1
|
Jia W, Yu S, Liu X, Le Q, He X, Yu L, He J, Yang L, Gao H. Ethanol Extract of Limonium bicolor Improves Dextran Sulfate Sodium-Induced Ulcerative Colitis by Alleviating Inflammation and Restoring Gut Microbiota Dysbiosis in Mice. Mar Drugs 2024; 22:175. [PMID: 38667792 PMCID: PMC11050939 DOI: 10.3390/md22040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel condition characterized by inflammation within the mucous membrane, rectal bleeding, diarrhea, and pain experienced in the abdominal region. Existing medications for UC have limited treatment efficacy and primarily focus on symptom relief. Limonium bicolor (LB), an aquatic traditional Chinese medicine (TCM), exerts multi-targeted therapeutic effects with few side effects and is used to treat anemia and hemostasis. Nevertheless, the impact of LB on UC and its mechanism of action remain unclear. Therefore, the objective of this study was to investigate the anti-inflammatory effects and mechanism of action of ethanol extract of LB (LBE) in lipopolysaccharide-induced RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced UC. The results showed that LBE suppressed the secretion of cytokines in LPS-stimulated RAW 264.7 cells in a dose-dependent manner. LBE had protective effects against DSS-induced colitis in mice, decreased the disease activity index (DAI) score, alleviated symptoms, increased colon length, and improved histological characteristics, thus having protective effects against DSS-induced colitis in mice. In addition, it reversed disturbances in the abundance of proteobacteria and probiotics such as Lactobacillus and Blautia in mice with DSS-induced UC. Based on the results of network pharmacology analysis, we identified four main compounds in LBE that are associated with five inflammatory genes (Ptgs2, Plg, Ppar-γ, F2, and Gpr35). These results improve comprehension of the biological activity and functionality of LB and may facilitate the development of LB-based compounds for the treatment of UC.
Collapse
Affiliation(s)
- Wei Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Siyu Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Xi Liu
- Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361000, China;
| | - Qingqing Le
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Xiwen He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Lutao Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, Ministry of Natural Resources), Fuzhou 350400, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, Ministry of Natural Resources), Fuzhou 350400, China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
| |
Collapse
|
2
|
Lin Z, Li LY, Chen L, Jin C, Li Y, Yang L, Li CZ, Qi CY, Gan YY, Zhang JR, Wang P, Ni LB, Wang GF. Lonicerin promotes wound healing in diabetic rats by enhancing blood vessel regeneration through Sirt1-mediated autophagy. Acta Pharmacol Sin 2024; 45:815-830. [PMID: 38066346 PMCID: PMC10943091 DOI: 10.1038/s41401-023-01193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/08/2023] [Indexed: 03/17/2024] Open
Abstract
Among the numerous complications of diabetes mellitus, diabetic wounds seriously affect patients' quality of life and result in considerable psychological distress. Promoting blood vessel regeneration in wounds is a crucial step in wound healing. Lonicerin (LCR), a bioactive compound found in plants of the Lonicera japonica species and other honeysuckle plants, exhibits anti-inflammatory and antioxidant activities, and it recently has been found to alleviate ulcerative colitis by enhancing autophagy. In this study we investigated the efficacy of LCR in treatment of diabetic wounds and the underlying mechanisms. By comparing the single-cell transcriptomic data from healing and non-healing states in diabetic foot ulcers (DFU) of 5 patients, we found that autophagy and SIRT signaling activation played a crucial role in mitigating inflammation and oxidative stress, and promoting cell survival in wound healing processes. In TBHP-treated human umbilical vein endothelial cells (HUVECs), we showed that LCR alleviated cell apoptosis, and enhanced the cell viability, migration and angiogenesis. Furthermore, we demonstrated that LCR treatment dose-dependently promoted autophagy in TBHP-treated HUVECs by upregulating Sirt1 expression, and exerted its anti-apoptotic effect through the Sirt1-autophagy axis. Knockdown of Sirt1 significantly decreased the level of autophagy, and mitigated the anti-apoptotic effect of LCR. In a STZ-induced diabetic rat model, administration of LCR significantly promoted wound healing, which was significantly attenuated by Sirt1 knockdown. This study highlights the potential of LCR as a therapeutic agent for the treatment of diabetic wounds and provides insights into the molecular mechanisms underlying its effects.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA
| | - Lu-Yao Li
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chen Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325702, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Lan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chang-Zhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Cai-Yu Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yu-Yang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Jia-Rui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Piao Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Li-Bin Ni
- Department of Orthopaedic Surgery, Zhejiang Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, 310014, China.
| | - Gao-Feng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China.
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA.
| |
Collapse
|
3
|
Zhou H, Huang X, Tan T, Luo Y. Metabolic profiling of the flower of Citrus aurantium L. var. amara Engl. in rats using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry with data mining strategy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9607. [PMID: 37580848 DOI: 10.1002/rcm.9607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023]
Abstract
RATIONALE The flower of Citrus aurantium L. var. amara Engl. (FCAVA), an edible tea and herbal medicine with anti-obesity effect, has attracted great attention in China. The structural elucidation of chemical components in FCAVA has been realized in our previous work. It is well known that metabolic profiling provided a structural basis to discover potential anti-obesity ingredients in FCAVA. Nevertheless, there are no reports about in vivo metabolic profiles of FCAVA. Therefore, it is necessary to comprehensively identify in vivo substances of FCAVA. METHODS The identification of in vivo substances of FCAVA remains a challenge due to the strong interference of complex chemical components, biological matrices and metabolite isomers. In this work, ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) analysis with a data mining strategy was established and applied for the metabolic profiling of FCAVA in rats. The data mining strategy, including diagnostic product ions and neutral loss filtering, improved structural elucidation of xenobiotics in rats after oral administration of FCAVA. RESULTS A total of 228 xenobiotics, including 80 prototypes (10 unambiguous confirmed with reference standards) and 148 metabolites, were tentatively characterized in rat plasma, urine and fecal samples. Among them, 35 xenobiotics were found in plasma, 124 in urine and 156 in feces. The main biotransformation pathway of FCAVA metabolism was deglycosylation, methylation, glucuronidation and sulfation. The main compounds absorbed into the blood were neohesperidin and naringin, which have been reported to show significant anti-obesity effect. CONCLUSIONS Collectively, this present study would be conducive to the discovery of active ingredients of FCAVA for the treatment of obesity and the development of quality control of FCAVA.
Collapse
Affiliation(s)
- Huixian Zhou
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Xinxin Huang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Ting Tan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Dandlen SA, Da Silva JP, Miguel MG, Duarte A, Power DM, Marques NT. Quick Decline and Stem Pitting Citrus tristeza virus Isolates Induce a Distinct Metabolomic Profile and Antioxidant Enzyme Activity in the Phloem Sap of Two Citrus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1394. [PMID: 36987082 PMCID: PMC10051153 DOI: 10.3390/plants12061394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Susceptibility to the severe Citrus tristeza virus (CTV), T36, is higher for Citrus macrophylla (CM) than for C. aurantium (CA). How host-virus interactions are reflected in host physiology is largely unknown. In this study, the profile of metabolites and the antioxidant activity in the phloem sap of healthy and infected CA and CM plants were evaluated. The phloem sap of quick decline (T36) and stem pitting (T318A) infected citrus, and control plants was collected by centrifugation, and the enzymes and metabolites analyzed. The activity of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), in infected plants increased significantly in CM and decreased in CA, compared to the healthy controls. Using LC-HRMS2 a metabolic profile rich in secondary metabolites was assigned to healthy CA, compared to healthy CM. CTV infection of CA caused a drastic reduction in secondary metabolites, but not in CM. In conclusion, CA and CM have a different response to severe CTV isolates and we propose that the low susceptibility of CA to T36 may be related to the interaction of the virus with the host's metabolism, which reduces significantly the synthesis of flavonoids and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Susana A. Dandlen
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José P. Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Graça Miguel
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Amílcar Duarte
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M. Power
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Natália Tomás Marques
- CEOT—Centro de Eletrónica, Optoeletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Edif. 8, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
Submerged fermentation with Lactobacillus brevis significantly improved the physiological activities of Citrus aurantium flower extract. Heliyon 2022; 8:e10498. [PMID: 36097484 PMCID: PMC9463378 DOI: 10.1016/j.heliyon.2022.e10498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
|
6
|
Cai WF, Yan MM, Wang Z, Jiang MP, Yan B, Shen CY. Optimization of the extract from flower of Citrus aurantium L. var. amara Engl. and its inhibition of lipid accumulation. J Food Biochem 2022; 46:e14332. [PMID: 35894798 DOI: 10.1111/jfbc.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Flower of Citrus aurantium L. var. amara Engl. (CAVA) has been confirmed to have promising anti-obesity effects. However, the regulation of alkaloid extracts from flower of CAVA (Al) on lipid metabolism remain unknown. In this study, Al was optimized by ultrasound-assisted extraction using response surface methodology. The optimal conditions were ultrasonic time 72 min, ethanol concentration 78% and liquid/solid ratio 30 ml/g with the maximum alkaloid yield 5.66%. LC-MS assay indicated that the alkaloid compounds were enriched in Al after optimization. Nine alkaloid compounds were identified in Al by LC-MS assay and stachydrine, caffeine and cathine appeared as the major alkaloid compounds. Bioactivity assay showed that Al treatment significantly increased superoxide dismutase (SOD) activity, and reduced malonaldehyde (MDA) and reactive oxygen species (ROS) levels. Al administration also reversed oleic acid-induced hepatic steatosis in Hep G2 cells by inhibiting the expression of lipogenesis-signaling genes including fatty acid synthase (FAS), peroxisome proliferator-activated receptor subtype γ (PPARγ), uncoupling protein 2 (UCP2), and retinol binding protein (RBP4). However, OA-induced reduction of lipolysis-related gene carnitine palmitoyl transferase 1A (CPT1A) in Hep G2 cells was not improved by Al supplementation. Moreover, the increased SOD activity and decreased MDA and ROS contents were also observed in Caenorhabditis elegans by Al addition. Al intervention exhibited the ability to inhibit lipid accumulation in C. elegans by suppressing expression of lipid metabolism-related genes. These results suggested that the alkaloid extracts from the flower of CAVA showed great potential to regulate lipid metabolism. PRACTICAL APPLICATIONS: The extraction of alkaloid extracts from the flower of CAVA was optimized with a maximum yield of 5.66%. The regulatory effects and mechanisms of Al on lipid metabolism of Hep G2 cells and Caenorhabditis elegans were also investigated. More clinical studies are required to evaluate the potential of using alkaloids from the flower of CAVA as therapeutic agents against lipid metabolic disorders.
Collapse
Affiliation(s)
- Wei-Feng Cai
- Guangxi Academy of Sciences, Guangxi Mangrove Research Center, Guangxi Key Lab of Mangrove Conservation and Utilization, Beihai, People's Republic of China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Mao-Mao Yan
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zheng Wang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Meng-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Bing Yan
- Guangxi Academy of Sciences, Guangxi Mangrove Research Center, Guangxi Key Lab of Mangrove Conservation and Utilization, Beihai, People's Republic of China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Chojnacka K, Lewandowska U. Inhibition of Pro-Inflammatory Cytokine Secretion by Polyphenol-Rich Extracts in Macrophages via NF-κB Pathway. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2071936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Lu Q, Li R, Yang Y, Zhang Y, Zhao Q, Li J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem 2022; 368:130610. [PMID: 34419798 DOI: 10.1016/j.foodchem.2021.130610] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 02/09/2023]
Abstract
Inflammation occurs when the immune system responses to external harmful stimuli and infection. Chronic inflammation induces various diseases. A variety of foods are prescribed in the traditional medicines of many countries all over the world, which gave birth to the concept of medicine food homology. Over the past few decades, a number of secondary metabolites from medicine food homology plants have been demonstrated to have anti-inflammatory effects. In the present review, the effects and mechanisms of the medicine food homology plants-derived active components on relieving inflammation and inflammation-mediated diseases were summarized and discussed. The information provided in this review is valuable to future studies on anti-inflammatory ingredients derived from medicine food homology plants as drugs or food supplements.
Collapse
Affiliation(s)
- Qiuxia Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yixi Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yujin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jian Li
- School of Medicine, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
9
|
Zojaji SA, Mozaffari HM, Ghaderi P, Zojaji F, Hadjzadeh MAR, Seyfimoqadam M, Ghorbani A. Efficacy of an herbal compound in decreasing steatosis and transaminase activities in non-alcoholic fatty liver disease: A randomized clinical trial. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e18825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Ahmad Ghorbani
- Mashhad University of Medical Sciences, Iran; Mashhad University of Medical Sciences, Iran
| |
Collapse
|
10
|
Soleymani S, Naghizadeh A, Karimi M, Zarei A, Mardi R, Kordafshari G, Esmaealzadeh N, Zargaran A. COVID-19: General Strategies for Herbal Therapies. J Evid Based Integr Med 2022; 27:2515690X211053641. [PMID: 34985368 PMCID: PMC8744081 DOI: 10.1177/2515690x211053641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic started in early 2020 with the outbreak of a highly pathogenic human coronavirus. The world is facing a challenge and there is a pressing need for efficient drugs. Plants and natural compounds are a proven rich resource for new drug discovery. Considering the potential of natural products to manage the pandemic, this article was designed to provide an inclusive map of the stages and pathogenetic mechanisms for effective natural products on COVID-19. New drug discovery for the COVID-19 pandemic can encompass both prevention and disease management strategies. Preventive mechanisms that may be considered include boosting the immune response and hand hygiene in the preexposure phase; and blocking of virus binding and entry in the postexposure phase. Potential therapeutic target mechanisms include virus-directed therapies and host-directed therapies. Several medicinal plants and natural products, such as Withania somnifera (L.) Dunal and propolis for prevention; Tanacetum parthenium (L.) for treatment; and Ammoides verticillata (Desf.) Briq and Nigella sativa L. for both prevention and treatment have been found effective and are good targets for future research. The examples of phytochemical compounds that may be effective include aloin and terpenes as anti-septics; isothymol, dithymoquinone, and glycyrrhizin as inhibitors of virus binding and entry; glycyrrhizin, and berberine as replication suppressants; ginsenoside Rg1 and parthenolide as immunomodulators; and eriocitrin, rhoifolin, hesperidin, naringin, rutin, and veronicastroside as anti-complements. Recognizing different mechanisms of fighting against this virus can lead to a more systematic approach in finding natural products and medicinal plants for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Samaneh Soleymani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayeh Naghizadeh
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Zarei
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raefeh Mardi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Kordafshari
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Zargaran
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Comprehensive chemical profiling of the flowers of Citrus aurantium L. var. amara Engl. and uncovering the active ingredients of lipid lowering. J Pharm Biomed Anal 2022; 211:114621. [DOI: 10.1016/j.jpba.2022.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
|
12
|
Bao N, Rashed MMA, Jiang B, Zhai K, Luo Z. Green and Efficient Extraction Approach for Polyphenol Recovery from Lotus Seedpods (Receptaculum Nelumbinis): Gas-Assisted Combined with Glycerol. ACS OMEGA 2021; 6:26722-26731. [PMID: 34661026 PMCID: PMC8515820 DOI: 10.1021/acsomega.1c04190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 05/24/2023]
Abstract
In this paper, the gas-assisted combined with glycerol extraction (GAGE) for polyphenol recovery from lotus seedpods (LSPs) was modeled and optimized. Box-Behnken design was applied to optimize the total polyphenol content (TPC) of LSP along with enhancing antioxidant activities using response surface methodology based on the TPC extraction yield (%), which was affected by glycerol concentration, time, temperature, and glycerol-to-solid ratio. The optimal conditions for the LSP extract were glycerol-to-solid ratio, 42 mL/g; time, 50 min; concentration of glycerol, 45%; and temperature, 70 °C. Ultra-high-pressure liquid chromatography integrated with triple-time-of-flight mass spectrophotometry (UPLC-Triple-TOF/MS) analysis revealed nine biologically active polyphenols. Furthermore, Fourier-transform infrared spectroscopy and scanning electron microscopy results demonstrated the effect and influence during extraction. The findings suggested that GAGE is a potential, green, and high-efficiency alternative that could be used to recover polyphenols from plant source byproducts.
Collapse
Affiliation(s)
- Nina Bao
- Suzhou
Engineering and Technological Research Center of Natural Medicine
and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000 Anhui, China
- College
of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products
Postharvest Handling of Ministry of Agriculture and Rural Affairs,
Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint
Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Marwan M. A. Rashed
- Suzhou
Engineering and Technological Research Center of Natural Medicine
and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000 Anhui, China
| | - Bianling Jiang
- Suzhou
Engineering and Technological Research Center of Natural Medicine
and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000 Anhui, China
| | - Kefeng Zhai
- Suzhou
Engineering and Technological Research Center of Natural Medicine
and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000 Anhui, China
| | - Zisheng Luo
- College
of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products
Postharvest Handling of Ministry of Agriculture and Rural Affairs,
Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint
Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058 Zhejiang, China
- Ningbo
Research Institute, Zhejiang University, Ningbo 315000 Zhejiang, China
- Fuli
Institute of Food Science, Hangzhou 310058 Zhejiang, China
| |
Collapse
|
13
|
Stiller A, Garrison K, Gurdyumov K, Kenner J, Yasmin F, Yates P, Song BH. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int J Mol Sci 2021; 22:8995. [PMID: 34445697 PMCID: PMC8396434 DOI: 10.3390/ijms22168995] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Polyphenols, such as flavonoids and phenolic acids, are a group of specialized metabolites in plants that largely aid in plant defense by deterring biotic stressors and alleviating abiotic stress. Polyphenols offer a wide range of medical applications, acting as preventative and active treatments for diseases such as cancers and diabetes. Recently, researchers have proposed that polyphenols may contribute to certain applications aimed at tackling challenges related to the COVID-19 pandemic. Understanding the beneficial impacts of phytochemicals, such as polyphenols, could potentially help prepare society for future pandemics. Thus far, most reviews have focused on polyphenols in cancer prevention and treatment. This review aims to provide a comprehensive discussion on the critical roles that polyphenols play in both plant chemical defense and human health based on the most recent studies while highlighting prospective avenues for future research, as well as the implications for phytochemical-based applications in both agricultural and medical fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.S.); (K.G.); (K.G.); (J.K.); (F.Y.); (P.Y.)
| |
Collapse
|
14
|
Hao YF, Qin SW, Yang L, Jiang JG, Zhu W. Marmin from the blossoms of Citrus maxima (Burm.) Merr. exerts lipid-lowering effect via inducing 3T3-L1 preadipocyte apoptosis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Xu J, Ma L, Fu P. Eriocitrin attenuates ischemia reperfusion-induced oxidative stress and inflammation in rats with acute kidney injury by regulating the dual-specificity phosphatase 14 (DUSP14)-mediated Nrf2 and nuclear factor-κB (NF-κB) pathways. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:350. [PMID: 33708977 PMCID: PMC7944338 DOI: 10.21037/atm-21-337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Ischemia reperfusion (IR)-induced acute kidney injury (AKI) is accompanied by increased inflammatory response and oxidative stress. Eriocitrin is a flavonoid that is mainly derived from lemon or citrate juice. It exhibits various pharmacological effects and is known to have antioxidant and anti-steatotic benefits. However, research on the effect of eriocitrin against IR-induced oxidative stress and inflammation in AKI is limited. Methods In this study, an OGD/R of HK-2 cell in vitro and rat model of AKI in vivo were constructed. Then the cell or rats were treated with eriocitrin at different doses (60, 30, 10 mg/kg). The levels of apoptotic were detected by flow cytometry. Inflammatory and oxidative stress factors in supernatant in vitro and tissue in vivo. Meanwhile, Western blot was used to detect the change of dual-specificity phosphatase 14 (DUSP14), Nrf2 and nuclear factor-κB (NF-κB). Results Eriocitrin attenuated apoptosis of the human renal tubular epithelial cell line HK-2 mediated by oxygen glucose deprivation/reperfusion via the repression of inflammation and oxidative stress in a dose-dependent manner. Eriocitrin also enhanced the levels of dual-specificity phosphatase 14 (DUSP14) and Nrf2, and decreased NF-κB phosphorylation. Furthermore, the in vivo experiments indicated that eriocitrin dose-dependently alleviated IR-induced AKI and apoptosis in rats. By elevating DUSP14, eriocitrin promoted the expression of Nrf2 and inactivated NF-κB, thereby downregulating inflammation and oxidative stress. Moreover, inhibiting DUSP14 expression with protein tyrosine phosphatase (PTP) inhibitor IV reversed the kidney-protective effects of Eriocitrin. Conclusions Eriocitrin protected IR-induced AKI by attenuating oxidative stress and inflammation via elevating DUSP14, thereby providing a theoretical basis for the treatment of IR-induced AKI.
Collapse
Affiliation(s)
- Jun Xu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China.,Division of Nephrology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
| | - Liang Ma
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Lu JF, Zhu MQ, Zhang H, Liu H, Xia B, Wang YL, Shi X, Peng L, Wu JW. Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice. FASEB J 2020; 34:12053-12071. [PMID: 32729978 DOI: 10.1096/fj.201903102rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
Obesity and related metabolic disorders are associated with intestinal microbiota dysbiosis, disrupted intestinal barrier, and chronic inflammation. Neohesperidin (Neo), a natural polyphenol abundant in citrus fruits, is known for its preventative and therapeutic effects on numerous diseases. Here, we report that Neo administration attenuates weight gain, low-grade inflammation, and insulin resistance in mice fed high-fat diet (HFD). Also, Neo administration substantially restores gut barrier damage, metabolic endotoxemia, and systemic inflammation. Sequencing of 16S rRNA genes in fecal samples revealed that Neo administration reverses HFD-induced intestinal microbiota dysbiosis: an increase in the diversity of gut microbiota and alteration in the composition of intestinal microbiota (particularly in the relative abundances of Bacteroidetes and Firmicutes). Furthermore, systemic antibiotic treatment abolishes the beneficial effects of Neo in body weight control, suggesting that the effect of Neo on obesity attenuation largely depends on the gut microbiota. More importantly, we demonstrate that the impact of Neo on the regulation of obesity could be transferred from Neo-treated mice to HFD-fed mice via fecal microbiota transplantation. Collectively, our data highlight the efficacy of Neo as a prebiotic agent for attenuating obesity, implying a potential mechanism for gut microbiota mediated the beneficial effect of Neo.
Collapse
Affiliation(s)
- Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Heng Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Liang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Influence of Hesperidin on Systemic Immunity of Rats Following an Intensive Training and Exhausting Exercise. Nutrients 2020; 12:nu12051291. [PMID: 32369998 PMCID: PMC7282260 DOI: 10.3390/nu12051291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Intensive training and exhausting exercise can disrupt innate and acquired immunity. The flavanone hesperidin has shown immunomodulatory properties in physiological and some pathological conditions, and positive effects on exercise-induced oxidative stress. Nevertheless, it remains uncertain whether it also prevents exhausting exercise-induced immune alterations. The aim of this study was to establish the effect of oral hesperidin supplementation on the systemic immune system in rats following an intensive training and exhausting exercise. For this purpose, female Wistar rats were randomized into an intensive training group or a sedentary group. Intensive training was induced by running in a treadmill 5 days per week (including two exhausting tests) for five weeks. Throughout the training period, 200 mg/kg of hesperidin or vehicle was administered by oral gavage three times per week. At the end, blood, thymus, spleen and macrophages were collected before, immediately after and 24 h after an additional final exhaustion test. Hesperidin supplementation enhanced natural killer cell cytotoxicity and the proportion of phagocytic monocytes, attenuated the secretion of cytokines by stimulated macrophages, prevented the leukocytosis induced by exhaustion and increased the proportion of T helper cells in the thymus, blood and spleen. These results suggest that hesperidin can prevent exhausting exercise-induced immune alterations.
Collapse
|
18
|
Kou G, Hu Y, Jiang Z, Li Z, Li P, Song H, Chen Q, Zhou Z, Lyu Q. Citrus aurantium L. polymethoxyflavones promote thermogenesis of brown and white adipose tissue in high-fat diet induced C57BL/6J mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Subcritical water extraction, identification, antioxidant and antiproliferative activity of polyphenols from lotus seedpod. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Shen CY, Wang TX, Jiang JG. Extraction optimization and adsorption isotherm kinetics of polyphenols from blossoms of Citrus aurantium L. var. amara Engl. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2019.1577894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tian-Xing Wang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Bittkau KS, Neupane S, Alban S. Initial evaluation of six different brown algae species as source for crude bioactive fucoidans. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Citrus aurantium Ameliorates Cisplatin-Induced Nephrotoxicity. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3960908. [PMID: 31886208 PMCID: PMC6925785 DOI: 10.1155/2019/3960908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/11/2019] [Indexed: 01/03/2023]
Abstract
We aimed to study the effects of Citrus aurantium (C. aurantium) on renal functions in cisplatin-induced nephrotoxicity in rats. The study involved male Wistar rats weighing 250–300 g that were fed and kept under standard conditions. Rats were randomly divided into control, cisplatin administered, C. aurantium 200 mg/kg, and C. aurantium 400 mg/kg groups. Cisplatin was administered at 5 mg/kg i.p. once at the start of study to induce nephrotoxicity. Blood and urine samples were obtained at alternative days for analysis. The body weight and urine output were monitored at regular intervals. Plasma and urinary sodium, potassium, and creatinine levels were measured at the end of study duration. Absolute excretion of sodium and potassium; sodium to potassium ratio; kidney weights; fractional excretion of sodium and potassium; and absolute creatinine clearance were determined to analyze the effects of C. aurantium. Histopathological changes of kidney tissues were studied to determine relevant effects. The results indicate that cisplatin lowered the total body weights while raising the urinary output and kidney weights, reversed by C. aurantium both dose and time dependently. Similarly, C. aurantium markedly normalized plasma, urinary sodium, potassium, and creatinine levels. Cisplatin-induced absolute sodium clearance, absolute potassium clearance, absolute creatinine clearance, sodium to potassium ratio, and fractional excretion of sodium and potassium were significantly reversed by C. aurantium. Histopathological analysis showed notable improvement in C. aurantium administered groups as compared to cisplatin-induced group. Study suggests that C. aurantium possesses excellent nephroprotective effects against cisplatin-induced toxicity.
Collapse
|
23
|
Optimization of Ultrasonic-Assisted Extraction of Total Phenolics from Citrus aurantium L. Blossoms and Evaluation of Free Radical Scavenging, Anti-HMG-CoA Reductase Activities. Molecules 2019; 24:molecules24132368. [PMID: 31248058 PMCID: PMC6651220 DOI: 10.3390/molecules24132368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to develop an ultrasonic-assisted procedure for the extraction of total phenolics from Citrus aurantium L. blossoms (CAB) and evaluate the free radical scavenging activity and anti-HMG-CoA reductase activity of the total phenolics. In this work, a Box- Behnken design based on single-factor experiments was used to explore the optimum extraction process. Under the optimum conditions (extraction solvent 70.31% ethanol, extraction temperature 61.94 °C, extraction time 51.73 min, and liquid-to-solid ratio 35.63 mL/g), the extraction yield of total phenolics was 95.84 mg gallic acid equivalents (GAE)/g dry matter (DM), which was highly consistent with the theoretical value (96.12 mg GAE/g DM). The higher contents of total phenolics and five main phenolic compounds obtained from the optimized ultrasonic-assisted extraction (UAE) proved its efficiency when compared with conventional heat reflux extraction (HRE). The total phenolic extract showed excellent free radical scavenging properties against 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) radical (ABTS+·), hydroxyl radical (·OH) and superoxide anion radical (·O2-), with IC50 values of 197.007, 83.878, 218.643, and 158.885 μg/mL, respectively; the extracts also showed good inhibition of β-hydroxy-β-methylglutaryl-CoA reductase (HMG-CoA reductase) activity, with an IC50 value of 117.165 μg/mL. Total phenolics from CAB could be a potential source of natural free radical scavenger and HMG-CoA reductase inhibitor.
Collapse
|
24
|
Yang QQ, Cheng L, Long ZY, Li HB, Gunaratne A, Gan RY, Corke H. Comparison of the Phenolic Profiles of Soaked and Germinated Peanut Cultivars via UPLC-QTOF-MS. Antioxidants (Basel) 2019; 8:E47. [PMID: 30791635 PMCID: PMC6406428 DOI: 10.3390/antiox8020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 11/29/2022] Open
Abstract
Diverse peanut varieties are widely cultivated in China. However, few studies have investigated the effects of germination on the phenolic profiles and antioxidant activities of specific Chinese peanut cultivars. Therefore, this study was conducted to evaluate the effects of germination on total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity, and phenolic profiles of seven peanut cultivars in China. The TPC, TFC, and antioxidant activities were determined by spectrophotometry, while phenolic profiles were analyzed by using ultra-high performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-QTOF-MS). The results found that germination significantly increased TPC, TFC, and antioxidant activity. Antioxidant activity was found to be closely related to TPC in germinated peanut extracts, which indicates that phenolics are the main contributors of antioxidants in germinated peanuts. In addition, germination induced significant changes in polyphenolic profiles. In the analyzed samples, 36 phenolic compounds were identified in which most were flavonoids. Overall, these findings highlight that germinated peanuts can be a good natural source of natural antioxidants for human consumption and functional food development.
Collapse
Affiliation(s)
- Qiong-Qiong Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Cheng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhi-Yuan Long
- Department of Resources & Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Anil Gunaratne
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya P.O. Box 02, Sri Lanka.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
25
|
Estrada-Luna D, Ortiz-Rodriguez MA, Medina-Briseño L, Carreón-Torres E, Izquierdo-Vega JA, Sharma A, Cancino-Díaz JC, Pérez-Méndez O, Belefant-Miller H, Betanzos-Cabrera G. Current Therapies Focused on High-Density Lipoproteins Associated with Cardiovascular Disease. Molecules 2018; 23:molecules23112730. [PMID: 30360466 PMCID: PMC6278283 DOI: 10.3390/molecules23112730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDL) comprise a heterogeneous family of lipoprotein particles divided into subclasses that are determined by density, size and surface charge as well as protein composition. Epidemiological studies have suggested an inverse correlation between High-density lipoprotein-cholesterol (HDL-C) levels and the risk of cardiovascular diseases and atherosclerosis. HDLs promote reverse cholesterol transport (RCT) and have several atheroprotective functions such as anti-inflammation, anti-thrombosis, and anti-oxidation. HDLs are considered to be atheroprotective because they are associated in serum with paraoxonases (PONs) which protect HDL from oxidation. Polyphenol consumption reduces the risk of chronic diseases in humans. Polyphenols increase the binding of HDL to PON1, increasing the catalytic activity of PON1. This review summarizes the evidence currently available regarding pharmacological and alternative treatments aimed at improving the functionality of HDL-C. Information on the effectiveness of the treatments has contributed to the understanding of the molecular mechanisms that regulate plasma levels of HDL-C, thereby promoting the development of more effective treatment of cardiovascular diseases. For that purpose, Scopus and Medline databases were searched to identify the publications investigating the impact of current therapies focused on high-density lipoproteins.
Collapse
Affiliation(s)
- Diego Estrada-Luna
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | - María Araceli Ortiz-Rodriguez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, UAEM, Calle Río Iztaccihuatl S/N, Vista Hermosa, 62350 Cuernavaca, Morelos, Mexico.
| | - Lizett Medina-Briseño
- Universidad de la Sierra Sur, UNSIS, Miahuatlán de Porfirio Díaz, 70800 Oaxaca, Mexico.
| | - Elizabeth Carreón-Torres
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | - Jeannett Alejandra Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Actopan-Tilcuautla, Ex-Hacienda La Concepción S/N, San Agustín Tlaxiaca, 42160 Hidalgo, Mexico.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, 76130 Queretaro, Mexico.
| | - Juan Carlos Cancino-Díaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - Oscar Pérez-Méndez
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | | | - Gabriel Betanzos-Cabrera
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Actopan-Tilcuautla, Ex-Hacienda La Concepción S/N, San Agustín Tlaxiaca, 42160 Hidalgo, Mexico.
| |
Collapse
|
26
|
Qin D, Li L, Li J, Li J, Zhao D, Li Y, Li B, Zhang X. A New Compound Isolated from the Reduced Ribose-Tryptophan Maillard Reaction Products Exhibits Distinct Anti-inflammatory Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6752-6761. [PMID: 29895144 DOI: 10.1021/acs.jafc.8b01561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, a compound of 532.24 Da named BF-4 was separated from the ribose-tryptophan Maillard reaction products by solvent extraction and purified through reverse phase high performance liquid chromatography. The purified compound BF-4 was identified as 3-((1 H-indol-3-yl)methyl)-8-(5-((1 H-indol-3-yl)methyl)-6-oxomorpholin-2-yl)-9-hydroxy-1,7,4-dioxazecan-2-one in accordance with 1D- and 2D-NMR spectra and LC-ESI-MS/MS analysis. BF-4 significantly reduced the production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) in lipopolysaccharide-stimulated RAW 264.7 cells. It inhibited nuclear factor κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) phosphorylation through suppressing phosphorylation of IκBα, P65, P38 and c-Jun N-terminal kinase (JNK). The anti-inflammatory activity of BF-4 was comparable to dexamethasone, and more importantly, BF-4 showed less cytotoxicity than dexamethasone on the normal human liver cell LO2. The results indicate that BF-4 is a promising anti-inflammatory agent with pharmaceutical potential.
Collapse
Affiliation(s)
- Dan Qin
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou 510640 , China
- College of Food Science and Engineering , Anhui Science and Technology University , Bengbu 233100 , China
| | - Lin Li
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou 510640 , China
- School of Chemical Engineering and Energy Technology , Dongguan University of Technology , Dongguan 523808 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , 381 Wushan Road , Guangzhou 510640 , China
| | - Jing Li
- Center for Molecular Metabolism , Nanjing University of Science and Technology , 200 Xiaolingwei Street , Nanjing 210094 , China
| | - Jinlong Li
- School of Laboratory Medicine and Biotechnology , Southern Medical University , Guangzhou 510515 , China
| | - Di Zhao
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou 510640 , China
| | - Yuting Li
- School of Chemical Engineering and Energy Technology , Dongguan University of Technology , Dongguan 523808 , China
| | - Bing Li
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , 381 Wushan Road , Guangzhou 510640 , China
| | - Xia Zhang
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , 381 Wushan Road , Guangzhou 510640 , China
| |
Collapse
|