1
|
Zhang Y, Xu F, Yao J, Liu SS, Lei B, Tang L, Sun H, Wu M. Spontaneous interactions between typical antibiotics and soil enzyme: Insights from multi-spectroscopic approaches, XPS technology, molecular modeling, and joint toxic actions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135990. [PMID: 39357361 DOI: 10.1016/j.jhazmat.2024.135990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
A large amount of antibiotics enters the soil environment and accumulates therein as individuals and mixtures, threatening the soil safety. However, there is little information regarding the influence of single and mixed antibiotics on key soil proteins at molecular level. In this study, setting sulfadiazine (SD) and tetracycline hydrochloride (TC) as the representative antibiotics, the interactions between these agents and α-amylase (an important hydrolase in soil carbon cycle) were investigated through multi-spectroscopic approaches, X-ray photoelectron spectrometry, and molecular modeling. It was found that both SD and TC spontaneously bound to α-amylase with 1:1 stoichiometry mainly via forming stable chemical bonds. The interactions altered the polarity of aromatic amino acids, protein backbone, secondary structure, hydrophobicity and activity of α-amylase. The SD-TC mixtures were designed based on the direct equipartition ray to comprehensively characterize the possible concentration distribution, and interactive effects indicated that the mixtures antagonistically impacted α-amylase. These findings reveal the binding characteristics between α-amylase and typical antibiotics, which probably influence the ecological functions of α-amylase in soil. This study clarifies the potential harm of antibiotics on soil functional enzyme, which is significant for the environmental risk assessment of antibiotics and their mixtures.
Collapse
Affiliation(s)
- Yulian Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Fangyu Xu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingyi Yao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
2
|
Kuhlman B, Aleixandre-Tudo JL, Moore JP, du Toit W. Arabinogalactan proteins and polysaccharides compete directly with condensed tannins for saliva proteins influencing astringency perception of Cabernet Sauvignon wines. Food Chem 2024; 435:137625. [PMID: 37801763 DOI: 10.1016/j.foodchem.2023.137625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Wine astringency is thought to be due to salivary protein precipitation; however, the actual mechanism is not well-defined. This study aimed understand the relationship between whole polysaccharide extracts, produced with and without enzyme maceration, and the saliva protein-tannin precipitation reaction. Polysaccharides were analyzed in the context of salivary protein-tannin interactions using gel electrophoresis, quantitative 1H proton nuclear magnetic resonance (qHNMR), size separation chromatography, immunochemistry, and sensory analysis. Polysaccharide addition reduced saliva protein concentration in tannin-saliva protein-polysaccharide mixtures, indicating that native-wine polysaccharides compete with condensed tannins for salivary protein as ligand partners. qHNMR showed that tannin levels were increased by adding polysaccharides, suggesting that in these conditions, polysaccharides interact with saliva proteins via competitive protein-polysaccharide complex formation. Polysaccharides from non-enzyme-treated wines had threshold concentration of 121 mg/mL versus 86 mg/ml for enzyme-treated as detected by a sensory panel. Enzyme-treated polysaccharides changed astringency perception at a lower concentration than non-enzyme-treated polysaccharides.
Collapse
Affiliation(s)
- Brock Kuhlman
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa.
| | - Jose Luis Aleixandre-Tudo
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa.
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa.
| | - Wessel du Toit
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
3
|
Vieira APM, Danelon M, Fernandes GL, Berretta AA, Buszinski AFM, Dos Santos L, Delbem ACB, Barbosa DB. Pomegranate extract in polyphosphate-fluoride mouthwash reduces enamel demineralization. Clin Oral Investig 2024; 28:119. [PMID: 38277034 DOI: 10.1007/s00784-024-05495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVES To evaluate the anti-demineralizing effect of a mouthwash comprising pomegranate peel extract (PPE 3%), sodium trimetaphosphate (TMP 0.3%), and fluoride (F 225 ppm) in an in situ study, and to assess its irritation potential in an ex vivo study. METHODS This double-blind crossover study was conducted in four phases with 7 days each. Twelve volunteers used palatal appliances containing enamel blocks, which were subjected to cariogenic challenges. The ETF formulation (PPE + TMP + F, pH 7.0), TF formulation (TMP + F, pH 7.0), deionized water (W, pH 7.0), and essential oil commercial mouthwash (CM, 220 ppm F, pH 4.3) were dropped onto the enamel twice daily. The percentage of surface hardness loss, integrated loss of subsurface hardness, calcium, phosphorus, and fluoride in enamel and biofilms were determined. In addition, alkali-soluble extracellular polysaccharide concentrations were analyzed in the biofilms. The irritation potential was evaluated using the hen's egg chorioallantoic membrane test through the vascular effect produced during 300-s of exposure. RESULTS ETF was the most efficacious in preventing demineralization. It also showed the highest concentrations of calcium and phosphorus in the enamel and in the biofilm, as well as the lowest amount of extracellular polysaccharides in the biofilm. In the eggs, ETF produced light reddening, whereas CM led to hyperemia and hemorrhage. CONCLUSIONS The addition of PPE to formulations containing TMP and F increased its anti-demineralizing property, and this formulation presented a lower irritation potential than the CM. CLINICAL RELEVANCE ETF can be a promising alternative alcohol-free mouthwash in patients at high risk of caries.
Collapse
Affiliation(s)
- Ana Paula Miranda Vieira
- Graduate Program of Dental Science, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Marcelle Danelon
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Gabriela Lopes Fernandes
- Graduate Program of Dental Science, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | | | | | - Lucinéia Dos Santos
- Department of Biotechnology, São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araçatuba, José Bonifácio 1193, Araçatuba, 16015-050, Brazil.
| |
Collapse
|
4
|
Brandão E, Jesus M, Guerreiro C, Maricato É, Coimbra MA, Mateus N, de Freitas V, Soares S. Development of a cell-based quaternary system to unveil the effect of pectic polysaccharides on oral astringency. Carbohydr Polym 2024; 323:121378. [PMID: 37940274 DOI: 10.1016/j.carbpol.2023.121378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 11/10/2023]
Abstract
Phenolic compounds are responsible for food unpleasant taste properties, including astringency, due to their ability to interact with salivary proteins and oral constituents. Astringency is a crucial attribute for consumer's acceptability. To fulfill the demand for both healthy and tasty food, polysaccharides raise as a good alternative to modulate astringency. In this work, a cell-based quaternary system was developed to evaluate the ability of polysaccharides to reduce the interaction between two classes of hydrolysable tannins - gallotannins (tannic acid) and ellagitannins (punicalagin) - and oral constituents (cells, salivary proteins and mucosal pellicle). So, pectic polysaccharide fractions isolated from grape skins, imidazole soluble polysaccharides (ISP) and carbonate soluble polysaccharides (CSP), as well as a commercial pectin, were tested. Results showed that the polysaccharide's effect depends on the structural features of the molecules involved. CSP fraction and pectin were the most effective, reducing the interactions between both tannins and the oral constituents, mainly in the complete oral model. The highest uronic acid content and the presence of methyl esterified groups could explain their high reduction ability. For tannic acid, the reduction effect increased along with the galloylation degree, while the interaction of β-punicalagin with the oral constituents was practically inhibited at 3.0 mg.mL-1.
Collapse
Affiliation(s)
- Elsa Brandão
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Mónica Jesus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Carlos Guerreiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Élia Maricato
- QOPNA and LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | - Manuel A Coimbra
- QOPNA and LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Susana Soares
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| |
Collapse
|
5
|
Zhang L, Guan Q, Jiang J, Khan MS. Tannin complexation with metal ions and its implication on human health, environment and industry: An overview. Int J Biol Macromol 2023; 253:127485. [PMID: 37863140 DOI: 10.1016/j.ijbiomac.2023.127485] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Tannins, also known as plant polyphenols (PPs), are secondary metabolites widely existing in higher plants and are a kind of natural renewable resource with wide distribution, variety and quantity. Tannin has become an important class of fine chemicals due to the easily modified molecular structure and the properties of antibacterial and antioxidant, combining with protein and complexing with metal ion. Besides being used for tanning leather, tannins are also widely used in wood adhesive, concrete water-reducing agents, oil drilling fluid viscosity-reducing agents, pharmaceutical, mineral processing, water treatment, gas desulfurization, metal anticorrosion, wood anticorrosion, printing and dyeing, liquor clarification, oil antioxidant, daily chemical products and other products preparation. There are two groups of tannins: condensed tannins (CTs) (flavonoid-derived proanthocyanidins) and hydrolysable tannins (HTs) (gallic acid ester-derived). Tannins can form complexes with metals through the ortho-dihydroxyphenolic group(s), especially with transition metals. The structure-activity relationships, stoichiometry, and origin of the insolubility of which were emphasized. Furthermore, this paper proposed an in-depth discussion of the associations of tannins-metal complexes in human health, environment and industries.
Collapse
Affiliation(s)
- Liangliang Zhang
- Academy of Advanced Carbon Conversion Technology, Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China.
| | - Qinhao Guan
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| | - Jianchun Jiang
- Academy of Advanced Carbon Conversion Technology, Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Molino S, Lerma-Aguilera A, Gómez-Mascaraque LG, Rufián-Henares JÁ, Francino MP. Evaluation of Tannin-Delivery Approaches for Gut Microbiota Modulation: Comparison of Pectin-Based Microcapsules and Unencapsulated Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13988-13999. [PMID: 37432969 PMCID: PMC10540208 DOI: 10.1021/acs.jafc.3c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
The aim of this study was to investigate the impact of tannins on gut microbiota composition and activity, and to evaluate the use of pectin-microencapsulation of tannins as a potential mode of tannin delivery. Thus, pectin-tannin microcapsules and unencapsulated tannin extracts were in vitro digested and fermented, and polyphenol content, antioxidant capacity, microbiota modulation, and short-chain fatty acid (SCFA) production were analyzed. Pectin microcapsules were not able to release their tannin content, keeping it trapped after the digestive process, and are therefore not recommended for tannin delivery. Unencapsulated tannin extracts were found to exert a positive effect on the human gut microbiota. The digestion step resulted to be a fundamental requirement in order to maximize tannin bioactive effects, especially with regard to condensed tannins, as the antioxidant capacity exerted and the SCFAs produced were greater when tannins were submitted to digestion prior to fermentation. Moreover, tannins interacted differently with the intestinal microbiota depending on whether they underwent prior digestion or not. Polyphenol content and antioxidant capacity correlated with SCFA production and with the abundance of several bacterial taxa.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento
de Nutrición y Bromatología, Centro de Investigación
Biomédica, Instituto de Nutrición
y Tecnología de los Alimentos, Universidad de Granada, Granada 18016, Spain
- Silvateam
Spa, R&D Unit, San Michele Monddoví 12080, Italy
| | - Alberto Lerma-Aguilera
- Area
de Genòmica i Salut, Fundació per al Foment de la Investigació
Sanitária i Biomèdica de la Comunitat Valenciana, (FISABIO-Salut Pública), València 46020, Spain
| | - Laura G. Gómez-Mascaraque
- Food
Chemistry and Technology Department, Teagasc
Moorepark Food Research Centre, Fermoy, Co. Cork P61 C996, Ireland
| | - José Ángel Rufián-Henares
- Departamento
de Nutrición y Bromatología, Centro de Investigación
Biomédica, Instituto de Nutrición
y Tecnología de los Alimentos, Universidad de Granada, Granada 18016, Spain
- Instituto
de Investigación Biosanitaria ibs.Granada, Granada 18012, Spain
| | - M. Pilar Francino
- Area
de Genòmica i Salut, Fundació per al Foment de la Investigació
Sanitária i Biomèdica de la Comunitat Valenciana, (FISABIO-Salut Pública), València 46020, Spain
- CIBER
en Epidemiología y Salud Pública, Madrid 28029, Spain
| |
Collapse
|
7
|
Besharati M, Maggiolino A, Palangi V, Kaya A, Jabbar M, Eseceli H, De Palo P, Lorenzo JM. Tannin in Ruminant Nutrition: Review. Molecules 2022; 27:8273. [PMID: 36500366 PMCID: PMC9738529 DOI: 10.3390/molecules27238273] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tannins are polyphenols characterized by different molecular weights that plants are able to synthetize during their secondary metabolism. Macromolecules (proteins, structural carbohydrates and starch) can link tannins and their digestion can decrease. Tannins can be classified into two groups: hydrolysable tannins and condensed tannins. Tannins are polyphenols, which can directly or indirectly affect intake and digestion. Their ability to bind molecules and form complexes depends on the structure of polyphenols and on the macromolecule involved. Tannins have long been known to be an "anti-nutritional agent" in monogastric and poultry animals. Using good tannins' proper application protocols helped the researchers observe positive effects on the intestinal microbial ecosystem, gut health, and animal production. Plant tannins are used as an alternative to in-feed antibiotics, and many factors have been described by researchers which contribute to the variability in their efficiencies. The objective of this study was to review the literature about tannins, their effects and use in ruminant nutrition.
Collapse
Affiliation(s)
- Maghsoud Besharati
- Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar 5451785354, Iran
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Valiollah Palangi
- Department of Animal Science, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Adem Kaya
- Department of Animal Science, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Muhammad Jabbar
- Department of Zoology, Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Hüseyin Eseceli
- Department of Nutrition Sciences, Faculty of Health Sciences, Bandirma Onyedi Eylul University, Balikesir 10200, Turkey
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, Parque Tecnológico de Galicia, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
8
|
Decoding the Proanthocyanins Profile of Italian Red Wines. BEVERAGES 2022. [DOI: 10.3390/beverages8040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Italian wine appellations system is organized in hundreds of origin wines, with unique characteristics that are protected with many denominations of origin. The aim of this work was to analyze and compare the proanthocyanin profile of 12 single-cultivar and single-vintage Italian red wine groups (Aglianico from Campania, Cannonau from Sardinia, Corvina from Veneto, Montepulciano from Abruzzo, Nebbiolo from Piedmont, Nerello Mascalese from Sicily, Primitivo from Apulia, Raboso Piave from Veneto, Sagrantino from Umbria, Sangiovese from Tuscany and Romagna, and Teroldego from Trentino), each one produced in their terroirs under ad hoc legal frameworks to guarantee their quality and origin. All wines were analyzed with a protocol that combined the phloroglucinolysis reaction with an LC-MS/MS instrument. The results underlined Sagrantino wines as the richest in proanthocyanins. Sangiovese, Montepulciano, Nerello, and Teroldego were the richest in B-ring trihydroxylated flavan-3-ols, and especially Nerello was the richest in prodelphinidins. Cannonau, Raboso Piave, Nerello, and Corvina were characterized by C-ring trans conformation flavan-3-ols. Nebbiolo and Corvina had high percentages of galloylated flavan-3-ols. Aglianico and Primitivo had the lowest percentages of B-ring trihydroxylated and C-ring trans conformation flavan-3-ols. This information should be useful in better understanding the Italian red wines and valorize them.
Collapse
|
9
|
Costa JJ, Moreira FT, Soares S, Brandão E, Mateus N, De Freitas V, Sales MGF. Wine astringent compounds monitored by an electrochemical biosensor. Food Chem 2022; 395:133587. [DOI: 10.1016/j.foodchem.2022.133587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022]
|
10
|
Liu L, Li J, Zhang L, Wei S, Qin Z, Liang D, Ding B, Chen H, Song W. Conformational changes of tyrosinase caused by pentagalloylglucose binding: Implications for inhibitory effect and underlying mechanism. Food Res Int 2022; 157:111312. [DOI: 10.1016/j.foodres.2022.111312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
11
|
Wang Y, Xie Y, Wang A, Wang J, Wu X, Wu Y, Fu Y, Sun H. Insights into interactions between food polyphenols and proteins: an updated overview. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yang Xie
- Pharmaceutical Engineering Center Chongqing Medical and Pharmaceutical College Chongqing China
| | - Aidong Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Xiaoran Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yan Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| |
Collapse
|
12
|
González-Muñoz B, Garrido-Vargas F, Pavez C, Osorio F, Chen J, Bordeu E, O'Brien JA, Brossard N. Wine astringency: more than just tannin-protein interactions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1771-1781. [PMID: 34796497 DOI: 10.1002/jsfa.11672] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/22/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Red wines are characterized by their astringency, a very important sensory attribute that affects the perceived quality of wines. Three mechanisms have been proposed to explain astringency, and two theories describe how these mechanisms work in an integrated manner to produce tactile sensations such as drying, roughening, shrinking and puckering. The factors involved include not only tannins and salivary proteins, but also anthocyanins, grape polysaccharides and mannoproteins, as well as other wine matrix components that modulate their interactions. These multifactorial interactions could be responsible for different sensory responses and therefore need to be further studied. This review presents the latest advances in astringency perception and its possible origins, with special attention on the interactions of components, their impact on oral perception and the development of astringency sub-qualities. Future research efforts should concentrate on understanding the mechanisms involved as well as on the limiting factors related to the conformation and stability of the tannin-salivary protein complexes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beatriz González-Muñoz
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Garrido-Vargas
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Pavez
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Osorio
- Departamento de Ciencia y Tecnología de Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Jianshe Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Edmundo Bordeu
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José A O'Brien
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Brossard
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Molino S, Rufián Henares JÁ, Gómez-Mascaraque LG. Tannin-rich extracts improve the performance of amidated pectin as an alternative microencapsulation matrix to alginate. Curr Res Food Sci 2022; 5:243-250. [PMID: 35146441 PMCID: PMC8801355 DOI: 10.1016/j.crfs.2022.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Microencapsulation of tannin extracts through extrusion-gelation method was performed comparing two alternative encapsulation matrices: alginate and amidated pectin. The microstructure of the generated microbeads was studied, as well as their microencapsulation efficiency and release properties. Overall, pectin-based beads performed better than their alginate-based counterparts. This, combined with a greater incorporation of tannins in the feed formulations led to a higher tannin load in the final beads. The best microencapsulation efficiency was given by pectin microbeads loaded with 10% tannin extract (w/w), but the final tannin content could be further increased by adding a 20% (w/w) concentration of the extracts. During a 14-days storage, only a marginal loss of tannins was recorded for pectin-based microbeads. The results reveal that great potential exists in producing pectin-based microbeads in presence of tannins, which allow better loading capacities and improving structural properties, thanks to the interactions between the tannins and the amidated polysaccharide.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - José Ángel Rufián Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Universidad de Granada, Granada, Spain
| | - Laura G. Gómez-Mascaraque
- Food Chemistry and Technology Department, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
14
|
Pérez-Gregorio MR, Bessa Pereira C, Dias R, Mateus N, de Freitas V. New-Level Insights into the Effects of Grape Seed Polyphenols on the Intestinal Processing and Transport of a Celiac Disease Immunodominant Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13474-13486. [PMID: 34727499 DOI: 10.1021/acs.jafc.1c03713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effect of three dietary tannins (procyanidin B3, B6, and T2) on the bioavailability of the 32-mer gliadin-derived immunogenic peptide was evaluated. An enterocyte-like Caco-2 cell line was used to mimic the epithelial transport of the 32-mer peptide, which was modeled by kinetic parameters with a mass spectrometry approach. The hydrolysis pattern on the enterocytes was analyzed, and the released peptides were quantified during the assay. The transport flux was dose-dependent. Along with procyanidin T2 and B6, procyanidin B3 promoted a significant inhibition mainly at the 100 μM peptide concentration. The hydrolysis efficiency was affected by procyanidins, while the cleavage pattern was suggested to be promoted by brush-border membranes at the apical compartment. The ability of procyanidins to molecularly bind to immunogenic peptides able to induce an adaptive response arose as a mechanism able to modulate their bioavailability, bioaccesibility, and further T CD4+ cell activation and expansion in a celiac disease (CD) model.
Collapse
Affiliation(s)
- Maria Rosa Pérez-Gregorio
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Catarina Bessa Pereira
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Ricardo Dias
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| |
Collapse
|
15
|
Azevedo J, Jesus M, Brandão E, Soares S, Oliveira J, Lopes P, Mateus N, de Freitas V. Interaction between salivary proteins and cork phenolic compounds able to migrate to wine model solutions. Food Chem 2021; 367:130607. [PMID: 34388630 DOI: 10.1016/j.foodchem.2021.130607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
This work reports the study of the interaction of human salivary proteins (SP) with phenolic compounds that migrate from cork stoppers to wine. This study yields valuable data to understand the influence that these compounds may have on the sensory perception of wine from an astringency perspective. For that, three cork fractions containing the phenolic compounds that migrate in greater amounts from cork to model wine solutions were selected. Fraction M1 contains gallic acid, protocatechuic acid, vanillin and protocatechuic aldehyde; fraction M2 comprises essentially gallic acid and ellagic acid, as well as castalagin and dehydrocastalagin; and fraction M3 contains the two isomeric ellagitannins castalagin and vescalagin. The reactivity of each fraction towards SP was M3 > M2 > M1. Within M3 fraction, castalagin showed a higher ability to precipitate SP (mainly aPRPs, statherin and P-B peptide) comparatively to vescalagin. In M1 fraction, caffeic and sinapic acids were the compounds with the highest interaction with SP, mainly cystatins. In addition, there also seems to be a matrix effect (presence of other compounds) that could be affecting these interactions.
Collapse
Affiliation(s)
- Joana Azevedo
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Mónica Jesus
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Elsa Brandão
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Susana Soares
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Joana Oliveira
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Paulo Lopes
- Amorim Cork S.A. Rua dos Corticeiros 830, 4536-904 Santa Maria de Lamas, Portugal
| | - Nuno Mateus
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| |
Collapse
|
16
|
Molino S, Lerma-Aguilera A, Jiménez-Hernández N, Gosalbes MJ, Rufián-Henares JÁ, Francino MP. Enrichment of Food With Tannin Extracts Promotes Healthy Changes in the Human Gut Microbiota. Front Microbiol 2021; 12:625782. [PMID: 33796085 PMCID: PMC8008114 DOI: 10.3389/fmicb.2021.625782] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Food and food bioactive components are major drivers of modulation of the human gut microbiota. Tannin extracts consist of a mix of bioactive compounds, which are already exploited in the food industry for their chemical and sensorial properties. The aim of our study was to explore the viability of associations between tannin wood extracts of different origin and food as gut microbiota modulators. 16S rRNA amplicon next-generation sequencing (NGS) was used to test the effects on the gut microbiota of tannin extracts from quebracho, chestnut, and tara associated with commercial food products with different composition in macronutrients. The different tannin-enriched and non-enriched foods were submitted to in vitro digestion and fermentation by the gut microbiota of healthy subjects. The profile of the short chain fatty acids (SCFAs) produced by the microbiota was also investigated. The presence of tannin extracts in food promoted an increase of the relative abundance of the genus Akkermansia, recognized as a marker of a healthy gut, and of various members of the Lachnospiraceae and Ruminococcaceae families, involved in SCFA production. The enrichment of foods with tannin extracts had a booster effect on the production of SCFAs, without altering the profile given by the foods alone. These preliminary results suggest a positive modulation of the gut microbiota with potential benefits for human health through the enrichment of foods with tannin extracts.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Alberto Lerma-Aguilera
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Nuria Jiménez-Hernández
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - María José Gosalbes
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - M Pilar Francino
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
17
|
Evaluation of the Effect of a Grape Seed Tannin Extract on Wine Ester Release and Perception Using In Vitro and In Vivo Instrumental and Sensory Approaches. Foods 2021; 10:foods10010093. [PMID: 33466484 PMCID: PMC7824827 DOI: 10.3390/foods10010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to systematically evaluate the effect of a commercial grape seed tannin extract (GSE) fully characterized (53% monomers, 47% procyanidins) on wine ester release and perception using a global approach. The behavior of two esters (ethyl hexanoate, ethyl decanoate) was studied in a control wine or in the same wine supplemented with the GSE in preconsumption (in vitro headspace-stir bar sorptive extraction-gas chromatography mass spectrometry (HS-SBSE-GC/MS) and orthonasal perception) and consumption (intraoral-HS-SBSE-GC/MS and dynamic retronasal perception) conditions. For the compound ethyl hexanoate, no significant differences (p > 0.05) among wines were observed in the in vitro analyses while they were observed in the three in vivo experiments (p < 0.05). Thus, the wine supplemented with the GSE showed lower (35%) in vivo release and ortho (36%) and retronasal (16%) perception scores than the control wine. Overall, this suggests that components of the GSE could interact with this compound, directly and/or through complexes with oral components, affecting its release and conditioning its perception. However, perceptual interactions and effects of polyphenols on oral esterases cannot be discarded. On the contrary, the compound ethyl decanoate was not significantly affected by the addition of GSE. In conclusion, the addition of tannin extracts to wines can modulate aroma perception in a compound-dependent manner.
Collapse
|
18
|
Lyu J, Chen S, Nie Y, Xu Y, Tang K. Aroma release during wine consumption: Factors and analytical approaches. Food Chem 2020; 346:128957. [PMID: 33460960 DOI: 10.1016/j.foodchem.2020.128957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
During wine consumption, aroma compounds are released from the wine matrix and are transported to the olfactory receptor in vivo, leading to retronasal perception which can affect consumer acceptance. During this process, in addition to the influence of the wine matrix compositions, some physiological factors can significantly influence aroma release leading to altered concentrations of the aroma compounds that reach the receptors. Therefore, this review is focused on the impact of multiple factors, including the physiology and wine matrix, on the aroma released during wine tasting. Moreover, to reflect the pattern of volatiles that reach the olfactory receptors during wine consumption, some analytical approaches have been described for in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Jiaheng Lyu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China
| | - Shuang Chen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China
| | - Yao Nie
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China.
| | - Ke Tang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China.
| |
Collapse
|
19
|
Ontañón I, Sánchez D, Sáez V, Mattivi F, Ferreira V, Arapitsas P. Liquid Chromatography-Mass Spectrometry-Based Metabolomics for Understanding the Compositional Changes Induced by Oxidative or Anoxic Storage of Red Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13367-13379. [PMID: 33063507 DOI: 10.1021/acs.jafc.0c04118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the physicochemical changes of eight red wines stored under conditions differing in O2 exposure and temperature and time under anoxia. The methods used to analyze the wines included the measurement of volatile sulfur compounds, color, tannin (T) polymerization, and liquid chromatography-mass spectrometry untargeted metabolomic fingerprint. After 3 months, the color of the oxidized samples evolved 4-5 times more intensively than in wines stored under anoxia. The major metabolomic differences between oxidative and anoxic conditions were linked to reactions of acetaldehyde (favored in oxidative) and SO2 (favored in anoxia). In the presence of oxygen, the C-4 carbocation of flavanols delivered ethyl-linked tannin-anthocyanin (T-A) and tannin-tannin (T-T) adducts, pyranoanthocyanins, and sulfonated indoles, while under reduction, the C-4 carbocation delivered direct linked T-A adducts, rearranged T-T adducts, and sulfonated tannins. Some of these last reactions could be related to the accumulation of reduced species, eventually ending with reductive off-odors.
Collapse
Affiliation(s)
- I Ontañón
- Laboratorio de Análisis del Aroma y Enología, Departamento de Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - D Sánchez
- Laboratorio de Análisis del Aroma y Enología, Departamento de Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - V Sáez
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy
| | - F Mattivi
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, Trento, Italy
| | - V Ferreira
- Laboratorio de Análisis del Aroma y Enología, Departamento de Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - P Arapitsas
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy
| |
Collapse
|
20
|
Castillo-Fraire CM, Brandão E, Poupard P, Le Quére JM, Salas E, de Freitas V, Guyot S, Soares S. Interactions between polyphenol oxidation products and salivary proteins: Specific affinity of CQA dehydrodimers with cystatins and P-B peptide. Food Chem 2020; 343:128496. [PMID: 33203598 DOI: 10.1016/j.foodchem.2020.128496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022]
Abstract
Throughout the apple juice and cider making process, polyphenols undergo enzymatic oxidation which generates a great variety of polyphenol oxidation products. Since 5'-O-Caffeoylquinic acid (CQA) is one of the major phenolic compounds and the preferential substrate for polyphenoloxidase in apple juice, its oxidation leads to the formation of newly formed molecules by which dehydrodimers (MW 706 Da) are included. Interactions of salivary proteins (SP) with native polyphenols is a well-known phenomenon, but their interactions with polyphenol oxidation products has not been studied yet. In this work, we decided to decipher the interactions between CQA dehydrodimers and SP (gPRPs, aPRPs, statherins/P-B peptide, and cystatins) using HPLC-UV and fluorescence. These results showed that contrary to what was expected, CQA dehydrodimers presented a low interaction with PRPs, but revealed a specific interaction with statherins/P-B peptide and cystatins. This work settles for the first time the interactions between SP and polyphenol oxidation products.
Collapse
Affiliation(s)
| | - Elsa Brandão
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Portugal
| | - Pascal Poupard
- IFPC (French Institute for Cider Production), F-35653 Le Rheu, France; UMT ACTIA Nova(2)Cidre, F-35653 Le Rheu, France
| | - Jean-Michel Le Quére
- INRAE UR BIA - Polyphenols, Reactivity, Processes, F-35653 Le Rheu, France; UMT ACTIA Nova(2)Cidre, F-35653 Le Rheu, France
| | - Erika Salas
- Facultad de Ciencias Químicas, Universidad Autonoma de Chihuahua, Circuito Universitario s/n, Campus Universitario No. 2, CP 31125, Chihuahua, Mexico
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Portugal
| | - Sylvain Guyot
- INRAE UR BIA - Polyphenols, Reactivity, Processes, F-35653 Le Rheu, France; UMT ACTIA Nova(2)Cidre, F-35653 Le Rheu, France.
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Portugal
| |
Collapse
|
21
|
Cao R, Liu X, Liu Y, Zhai X, Cao T, Wang A, Qiu J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem 2020; 342:128258. [PMID: 33508899 DOI: 10.1016/j.foodchem.2020.128258] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
Due to a number of unparalleled advantages such as fastness, accuracy, intactness, nuclear magnetic resonance spectroscopy (NMR) has fulfilled a significant role in determining structures and dynamics of various physical, chemical and biological systems in the field of food analysis. This study introduced the principle of NMR, key NMR techniques such as 1H NMR, DOSY, NOESY, HSQC, etc., and the knowledge of NMR applications on the evaluation of complex food system, especially the interactions of food components. The reviewed research work provides sufficient evidence that NMR spectroscopy has been an invaluable tool and will play an increasingly important role in specific technical support for food assessment. In addition, NMR combined with various other technologies could give a complete picture of the mechanism of the performance of functional food compounds, which are vital for human health and influence the intrinsic food properties during processing, storage and transportation at the molecular level.
Collapse
Affiliation(s)
- Ruge Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinru Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuqian Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuqing Zhai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianya Cao
- Institute of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, China
| | - Aili Wang
- Key laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ju Qiu
- Institute of Food and Nutrition Development, Ministry of Agriculture, Haidian, Beijing 100081, China.
| |
Collapse
|
22
|
Chen B, Guo J, Xie Y, Zhou K, Li P, Xu B. Modulating the aggregation of myofibrillar protein to alleviate the textural deterioration of protein gels at high temperature: The effect of hydrophobic interactions. Food Chem 2020; 341:128274. [PMID: 33038801 DOI: 10.1016/j.foodchem.2020.128274] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 01/26/2023]
Abstract
In this study, the strategy of utilizing a model hydrophobic molecule, octenyl succinic anhydride (OSA), to inhibit over-aggregation of MP during heating, aiming to alleviate high temperature-induced textural deterioration of MP gels, was proposed, and a series of experiments were conducted to verify the effectiveness. The results showed that the effect was positively dependent on the concentrations of OSA. The addition of OSA at a concentration of 4 g/kg to 24 g/kg delayed the gelation temperature of MP, as confirmed by the DSC results, and inhibited the aggregation of MP through hydrophobic interactions between OSA and MP, as revealed by fluorescence and FTIR spectroscopy. Furthermore, when the concentration of OSA increased from 4 g/kg to 12 g/kg, the controlled aggregation of MP improved the gel properties of MP formed at high temperature, but when the concentration reached 24 g/kg, the protein aggregation was too inhibited to form developed gel networks.
Collapse
Affiliation(s)
- Bo Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jie Guo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
23
|
Time Course of Salivary Protein Responses to Cranberry-Derived Polyphenol Exposure as a Function of PROP Taster Status. Nutrients 2020; 12:nu12092878. [PMID: 32967117 PMCID: PMC7551352 DOI: 10.3390/nu12092878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Astringency is a complex oral sensation, commonly experienced when dietary polyphenols interact with salivary proteins. Most astringent stimuli alter protein levels, which then require time to be replenished. Although it is standard practice in astringency research to provide breaks in between stimuli, there is limited consensus over the amount of time needed to restore the oral environment to baseline levels. Here we examined salivary protein levels after exposure to 20 mL of a model stimulus (cranberry polyphenol extract, 0.75 g/L CPE) or unsweetened cranberry juice (CJ), over a 10 min period. Whole saliva from healthy subjects (n = 60) was collected at baseline and after 5 and 10 min following either stimulus. Five families of proteins: basic proline-rich proteins (bPRPs); acidic proline-rich proteins (aPRPs); histatins; statherin; and S-type cystatins, were analyzed in whole saliva via HPLC-low resolution-ESI-IT-MS, using the area of the extracted ion current (XIC) peaks. Amylase was quantified via immunoblotting. In comparison to baseline (resting), both stimuli led to a rise in levels of aPRPs (p < 0.000) at 5 min which remained elevated at 10 min after stimulation. Additionally, an interaction of PROP taster status and time was observed, wherein super-tasters had higher levels of amylase in comparison to non-tasters after stimulation with CJ at both timepoints (p = 0.014–0.000). Further, male super-tasters had higher levels of bPRPs at 5 min after stimulation with both CJ and CPE (p = 0.015–0.007) in comparison to baseline. These data provide novel findings of interindividual differences in the salivary proteome that may influence the development of astringency and that help inform the design of sensory experiments of astringency.
Collapse
|
24
|
Zhang Q, Cheng Z, Wang Y, Fu L. Dietary protein-phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Crit Rev Food Sci Nutr 2020; 61:3589-3615. [DOI: 10.1080/10408398.2020.1803199] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Zhouzhou Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
25
|
Brandão E, Fernandes A, Guerreiro C, Coimbra MA, Mateus N, de Freitas V, Soares S. The effect of pectic polysaccharides from grape skins on salivary protein – procyanidin interactions. Carbohydr Polym 2020; 236:116044. [DOI: 10.1016/j.carbpol.2020.116044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023]
|
26
|
Molino S, Casanova NA, Rufián Henares JÁ, Fernandez Miyakawa ME. Natural Tannin Wood Extracts as a Potential Food Ingredient in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2836-2848. [PMID: 31117489 DOI: 10.1021/acs.jafc.9b00590] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wood extracts are one of the most important natural sources of industrially obtained tannins. Their use in the food industry could be one of the biggest (most important) recent innovations in food science as a result of their multiple (many) possible applications. The use of tannin wood extracts (TWEs) as additives directly added in foods or in their packaging meets an ever-increasing consumer demand for innovative approaches to sustainability. The latest research is focusing on new ways to include them directly in food, to take advantage of their specific actions to prevent individual pathological conditions. The present review begins with the biology of TWEs and then explores their chemistry, specific sensorial properties, and current application in food production. Moreover, this review is intended to cover recent studies dealing with the potential use of TWEs as a starting point for novel food ingredients.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
| | - Natalia Andrea Casanova
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires C1033AAE, Argentina
| | - José Ángel Rufián Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, 18071 Granada, Spain
| | - Mariano Enrique Fernandez Miyakawa
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires C1033AAE, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1425FQB, Argentina
| |
Collapse
|
27
|
Brandão E, Silva MS, García-Estévez I, Williams P, Mateus N, Doco T, de Freitas V, Soares S. Inhibition Mechanisms of Wine Polysaccharides on Salivary Protein Precipitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2955-2963. [PMID: 31690078 DOI: 10.1021/acs.jafc.9b06184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, high-performance liquid chromatography, fluorescence quenching, nephelometry, and sodium dodecyl sulfate polyacrylamide gel electrophoresis were used to study the effect of polysaccharides naturally present in wine [rhamnogalacturonan II (RG II) and arabinogalactan proteins (AGPs)] on the interaction between salivary proteins (SP) together present in saliva and tannins (punicalagin (PNG) and procyanidin B2). In general, the RG II fraction was more efficient to inhibit SP precipitation by tannins, especially for acidic proline-rich proteins (aPRPs) and statherin/P-B peptide, than AGPs. The RG II fraction can act mainly by a competition mechanism in which polysaccharides compete by tannin binding. However, in the presence of Na+ ions in solution, no RG II effect was observed on SP-tannin interactions. On the other hand, dependent upon the saliva sample as well as the tannin studied, AGPs can act by both mechanisms, competition and ternary (formation of a ternary complex with SP-tannin aggregates enhancing their solubility).
Collapse
Affiliation(s)
- Elsa Brandão
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Mafalda Santos Silva
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ignacio García-Estévez
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pascale Williams
- Joint Research Unit 1083, Sciences for Enology, Institut National de la Recherche Agronomique (INRA), 2 Place Pierre Viala, F-34060 Montpellier, France
| | - Nuno Mateus
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Thierry Doco
- Joint Research Unit 1083, Sciences for Enology, Institut National de la Recherche Agronomique (INRA), 2 Place Pierre Viala, F-34060 Montpellier, France
| | - Victor de Freitas
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
28
|
Effects of Olive and Pomegranate By-Products on Human Microbiota: A Study Using the SHIME ® in Vitro Simulator. Molecules 2019; 24:molecules24203791. [PMID: 31640295 PMCID: PMC6832639 DOI: 10.3390/molecules24203791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 01/23/2023] Open
Abstract
Two by-products containing phenols and polysaccharides, a “pâté” (OP) from the extra virgin olive oil milling process and a decoction of pomegranate mesocarp (PM), were investigated for their effects on human microbiota using the SHIME® system. The ability of these products to modulate the microbial community was studied simulating a daily intake for nine days. Microbial functionality, investigated in terms of short chain fatty acids (SCFA) and NH4+, was stable during the treatment. A significant increase in Lactobacillaceae and Bifidobacteriaceae at nine days was induced by OP mainly in the proximal tract. Polyphenol metabolism indicated the formation of tyrosol from OP mainly in the distal tract, while urolithins C and A were produced from PM, identifying the human donor as a metabotype A. The results confirm the SHIME® system as a suitable in vitro tool to preliminarily investigate interactions between complex botanicals and human microbiota before undertaking more challenging human studies.
Collapse
|
29
|
Soares S, Brandão E, García-Estevez I, Fonseca F, Guerreiro C, Ferreira-da-Silva F, Mateus N, Deffieux D, Quideau S, de Freitas V. Interaction between Ellagitannins and Salivary Proline-Rich Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9579-9590. [PMID: 31381329 DOI: 10.1021/acs.jafc.9b02574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first contact of tannins with the human body occurs in the mouth, where some of these tannins are known to interact with salivary proteins, in particular with proline-rich proteins (PRPs). These interactions are important at a sensory level, especially for astringency development, but could also affect the biological activities of the tannins. This study gathers information on the relative affinity of the interaction, complex stoichiometry, and tannin molecular epitopes of binding for the interactions between the families of PRPs (bPRPs, gPRPs, and aPRPs) and three representative ellagitannins (castalagin, vescalagin, and punicalagin). These interactions were studied by saturation-tranfer difference NMR and microcalorimetry. The effect of the PRP-ellagitannin interaction on their antioxidant ability was also assessed by ferric reduction antioxidant power (FRAP) assays. The results support a significant interaction between the studied tannins and PRPs with binding affinities in the micromolar range. Punicalagin was always the ellagitannin with higher affinity. aPRPs were the salivary PRPs with higher affinity. Moreover, it was observed that when ellagitannins are present in low concentrations (5-50 μM), as occurs in food, the antioxidant ability of these tannins when complexed with salivary PRPs could be significantly impaired.
Collapse
Affiliation(s)
- Susana Soares
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Elsa Brandão
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Ignacio García-Estevez
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
- Grupo de Investigación en Polifenoles (GIP), Facultad de Farmacia , University of Salamanca , E37007 Salamanca , Spain
| | - Fátima Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto 4099-002 , Portugal
- IBMC - Instituto de Biologia Molecular e Celular , Universidade do Porto , Porto 4200-135 , Portugal
| | - Carlos Guerreiro
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Frederico Ferreira-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto 4099-002 , Portugal
- IBMC - Instituto de Biologia Molecular e Celular , Universidade do Porto , Porto 4200-135 , Portugal
| | - Nuno Mateus
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Denis Deffieux
- Univ. Bordeaux , ISM (CNRS-UMR 5255) , 351 Cours de la Libération , 33405 Cedex Talence , France
| | - Stéphane Quideau
- Univ. Bordeaux , ISM (CNRS-UMR 5255) , 351 Cours de la Libération , 33405 Cedex Talence , France
| | - Victor de Freitas
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| |
Collapse
|
30
|
Chai WM, Wei QM, Deng WL, Zheng YL, Chen XY, Huang Q, Ou-Yang C, Peng YY. Anti-melanogenesis properties of condensed tannins from Vigna angularis seeds with potent antioxidant and DNA damage protection activities. Food Funct 2019; 10:99-111. [PMID: 30565612 DOI: 10.1039/c8fo01979g] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Condensed tannins contained in food are known to have many beneficial impacts on human health. In this study, we attempt to evaluate the structural features, antityrosinase effects, anti-melanogenesis properties, antioxidant activity and DNA damage protection activity of condensed tannins purified from the seeds of Vigna angularis (Willd.) Ohwi et Ohashi. MALDI-TOF MS, ESI-Full-MS, and HPLC-ESI-MS demonstrated that condensed tannins are composed of procyanidins, prodelphinidins and their gallates, among which procyanidins are the dominant components. As reversible and mixed-type inhibitors of tyrosinase, condensed tannins from V. angularis strongly inhibited the monophenolase and odiphenolase activities with IC50 values of 130.0 ± 0.5 and 35.1 ± 2.0 μg mL-1, respectively. What's more, condensed tannins had a good inhibitory effect on cell proliferation, cellular tyrosinase activity, and melanogenesis of B16 mouse melanoma cells. Based on fluorescence quenching analyses, these compounds were determined to be effective quenchers of the enzyme and its substrates. According to molecular docking, the strong interaction between condensed tannins and tyrosinase was mainly driven by hydrogen bonding and hydrophobic force. In addition, condensed tannins showed a powerful antioxidant capacity and DNA damage protection activity. Therefore, condensed tannins from V. angularis have feasible applications in food, medicine, and the cosmetics industry.
Collapse
Affiliation(s)
- Wei-Ming Chai
- College of Life Science and Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stolle T, Grondinger F, Dunkel A, Hofmann T. Quantitative proteomics and SWATH-MS to elucidate peri-receptor mechanisms in human salt taste sensitivity. Food Chem 2018; 254:95-102. [DOI: 10.1016/j.foodchem.2018.01.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/23/2022]
|
32
|
Oudane B, Boudemagh D, Bounekhel M, Sobhi W, Vidal M, Broussy S. Isolation, characterization, antioxidant activity, and protein-precipitating capacity of the hydrolyzable tannin punicalagin from pomegranate yellow peel ( Punica granatum ). J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
García-Estévez I, Ramos-Pineda AM, Escribano-Bailón MT. Interactions between wine phenolic compounds and human saliva in astringency perception. Food Funct 2018; 9:1294-1309. [PMID: 29417111 DOI: 10.1039/c7fo02030a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astringency is a complex perceptual phenomenon involving several sensations that are perceived simultaneously. The mechanism leading to these sensations has been thoroughly and controversially discussed in the literature and it is still not well understood since there are many contributing factors. Although we are still far from elucidating the mechanisms whereby astringency develops, the interaction between phenolic compounds and proteins (from saliva, oral mucosa or cells) seems to be most important. This review summarizes the recent trends in the protein-phenol interaction, focusing on the effect of the structure of the phenolic compound on the interaction with salivary proteins and on methodologies based on these interactions to determine astringency.
Collapse
Affiliation(s)
- Ignacio García-Estévez
- Grupo de Investigación en Polifenoles, Departament of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n. E37007, Salamanca, Spain.
| | - Alba María Ramos-Pineda
- Grupo de Investigación en Polifenoles, Departament of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n. E37007, Salamanca, Spain.
| | - María Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles, Departament of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n. E37007, Salamanca, Spain.
| |
Collapse
|
34
|
Arapitsas P, Guella G, Mattivi F. The impact of SO 2 on wine flavanols and indoles in relation to wine style and age. Sci Rep 2018; 8:858. [PMID: 29339827 PMCID: PMC5770432 DOI: 10.1038/s41598-018-19185-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
Wine has one of the broadest chemical profiles, and the common oenological practice of adding the antioxidant and antimicrobial sulfur dioxide has a major impact on its metabolomic fingerprint. In this study, we investigated novel discovered oenological reactions primarily occurring between wine metabolites and sulfur dioxide. The sulfonated derivatives of epicatechin, procyanidin B2, indole acetic acid, indole lactic acid and tryptophol were synthesized and for the first time quantified in wine. Analysis of 32 metabolites in 195 commercial wines (1986-2016 vintages) suggested that sulfonation of tryptophan metabolites characterised white wines, in contrast to red wines, where sulfonation of flavanols was preferred. The chemical profile of the oldest wines was strongly characterised by sulfonated flavanols and indoles, indicating that could be fundamental metabolites in explaining quality in both red and white aged wines. These findings offer new prospects for more precise use of sulfur dioxide in winemaking.
Collapse
Affiliation(s)
- Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.
| | - Graziano Guella
- Centre for Agriculture, Food and the Environment, University of Trento, San Michele all'Adige, Italy
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
- Centre for Agriculture, Food and the Environment, University of Trento, San Michele all'Adige, Italy
| |
Collapse
|