1
|
Ramos IM, Navajas-Porras B, Delgado-Osorio A, Rufián-Henares JÁ, Poveda JM. Bioactive Compounds and Antioxidant Properties of Sheep's Milk Yogurt Enriched with a Postbiotic Extract from Lactiplantibacillus plantarum UCLM56: Effects of In Vitro Digestion and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7325-7334. [PMID: 40085732 DOI: 10.1021/acs.jafc.4c12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Lactic acid bacteria present in yogurts produce bioactive compounds, such as gamma-aminobutyric acid (GABA) and short-chain fatty acids (SCFAs). Sheep's milk yogurt is an excellent medium to enhance their bioactive properties. In this study, the impact of adding an extract derived from the GABA-producing strain Lactiplantibacillus plantarum UCLM56 to sheep's milk yogurt was evaluated in terms of its bioactive and antioxidant properties. Samples were subjected to in vitro digestion and fermentation to simulate the effects of the gastrointestinal tract. GABA, SCFAs, amino acids, biogenic amines, antioxidant capacity, and organic acid levels were analyzed. Yogurt enriched with UCLM56 postbiotic extract showed higher levels of GABA and propionic acid, with increases of more than 360 and 260%, respectively, along with an improved antioxidant capacity (FRAP and DPPH methods) compared to conventional yogurt. After in vitro fermentation, the levels of lactic and propionic acids were significantly higher in the enriched yogurt (50 and 41% increases, respectively), as well as the antioxidant capacity (more than 200% improvement). In conclusion, the use of Lactiplantibacillus plantarum UCLM56 extract enhances the bioactive properties of sheep's milk yogurt, making it a promising option for developing functional dairy products with added value.
Collapse
Affiliation(s)
- Inés María Ramos
- Departamento de Química Analítica y Tecnología de los Alimentos. Instituto Regional de Investigación Científica Aplicada (IRICA)/Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| | - Beatriz Navajas-Porras
- Servicio de Endocrinología y Nutrición, Hospital Universitario Doctor Peset, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), 46017 Valencia, Spain
| | - Adriana Delgado-Osorio
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Universidad de Granada, 18071 Granada, Spain
| | - José Ángel Rufián-Henares
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Universidad de Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, 18014 Granada, Spain
| | - Justa María Poveda
- Departamento de Química Analítica y Tecnología de los Alimentos. Instituto Regional de Investigación Científica Aplicada (IRICA)/Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
2
|
Navajas-Porras B, Delgado-Osorio A, Hinojosa-Nogueira D, Pastoriza S, Del Carmen Almécija-Rodríguez M, Rufián-Henares JÁ, Fernandez-Bayo JD. Improved nutritional and antioxidant properties of black soldier fly larvae reared on spent coffee grounds and blood meal by-products. Food Res Int 2024; 196:115151. [PMID: 39614531 DOI: 10.1016/j.foodres.2024.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 12/01/2024]
Abstract
Black Soldier Fly larvae (BSFL) are a promising and sustainable alternative to obtain proteins. Due to their high growth rate and ability to use different substrates as feeding stocks, BSFL can be also used to valorize food waste. Thus, the aim of this research was to unravel the potential use of Spent Coffee Grounds (SCG) and blood meal alone or mixed as feedstocks for BSFL and the nutritional changes for BSFL meal, especially after simulated human in vitro digestion and fermentation. Chicken feed was used as a control. Chicken feed showed the highest BSFL growth (P < 0.05) compared with blood meal and the mix made of blood meal and SCG; the latter caused the lowest growth. The meal obtained from BSFL fed with blood meal had the highest protein content, as well as the highest levels of short chain fatty acids (SCFAs) produced after in vitro fermentation by the human gut microbiota. On the other hand, the meal from larvae fed with SCG showed higher antioxidant capacity than the others in the DPPH, FRAP and ABTS assays. The digestibility of macronutrients, release of antioxidant capacity and production of SCFAs of the BSFL meal were improved when using these substrates, compared to chicken feed.
Collapse
Affiliation(s)
- Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Adriana Delgado-Osorio
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | | | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Spain.
| | - Jesús D Fernandez-Bayo
- Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Traffano-Schiffo MV, Aguirre-Calvo TR, Navajas-Porras B, Avanza MV, Rufián-Henares JÁ, Santagapita PR. In Vitro Digestion and Fermentation of Cowpea Pod Extracts and Proteins Loaded in Ca(II)-Alginate Hydrogels. Foods 2024; 13:3071. [PMID: 39410106 PMCID: PMC11475951 DOI: 10.3390/foods13193071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Antioxidants derived from food by-products are known for their bioactive properties and impact on human health. However, the gastrointestinal behavior is often poor due to their degradation during digestion. The development of Ca(II)-alginate beads supplemented with biopolymers and enriched with cowpea (Vigna unguiculata) extract could represent a novel environmentally friendly technological solution to produce functional ingredients in the food industry. The present study evaluates the impact of in vitro digestion/fermentation by analyzing global antioxidant response (GAR), production of short-chain fatty acids (SCFAs) as a modulation of gut microbiota, and behavior of proton transverse relaxation times by low-field nuclear magnetic resonance (as an indicator of gelation state and characterization of microstructure). Results revealed that guar gum and cowpea protein preserved a high GAR of total phenolic compounds and antioxidant capacity by ABTS and FRAP methods after digestion/fermentation, promoting an adequate protection of the bioactives for their absorption. Alginate-based beads have great potential as prebiotics, with the guar gum-containing system contributing the most to SCFAs production. Finally, the overall higher mobility of protons observed in the intestinal phase agrees with structural changes that promote the release of phenolic compounds during this stage. Beads are excellent carriers of bioactive compounds (cowpea phenolic compounds and peptides) with potential capacities.
Collapse
Affiliation(s)
- Maria Victoria Traffano-Schiffo
- Instituto de Química Básica y Aplicada del Nordeste Argentino, IQUIBA-NEA, UNNE-CONICET, Avenida Libertad 5460, Corrientes 3400, Argentina; (M.V.T.-S.); (M.V.A.)
| | - Tatiana Rocio Aguirre-Calvo
- Departamento de Química Orgánica y Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain;
| | - María Victoria Avanza
- Instituto de Química Básica y Aplicada del Nordeste Argentino, IQUIBA-NEA, UNNE-CONICET, Avenida Libertad 5460, Corrientes 3400, Argentina; (M.V.T.-S.); (M.V.A.)
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18014 Granada, Spain
| | - Patricio Román Santagapita
- Departamento de Química Orgánica y Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina
| |
Collapse
|
4
|
Ayuso P, Quizhpe J, Yepes F, Miranzo D, Avellaneda A, Nieto G, Ros G. Improving the Nutritional Quality of Protein and Microbiota Effects in Additive- and Allergen-Free Cooked Meat Products. Foods 2024; 13:1792. [PMID: 38928734 PMCID: PMC11202710 DOI: 10.3390/foods13121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The primary objective of the meat industry is to enhance the quality and positive attributes of meat products, driven by an increasing consumer demand for healthier, less processed options. One common approach to achieving this goal is the replacement of additives and allergens with natural ingredients. Nevertheless, the nutritional impact of these changes has not been extensively studied. To address these gaps, two new meat products were developed: cooked turkey breast and cooked ham. The products in question exclude additives and allergens and instead incorporate a blend of natural extracts containing vitamin C, chlorogenic acids, hydroxytyrosol, catechins, epicatechins, vinegar, and inulin fibre. The objective of this study was to evaluate the impact of these reformulations on protein quality and gut microbiota. Protein quality was evaluated using the Digestible Indispensable Amino Acid Score (DIAAS) following in vitro digestion. The microbial composition and short-chain fatty acid (SCFA) production were analysed through in vitro colonic fermentations in both normal-weight and obese participants in order to gauge their effect on gut microbiota. The results demonstrated that the reformulation of cooked turkey breast increased its digestibility by 6.4%, while that of cooked ham exhibited a significant 17.9% improvement. Furthermore, protein quality was found to have improved significantly, by 19.5% for cooked turkey breast and 32.9% for cooked ham. Notwithstanding these alterations in protein digestibility, the microbial composition at the phylum and genus levels remained largely unaltered. Nevertheless, total SCFA production was observed to increase in both groups, with a more pronounced effect observed in the normal-weight group. In conclusion, the substitution of artificial additives with natural ingredients in reformulated cooked meat products has resulted in enhanced digestibility, improved protein quality, and increased production of short-chain fatty acids.
Collapse
Affiliation(s)
- Pablo Ayuso
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Jhazmin Quizhpe
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Fani Yepes
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Domingo Miranzo
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Antonio Avellaneda
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| |
Collapse
|
5
|
Navajas-Porras B, Cervera-Mata A, Fernández-Arteaga A, Delgado-Osorio A, Navarro-Moreno M, Hinojosa-Nogueira D, Pastoriza S, Delgado G, Navarro-Alarcón M, Rufián-Henares JÁ. Biochelates from Spent Coffee Grounds Increases Iron Levels in Dutch Cucumbers but Affects Their Antioxidant Capacity. Antioxidants (Basel) 2024; 13:465. [PMID: 38671913 PMCID: PMC11047731 DOI: 10.3390/antiox13040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Spent coffee grounds (SCG) are a type of food waste and are produced in abundance around the world. However, their utilization as a soil organic amendment is challenging due to their phytotoxic effect. In the present work, the impact of agronomic biofortification on Dutch cucumbers was investigated using different chemically modified SCG and analyzing their effects on iron contents, their capacity for releasing antioxidants, and the production of short-chain fatty acids after in vitro digestion-fermentation. The results indicated variations in the iron contents and chemical compositions of cucumbers according to the treatment groups. Functionalized and activated hydrochar from SCG increased Fe levels in cucumbers. Although activated hydrochar obtained at 160 °C and functionalized with Fe showed the highest iron supply per serving, differences in antioxidant capacity and short-chain fatty acid production were observed between the groups. It is concluded that growing conditions and the presence of iron may significantly influence the contribution of these cucumbers to the dietary intake of nutrients and antioxidants, which could have important implications for human health and nutrition.
Collapse
Affiliation(s)
- Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Ana Cervera-Mata
- Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.C.-M.); (G.D.)
| | | | - Adriana Delgado-Osorio
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Miguel Navarro-Moreno
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Gabriel Delgado
- Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.C.-M.); (G.D.)
| | - Miguel Navarro-Alarcón
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
- Instituto de Investigación Biosanitaria Ibs.Granada, Universidad de Granada, 18012 Granada, Spain
| |
Collapse
|
6
|
Navajas-Porras B, Cervera-Mata A, Fernández-Arteaga A, Delgado-Osorio A, Navarro-Moreno M, Hinojosa-Nogueira D, Pastoriza S, Delgado G, Navarro-Alarcón M, Rufián-Henares JÁ. Zn Biofortification of Dutch Cucumbers with Chemically Modified Spent Coffee Grounds: Zn Enrichment and Nutritional Implications. Foods 2024; 13:1146. [PMID: 38672819 PMCID: PMC11049187 DOI: 10.3390/foods13081146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Spent coffee grounds (SCGs) are a food waste with a large generation around the world. However, their utilization as a soil organic amendment is difficult due to their phytotoxic effect. In the present work, the impact of agronomic biofortification on Dutch cucumbers was studied by using different chemically modified SCGs, analyzing their effects on Zn content, the release of antioxidant capacity and the production of short-chain fatty acids after in vitro digestion-fermentation. The results indicated variations in the Zn content and chemical composition of cucumbers according to the treatment groups. The functionalized with Zn and activated SCGs were able to increase Zn levels in cucumbers. Meanwhile, the activated hydrochar obtained at 160 °C and the activated and functionalized with Zn SCGs showed the highest Zn supply per serving. Differences in the antioxidant capacity and short-chain fatty acid production were observed between the groups. It is concluded that the growing conditions and the presence of Zn may significantly influence the contribution of these cucumbers to the dietary intake of nutrients and antioxidants, which could have important implications for human health and nutrition.
Collapse
Affiliation(s)
- Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Ana Cervera-Mata
- Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (A.C.-M.); (G.D.)
| | | | - Adriana Delgado-Osorio
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Miguel Navarro-Moreno
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Gabriel Delgado
- Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (A.C.-M.); (G.D.)
| | - Miguel Navarro-Alarcón
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
- Instituto de Investigación Biosanitaria Ibs.Granada, Universidad de Granada, 18014 Granada, Spain
| |
Collapse
|
7
|
Delgado-Osorio A, Navajas-Porras B, Pérez-Burillo S, Hinojosa-Nogueira D, Toledano-Marín Á, Pastoriza de la Cueva S, Paliy O, Rufián-Henares JÁ. Cultivar and Harvest Time of Almonds Affect Their Antioxidant and Nutritional Profile through Gut Microbiota Modifications. Antioxidants (Basel) 2024; 13:84. [PMID: 38247508 PMCID: PMC10812595 DOI: 10.3390/antiox13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Almonds are a rich source of beneficial compounds for human health. In this work, we assessed the influence of almond cultivars and harvest time on their morphological (length, width and thickness) and nutritional (ash, moisture, proteins) profiles. We also evaluated the impact of an in vitro digestion and fermentation process on almonds' antioxidant and phenolic content, as well as their support of gut microbiota community and functionality, including the production of short-chain fatty acids (SCFAs), lactic and succinic acids. The length, width, and thickness of almonds varied significantly among cultivars, with the latter two parameters also exhibiting significant changes over time. Moisture content decreased with maturity, while protein and ash increased significantly. Total antioxidant capacity released by almonds after digestion and fermentation had different trends depending on the antioxidant capacity method used. The fermentation step contributed more to the antioxidant capacity than the digestion step. Both cultivar and harvest time exerted a significant influence on the concentration of certain phenolic compounds, although the total content remained unaffected. Similarly, fecal microbiota modulation depended on the cultivar and maturity stage, with the Guara cultivar and late maturity showing the largest effects. Cultivar type also exerted a significant impact on the concentration of SCFAs, with the Guara cultivar displaying the highest total SCFAs concentration. Thus, we conclude that cultivar and harvest time are key factors in shaping the morphological and nutritional composition of almonds. In addition, taking into account all the results obtained, the Guara variety has the best nutritional profile.
Collapse
Affiliation(s)
- Adriana Delgado-Osorio
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Ángela Toledano-Marín
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA;
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Avda. de Madrid 15, 2a Planta, 18012 Granada, Spain
| |
Collapse
|
8
|
Tripathi S, Murthy PS. Coffee oligosaccharides and their role in health and wellness. Food Res Int 2023; 173:113288. [PMID: 37803601 DOI: 10.1016/j.foodres.2023.113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Coffee oligosaccharides (COS) are novel sources of prebiotics comprising manno-oligosaccharides, galacto-oligosaccharides, arabinoxylan-oligosaccharides, and cello-oligosaccharides. These oligosaccharides function as prebiotics, antioxidant-dietary fiber owing to important physicochemical and physiological properties, adjuvants, pharma, nutraceutical food, gut health, immune system boosting, cancer treatment, and many more. Research suggests COS performs prebiotic action, as it enhances gut health by promoting beneficial bacteria in the colon and releasing functional metabolites such as SCFAs. However, research on COS concerning other metabolic illnesses is still lacking. Among various production strategies, pretreatment and enzymatic hydrolysis are preferred for the production of COS. Functional oligosaccharides can add value to coffee waste and reduce the environmental impact of coffee manufacturing, besides providing more options for healthy and active ingredients. This review updates COS, production, bio-activity, their role as a functional food, food supplements/natural food additives, prebiotics and many applications of health sectors. Research is desirable to extend information on COS and their bio-activity, besides in vivo and clinical trials, to assess their effects in prior human formulations into the food and therapeutic arena.
Collapse
Affiliation(s)
- Shivani Tripathi
- Plantation Products, Spices and Flavour Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushpa S Murthy
- Plantation Products, Spices and Flavour Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Machado M, Ferreira H, Oliveira MBPP, Alves RC. Coffee by-products: An underexplored source of prebiotic ingredients. Crit Rev Food Sci Nutr 2023; 64:7181-7200. [PMID: 36847145 DOI: 10.1080/10408398.2023.2181761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Consumers' demand for foods with high nutritional value and health benefits has fueled the development of prebiotic foods. In coffee industry, cherries transformation into roasted beans generates a large amount of waste/by-products (pulp/husks, mucilage, parchment, defective beans, silverskin and spent coffee grounds) that usually end up in landfills. The possibility to use coffee by-products as relevant sources of prebiotic ingredients is herein ascertained. As a prelude to this discussion, an overview of pertinent literature on prebiotic action was conducted, including on biotransformation of prebiotics, gut microbiota, and metabolites. Existing research indicates that coffee by-products contain significant levels of dietary fiber and other components that can improve gut health by stimulating beneficial bacteria in the colon, making them excellent candidates for prebiotic ingredients. Oligosaccharides from coffee by-products have lower digestibility than inulin and can be fermented by gut microbiota into functional metabolites, such as short-chain fatty acids. Depending on the concentration, melanoidins and chlorogenic acids may also have prebiotic action. Nevertheless, there is still a lack of in vivo studies to validate such findings in vitro. This review shows how coffee by-products can be interesting for the development of functional foods, contributing to sustainability, circular economy, food security, and health.
Collapse
Affiliation(s)
- Marlene Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ferreira
- REQUIMTE/UCIBIO, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Argenziano R, Moccia F, Esposito R, D’Errico G, Panzella L, Napolitano A. Recovery of Lignins with Potent Antioxidant Properties from Shells of Edible Nuts by a Green Ball Milling/Deep Eutectic Solvent (DES)-Based Protocol. Antioxidants (Basel) 2022; 11:antiox11101860. [PMID: 36290583 PMCID: PMC9598286 DOI: 10.3390/antiox11101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Lignins are phenolic polymers endowed with potent antioxidant properties that are finding increasing applications in a variety of fields. Consequently, there is a growing need for easily available and sustainable sources, as well as for green extraction methodologies of these compounds. Herein, a ball milling/deep eutectic solvent (DES)-based treatment is reported as an efficient strategy for the recovery of antioxidant lignins from the shells of edible nuts, namely chestnuts, hazelnuts, peanuts, pecan nuts, and pistachios. In particular, preliminarily ball-milled shells were treated with 1:2 mol/mol choline chloride:lactic acid at 120 °C for 24 h, and the extracted material was recovered in 19–27% w/w yields after precipitation by the addition of 0.01 M HCl. Extensive spectroscopic and chromatographic analysis allowed for confirmation that the main phenolic constituents present in the shell extracts were lignins, accompanied by small amounts (0.9% w/w) of ellagic acid, in the case of chestnut shells. The recovered samples exhibited very promising antioxidant properties, particularly in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (EC50 values ranging from 0.03 to 0.19 mg/mL). These results open new perspectives for the valorization of nut shells as green sources of lignins for applications as antioxidants, e.g., in the biomedical, food, and/or cosmetic sector.
Collapse
|
11
|
Dietary Melanoidins from Biscuits and Bread Crust Alter the Structure and Short-Chain Fatty Acid Production of Human Gut Microbiota. Microorganisms 2022; 10:microorganisms10071268. [PMID: 35888986 PMCID: PMC9323165 DOI: 10.3390/microorganisms10071268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Melanoidins are the products of the Maillard reaction between carbonyl and amino groups of macromolecules and are readily formed in foods, especially during heat treatment. In this study we utilized the three-stage Human Gut Simulator system to assess the effect of providing melanoidins extracted from either biscuits or bread crust to the human gut microbiota. Addition of melanoidins to the growth medium led to statistically significant alterations in the microbial community composition, and it increased short-chain fatty acid and antioxidant production by the microbiota. The magnitude of these changes was much higher for cultures grown with biscuit melanoidins. Several lines of evidence indicate that such differences between these melanoidin sources might be due to the presence of lipid components in biscuit melanoidin structures. Because melanoidins are largely not degraded by human gastrointestinal enzymes, they provide an additional source of microbiota-accessible nutrients to our gut microbes.
Collapse
|
12
|
Garzarella EU, Navajas-Porras B, Pérez-Burillo S, Ullah H, Esposito C, Santarcangelo C, Hinojosa-Nogueira D, Pastoriza S, Zaccaria V, Xiao J, Rufián-Henares JÁ, Daglia M. Evaluating the effects of a standardized polyphenol mixture extracted from poplar-type propolis on healthy and diseased human gut microbiota. Biomed Pharmacother 2022; 148:112759. [PMID: 35248845 DOI: 10.1016/j.biopha.2022.112759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION A large body of evidence suggests that propolis exerts antioxidant, anti-inflammatory, and antimicrobial activities, mostly ascribed to its polyphenol content. Growing evidence suggests that propolis could modulate gut microbiota exerting a positive impact on several pathological conditions. The aim of this study was to determine the in vitro impact of a poplar-type propolis extract with a standardized polyphenol content, on the composition and functionality of gut microbiota obtained from fecal material of five different donors (healthy adults, and healthy, obese, celiac, and food allergic children). METHODS The standardized polyphenol mixture was submitted to a simulated in vitro digestion-fermentation process, designed to mimic natural digestion in the human oral, gastric, and intestinal chambers. The antioxidant profile of propolis before and after the digestion-fermentation process was determined. 16 S rRNA amplicon next-generation sequencing (NGS) was used to test the effects on the gut microbiota of propolis extract. The profile of the short-chain fatty acids (SCFA) produced by the microbiota was also investigated through a chromatographic method coupled with UV detection. RESULTS In vitro digestion and fermentation induced a decrease in the antioxidant profile of propolis (i.e., decrease of total polyphenol content, antiradical and reducing activities). Propolis fermentation exhibited a modulatory effect on gut microbiota composition and functionality of healthy and diseased subjects increasing the concentration of SCFA. CONCLUSIONS Overall, these data suggest that propolis might contribute to gut health and could be a candidate for further studies in view of its use as a prebiotic ingredient.
Collapse
Affiliation(s)
- Emanuele Ugo Garzarella
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Naples 80131,Italy
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Naples 80131,Italy
| | - Cristina Esposito
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Naples 80131,Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Naples 80131,Italy
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | | | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, Granada 18140, Spain.
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Naples 80131,Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Ramírez K, Pineda-Hidalgo KV, Rochín-Medina JJ. Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Li S, Shi C, Sun S, Chan H, Lu H, Nilghaz A, Tian J, Cao R. From brown to colored: Polylactic acid composite with micro/nano-structured white spent coffee grounds for three-dimensional printing. Int J Biol Macromol 2021; 174:300-308. [PMID: 33524485 DOI: 10.1016/j.ijbiomac.2021.01.176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 11/15/2022]
Abstract
Functional fillers in three-dimensional (3D) printing composite filaments offer an innovative way spent coffee grounds (SCGs) can be reused. However, the inherent brownness of SCGs places a limit on the color in which the composite filament and, consequently, the finished print appears. Herein, colored composite filaments for fused deposition modeling were successfully fabricated, where micro/nano-structured decolorized SCGs (MN-DSCGs) were embedded within polylactic acid (PLA) matrix. At the optimum condition, the 3D prints using composite filaments exhibit comparable tensile and flexural strength to the PLA counterparts. Also, they demonstrate superior melt flow and excellent print quality. Under the same condition, 3D printed MN-DSCGs/PLA blend has sufficient color restoration as compared to the prints using virgin PLA.
Collapse
Affiliation(s)
- Sheng Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Congcan Shi
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shenghong Sun
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huifang Chan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huimin Lu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Victoria 3216, Australia
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Rong Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
15
|
Khochapong W, Ketnawa S, Ogawa Y, Punbusayakul N. Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract. Food Chem 2021; 348:129094. [PMID: 33516995 DOI: 10.1016/j.foodchem.2021.129094] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/03/2021] [Accepted: 01/10/2021] [Indexed: 11/19/2022]
Abstract
Effect of in vitro digestion on bioactive compounds, biological activities of coffee pulp extract (CPE) against pathogens and a probiotic (Lactobacillus acidophilus TISTR 1338) was investigated. Total phenolic compound (TPC), chlorogenic acid (CGA), caffeine (CF), total monomeric anthocyanin (TMA), antioxidant and antimicrobial activities of the CPE were determined before and after digestion. After the digestion, the TPC, CGA and CF decreased 7.9, 31.7 and 50.0%, dry weight (dw), respectively. The antioxidant activity decreased 22.6% (DPPH) and 12.4% (FRAP). The CPE inhibited Escherichia coli TISTR 780 and Staphylococcus aureus TISTR 1466 at 150 and 200 mg/mL, respectively. Both CPE and the digested CPE had no effect on the tested probiotics. These results suggest that bioactive compounds of CPE may degrade during in vitro digestion, consequently the antioxidant and antimicrobial properties. Therefore, CPE could be a potential natural antimicrobial for food industry with no effect on the probiotics.
Collapse
Affiliation(s)
- Wiriya Khochapong
- Department of Food Science, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| | - Sunantha Ketnawa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan.
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan.
| | - Niramol Punbusayakul
- Department of Food Science, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
16
|
Pectin-Based Formulations for Controlled Release of an Ellagic Acid Salt with High Solubility Profile in Physiological Media. Molecules 2021; 26:molecules26020433. [PMID: 33467593 PMCID: PMC7829853 DOI: 10.3390/molecules26020433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Among bioactive phytochemicals, ellagic acid (EA) is one of the most controversial because its high antioxidant and cancer-preventing effects are strongly inhibited by low gastrointestinal absorption and rapid excretion. Strategies toward an increase of solubility in water and bioavailability, while preserving its structural integrity and warranting its controlled release at the physiological targets, are therefore largely pursued. In this work, EA lysine salt at 1:4 molar ratio (EALYS), exhibiting a more than 400 times increase of water solubility with respect to literature reports, was incorporated at 10% in low methoxylated (LM) and high methoxylated (HM) pectin films. The release of EA in PBS at pH 7.4 from both film preparations was comparable and reached 15% of the loaded compound over 2 h. Under simulated gastric conditions, release of EA from HM and LM pectin films was minimal at gastric pH, whereas higher concentrations—up to 300 μM, corresponding to ca. 50% of the overall content—were obtained in the case of the HM pectin film after 2 h incubation at the slightly alkaline pH of small intestine environment, with the enzyme and bile salt components enhancing the release. EALYS pectin films showed a good prebiotic activity as evaluated by determination of short chain fatty acids (SCFAs) levels following microbial fermentation, with a low but significant increase of the effects produced by the pectins themselves. Overall, these results highlight pectin films loaded with EALYS salt as a promising formulation to improve administration and controlled release of the compound.
Collapse
|
17
|
Pérez-Burillo S, Hinojosa-Nogueira D, Pastoriza S, Rufián-Henares JA. Plant extracts as natural modulators of gut microbiota community structure and functionality. Heliyon 2020; 6:e05474. [PMID: 33251359 PMCID: PMC7677688 DOI: 10.1016/j.heliyon.2020.e05474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/27/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The main objective of this work was to evaluate the effect that several plant extracts (currently sold as functional ingredients) have on gut microbiota community structure and functionality. Plant extracts were submitted to an in vitro digestion and fecal fermentation. Overall, plant extracts showed a marked inhibitory activity when compared to basal conditions. However, they also favored the growth of some bacteria such as Coprococcus and Butyricimonas, two butyrate producers. Especially interesting was tea extract which inhibited the growth of the genus Escherichia/Shigella, known to involve species related with gastrointestinal disorders. Additionally, tea extract increased the growth of Faecalibacterium, a known butyrate producer. Regarding short chain fatty acids production, while plant extracts reduced acetate production, butyrate was increased for most samples, especially tea extract. Propionate production was less affected in comparison with basal conditions. Fermentation by gut microbiota also modified the antioxidant capacity (assessed via DPPH, FRAP and Folin-Ciocalteu methods).
Collapse
Affiliation(s)
- S Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - D Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - S Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - J A Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Spain
| |
Collapse
|
18
|
Alfieri ML, Moccia F, D’Errico G, Panzella L, d’Ischia M, Napolitano A. Acid Treatment Enhances the Antioxidant Activity of Enzymatically Synthesized Phenolic Polymers. Polymers (Basel) 2020; 12:E2544. [PMID: 33143251 PMCID: PMC7692195 DOI: 10.3390/polym12112544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Phenolic polymers produced by enzymatic oxidation under biomimetic and eco-friendly reaction conditions are usually endowed with potent antioxidant properties. These properties, coupled with the higher biocompatibility, stability and processability compared to low-molecular weight phenolic compounds, open important perspectives for various applications. Herein, we report the marked boosting effect of acid treatment on the antioxidant properties of a series of polymers obtained by peroxidase-catalyzed oxidation of natural phenolic compounds. Both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated a remarkable increase in the antioxidant properties for most phenolic polymers further to the acid treatment. In particular, up to a ca. 60% decrease in the EC50 value in the DPPH assay and a 5-fold increase in the Trolox equivalents were observed. Nitric oxide- and superoxide-scavenging assays also indicated highly specific boosting effects of the acid treatment. Spectroscopic evidence suggested, in most cases, that the occurrence of structural modifications induced by the acid treatment led to more extended π-electron-conjugated species endowed with more efficient electron transfer properties. These results open new perspectives toward the design of new bioinspired antioxidants for application in food, biomedicine and material sciences.
Collapse
Affiliation(s)
| | | | | | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (M.L.A.); (F.M.); (G.D.); (M.d.); (A.N.)
| | | | | |
Collapse
|
19
|
Dattatraya Saratale G, Bhosale R, Shobana S, Banu JR, Pugazhendhi A, Mahmoud E, Sirohi R, Kant Bhatia S, Atabani AE, Mulone V, Yoon JJ, Seung Shin H, Kumar G. A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. BIORESOURCE TECHNOLOGY 2020; 314:123800. [PMID: 32684320 DOI: 10.1016/j.biortech.2020.123800] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Spent coffee grounds (SCG) are an important waste product millions of tons generated from coffee consumption and could be effectively utilized for various applications due to their high organic content. SCG can be used as a potential feedstock to develop coffee-based biorefinery towards value-added products generation through various biotechnological processes. Considerable developments have been reported on emerging SCG-based processes/products in various environmental fields such as removal of heavy metals and cationic dyes and in wastewater treatment. In addition, SCG are also utilized to produce biochar and biofuels. This review addressed the details of innovative processes used to produce polymers and catalysts from SCG. Moreover, the application of these developed products is provided and future directions of the circular economy for SCG utilization.
Collapse
Affiliation(s)
- Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Rahul Bhosale
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box e 2713, Doha, Qatar
| | - Sutha Shobana
- Department of Chemistry and Research Centre, Mohamed Sathak Engineering College, Ramanathapuram, Tamil Nadu, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Eyas Mahmoud
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Ranjna Sirohi
- Department of Postharvest Process and Food Engineering GB Pant University of Agriculture and Technology Pantnagar, 263145, Uttarakhand, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Vincenzo Mulone
- Department of Industrial Engineering, University of Rome Tor Vergata, Italy
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Chungnam 330-825, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
20
|
Moccia F, Agustin-Salazar S, Verotta L, Caneva E, Giovando S, D’Errico G, Panzella L, d’Ischia M, Napolitano A. Antioxidant Properties of Agri-food Byproducts |and Specific Boosting Effects of Hydrolytic Treatments. Antioxidants (Basel) 2020; 9:E438. [PMID: 32443466 PMCID: PMC7278820 DOI: 10.3390/antiox9050438] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023] Open
Abstract
Largely produced agri-food byproducts represent a sustainable and easily available source of phenolic compounds, such as lignins and tannins, endowed with potent antioxidant properties. We report herein the characterization of the antioxidant properties of nine plant-derived byproducts. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated the superior activity of pomegranate peels and seeds, grape pomace and pecan nut shell. An increase in the antioxidant potency was observed for most of the waste materials following a hydrolytic treatment, with the exception of the condensed tannin-rich pecan nut shell and grape pomace. UV-Vis and HPLC investigation of the soluble fractions coupled with the results from IR analysis and chemical degradation approaches on the whole materials allowed to conclude that the improvement of the antioxidant properties was due not only to removal of non-active components (mainly carbohydrates), but also to structural modifications of the phenolic compounds. Parallel experiments run on natural and bioinspired model phenolic polymers suggested that these structural modifications positively impacted on the antioxidant properties of lignins and hydrolyzable tannins, whereas significant degradation of condensed tannin moieties occurred, likely responsible for the lowering of the reducing power observed for grape pomace and pecan nut shell. These results open new perspectives toward the exploitation and manipulation of agri-food byproducts for application as antioxidant additives in functional materials.
Collapse
Affiliation(s)
- Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Sarai Agustin-Salazar
- Departamento de Ingeniería Química y Metalurgía, Universidad de Sonora, Del Conocimiento, Centro, 83000 Hermosillo, Mexico;
| | - Luisella Verotta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via G. Celoria 2, I-20133 Milan, Italy;
| | - Enrico Caneva
- Unitech COSPECT, Direzione servizi per la Ricerca, Università degli Studi di Milano, Via C. Golgi 33, I-20133 Milan, Italy;
| | - Samuele Giovando
- Centro Ricerche per la Chimica Fine Srl for Silvateam Spa, Via Torre 7, I-12080 San Michele Mondovì, CN, Italy;
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
- CSGI—Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| |
Collapse
|
21
|
Pérez-Burillo S, Rajakaruna S, Pastoriza S, Paliy O, Ángel Rufián-Henares J. Bioactivity of food melanoidins is mediated by gut microbiota. Food Chem 2020; 316:126309. [PMID: 32059165 DOI: 10.1016/j.foodchem.2020.126309] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/27/2022]
Abstract
Melanoidins are an important component of the human diet (average consumption 10 g/day), which escape gastrointestinal digestion and are fermented by the gut microbiota. In this study melanoidins from different food sources (coffee, bread, beer, balsamic vinegar, sweet wine, biscuit, chocolate, and breakfast cereals) were submitted to an in vitro digestion and fermentation process, and their bioactivity was assessed. Some melanoidins were extensively used by gut microbes, increasing production of short chain fatty acids (mainly acetate and lactate) and favoring growth of the beneficial genera Bifidobacterium (bread crust, pilsner and black beers, chocolate and sweet wine melanoidins) and Faecalibacterium (biscuit melanoidins). Quantification of individual phenolic compounds after in vitro fermentation allowed their identification as microbial metabolites or phenolics released from the melanoidins backbone (specially pyrogallol, 2-(3,4-dihydroxyphenyl)acetic and 3-(3,4-dihydroxyphenyl)propionic acids). Our results also showed that antioxidant capacity of melanoidins is affected by gut microbiota fermentation.
Collapse
Affiliation(s)
- Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Granada, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Spain
| | - Sumudu Rajakaruna
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Granada, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Spain
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Granada, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Spain.
| |
Collapse
|
22
|
Massaya J, Prates Pereira A, Mills-Lamptey B, Benjamin J, Chuck CJ. Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Pérez-Burillo S, Mehta T, Pastoriza S, Kramer DL, Paliy O, Rufián-Henares JÁ. Potential probiotic salami with dietary fiber modulates antioxidant capacity, short chain fatty acid production and gut microbiota community structure. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Panzella L, Moccia F, Toscanesi M, Trifuoggi M, Giovando S, Napolitano A. Exhausted Woods from Tannin Extraction as an Unexplored Waste Biomass: Evaluation of the Antioxidant and Pollutant Adsorption Properties and Activating Effects of Hydrolytic Treatments. Antioxidants (Basel) 2019; 8:antiox8040084. [PMID: 30939823 PMCID: PMC6523223 DOI: 10.3390/antiox8040084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Exhausted woods represent a byproduct of tannin industrial production processes and their possible exploitation as a source of antioxidant compounds has remained virtually unexplored. We herein report the characterization of the antioxidant and other properties of practical interest of exhausted chestnut wood and quebracho wood, together with those of a chestnut wood fiber, produced from steamed exhausted chestnut wood. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated good antioxidant properties for all the materials investigated, with exhausted chestnut wood, and, even more, chestnut wood fiber exhibiting the highest activity. High efficiency was observed also in the superoxide scavenging assay. An increase of the antioxidant potency was observed for both exhausted woods and chestnut wood fiber following activation by hydrolytic treatment, with an up to three-fold lowering of the EC50 values in the DPPH assay. On the other hand, exhausted quebracho wood was particularly effective as a nitrogen oxides (NOx) scavenger. The three materials proved able to adsorb methylene blue chosen as a model of organic pollutant and to remove highly toxic heavy metal ions like cadmium from aqueous solutions, with increase of the activity following the hydrolytic activation. These results open new perspectives toward the exploitation of exhausted woods as antioxidants, e.g., for active packaging, or as components of filtering membranes for remediation of polluted waters.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Samuele Giovando
- Centro Ricerche per la Chimica Fine Srl for Silvateam Spa, Via Torre 7, 12080, San Michele Mondovì, CN, Italy.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| |
Collapse
|
25
|
Pérez-Burillo S, Pastoriza S, Fernández-Arteaga A, Luzón G, Jiménez-Hernández N, D'Auria G, Francino MP, Rufián-Henares JÁ. Spent Coffee Grounds Extract, Rich in Mannooligosaccharides, Promotes a Healthier Gut Microbial Community in a Dose-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2500-2509. [PMID: 30724071 DOI: 10.1021/acs.jafc.8b06604] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coffee is one of the most consumed beverages around the world, and as a consequence, spent coffee grounds are a massively produced residue that is causing environmental problems. Reusing them is a major focus of interest presently. We extracted mannooligosaccharides (MOS) from spent coffee grounds and submitted them to an in vitro fermentation with human feces. Results obtained suggest that MOS are able to exert a prebiotic effect on gut microbiota by stimulating the growth of some beneficial genera, such as Barnesiella, Odoribacter, Coprococcus, Butyricicoccus, Intestinimonas, Pseudoflavonifractor, and Veillonella. Moreover, short-chain fatty acids (SCFA) production also increased in a dose-dependent manner. However, we observed that 5-(hydroxymethyl)furfural, furfural, and polyphenols (which are either produced or released from the spent coffee grounds matrix during hydrolysis) could have an inhibitory effect on other beneficial genera, such as Faecalibacterium, Ruminococcus, Blautia, Butyricimonas, Dialister, Collinsella, and Anaerostipes, which could negatively affect the prebiotic activity of MOS.
Collapse
Affiliation(s)
- Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica , Universidad de Granada , 18100 Granada , Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica , Universidad de Granada , 18100 Granada , Spain
| | | | - Germán Luzón
- Departamento de Ingeniería Química, Facultad de Ciencias , Universidad de Granada , 18071 Granada , Spain
| | - Nuria Jiménez-Hernández
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes , Universitat de València , 46020 València , Spain
| | - Giuseppe D'Auria
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes , Universitat de València , 46020 València , Spain
| | - M Pilar Francino
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes , Universitat de València , 46020 València , Spain
- CIBER en Epidemiología y Salud Pública , 28029 Madrid , Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica , Universidad de Granada , 18100 Granada , Spain
- Instituto de Investigación Biosanitaria ibs. Granada , Universidad de Granada , 18100 Granada , Spain
| |
Collapse
|
26
|
Antioxidant capacity of Maillard reaction products in the digestive tract: An in vitro and in vivo study. Food Chem 2019; 276:443-450. [DOI: 10.1016/j.foodchem.2018.10.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022]
|
27
|
|
28
|
Hwang H, Winkler‐Moser JK, Kim Y, Liu SX. Antioxidant Activity of Spent Coffee Ground Extracts Toward Soybean Oil and Fish Oil. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong‐Sik Hwang
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Foods Research1815 N. University StreetPeoriaIL61604USA
| | - Jill K. Winkler‐Moser
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Foods Research1815 N. University StreetPeoriaIL61604USA
| | - Youngmok Kim
- Synergy Research and Development Center, Synergy Flavors, Inc.2991 Hamilton‐Mason Rd.HamiltonOH45011USA
| | - Sean X. Liu
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Foods Research1815 N. University StreetPeoriaIL61604USA
| |
Collapse
|
29
|
Pérez-Burillo S, Pastoriza S, Jiménez-Hernández N, D'Auria G, Francino MP, Rufián-Henares JA. Effect of Food Thermal Processing on the Composition of the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11500-11509. [PMID: 30346155 DOI: 10.1021/acs.jafc.8b04077] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cooking modifies food composition due to chemical reactions. Additionally, food composition shapes the human gut microbiota. Thus, the objective of this research was to unravel the effect of different food cooking methods on the structure and functionality of the gut microbiota. Common culinary techniques were applied to five foods, which were submitted to in vitro digestion-fermentation. Furosine, 5-(hydroxymethyl)furfural, and furfural were used as Maillard reaction indicators to control the heat treatment. Short-chain fatty acids production was quantified as indicator of healthy metabolic output. Gut microbial community structure was analyzed through 16S rRNA. Both food composition and cooking methods modified the microbiota composition and released short-chain fatty acids. In general, intense cooking technologies (roasting and grilling) increased the abundance of beneficial bacteria like Ruminococcus spp. or Bifidobacterium spp. compared to milder treatments (boiling). However, for some foods (banana or bread), intense cooking decreased the levels of healthy bacteria.
Collapse
Affiliation(s)
- Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica , Universidad de Granada , 18071 Granada , Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica , Universidad de Granada , 18071 Granada , Spain
| | - Nuria Jiménez-Hernández
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes , Universitat de València , 46010 València , Spain
| | - Giuseppe D'Auria
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes , Universitat de València , 46010 València , Spain
| | - M Pilar Francino
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes , Universitat de València , 46010 València , Spain
- CIBER en Epidemiología y Salud Pública , 28029 Madrid , Spain
| | - José A Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica , Universidad de Granada , 18071 Granada , Spain
- ibs.GRANADA, Instituto de Investigación Biosanitaria , Universidad de Granada , 18071 Granada , Spain
| |
Collapse
|