1
|
Zhang ZY, Ndikuryayo F, Wang JG, Yang WC. How to Identify Pesticide Targets? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39786940 DOI: 10.1021/acs.jafc.4c10080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pesticides are essential in contemporary agriculture, as they improve crop yields and quality while safeguarding against pests. However, long-term heavy use of traditional pesticides has led to increased pest resistance, while these pesticides are often toxic and less selective, and may also have adverse effects on the environment and nontarget organisms. To solve this problem, it is important to find new targets for pesticide to develop more effective and environmentally friendly alternatives. Therefore, exploring new pesticide action targets has become one of the current research focuses. In the past years, efforts have been made to investigate possible strategies, and this work systematically summarizes and criticizes the most recently used ones. This contribution not only helps promote the research and development of new pesticides but also holds substantial implications for promoting the sustainable development of agriculture and food security.
Collapse
Affiliation(s)
- Zi-Yu Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Ferdinand Ndikuryayo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Jun-Gang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Wen-Chao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
2
|
Zhou Y, Sun Z, Zhou Q, Zeng W, Zhang M, Feng S, Xue W. Novel flavonol derivatives containing benzoxazole as potential antiviral agents: design, synthesis, and biological evaluation. Mol Divers 2024; 28:3919-3935. [PMID: 38229000 DOI: 10.1007/s11030-023-10786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
A series of flavonol derivatives containing benzoxazole were designed and synthesized, and the structures of all the target compounds were determined by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). The structure of X2 was further confirmed by single crystal X-ray diffraction analysis. The results of the bioactivity tests showed that some of the target compounds possessed excellent antiviral activity against tobacco mosaic virus (TMV) in vivo. In particular, the median effective concentration (EC50) values for the curative and protective activities of X17 against TMV were 127.6 and 101.2 μg/mL, respectively, which were superior to those of ningnanmycin (320.0 and 234.6 μg/mL). The results of preliminary mechanism study indicated that X17 had a strong binding affinity for TMV coat protein (TMV-CP), which might hinder the self-assembly and replication of TMV particles. In addition, X17 was able to effectively inhibit tobacco leaf membrane lipid peroxidation and facilitate the removal of O2- from the body, thereby improving the disease resistance of tobacco plants. Therefore, the design and synthesis of flavonol derivatives containing benzoxazole provides value for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qing Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Miaohe Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shuang Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Cui P, Liu K, Yang Z, Sun P, Meng Y, Yang Q, Wu X, Lv Y, Yang Y, Wu J. Design, Synthesis, and Antiviral and Fungicidal Activities of 4-Oxo-4 H-quinolin-1-yl Acylhydrazone Derivatives. ACS OMEGA 2024; 9:36671-36681. [PMID: 39220544 PMCID: PMC11360041 DOI: 10.1021/acsomega.4c05046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
To discover novel antiviral agents, based on the high antiviral activity of (4-oxo-4H-quinolin-1-yl)-acetic acid hydrazide (C), a series of 4-oxo-4H-quinoline acylhydrazone derivatives were designed, synthesized, and first evaluated for their antiviral and fungicidal activities. Most acylhydrazone derivatives exhibited moderate to good antiviral activities in vivo. The inactive, curative, and protective activities of compounds 4 (51.2, 47.6, and 46.3%), 11 (49.6, 43.0, and 45.2% at 500 mg/L), and 17 (47.1, 49.2, and 44.1%) were higher than those of ribavirin (39.2, 38.0, and 40.8%) at 500 mg/L. Molecular docking showed that compound 4 exhibited a stronger affinity to TMV coat protein (TMV-CP) than ribavirin, with a binding energy (-6.89 kcal/mol) slightly lower than that of ribavirin (-6.08 kcal/mol). Microscale thermophoresis showed that compound 4 (K d = 0.142 ± 0.060 μM) exhibited a strong binding ability to TMV-CP, superior to that of ribavirin (K d = 0.512 ± 0.257 μM). The results of transmission electron microscopy showed that compound 4 hindered the self-assembly and growth of TMV. The antifungal activities of most compounds were moderate at 50 mg/L, among which compounds 12 and 21 exhibited a 72.1 and 76.5% inhibitory rate against Physalospora piricola, respectively. Meanwhile, compound 16 exhibited a 60% inhibitory rate against Cercospora arachidicola Hori at 50 mg/L.
Collapse
Affiliation(s)
- Peipei Cui
- College
of Architecture and Arts, Taiyuan University
of Technology, Jinzhong, Shanxi 030060, People’s Republic of China
| | - Kaisi Liu
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Zhaokai Yang
- State
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People’s Republic
of China
| | - Ping Sun
- State
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People’s Republic
of China
| | - Yanan Meng
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Qilong Yang
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Xinyang Wu
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Yongkang Lv
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Yan Yang
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Jian Wu
- State
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People’s Republic
of China
| |
Collapse
|
4
|
Tai G, Zhang Q, He J, Li X, Gan X. Ferulic Acid Dimers as Potential Antiviral Agents by Inhibiting TMV Self-Assembly. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14610-14619. [PMID: 38896477 DOI: 10.1021/acs.jafc.4c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A series of ferulic acid dimers were designed, synthesized, and evaluated for anti-TMV activity. Biological assays demonstrated that compounds A6, E3, and E5 displayed excellent inactivating against tobacco mosaic virus (TMV) with EC50 values of 62.8, 94.4, and 85.2 μg mL-1, respectively, which were superior to that of ningnanmycin (108.1 μg mL-1). Microscale thermophoresis indicated that compounds A6, E3, and E5 showed strong binding capacity to TMV coat protein with binding affinity values of 1.862, 3.439, and 2.926 μM, respectively. Molecular docking and molecular dynamics simulation revealed that compound A6 could firmly bind to the TMV coat protein through hydrogen and hydrophobic bonds. Transmission electron microscopy and self-assembly experiments indicated that compound A6 obviously destroyed the integrity of the TMV particles and blocked the virus from infecting the host. This study revealed that A6 can be used as a promising leading structure for the development of antiviral agents by inhibiting TMV self-assembly.
Collapse
Affiliation(s)
- Gangyin Tai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jiangqin He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
5
|
Wen F, Liu Z, Zheng Y, Song D, Chen K, Wu Z. Repairing Host Damage Caused by Tobacco Mosaic Virus Stress: Design, Synthesis, and Mechanism Study of Novel Oxadiazole and Arylhydrazone Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11351-11359. [PMID: 38720167 DOI: 10.1021/acs.jafc.3c09463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Tobacco mosaic virus (TMV), as one of the most traditional and extensive biological stresses, poses a serious threat to plant growth and development. In this work, a series of 1-phenyl/tertbutyl-5-amino-4-pyrazole oxadiazole and arylhydrazone derivatives was synthesized. Bioassay evaluation demonstrated that the title compounds (P1-P18) without a "thioether bond" lost their anti-TMV activity, while some of the ring-opening arylhydrazone compounds exhibited superior in vivo activity against TMV in tobacco. The EC50 value of title compound T8 for curative activity was 139 μg/mL, similar to that of ningnanmycin (NNM) (EC50 = 152 μg/mL). Safety analysis revealed that compound T8 had no adverse effects on plant growth or seed germination at a concentration of 250 μg/mL. Morphological observation revealed that compound T8 could restore the leaf tissue of a TMV-stressed host and the leaf stomatal aperture to normal. A mechanism study further revealed that compound T8 not only restored the photosynthetic and growth ability of the damaged host to normal levels but also enhanced catalase (CAT) activity and reduced the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the damaged host, thereby reducing the oxidation damage to the host. TMV-green fluorescent protein (GFP) experiments further demonstrated that compound T8 not only slowed the transmission speed of TMV in the host but also inhibited its reproduction. All of the experimental results demonstrated that compound T8 could reduce the oxidative damage caused by TMV stress and regulate the photosynthetic ability of the host, achieving the ability to repair damage, to make the plant grow normally.
Collapse
Affiliation(s)
- Fanglin Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Zixia Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Ya Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Dandan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Kuai Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
6
|
Zhan W, Zhou R, Mao P, Yuan C, Zhang T, Liu Y, Tian J, Wang H, Xue W. Synthesis, antifungal activity and mechanism of action of novel chalcone derivatives containing 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole. Mol Divers 2024; 28:461-474. [PMID: 36964852 DOI: 10.1007/s11030-022-10593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 03/26/2023]
Abstract
A series of chalcone derivatives containing 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole was designed and synthesized. Structures of all compounds were characterized by 1H NMR, 13C NMR, 19F NMR, and HRMS. The biological activities of the compounds were determined with the mycelial growth rate method, and further studies showed that some compounds had good antifungal activities at the concentration of 100 μg/mL. The EC50 value of compound L31 was 15.9 μg/mL against Phomopsis sp., which were better than that of azoxystrobin (EC50 value was 69.4 μg/mL). In addition, the mechanism of action of compound L31 shown that compound can affect mycelial growth by disrupting membrane integrity against Phomopsis sp., and that the higher the concentration of the compound is, the greater the disruption of membrane integrity is.
Collapse
Affiliation(s)
- Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Piao Mao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chunmei Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Tao Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yi Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jiao Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hua Wang
- Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China.
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
7
|
Gong C, Meng K, Sun Z, Zeng W, An Y, Zou H, Qiu Y, Liu D, Xue W. Flavonol Derivatives Containing a Quinazolinone Moiety: Design, Synthesis, and Antiviral Activity. Chem Biodivers 2024; 21:e202301737. [PMID: 38204291 DOI: 10.1002/cbdv.202301737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
A series of flavonol derivatives containing quinazolinone were designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV) were evaluated. The results of the half maximal effective concentration (EC50 ) test against TMV showed that the EC50 value of curative activity of K5 was 139.6 μg/mL, which was better than that of the commercial drug ningnanmycin (NNM) 296.0 μg/mL, and the EC50 value of protective activity of K5 was 120.6 μg/mL, which was superior to that of NNM 207.0 μg/mL. The interaction of K5 with TMV coat protein (TMV-CP) was investigated using microscale thermophoresis (MST) and molecular docking and the results showed that K5 can combine with TMV-CP more strongly to TMV-CP than that NNM can. Furthermore, the assay measuring malondialdehyde (MDA) content indicated that K5 had the ability to improve the disease resistance of tobacco. Hence, this study offers strong evidence that flavonol derivatives have potential as novel antiviral agents.
Collapse
Affiliation(s)
- Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Kaini Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Youshan An
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hongqian Zou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yujiao Qiu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Da Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, 418008, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
8
|
Zhong F, Zhang Q, Chen K, Lan S, Yang W, Gan X. Eco-Friendly Cinnamic Acid Derivatives Containing Glycoside Scaffolds as Potential Antiviral Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17752-17762. [PMID: 37943715 DOI: 10.1021/acs.jafc.3c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Natural products are a crucial source in the development of new eco-friendly antiviral agents to control plant viral diseases. In our previous studies, some ferulic acid derivatives with good antiviral activity were obtained as an immune activator. To continue the discovery of eco-friendly antiviral agents, different monosaccharides were introduced into cinnamic acid skeletons by an activity-based strategy to obtain a series of cinnamic acid derivatives containing glycoside scaffolds, and their antiviral activities against tobacco mosaic virus (TMV) and tomato spotted wilt virus (TSWV) were evaluated. Among them, compound 8d showed the greatest protective activities against TMV and TSWV, with the EC50 values of 128.5 and 236.8 μg mL-1, respectively, which were superior to those of ningnanmycin (238.5 and 315.7 μg mL-1, respectively). Moreover, compound 8d could significantly improve the defense enzyme activities of peroxidase, chitinase, and β-1,3-glucanase. Proteomic and transcriptome analyses indicated that compound 8d regulated gene transcription and protein expression levels involved in the defense response to resist virus infection. The present study revealed that compound 8d is a potential lead candidate for the development of novel, eco-friendly, and natural-product-based antiviral agents.
Collapse
Affiliation(s)
- Fangping Zhong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Kejia Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shichao Lan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wenchao Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiuhai Gan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
9
|
Xiang S, Wang J, Wang X, Ma X, Peng H, Zhu X, Huang J, Ran M, Ma L, Sun X. A chitosan-coated lentinan-loaded calcium alginate hydrogel induces broad-spectrum resistance to plant viruses by activating Nicotiana benthamiana calmodulin-like (CML) protein 3. PLANT, CELL & ENVIRONMENT 2023; 46:3592-3610. [PMID: 37551976 DOI: 10.1111/pce.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
Control of plant virus diseases largely depends on the induced plant defence achieved by the external application of synthetic chemical inducers with the ability to modify defence-signalling pathways. However, most of the molecular mechanisms underlying these chemical inducers remain unknown. Here, we developed a chitosan-coated lentinan-loaded hydrogel and discovered how it protects plants from different virus infections. The hydrogel was synthesized by coating chitosan on the surface of the calcium alginate-lentinan (LNT) hydrogel (SL-gel) to form a CSL-gel. CSL-gels exhibit the capacity to prolong the stable release of lentinan and promote Ca2+ release. Application of CSL-gels on the root of plants induces broad-spectrum resistance against plant viruses (TMV, TRV, PVX and TuMV). RNA-seq analysis identified that Nicotiana benthamiana calmodulin-like protein gene 3 (NbCML3) is upregulated by the sustained release of Ca2+ from the CSL-gel, and silencing and overexpression of NbCML alter the susceptibility and resistance of tobacco to TMV. Our findings provide evidence that this novel and synthetic CSL-gel strongly inhibits the infection of plant viruses by the sustainable release of LNT and Ca2+ . This study uncovers a novel mode of action by which CSL-gels trigger NbCML3 expression through the stable and sustained release of Ca2+ .
Collapse
Affiliation(s)
- Shunyu Xiang
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xiaoyan Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Haoran Peng
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xin Zhu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Mao Ran
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Yang BX, Li ZX, Liu SS, Yang J, Wang PY, Liu HW, Zhou X, Liu LW, Wu ZB, Yang S. Novel cinnamic acid derivatives as a versatile tool for developing agrochemicals for controlling plant virus and bacterial diseases by enhancing plant defense responses. PEST MANAGEMENT SCIENCE 2023; 79:2556-2570. [PMID: 36864774 DOI: 10.1002/ps.7433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Plant pathogens have led to large yield and quality losses in crops worldwide. The discovery and study of novel agrochemical alternatives based on the chemical modification of bioactive natural products is a highly efficient approach. Here, two series of novel cinnamic acid derivatives incorporating diverse building blocks with alternative linking patterns were designed and synthesized to identify their antiviral capacity and antibacterial activity. RESULTS The bioassay results demonstrated that most cinnamic acid derivatives had excellent antiviral competence toward tobacco mosaic virus (TMV) in vivo, especially compound A5 (median effective concentration [EC50 ] = 287.7 μg mL-1 ), which had a notable protective effect against TMV when compared with the commercial virucide ribavirin (EC50 = 622.0 μg mL-1 ). In addition, compound A17 had a protective efficiency of 84.3% at 200 μg mL-1 against Xac in plants. Given these outstanding results, the engineered title compounds could be regarded as promising leads for controlling plant virus and bacterial diseases. Preliminary mechanistic studies suggest that compound A5 could enhance the host's defense responses by increasing the activity of defense enzymes and upregulating defense genes, thereby suppressing phytopathogen invasion. CONCLUSION This research lays a foundation for the practical application of cinnamic acid derivatives containing diverse building blocks with alternative linking patterns in pesticide exploration. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin-Xin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhen-Xing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Shuai-Shuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jie Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pei-Yi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Chen S, Zhang M, Feng S, Gong C, Zhou Y, Xing L, He B, Wu Y, Xue W. Design, synthesis and biological activity of chalcone derivatives containing pyridazine. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
12
|
Cao X, He B, Liu F, Zhang Y, Xing L, Zhang N, Zhou Y, Gong C, Xue W. Design, synthesis and bioactivity of myricetin derivatives for control of fungal disease and tobacco mosaic virus disease. RSC Adv 2023; 13:6459-6465. [PMID: 36845581 PMCID: PMC9947517 DOI: 10.1039/d2ra08176h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
A series of myricetin derivatives containing isoxazole were designed and synthesized. All the synthesized compounds were characterized by NMR and HRMS. In terms of antifungal activity, Y3 had a good inhibitory effect on Sclerotinia sclerotiorum (Ss), and the median effective concentration (EC50) value was 13.24 μg mL-1, which was better than azoxystrobin (23.04 μg mL-1) and kresoxim-methyl (46.35 μg mL-1). Release of cellular contents and cell membrane permeability experiments further revealed that Y3 causes the destruction of the cell membrane of the hyphae, which in turn plays an inhibitory role. The anti-tobacco mosaic virus (TMV) activity in vivo showed that Y18 had the best curative and protective activities, with EC50 values of 286.6 and 210.1 μg mL-1 respectively, the effect was better than ningnanmycin. Microscale thermophoresis (MST) data showed that Y18 had a strong binding affinity with tobacco mosaic virus coat protein (TMV-CP), with a dissociation constant (K d) value of 0.855 μM, which was better than ningnanmycin (2.244 μM). Further molecular docking revealed that Y18 interacts with multiple key amino acid residues of TMV-CP, which may hinder the self-assembly of TMV particles. Overall, after the introduction of isoxazole on the structure of myricetin, its anti-Ss and anti-TMV activities have been significantly improved, which can be further studied.
Collapse
Affiliation(s)
- Xiao Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Bangcan He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Fang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Yuanquan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| |
Collapse
|
13
|
Gan X, Zhang W, Lan S, Hu D. Novel Cyclized Derivatives of Ferulic Acid as Potential Antiviral Agents through Activation of Photosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1369-1380. [PMID: 36626162 DOI: 10.1021/acs.jafc.2c06422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To further develop new antiviral agents, several novel cyclized derivatives of ferulic acid were designed and synthesized. Their antiviral activities were evaluated against the cucumber mosaic virus (CMV), pepper mild mottle virus (PMMoV), and tomato spotted wilt virus (TSWV). The results showed that some ferulic acid derivatives exhibited desirable antiviral activities. Particularly, compound 5e exhibited excellent protective activities against CMV, PMMoV, and TSWV, with EC50 values of 167.2, 102.5, and 145.8 μg mL-1, respectively, which were superior to those obtained for trans-ferulic acid (581.7, 611.2, and 615.4 μg mL-1), dufulin (312.6, 302.5, and 298.2 μg mL-1), and ningnanmycin (264.3, 282.5, and 276.5 μg mL-1). Thereafter, the protective mechanisms of 5e were evaluated through photosynthesis evaluation, transcriptome profiling, and proteomic analysis. The results indicated that 5e significantly activated the expression levels of photosynthesis-related regulatory genes and proteins in tobacco plants and promoted the accumulation of defense molecules to resist viral infection. Thus, the findings of this study indicated that novel cyclized ferulic acid derivatives are potential antiviral agents that act via regulating photosynthesis in the host.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shichao Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
14
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Lu H, Shen Z, Xu Y, Wu L, Hu D, Song R, Song B. Immune Mechanism of Ethylicin-Induced Resistance to Xanthomonas oryzae pv. oryzae in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:288-299. [PMID: 36591973 DOI: 10.1021/acs.jafc.2c07385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ethylicin (ET) was reported to be promising in the control of rice bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo). The detailed mechanism for this process remains unknown. Disclosed here is an in-depth study on the action mode of ET to Xoo. Through plant physiological and biochemical analysis, it was found that ET could inhibit the proliferation of Xoo by increasing the content of defense enzymes and chlorophyll in rice (Oryza sativa ssp. Japonica cv. Nipponbare). Label-free quantitative proteomic analysis showed that ET affected the rice abscisic acid (ABA) signal pathway and made the critical differential calcium-dependent protein kinase 24 (OsCPK24) more active. In addition, the biological function of OsCPK24 as a mediator for rice resistance to Xoo was determined through the anti-Xoo phenotypic test of OsCPK24 transgenic rice and the affinity analysis of the OsCPK24 recombinant protein in vitro and ET. This study revealed the molecular mechanism of ET-induced resistance to Xoo in rice via OsCPK24, which provided a basis for the development of new bactericides based on the OsCPK24 protein.
Collapse
Affiliation(s)
- Hongxia Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Zhongjie Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Yujun Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Linjing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| |
Collapse
|
16
|
Cao X, Liu F, He B, Xing L, Zhang Y, Zhang N, Xue W. Design, synthesis, bioactivity and mechanism of action of novel myricetin derivatives containing amide and hydrazide. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
17
|
Zhou Q, Zhou Y, Zhu Y, Gong C, Wu Y, Xue W. Design, Synthesis, and Biological Evaluation of Novel 1,4-Pentadien-3-one Derivatives Containing a Sulfonamide Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16096-16105. [PMID: 36525311 DOI: 10.1021/acs.jafc.2c05731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel 1,4-pentadien-3-one derivatives containing a sulfonamide moiety were synthesized, and their antifungal, antibacterial, and antiviral activities were verified. These compounds exhibited better activity against five bacteria, with EC50 values ranging from 9.6 to 60.1 μg/mL, prominently, which are superior to those of the commercial agent. A great amount of compounds had excellent fungicidal activity in vitro at 100 μg/mL. Strikingly, compound E6 exhibited moderate activity against Phytophthora litchii than azoxystrobin, with the EC50 value of compound E6 (0.5 μg/mL) drawing near azoxystrobin (0.3 μg/mL). Furthermore, compound E17 had a marked impact on in vivo anti-tobacco mosaic virus, according to the data of microscale thermophoresis, with a Kd value of the intermolecular binding force of 0.002 ± 0.001 μM, which was better than the commercial agent of ningnanmycin (Kd = 0.121 ± 0.031 μM). In addition, the results of these studies suggest that the use of active splicing can improve the biological activity of natural compounds and provide further complement to the development of novel pesticides.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yuanxiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yunying Zhu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550001, People's Republic of China
| | - Chenyu Gong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yongjun Wu
- Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
18
|
The Discovery of Novel Ferulic Acid Derivatives Incorporating Substituted Isopropanolamine Moieties as Potential Tobacco Mosaic Virus Helicase Inhibitors. Int J Mol Sci 2022; 23:ijms232213991. [PMID: 36430473 PMCID: PMC9698358 DOI: 10.3390/ijms232213991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Target-based drug design, a high-efficiency strategy used to guide the development of novel pesticide candidates, has attracted widespread attention. Herein, various natural-derived ferulic acid derivatives incorporating substituted isopropanolamine moieties were designed to target the tobacco mosaic virus (TMV) helicase. Bioassays demonstrating the optimized A19, A20, A29, and A31 displayed excellent in vivo antiviral curative abilities, affording corresponding EC50 values of 251.1, 336.2, 347.1, and 385.5 μg/mL, which visibly surpassed those of commercial ribavirin (655.0 μg/mL). Moreover, configurational analysis shows that the R-forms of target compounds were more beneficial to aggrandize antiviral profiles. Mechanism studies indicate that R-A19 had a strong affinity (Kd = 5.4 μM) to the TMV helicase and inhibited its ability to hydrolyze ATP (50.61% at 200 μM). Meanwhile, A19 could down-regulate the expression of the TMV helicase gene in the host to attenuate viral replication. These results illustrate the excellent inhibitory activity of A19 towards the TMV helicase. Additionally, docking simulations uncovered that R-A19 formed more hydrogen bonds with the TMV helicase in the binding pocket. Recent studies have unambiguously manifested that these designed derivatives could be considered as promising potential helicase-based inhibitors for plant disease control.
Collapse
|
19
|
Ma G, Zhang Y, Li X. Dufulin enhances salt resistance of rice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105252. [PMID: 36464358 DOI: 10.1016/j.pestbp.2022.105252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Dufulin is a newly developed plant antiviral agent, which is widely used in the control of many viral crop diseases. Existing research mainly focuses on its antiviral effect, but research in relation to resistance to abiotic stress is unclear. This study was based on the treatment of rice with salt (NaCl), and exogenous application of Dufulin as a stress-resistant agent. The effect of Dufulin on salt stress of rice was revealed. There were 1997 differential genes detected, including 1449 up-regulated and 548 down-regulated. After the application of Dufulin to rice, when salt stress was applied, peroxidase activity was increased and superoxide dismutase activity was reduced; GO and KEGG analyses indicated that the stimulated genes are related to the stress resistance pathway, thus improving the ability of rice to resist salt stress. Quantitative real-time PCR analysis was used to verify the dynamic changes of growth- and stress-resistance-related genes, among which integral membrane protein DUF6 containing protein, OsHKT1;4 (Na+ transporter) and zinc-finger protein were verified to increase by more than three times, and OsIAA1 and OsIAA9 were verified as down-regulated. Measuring the length of root, stem and leaf, and OsIAA1 and OsIAA9 expression showed that Dufulin promoted rice growth. After that, Dufulin could enhance the salt resistance of rice by regulating the expression of integral membrane protein DUF6 containing protein, OsHKT1;4, zinc-finger protein and other related genes under salt stress. The results elucidated the mechanism of Dufulin action during salt stress in rice at the transcriptional level.
Collapse
Affiliation(s)
- Guangming Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
20
|
Liu D, Song R, Wu Z, Xing Z, Hu D. Pyrido [1,2- a] Pyrimidinone Mesoionic Compounds Containing Vanillin Moiety: Design, Synthesis, Antibacterial Activity, and Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10443-10452. [PMID: 35972464 DOI: 10.1021/acs.jafc.2c01838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoo) is a plant pathogen responsible for rice bacterial blight disease that remains challenging for prevention and cure. To discover innovative and extremely potent antibacterial agents, vanillin moiety was introduced to develop a series of novel mesoionic derivatives. Compound 15 demonstrated excellent in vitro antibacterial activity against Xoo, with a 50% effective concentration value (EC50) of 27.5 μg/mL, which was superior to that of the positive control agent thiodiazole copper (97.1 μg/mL) and comparable to that of compound "A11" (17.4 μg/mL). The greenhouse pot experiment also revealed that compound 15 had 38.5% curative and 36.8% protective efficacy against rice bacterial leaf blight in vivo at 100 μg/mL, which was higher than those of thiodiazole copper (31.2 and 32.6%, respectively) and compound "A11" (29.6 and 33.2%, respectively). Compound 15 enhanced the activities of related defense enzymes, increased chlorophyll content, and promoted the resistance of rice to bacterial infection by modulating the photosynthetic pathway. This study provides a basis for the subsequent structural modification and mechanism research of mesoionic derivatives.
Collapse
Affiliation(s)
- Dengyue Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
21
|
Wang F, Liu HW, Zhang L, Liu ST, Zhang JR, Zhou X, Wang PY, Yang S. Discovery of novel rost-4-ene derivatives as potential plant activators for preventing phytopathogenic bacterial infection: Design, synthesis and biological studies. PEST MANAGEMENT SCIENCE 2022; 78:3404-3415. [PMID: 35527698 DOI: 10.1002/ps.6981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Gradually aggravated disease caused by phytopathogenic bacteria severely restricts food security and crop yield, and few pesticides can relieve this severe situation. Thus, development and excavation of new agrochemicals with high bioactivity and novel action mechanism may be a feasible strategy to control intractable bacterial diseases. As a privileged molecular framework, steroid molecules exhibit diversiform bioactivities. Herein, a series of novel androst-4-ene derivatives were designed, synthesised and investigated for their antibacterial behaviour to excavate novel agrochemicals on the base of steroid molecules. RESULTS Bioassay results indicated that target compounds displayed high bioactivities toward three destructive phytopathogenic bacteria, including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac) and Pseudomonas syringae pv. actinidiae (Psa). Compound III19 displayed excellent in vitro antibacterial profiling (EC50 = 2.37 mg L-1 towards Xoo, EC50 = 2.10 mg L-1 towards Xac, EC50 = 9.50 mg L-1 towards Psa). Furthermore, compound III19 showed outstanding in vivo protective activities, with values of 81.81% and 58.75% towards kiwifruit bacterial canker and rice bacterial leaf blight, respectively. Analysis of the antibacterial mechanism disclosed that compound III19 enhanced host defence enzyme activities superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and catalase (CAT) and increased the salicylate synthase content to induce host resistance. In addition, compound III19 increased the membrane permeability, destroyed the cell membrane and killed the bacteria. CONCLUSION Given these profiles of target compounds, we highlight a new strategy for controlling intractable plant bacterial diseases by inducing plant resistance and targeting the bacterial cell membrane. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ling Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Shi-Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
22
|
Liu T, Peng F, Zhu Y, Cao X, Wang Q, Liu F, Liu L, Xue W. Design, synthesis, biological activity evaluation and mechanism of action of myricetin derivatives containing thioether quinazolinone. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
23
|
Wu Z, Ma G, Zhu H, Chen M, Huang M, Xie X, Li X. Plant Viral Coat Proteins as Biochemical Targets for Antiviral Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8892-8900. [PMID: 35830295 DOI: 10.1021/acs.jafc.2c02888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coat proteins (CPs) of RNA plant viruses play a pivotal role in virus particle assembly, vector transmission, host identification, RNA replication, and intracellular and intercellular movement. Numerous compounds targeting CPs have been designed, synthesized, and screened for their antiviral activities. This review is intended to fill a knowledge gap where a comprehensive summary is needed for antiviral agent discovery based on plant viral CPs. In this review, major achievements are summarized with emphasis on plant viral CPs as biochemical targets and action mechanisms of antiviral agents. This review hopefully provides new insights and references for the further development of new safe and effective antiviral pesticides.
Collapse
Affiliation(s)
- Zilin Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangming Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hengmin Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Meiqing Chen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Xie
- College of Agriculture, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
24
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation. Biomedicines 2022; 10:biomedicines10081787. [PMID: 35892687 PMCID: PMC9329733 DOI: 10.3390/biomedicines10081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an appealing target for the development of antiviral compounds, due to its critical role in the viral life cycle and its high conservation among different coronaviruses and the continuously emerging mutants of SARS-CoV-2. Ferulic acid (FA) is a phytochemical with several health benefits that is abundant in plant biomass and has been used as a basis for the enzymatic or chemical synthesis of derivatives with improved properties, including antiviral activity against a range of viruses. This study tested 54 reported FA derivatives for their inhibitory potential against Mpro by in silico simulations. Molecular docking was performed using Autodock Vina, resulting in comparable or better binding affinities for 14 compounds compared to the known inhibitors N3 and GC376. ADMET analysis showed limited bioavailability but significantly improved the solubility for the enzymatically synthesized hits while better bioavailability and druglikeness properties but higher toxicity were observed for the chemically synthesized ones. MD simulations confirmed the stability of the complexes of the most promising compounds with Mpro, highlighting FA rutinoside and compound e27 as the best candidates from each derivative category.
Collapse
|
25
|
Luo L, Liu D, Lan S, Gan X. Design, Synthesis, and Biological Activity of Novel Chalcone Derivatives Containing an 1,2,4-Oxadiazole Moiety. Front Chem 2022; 10:943062. [PMID: 35936084 PMCID: PMC9354253 DOI: 10.3389/fchem.2022.943062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
To discover a lead compound for agricultural use, 34 novel chalcone derivatives containing an 1,2,4-oxadiazole moiety were designed and synthesized. Their nematocidal activities against Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Ditylenchus dipsaci and their antiviral activities against tobacco mosaic virus (TMV), pepper mild mottle virus (PMMoV), and tomato spotted wilt virus (TSWV) were evaluated. Biological assay results indicate that compounds A13 and A14 showed good nematocidal activities against B. xylophilus, A. besseyi, and D. dipsaci, with LC50 values of 35.5, 44.7, and 30.2 μg/ml and 31.8, 47.4, and 36.5 μg/ml, respectively, which are better than tioxazafen, fosthiazate, and abamectin. Furthermore, compound A16 demonstrated excellent protective activity against TMV, PMMoV, and TSWV, with EC50 values of 210.4, 156.2, and 178.2 μg/ml, respectively, which are superior to ningnanmycin (242.6, 218.4, and 180.5 μg/ml).
Collapse
Affiliation(s)
- Ling Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shichao Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Xiuhai Gan,
| |
Collapse
|
26
|
Yuan T, Wang Z, Lan S, Gan X. Design, synthesis, antiviral activity, and mechanisms of novel ferulic acid derivatives containing amide moiety. Bioorg Chem 2022; 128:106054. [PMID: 35905694 DOI: 10.1016/j.bioorg.2022.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
To explore the novel compounds with high antiviral activity, three series ferulic acid derivatives containing amide moiety were gradually designed and synthesized based on antiviral activity tracking. The bioassay results exhibited that some target compounds had notable antiviral activities against tomato spotted wilt virus (TSWV) and cucumber mosaic virus (CMV). Compounds Y1, Y2, Y8, Z1 and Z2 presented splendid curative, protective, and inactivating activities to TSWV and CMV at 500 μg/mL. Especially, these compounds displayed outstanding inactivating effects on TSWV with the EC50 values of 225.9, 126.1, 224.6, 216.1, and 147.3 μg/mL, which were superior to ningnanmycin (249.1 μg/mL) and ribavirin (315.7 μg/mL). Furthermore, the antiviral mechanisms of compound Y2 were investigated by conducting microscale thermophoresis experiment and molecular docking experiment. The results suggested that compound Y2 performed excellent binding affinity to TSWV coat protein (TSWV CP) with the binding constant of 2.14 μM, which due to two strong hydrogen bonds of compound Y2 to the key amino acids ARG94 of TSWV CP. Therefore, compound Y2 can be regarded as a leading structure for development of the potential antiviral agent.
Collapse
Affiliation(s)
- Ting Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shichao Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China; School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
27
|
Chen J, Luo X, Chen Y, Wang Y, Peng J, Xing Z. Recent Research Progress: Discovery of Anti-Plant Virus Agents Based on Natural Scaffold. Front Chem 2022; 10:926202. [PMID: 35711962 PMCID: PMC9196591 DOI: 10.3389/fchem.2022.926202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Plant virus diseases, also known as “plant cancers”, cause serious harm to the agriculture of the world and huge economic losses every year. Antiviral agents are one of the most effective ways to control plant virus diseases. Ningnanmycin is currently the most successful anti-plant virus agent, but its field control effect is not ideal due to its instability. In recent years, great progress has been made in the research and development of antiviral agents, the mainstream research direction is to obtain antiviral agents or lead compounds based on structural modification of natural products. However, no antiviral agent has been able to completely inhibit plant viruses. Therefore, the development of highly effective antiviral agents still faces enormous challenges. Therefore, we reviewed the recent research progress of anti-plant virus agents based on natural products in the past decade, and discussed their structure-activity relationship (SAR) and mechanism of action. It is hoped that this review can provide new inspiration for the discovery and mechanism of action of novel antiviral agents.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Jixiang Chen,
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ju Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
28
|
Wang Y, Luo Y, Hu D, Song B. Design, Synthesis, Anti-Tomato Spotted Wilt Virus Activity, and Mechanism of Action of Thienopyrimidine-Containing Dithioacetal Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6015-6025. [PMID: 35576166 DOI: 10.1021/acs.jafc.2c00773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, there is insufficient viricide to effectively control tomato spotted wilt virus (TSWV). To address this pending issue, a series of thienopyrimidine-containing dithioacetal derivatives were prepared and tested for their anti-TSWV activities. A subsequent three-dimensional quantitative structure-activity relationship was constructed to indicate the development of optimal compound 35. The obtained compound 35 had excellent anti-TSWV curative, protective, and inactivating activities (63.0, 56.6, and 74.1%, respectively), and the EC50 values of protective and inactivating activities of compound 35 were 252.8 and 113.5 mg/L, respectively, better than those of ningnanmycin (284.8 and 144.7 mg/L) and xiangcaoliusuobingmi (624.9 and 300.0 mg/L). In addition, the anti-TSWV activity of compound 35 was associated with defense-related enzyme activities, enhanced photosynthesis, and reduced stress response, thereby enhancing disease resistance.
Collapse
Affiliation(s)
- Yanju Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuqin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
29
|
Sun Y, Wu H, Zhou W, Yuan Z, Hao J, Liu X, Han L. Effects of indole derivatives from Purpureocillium lilacinum in controlling tobacco mosaic virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105077. [PMID: 35430069 DOI: 10.1016/j.pestbp.2022.105077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
There are various types of compounds studied and applied for plant disease management, and some of them are environment friendly and suitable in organic production. An example is indole-3-carboxaldehyde (A1) and indole-3-carboxylic acid (A2) derived from Purpureocillium lilacinum H1463, which have shown a strong activity in the control of tobacco mosaic virus (TMV). In this study, the effects of these compounds were studied on suppressing TMV and corresponding mechanism. Both A1 and A2 exhibited strong anti-TMV activities in vitro and in vivo. They fractured TMV virions and forced the fractured particles agglomerated. A1 and A2 also induced immune responses or resistance of tobacco to TMV infection, including expressing hypersensitive reaction (HR), increasing defense-related enzymes and overexpressing pathogenesis-related (PR) proteins. The upregulation of salicylic acid (SA) biosynthesis genes PAL, ICS, and PBS3 confirmed that SA served as a defense-related signal molecule. Therefore, indole derivatives have a potential for activating defense of tobacco against TMV and other pathogens and can be used for disease control.
Collapse
Affiliation(s)
- Yubo Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenning Zhou
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhichun Yuan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lirong Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
30
|
Yuan T, Wang Z, Liu D, Zeng H, Liang J, Hu D, Gan X. Ferulic acid derivatives with piperazine moiety as potential antiviral agents. PEST MANAGEMENT SCIENCE 2022; 78:1749-1758. [PMID: 35001496 DOI: 10.1002/ps.6794] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/26/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant virus diseases are difficult to control and severely threaten the productivity of crops, which leads to huge financial losses. To discover the new antiviral drugs, 34 novel ferulic acid derivatives with piperazine moiety were synthesized, and the antiviral activities were systematically screened as well. RESULTS Bioassay results indicated that most of the target compounds had outstanding antiviral activities against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) in vivo. In particular, compound E2 exhibited remarkable curative activities to TMV and CMV with EC50 values of 189.0 and 401.7 μg/mL compared to those for ningnanmycin (387.0, 519.3 μg/mL) and ribavirin (542.1, 721.5 μg/mL). And then the mechanisms of compound E2 were studied by chlorophyll content, differentially expressed proteins and genes tests. CONCLUSION The excellent antiviral activity of compound E2 was closely associated with the increase in host photosynthesis, which was confirmed by chlorophyll content, differentially expressed proteins and genes assays. Compound E2 can be considered as a lead structure for the discovery of new antiviral agents. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Dan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Juncheng Liang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
31
|
In Silico Pesticide Discovery for New Anti-Tobacco Mosaic Virus Agents: Reactivity, Molecular Docking, and Molecular Dynamics Simulations. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Considerable data are available regarding the molecular genetics of the tobacco mosaic virus. The disease caused by the tobacco mosaic virus is still out of control due to the lack of an efficient functional antagonist chemical molecule. Extensive research was carried out to try to find effective new anti-tobacco mosaic virus agents, however no study could find an effective agent which could completely inhibit the disease caused by the virus. In recent years, molecular docking, combined with molecular dynamics, which is considered to be one of the most important methods of drug discovery and design, were used to evaluate the type of binding between the ligand and its protein enzyme. The aim of the current work was to assess the in silico anti-tobacco mosaic virus activity for a selection of 41 new and 2 reference standard compounds. These compounds were chosen to examine their reactivity and binding efficiency with the tobacco mosaic virus coat protein (PDB ID: 2OM3). A comparison was made between the activity of the selected compounds and that for ningnanmycin and ribavirin, which are common inhibitors of plant viruses. The simulation results obtained from the molecular docking and molecular dynamics showed that two compounds of the antofine analogues could bind with the tobacco mosaic virus coat protein receptor better than ningnanmycin and ribavirin.
Collapse
|
32
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Ferulic Acid From Plant Biomass: A Phytochemical With Promising Antiviral Properties. Front Nutr 2022; 8:777576. [PMID: 35198583 PMCID: PMC8860162 DOI: 10.3389/fnut.2021.777576] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is a magnificent renewable resource for phytochemicals that carry bioactive properties. Ferulic acid (FA) is a hydroxycinnamic acid that is found widespread in plant cell walls, mainly esterified to polysaccharides. It is well known of its strong antioxidant activity, together with numerous properties, such as antimicrobial, anti-inflammatory and neuroprotective effects. This review article provides insights into the potential for valorization of FA as a potent antiviral agent. Its pharmacokinetic properties (absorption, metabolism, distribution and excretion) and the proposed mechanisms that are purported to provide antiviral activity are presented. Novel strategies on extraction and derivatization routes, for enhancing even further the antiviral activity of FA and potentially favor its metabolism, distribution and residence time in the human body, are discussed. These routes may lead to novel high-added value biorefinery pathways to utilize plant biomass toward the production of nutraceuticals as functional foods with attractive bioactive properties, such as enhancing immunity toward viral infections.
Collapse
Affiliation(s)
- Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Eleftheria Sapountzaki
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
33
|
Zhou Q, Tang X, Chen S, Zhan W, Hu D, Zhou R, Sun N, Wu Y, Xue W. Design, Synthesis, and Antifungal Activity of Novel Chalcone Derivatives Containing a Piperazine Fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1029-1036. [PMID: 35072471 DOI: 10.1021/acs.jafc.1c05933] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In an attempt to find the biorational pesticides, 20 novel chalcone derivatives containing a piperazine fragment were designed and synthesized. Their fungicidal activities and preliminarily action mechanism against Rhizoctonia solani were evaluated. Strikingly, the biological activity of compound D2 was obtained by optimizing the structure of the system. Subsequently, the practical value of compound D2 was ascertained by the relative surveys on in vivo anti-R. solani and anti-Colletotrichum gloeosporioides. The results revealed by scanning electron microscopy demonstrated that compound D2 could induce irregular and shrivelled growth of mycelium and rupture of the mycelium surface. This study indicates that chalcone derivatives containing a piperazine skeleton had better inhibitory effect on plant fungi, providing further complementary research on new pesticides.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shuai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Die Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - YongJun Wu
- Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
34
|
Zheng H, Kuang J, Zhang H, Niu X, Wu Z. Design, synthesis, and bioassay of novel 1‐(3‐chloropyridin‐2‐yl)‐5‐amino‐4‐pyrazole derivatives containing a 1,3,4‐thiadiazole thioether or sulfone moiety. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huanlin Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Jiqing Kuang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Xue Niu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| |
Collapse
|
35
|
Gan X, Wang Z, Hu D. Synthesis of Novel Antiviral Ferulic Acid-Eugenol and Isoeugenol Hybrids Using Various Link Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13724-13733. [PMID: 34751031 DOI: 10.1021/acs.jafc.1c05521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To develop novel antiviral agents, some novel conjugates between ferulic acid and eugenol or isoeugenol were designed and synthesized by the link reaction. The antiviral activities of compounds were evaluated using the half leaf dead spot method. Bioassay results showed acceptable antiviral activities of some conjugates against the tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). Compounds A9, A10, E1, and E4 showed remarkable curative, protective, and inactivating effects on TMV and CMV at 500 μg mL-1. Notably, these compounds exhibited excellent protective effects on TMV and CMV. The EC50 values of compounds A9, A10, E1, and E4 against TMV were 180.5, 169.5, 211.4, and 135.5 μg mL-1, respectively, and those against CMV were 210.5, 239.1, 218.4, and 178.6 μg mL-1, respectively, which were superior to those of ferulic acid (471.5 and 489.2 μg mL-1), eugenol (456.3 and 463.2 μg mL-1), isoeugenol (478.4 and 487.5 μg mL-1), and ningnanmycin (246.5 and 286.6 μg mL-1). Then, the antiviral mechanisms of compound E4 were investigated by determining defensive enzyme activities and multi-omics analysis. The results indicated that compound E4 resisted the virus infection by enhancing defensive responses via inducing the accumulation of secondary metabolites from the phenylpropanoid biosynthesis pathway in tobacco.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
36
|
Jiang D, Chen J, Zan N, Li C, Hu D, Song B. Discovery of Novel Chromone Derivatives Containing a Sulfonamide Moiety as Anti-ToCV Agents through the Tomato Chlorosis Virus Coat Protein-Oriented Screening Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12126-12134. [PMID: 34633811 DOI: 10.1021/acs.jafc.1c02467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A number of novel chromone derivatives containing sulfonamide moieties were designed and synthesized, and the activity of compounds against tomato chlorosis virus (ToCV) was assessed using the ToCVCP-oriented screening method. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models were established based on the dissociation constant (Kd) values of the target compounds, and compound 35 was designed and synthesized with the aid of CoMFA and CoMSIA models. The study of affinity interaction indicated that compound 35 exhibited excellent affinity with ToCVCP with a Kd value of 0.11 μM, which was better than that of the positive control agents xiangcaoliusuobingmi (0.44 μM) and ningnanmycin (0.79 μM). In addition, the in vivo inhibitory effect of compound 35 on the ToCVCP gene was evaluated by the quantitative real-time polymerase chain reaction. ToCVCP gene expression levels of the compound 35 treatment group were reduced by 67.2%, which was better than that of the positive control agent ningnanmycin (59.5%). Therefore, compound 35 can be used as a potential anti-ToCV drug in the future.
Collapse
Affiliation(s)
- Donghao Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ningning Zan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunyi Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
37
|
Zhang R, Deng P, Dai A, Guo S, Wang Y, Wei P, Wu J. Design, Synthesis, and Biological Activity of Novel Ferulic Amide Ac5c Derivatives. ACS OMEGA 2021; 6:27561-27567. [PMID: 34693177 PMCID: PMC8529889 DOI: 10.1021/acsomega.1c04644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 05/13/2023]
Abstract
A total of 34 novel ferulic amide Ac5c derivatives were designed and synthesized and their antipest activities were investigated. The results showed that some compounds exhibited excellent in vitro antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), such as compounds 4q and 5n demonstrated excellent in vitro activity against Xoo, with EC50 values of 4.0, and 1.9 μg/mL, respectively. Compounds 4c, 4h, 4m, 4p, 4q, and 5a had significant in vitro activities against Xoc, with EC50 values of 12.5, 13.9, 9.8 15.0, 9.2, and 19.8 μg/mL, respectively. Moreover, the antibacterial activity in vivo against rice bacterial leaf blight was also evaluated. Scanning electron microscopy (SEM) showed that compound 5n significantly reduced the cell membrane of Xoo, and resulted in cell surface wilting, deformation, breakage, and increased porous attributes. In addition, some of the target compounds also showed moderate biological activity against fungi and acted as potential insecticides.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Wu
- , . Tel/Fax: +86-851-88292090
| |
Collapse
|
38
|
Zhang R, Guo S, Deng P, Wang Y, Dai A, Wu J. Novel Ferulic Amide Ac6c Derivatives: Design, Synthesis, and Their Antipest Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10082-10092. [PMID: 34432441 DOI: 10.1021/acs.jafc.1c03892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Thirty-eight novel ferulic amide 1-aminocyclohexane carboxylic acid (Ac6c) derivatives D1-D19 and E1-E19 were designed and synthesized, and their antibacterial, antifungal, and insecticidal activities were tested. Most of the synthesized compounds displayed excellent activity againstXanthomonas oryzae pv. oryzae (Xoo), with EC50 values ranging from 11.6 to 83.1 μg/mL better than that of commercial bismerthiazol (BMT, EC50 = 84.3 μg/mL), as well as much better performance compared to that of thiediazole copper (TDC, EC50 = 137.8 μg/mL). D6 (EC50 = 17.3 μg/mL), D19 (EC50 = 29.4 μg/mL), E3 (EC50 = 29.7 μg/mL), E9 (EC50 = 27.0 μg/mL), E10 (EC50 = 18.6 μg/mL), and E18 (EC50 = 20.8 μg/mL) showed much higher activity on Xanthomonas oryzae pv. oryzicola compared with BMT (EC50 = 80.1 μg/mL) and TDC (EC50 = 124.7 μg/mL). In relation to controlling the fungus, Rhizoctonia solani, E1, E10, and E13 had much lower EC50 values of 0.005, 0.140, and 0.159 μg/mL compared to hymexazol at 74.8 μg/mL. Further in vivo experiments demonstrated that E6 and E12 controlled rice bacterial leaf blight disease better than BMT and TDC did. Scanning electron microscopy (SEM) studies revealed that E12 induced the Xoo cell membrane collapse. Moreover, D13 (73.7%), E5 (80.6%), and E10 (73.4%) also showed moderate activity against Plutella xylostella. These results indicated that the synthesized ferulic amide Ac6c derivatives showed promise as candidates for treating crop diseases.
Collapse
Affiliation(s)
- Renfeng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Peng Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ya Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ali Dai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
39
|
Synthesis of trans- methyl ferulate bearing an oxadiazole ether as potential activators for controlling plant virus. Bioorg Chem 2021; 115:105248. [PMID: 34392177 DOI: 10.1016/j.bioorg.2021.105248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022]
Abstract
A series of new ferulic acid derivatives bearing an oxadiazole ether was synthesized by introducing a structure of oxadiazole into trans-ferulic acid via an ether linkage. The synthesized target compounds were evaluated in vivo for their anti-TMV (tobacco mosaic virus) activity, which indicated that some synthesized compounds displayed strong activity for controlling TMV. For protective activity, compounds 6f and 6h had the most activities of 65% and 69.8% at 500 mg L-1, respectively. Compounds 6a, 6b, 6e, 6f and 6h showed > 60% curative activities at 500 mg L-1. Preliminary proteomics analysis showed that compound 6h could regulate the phenylpropanoid biosynthesis pathway and chloroplast function. These results indicated that synthesized novel ferulic acid derivatives could be used for controlling TMV.
Collapse
|
40
|
Zhang J, He F, Chen J, Wang Y, Yang Y, Hu D, Song B. Purine Nucleoside Derivatives Containing a Sulfa Ethylamine Moiety: Design, Synthesis, Antiviral Activity, and Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5575-5582. [PMID: 33988985 DOI: 10.1021/acs.jafc.0c06612] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To find efficient and broad-spectrum viral agents, a series of purine nucleoside derivatives containing sulfa ethylamine moieties was designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), and potato virus Y (PVY) were evaluated. Some target compounds displayed good antiviral activities. Among them, compound 3 showed excellent protective activity against CMV and PVY with 50% effective concentration values (EC50) of 137 and 209 μg/mL, respectively, which were better than that of the control agent ningnanmycin (508 and 431 μg/mL). Moreover, the EC50 value of compound 3 for the inactivating activity against TMV was 48 μg/mL, which was better than that of ningnanmycin (88 μg/mL). In addition, compound 3 not only destroyed the structure of the TMV virus but also had a good interaction with the coat protein of the TMV virus. Therefore, compound 3 may further destroy the structure of the virus by binding to the coat protein of the TMV virus, thereby weakening the infectivity of the virus.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Fangcheng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Yanju Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Yuyuan Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| |
Collapse
|
41
|
Guo S, He F, Song B, Wu J. Future direction of agrochemical development for plant disease in China. Food Energy Secur 2021. [DOI: 10.1002/fes3.293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Feng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| |
Collapse
|
42
|
Ma X, Wang D, Wei G, Zhou Q, Gan X. Synthesis and anticancer activity of chalcone–quinoxalin conjugates. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1881124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xiaoyun Ma
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang, China
| | - Daoping Wang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Gang Wei
- CSIRO Mineral Resources, Lindfield, NSW, Australia
| | - Qingdi Zhou
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Xiuhai Gan
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang, China
| |
Collapse
|
43
|
Wu S, Shi J, Chen J, Hu D, Zang L, Song B. Synthesis, Antibacterial Activity, and Mechanisms of Novel 6-Sulfonyl-1,2,4-triazolo[3,4- b][1,3,4]thiadiazole Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4645-4654. [PMID: 33871992 DOI: 10.1021/acs.jafc.1c01204] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A series of novel 6-sulfonyl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives were designed and synthesized. CoMFA models were established to analyze the quantitative structure-activity relationships on the basis of the EC50 values of the compounds. The models were used to design and synthesize compounds 32 and 33 with higher activities. The EC50 values of compound 33 against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) were 0.59 and 1.63 mg/L, respectively, which were higher than those of thiodiazole copper (90.43 and 97.93 mg/L) and bismerthiazol (68.37 and 75.59 mg/L). Moreover, protective activities of compound 33 against bacterial leaf streak (BLS) and bacterial leaf blight (BLB) were 49.65% and 49.42%, respectively, which were superior to those of thiodiazole copper (44.28% and 41.51%) and bismerthiazol (38.89% and 40.09%). Protective activity of compound 33 against BLS was closely related to the improvement of defense-related enzyme activities, chlorophyll content, and photosynthesis activation. This is consistent with the upregulated expression of defense responses and photosynthesis-related proteins.
Collapse
Affiliation(s)
- Sikai Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, People's Republic of China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, People's Republic of China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, People's Republic of China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, People's Republic of China
| | - Liansheng Zang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, People's Republic of China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
44
|
Isolation and Identification of Two Potent Phytotoxic Substances from Afzelia xylocarpa for Controlling Weeds. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phytotoxic substances released from plants are considered eco-friendly alternatives for controlling weeds in agricultural production. In this study, the leaves of Afzelia xylocarpa (Kurz) Craib. were investigated for biological activity, and their active substances were determined. Extracts of A. xylocarpa leaf exhibited concentration-dependent phytotoxic activity against the seedling length of Lepidium sativum L., Medicago sativa L., Phleum pratense L., and Echinochloa crus-galli (L.) P. Beauv. Bioassay-guided fractionation of the A. xylocarpa leaf extracts led to isolating and identifying two compounds: vanillic acid and trans-ferulic acid. Both compounds were applied to four model plants using different concentrations. The results showed both compounds significantly inhibited the model plants’ seedling length in a species-dependent manner (p < 0.05). The phytotoxic effects of trans-ferulic acid (IC50 = 0.42 to 2.43 mM) on the model plants were much greater than that of vanillic acid (IC50 = 0.73 to 3.17 mM) and P. pratense was the most sensitive to both compounds. In addition, the application of an equimolar (0.3 mM) mixture of vanillic acid and trans-ferulic acid showed the synergistic effects of the phytotoxic activity against the root length of P. pratense and L. sativum. These results suggest that the leaves of A. xylocarpa and its phytotoxic compounds could be used as a natural source of herbicides.
Collapse
|
45
|
Zhou X, Ye Y, Liu S, Shao W, Liu L, Yang S, Wu Z. Design, synthesis and anti-TMV activity of novel α-aminophosphonate derivatives containing a chalcone moiety that induce resistance against plant disease and target the TMV coat protein. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104749. [PMID: 33518042 DOI: 10.1016/j.pestbp.2020.104749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 05/24/2023]
Abstract
Plant viral diseases, known as "plant cancer", with high contagiosity can substantially reduce crop quality and yield. To identify potential anti-tobacco mosaic virus (TMV) agents with different mechanisms, a series of novel α-aminophosphonate derivatives containing a chalcone moiety were designed and synthesized. Bioassay results revealed that some target compounds exhibited improved curative activity against TMV in vivo, and the EC50 value of compound B3 was 356.7 mg L-1. The activities of the defensive enzymes POD and CAT from tobacco leaves treated with B3 and B17 showed that these target compounds could improve the photosynthetic ability of the leaves and activate plant host resistance against TMV infection. The binding constant between B3 and TMV Coat Protein (CP) (2.51 × 108 M-1), calculated by the fluorescence titration experiment and docking results, revealed that B3 has a strong interaction with TMV CP. Further docking analysis revealed that B3 was embedded between two layers of the TMV CP, which was consistent with the 2:1 binding mode of TMV CP and B3 determined by the binding affinity experiment. The TEM morphological study of TMV treated with B3 and B17 indicated that this series of target compounds may trigger the disassembly of TMV by interacting directly with TMV CP. This study provides new insight for the discovery of antiviral compounds with two different mechanisms of action.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yiqiang Ye
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shasha Liu
- Guizhou University Medical college, Guiyang 550025, China
| | - Wubin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
46
|
Targanski SK, Sousa JR, de Pádua GM, de Sousa JM, Vieira LC, Soares MA. Larvicidal activity of substituted chalcones against Aedes aegypti (Diptera: Culicidae) and non-target organisms. PEST MANAGEMENT SCIENCE 2021; 77:325-334. [PMID: 32729190 DOI: 10.1002/ps.6021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The expansion of Aedes aegypti (Diptera: Culicidae) population has increased the number of cases of arboviruses, in part due to the inefficiency and toxicity of the chemical control methods available to control this vector. We synthesized 19 chalcone derivatives and examined their activity against Ae. aegypti larvae in order to select larvicidal compounds that are non-toxic to other organisms. RESULTS Seven chalcone derivatives (3a, 3e, 3f, 6a, 6c, 6d, and 6f) had lethal concentrations of substituted chalcones capable of killing 50% (LC50 ) values lower than 100 mg mL-1 at 24 h post-treatment, which is the dose that the World Health Organization recommends for the selection of promising larvicides. The type of substituent added to (E)-1,3-diphenylprop-2-en-1-one (3a) markedly affected the larvicidal activity. Addition of chlorine, bromine and methoxy groups to the aromatic rings reduced the larvicidal activity, while replacement of the B-ring (phenyl) by a furan ring significantly increased the larvicidal activity. The furan-chalcone (E)-3-(4-bromophenyl)-1-(furan-2-yl)prop-2-en-1-one (6c) killed Ae. aegypti larvae (LC50 = 6.66 mg mL-1 ; LC90 = 9.97 mg mL-1 ) more effectively than the non-substituted chalcone (3a) (LC50 = 14.43 mg mL-1 ; LC90 = 20.96 mg mL-1 ), and was not toxic to the insect Galleria mellonella, to the protozoan Tetrahymena pyriformis, and to the algae Chorella vulgaris. CONCLUSIONS The substitution pattern of chalcones influenced their larvicidal activity. In the set of compounds tested, (E)-3-(4-bromophenyl)-1-(furan-2-yl)prop-2-en-1-one (6c) was the most effective larvicide against Ae. aegypti, with no clear signs of toxicity to other animal models. Its mechanism of action and effectiveness under field conditions remain to be determined.
Collapse
Affiliation(s)
- Sabrina K Targanski
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Janaína R Sousa
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Geilly Ms de Pádua
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Jéssica M de Sousa
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Lucas Cc Vieira
- Faculdade de Engenharia, Universidade Federal de Mato Grosso, Várzea Grande, Brazil
| | | |
Collapse
|
47
|
Guo W, Lu X, Liu B, Yan H, Feng J. Anti-TMV activity and mode of action of three alkaloids isolated from Chelidonium majus. PEST MANAGEMENT SCIENCE 2021; 77:510-517. [PMID: 32815231 DOI: 10.1002/ps.6049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Plant viral diseases are difficult to control and have caused serious damage to the agricultural industry. Recently, botanical biopesticides characterized by environment friendly, safe to non-target organism and not as susceptible to produce drug resistance, have exhibited great potential to be developed as antiviral agents. To screen the natural products with antiviral effect, three alkaloids possessed anti-tobacco mosaic virus (TMV) activity were isolated from Chelidonium majus and the modes of action were investigated. RESULT The anti-TMV effect of crude extracts at 10 mg mL-1 was 51.73%. Bioassay-guided fractionation and isolation of the compounds with anti-TMV activity were performed on the methanol extract of C. majus yielding three bioactive alkaloids namely: chelerythrine (1), chelidonine (2), and sanguinarine (3). The results of bioassay showed that chelerythrine exhibited great inactivation, proliferation inhibition and protection effects against TMV at 0.5 mg mL-1 with the efficiency of 72.67%, 77.52% and 59.34%, respectively. Chelidonine at 0.1 mg mL-1 can provide 54.90% and 64.45% inhibitions on TMV through inducing resistance in two kinds of tobacco. Sanguinarine showed a weaker protection for resisting TMV in comparison to chelerythrine and chelidonine. CONCLUSION Chelerythrine and chelidonine displayed significant inhibitions on TMV with different modes of action. These results provided important evidence that the extracts in C. majus might be a potential source of new drugs in controlling virus disease agriculturally.
Collapse
Affiliation(s)
- Wenhui Guo
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiang Lu
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Bin Liu
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - He Yan
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Juntao Feng
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
48
|
Guo W, Yan H, Ren X, Tang R, Sun Y, Wang Y, Feng J. Berberine induces resistance against tobacco mosaic virus in tobacco. PEST MANAGEMENT SCIENCE 2020; 76:1804-1813. [PMID: 31814252 DOI: 10.1002/ps.5709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant systemic resistance induced by botanical compounds is a promising alternative method of disease management. The natural product berberine, usually used as an antimicrobial in medicine, has been proven to have antifungal activity in agriculture. To investigate the induced resistance imparted by berberine, the effect of berberine against tobacco mosaic virus (TMV) and the mechanism governing this effect were determined. RESULT Berberine exhibited considerable in vivo anti-TMV activity of up to 68.3% but had no in vitro direct effect on TMV. Moreover, berberine could induce immune responses against TMV in tobacco, including the hypersensitive reaction (HR), accumulation of H2 O2 , increases in defense enzymes and overexpression of pathogenesis-related (PR) proteins. In addition, upregulation of salicylic acid (SA) biosynthesis genes PAL, CM1, ICS, PBS3 and the enzyme benzoic acid 2-hydroxylase (BA2H) confirmed that SA was involved in the defensive signals. Berberine can induce crop resistance against TMV, Phytophthora nicotianae, Botrytis cinerea and Blumeria graminis in the greenhouse. CONCLUSION This paper highlights the use of berberine in manipulating tobacco to generate defense responses against TMV, which can be attributed to SA-mediated induced resistance. The paper provides a theoretical basis for the application of berberine as a resistance activator and for further research on induced resistance by botanical natural product. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Guo
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - He Yan
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Xingyu Ren
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Ruirui Tang
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Yubo Sun
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Yong Wang
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Juntao Feng
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
49
|
Guo T, Xia R, Liu T, Peng F, Tang X, Zhou Q, Luo H, Xue W. Synthesis, Biological Activity and Action Mechanism Study of Novel Chalcone Derivatives Containing Malonate. Chem Biodivers 2020; 17:e2000025. [DOI: 10.1002/cbdv.202000025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Tao Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Rongjiao Xia
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Hui Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| |
Collapse
|
50
|
Chen Y, Li P, Chen M, He J, Su S, He M, Wang H, Xue W. Synthesis and antibacterial activity of chalcone derivatives containing thioether triazole. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ying Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Pu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Jun He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Hua Wang
- Institute for Plant Protection and Soil ScienceHubei Academy of Agricultural Sciences Wuhan 430064 China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| |
Collapse
|