization of α-d-glucose 1-phosphate (Glc-1-P) monomers from a maltooligosaccharide primer to produce α(1→4)-glucan—i.e., amylose. In this study, by exploiting the weak specificity for the substrate recognition of a thermostable α-glucan phosphorylase (from Aquifex aeolicus VF5), we investigated the enzymatic copolymerization of 2-deoxy-α-d-glucose 1-phosphate (dGlc-1-P), which was produced in situ from d-glucal, with Glc-1-P to obtain non-natural heteropolysaccharides composed of α(1→4)-linked dGlc/Glc units—i.e., partially 2-deoxygenated amylose. The reactions were carried out at different monomer feed ratios using a maltotriose primer at 40 °C for 24 h. The products were precipitated from the reaction medium, isolated by centrifugation, and subjected to 1H NMR spectroscopic and powder X-ray diffraction measurements to evaluate their chemical and crystalline structures, respectively. Owing to its amorphous nature, the partially 2-deoxygenated amylose with adapted unit ratios formed a film when subjected to a casting method.
Collapse
|
24
|
Dai J, Ding M, Chen J, Qi J, Zhu Y, Li Z, Zhu L, Wang G. Optimization of gel mixture formulation based on weighted value using response surface methodology. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1789746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jiajia Dai
- School of Public Health, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Mengru Ding
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, China
| | - Jian Chen
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Jun Qi
- College of Tea & Food Science and Technology, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Yu Zhu
- School of Public Health, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Zhang Li
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, China
| | - Lei Zhu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, China
| | - Guodong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, China
| |
Collapse
|
25
|
Hayeeawaema F, Wichienchot S, Khuituan P. Amelioration of gut dysbiosis and gastrointestinal motility by konjac oligo-glucomannan on loperamide-induced constipation in mice. Nutrition 2020; 73:110715. [DOI: 10.1016/j.nut.2019.110715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
|
26
|
Wu YT, Yang WY, Samuel Wu YH, Chen JW, Chen YC. Modulations of growth performance, gut microbiota, and inflammatory cytokines by trehalose on Salmonella Typhimurium-challenged broilers. Poult Sci 2020; 99:4034-4043. [PMID: 32731991 PMCID: PMC7597916 DOI: 10.1016/j.psj.2020.03.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Salmonellosis in broilers is not merely a significant disease with high economic costs in the poultry industry but also the foodborne disease with the impact on public health by cross-contamination. This study was to investigate the prebiotic ability of trehalose supplementing in diets (0, 1, 3, and 5%, w/w) against Salmonella by using S. Typhimurium (ST)-inoculated broilers. The improvements (P < 0.05) of feed conversion ratio (FCR) were observed with 5% trehalose supplementation in ST-inoculated broilers' diets. An addition of 3 or 5% trehalose in diets increased (P < 0.05) the abundance of lactobacilli in the duodenum and jejunum but decreased (P < 0.05) the growth of ST in the cecum. The adverse effects on serum levels of aspartate aminotransferase, triglyceride, and albumin and globulin ratio in ST-inoculated broilers were noticed and counteracted by supplementing 3 or 5% trehalose in diets (P < 0.05). Besides, the inclusion of trehalose in diets alleviated the intestinal damages and maintained the integrity of cecal epithelial cells after ST challenge under an haematoxylin and eosin-staining observation. Supplementing trehalose further showed the inhibitions of toll-like receptor 4-mediated nuclear factor-kappa-B pathway, including the downregulation (P < 0.05) of proinflammatory cytokine genes, such as interleukin 1 beta and lipopolysaccharide-induced tumor necrosis factor-alpha factor and the upregulation (P < 0.05) of interleukin 10 and interferon-alpha in ST-inoculated broilers. Overall, supplementing trehalose alleviated the adverse effects from ST challenge on FCR, serum biochemistry, the damage, and inflammation in the liver and cecum. Those improvements on ST challenged broilers also contributed to the overgrowth of lactobacilli, the decrement of ST, and anti-inflammatory effects in affected broilers. Trehalose, therefore, could be a promising prebiotic against salmonellosis to benefit broiler production and promote food safety in the poultry industry.
Collapse
Affiliation(s)
- Yi-Tei Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Wen-Yuan Yang
- School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Jr-Wei Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan; Poultry Industry Section, Department of Animal Industry, Council of Agriculture, Executive Yuan, Taipei City 100, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan.
| |
Collapse
|
27
|
Zhuang X, Jiang X, Zhou H, Chen Y, Zhao Y, Yang H, Zhou G. Insight into the mechanism of physicochemical influence by three polysaccharides on myofibrillar protein gelation. Carbohydr Polym 2020; 229:115449. [DOI: 10.1016/j.carbpol.2019.115449] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
|
28
|
Verhertbruggen Y, Falourd X, Sterner M, Guillon F, Girousse C, Foucat L, Le Gall S, Chateigner-Boutin AL, Saulnier L. Challenging the putative structure of mannan in wheat (Triticum aestivum) endosperm. Carbohydr Polym 2019; 224:115063. [DOI: 10.1016/j.carbpol.2019.115063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
|
29
|
Lei Y, Wu H, Jiao C, Jiang Y, Liu R, Xiao D, Lu J, Zhang Z, Shen G, Li S. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Yang J, Chen Q, Zhou B, Wang X, Liu S. Manno‐oligosaccharide preparation by the hydrolysis of konjac flour with a thermostable endo‐mannanase from
Talaromyces cellulolyticus. J Appl Microbiol 2019; 127:520-532. [DOI: 10.1111/jam.14327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 01/12/2023]
Affiliation(s)
- J.‐K. Yang
- College of Biology and Pharmaceutical Engineering Wuhan Polytechnic University Wuhan China
| | - Q.‐C. Chen
- College of Biology and Pharmaceutical Engineering Wuhan Polytechnic University Wuhan China
| | - B. Zhou
- College of Biology and Pharmaceutical Engineering Wuhan Polytechnic University Wuhan China
| | - X.‐J. Wang
- Shandong Longda Bio‐Products Co., Ltd. Yishui County Shandong China
| | - S.‐Q. Liu
- Shandong Longda Bio‐Products Co., Ltd. Yishui County Shandong China
| |
Collapse
|
31
|
Acemi A, Çobanoğlu Ö, Türker-Kaya S. FTIR-based comparative analysis of glucomannan contents in some tuberous orchids, and effects of pre-processing on glucomannan measurement. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3681-3686. [PMID: 30638265 DOI: 10.1002/jsfa.9596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Glucomannan (GM) is a polysaccharide of the mannan family of compounds found in some plant species. The dried and powdered tubers of some orchid species, collectively known as 'salep powder,' are a commercially important crop for human consumption and are one of the primary sources of GM. GM content is the primary indicator for the yield and quality of salep powder. We hypothesized that it would be more practical and accurate to measure GM content within tuber powder directly, prior to any purification or pre-processing. The GM content of tubers of 14 different orchid species was evaluated and compared using Fourier transform infrared (FTIR) spectroscopy and an enzymatic colorimetric method. RESULTS Among the analyzed modes, the sum of the peak areas at 873 and 812 cm-1 , which represent the CH bending attributed to the β-pyranose form of d-glucose and d-mannose, respectively, gave the only confirmation using colorimetric methods. It was found that the tubers of Himantoglossum caprinum and Serapias vomeracea had the highest GM concentrations among the analyzed species. After conducting different pre-processing steps on Serapias vomeracea tubers, it was found that treating the tubers with milk, or high temperature resulted in an apparent increase in GM concentrations. CONCLUSION Himantoglossum caprinum and Serapias vomeracea give the highest yields of GM and should be used for commercial horticulture. GM estimation should be made prior to any pre-processing. FTIR spectroscopy is effective and reliable for directly comparing GM content of different orchid species, without the need for any purification or pre-processing. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Arda Acemi
- Department of Biology, Faculty of Arts and Sciences, Kocaeli University, Kocaeli, Turkey
| | - Özmen Çobanoğlu
- Department of Biology, Faculty of Arts and Sciences, Kocaeli University, Kocaeli, Turkey
| | - Sevgi Türker-Kaya
- Department of Biology, Faculty of Arts and Sciences, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
32
|
Ma S, Zhu P, Wang M. Effects of konjac glucomannan on pasting and rheological properties of corn starch. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.045] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Gao T, Jiao Y, Liu Y, Li T, Wang Z, Wang D. Protective Effects of Konjac and Inulin Extracts on Type 1 and Type 2 Diabetes. J Diabetes Res 2019; 2019:3872182. [PMID: 31687407 PMCID: PMC6800947 DOI: 10.1155/2019/3872182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/23/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The present study was designed to determine whether konjac and inulin extracts or their combination, konjac-inulin (KI) composition, as diet supplementary, can exert beneficial effects against type 1 diabetes and type 2 diabetes using animal models. METHODS A total of 60 diabetic (type 1) rats induced by streptozotocin (STZ) were randomly assigned to five groups: vehicle control (STZ group), KI combination at low dose group (KI-L group), KI combination at medium dose group (KI-M group), KI combination at high dose group (KI-H group), konjac extract group (konjac group), and inulin extract group (inulin group). A sham group (without STZ) was also included. Levels of blood glucose were monitored at each week. After continuous treatment of each diet for 24 days, a glucose tolerance test was performed. After 28 days of treatment, plasma biochemical indicators including glycated serum proteins, total cholesterol, and triglycerides were measured and immunohistochemistry staining of the rat pancreas was performed, to study the insulin expressions. Type 2 diabetes was developed in db/db mice. A total of 28 db/db mice were divided into 4 groups: vehicle control (db/db group), KI composition group (KI group), konjac extract group (konjac group), and inulin extract group (inulin group). A wild-type control group (wild-type group) for db/db mice was also included. Levels of blood glucose, body weight, and blood triglycerides were monitored at each week. RESULTS Daily use of the KI composition significantly decreased levels of blood glucose and blood triglycerides, as well as improved the insulin production in islets or reduced development of obesity in STZ-induced diabetic rats or in db/db mice. Such effects from KI composition were better than single ingredient of konjac or inulin extract. CONCLUSION The results of this study suggest that daily use of KI composition has a protective role on type 1 and 2 diabetes and provided experimental basis for further development of KI composition as a food supplement for diabetic or diabetic high-risk population.
Collapse
Affiliation(s)
- Tianle Gao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Yang Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Zhiguo Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Danqiao Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China
| |
Collapse
|
34
|
Zeng Y, Zhang J, Zhang Y, Men Y, Zhang B, Sun Y. Prebiotic, Immunomodulating, and Antifatigue Effects of Konjac Oligosaccharide. J Food Sci 2018; 83:3110-3117. [PMID: 30511769 DOI: 10.1111/1750-3841.14376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 01/26/2023]
Abstract
Irregular and long time work schedules not only makes people feel fatigue, but also brings great risks of diseases, due to gastrointestinal disorder and immune dysfunction. Therefore, it has positive significance to help challenged people stay energetic and healthy with food supplement. Konjac oligosaccharide has shown various physiological benefits and been recommended in the fortification of functional foods. However, there have been few reports on its application aimed to simultaneously relieve physical fatigue and keep body healthy. In this paper, the potential prebiotic, immunoregulatory, and antifatigue activities of konjac oligosaccharide were evaluated in vitro and in vivo. The results showed that konjac oligosaccharide could promote probiotics growth and short chain fatty acids production in mice cecum. At the concentration of 50 to 200 μg/mL, konjac oligosaccharide could activate murine macrophage RAW 264.7 to secret NO and cytokines of IL-10 and IL-6. Moreover, this oligosaccharide could alleviate physical fatigue by prolonging exhaustive time, improving the level of superoxide dismutases and glutathione peroxidase, increasing the content of blood glucose, and decreasing the content of blood urea nitrogen. The results suggested that konjac oligosaccharide had prebiotic, immunoregulatory, and antifatigue effects, providing its application potential in functional food aimed at people with irregular and long time work.
Collapse
Affiliation(s)
- Yan Zeng
- Natl. Engineering Laboratory for Industrial Enzymes, Tianjin Inst. of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiangang Zhang
- Natl. Engineering Laboratory for Industrial Enzymes, Tianjin Inst. of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ying Zhang
- Natl. Engineering Laboratory for Industrial Enzymes, Tianjin Inst. of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yan Men
- Natl. Engineering Laboratory for Industrial Enzymes, Tianjin Inst. of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Bo Zhang
- Key Laboratory for Bioactive Material and Functional Food of Beijing, College of Biochemical Engineering, Beijing Union Univ., Beijing, 100023, China
| | - Yuanxia Sun
- Natl. Engineering Laboratory for Industrial Enzymes, Tianjin Inst. of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
35
|
Lee KT, Toushik SH, Baek JY, Kim JE, Lee JS, Kim KS. Metagenomic Mining and Functional Characterization of a Novel KG51 Bifunctional Cellulase/Hemicellulase from Black Goat Rumen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9034-9041. [PMID: 30085665 DOI: 10.1021/acs.jafc.8b01449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel KG51 gene was isolated from a metagenomic library of Korean black goat rumen and its recombinant protein was characterized as a bifunctional enzyme (cellulase/hemicellulase). In silico sequence and domain analyses revealed that the KG51 gene encodes a novel carbohydrate-active enzyme that possesses a salad-bowl-like shaped glycosyl hydrolase family 5 (GH5) catalytic domain but, at best, 41% sequence identity with other homologous GH5 proteins. Enzymatic profiles (optimum pH values and temperatures, as well as pH and thermal stabilities) of the recombinant KG51 bifunctional enzyme were also determined. On the basis of the substrate specificity data, the KG51 enzyme exhibited relatively strong cellulase (endo-β-1,4-glucanase [EC 3.2.1.4]) and hemicellulase (mannan endo-β-1,4-mannosidase [EC 3.2.1.78] and endo-β-1,4-xylanase [EC 3.2.1.8]) activities, but no exo-β-1,4-glucanase (EC 3.2.1.74), exo-β-1,4-glucan cellobiohydrolase (EC 3.2.1.91), and exo-1,4-β-xylosidase (EC 3.2.1.37) activities. Finally, the potential industrial applicability of the KG51 enzyme was tested in the preparation of prebiotic konjac glucomannan hydrolysates.
Collapse
Affiliation(s)
- Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division , National Institute of Animal Science , Rural Development Administration, Wanju 565-851 , South Korea
| | - Sazzad Hossen Toushik
- Department of Food Science and Technology , Chung-Ang University , Ansung 456-756 , South Korea
| | - Jin-Young Baek
- Department of Food Science and Technology , Chung-Ang University , Ansung 456-756 , South Korea
| | - Ji-Eun Kim
- Department of Food Science and Technology , Chung-Ang University , Ansung 456-756 , South Korea
| | - Jin-Sung Lee
- Department of Biological Sciences , Kyonggi University , Suwon 442-760 , South Korea
| | - Keun-Sung Kim
- Department of Food Science and Technology , Chung-Ang University , Ansung 456-756 , South Korea
| |
Collapse
|
36
|
Hoving LR, van der Zande HJP, Pronk A, Guigas B, Willems van Dijk K, van Harmelen V. Dietary yeast-derived mannan oligosaccharides have immune-modulatory properties but do not improve high fat diet-induced obesity and glucose intolerance. PLoS One 2018; 13:e0196165. [PMID: 29723205 PMCID: PMC5933760 DOI: 10.1371/journal.pone.0196165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
The indigestible mannan oligosaccharides (MOS) derived from the outer cell wall of yeast Saccharomyces cerevisiae have shown potential to reduce inflammation. Since inflammation is one of the underlying mechanisms involved in the development of obesity-associated metabolic dysfunctions, we aimed to determine the effect of dietary supplementation with MOS on inflammation and metabolic homeostasis in lean and diet-induced obese mice. Male C57BL/6 mice were fed either a low fat diet (LFD) or a high fat diet (HFD) with, respectively, 10% or 45% energy derived from lard fat, with or without 1% MOS for 17 weeks. Body weight and composition were measured throughout the study. After 12 weeks of intervention, whole-body glucose tolerance was assessed and in week 17 immune cell composition was determined in mesenteric white adipose tissue (mWAT) and liver by flow cytometry and RT-qPCR. In LFD-fed mice, MOS supplementation induced a significant increase in the abundance of macrophages and eosinophils in mWAT. A similar trend was observed in hepatic macrophages. Although HFD feeding induced a classical shift from the anti-inflammatory M2-like macrophages towards the pro-inflammatory M1-like macrophages in both mWAT and liver from control mice, MOS supplementation had no effect on this obesity-driven immune response. Finally, MOS supplementation did not improve whole-body glucose homeostasis in both lean and obese mice.Altogether, our data showed that MOS had extra-intestinal immune modulatory properties in mWAT and liver. However these effects were not substantial enough to significantly ameliorate HFD-induced glucose intolerance or inflammation.
Collapse
Affiliation(s)
- Lisa R. Hoving
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | | | - Amanda Pronk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medicine, division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa van Harmelen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|