1
|
Ma J, Huang X, Jin L, Xu Q. Effect of dialdehyde nanocellulose-tannin fillers on antioxidant, antibacterial, mechanical and barrier properties of chitosan films for cherry tomato preservation. Food Chem 2025; 463:141274. [PMID: 39305641 DOI: 10.1016/j.foodchem.2024.141274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 11/14/2024]
Abstract
In this study, bio-based composite films from nanocellulose, tannin and chitosan were fabricated. First, tannin was covalently immobilized onto dialdehyde CNCs (DACNCs) through the nucleophilic reaction to obtain TA-CNCs. TA-CNCs were then added into chitosan matrix as the nanofillers to obtain chitosan-TA-CNC (CS-TA-CNC) films. Compared with pure chitosan film, the water solubility, swelling ratio, water vapor and oxygen barrier properties of CS-TA-CNC films decreased, indicating the improved water-resistant and barrier properties. The composite films exhibited high UV blocking, antioxidant capacity and antimicrobial properties against both E. coli and S. aureus. CS-TA-CNC film with a TA-CNC content of 10 % exhibited the highest tensile strength (77.57 MPa) and toughness (23.51 MJ/m3), 2.23 and 2.5 times higher than that of pure chitosan film, respectively. The composite films extended postharvest life of tomato cherries compared to the pure chitosan film. Films prepared from sustainable bioresources show promising potential for use in active packaging.
Collapse
Affiliation(s)
- Jinzhao Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaodi Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Liqiang Jin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qinghua Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
2
|
Quiroga J, Lambrese YS, García MG, Ochoa NA, Calvente VE. Enhancing apple postharvest protection: Efficacy of pectin coatings containing Cryptococcus laurentii against Penicillium expansum. Int J Food Microbiol 2025; 426:110934. [PMID: 39405798 DOI: 10.1016/j.ijfoodmicro.2024.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
The aim of this work is the application of pectin coatings containing Cryptococcus laurentii as a method of biocontrol of Penicillium expansum for postharvest protection of apples. For this purpose, the yeast was incorporated into a pectin matrix, and its viability and biocontrol activity in vitro and in vivo against P. expansum was evaluated over time. In addition, the influence of the sterilization process on coating thickness was studied. Results showed that pectin coating with C. laurentii enhanced mycelial growth inhibition in vitro studies, while no significant differences were observed in disease incidence and severity reduction in vivo studies. The sterilization process reduced the viscosity of the pectin solution, resulting in coating thicknesses ranging from 0.5 to 1 μm. As a general evaluation, in vitro and in vivo, biocontrol assays were useful in demonstrating better postharvest protection of the yeast at 7 °C concerning 25 °C.
Collapse
Affiliation(s)
- Julieta Quiroga
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Yésica Sabrina Lambrese
- Instituto Nacional de Tecnología Industrial, INTI San Luis, INTI, Argentina; Área de Básicas Agronómicas, Departamento de Ciencias Agropecuarias, Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis, Ruta Prov. N° 55 (Ex. 148) Extremo Norte, Villa Mercedes CP 5730, Argentina.
| | - María Guadalupe García
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Nelio Ariel Ochoa
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Viviana Edith Calvente
- Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| |
Collapse
|
3
|
Kong P, Rosnan SM, Enomae T. Carboxymethyl cellulose-chitosan edible films for food packaging: A review of recent advances. Carbohydr Polym 2024; 346:122612. [PMID: 39245494 DOI: 10.1016/j.carbpol.2024.122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
Polysaccharide-based edible films have been widely developed as food packaging materials in response to the rising environmental concerns caused by the extensive use of plastic packaging. In recent years, the integration of carboxymethyl cellulose (CMC) and chitosan (CS) for a binary edible film has received considerable interest because this binary edible film can retain the advantages of both constituents (e.g., the great oxygen barrier ability of CMC and moderate antimicrobial activity of CS) while mitigating their respective disadvantages (e.g., the low water resistance of CMC and poor mechanical strength of CS). This review aims to present the latest advancements in CMC-CS edible films. The preparation methods and properties of CMC-CS edible films are comprehensively introduced. Potential additives and technologies utilized to enhance the properties are discussed. The applications of CMC-CS edible films on food products are summarized. Literature shows that the current preparation methods for CMC-CS edible film are solvent-casting (main) and thermo-mechanical methods. The CMC-CS binary films have superior properties compared to films made from a single constituent. Moreover, some properties, such as physical strength, antibacterial ability, and antioxidant activity, can be greatly enhanced via the incorporation of some bioactive substances (e.g. essential oils and nanomaterials). To date, several applications of CMC-CS edible films in vegetables, fruits, dry foods, dairy products, and meats have been studied. Overall, CMC-CS edible films are highly promising as food packaging materials.
Collapse
Affiliation(s)
- Peifu Kong
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Shalida Mohd Rosnan
- College of Creative Arts, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Toshiharu Enomae
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
4
|
Chen H, Wang Q, Deng Y, Zhang J, Wang Y, Zhao H, Zhu Y, Zhang Y, Javed M, Zhuang L, Wang G. Experimental and theoretical studies on antioxidant and antibacterial properties of chitosan-gelatin functional composite films loaded with flavonoids. Int J Biol Macromol 2024; 282:137449. [PMID: 39522919 DOI: 10.1016/j.ijbiomac.2024.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Chitosan-gelatin-flavonoid functional composite films were prepared with chitosan, gelatin, and three flavonoids (Naringenin, Apigenin, and Luteolin). The effect of three flavonoids on physical, antioxidant, and antibacterial properties of functional composite film was investigated from experimental and Density functional theory (DFT) simulations. The tensile strength, thermal stability, water solubility, water vapor permeability, antioxidant activity, and antibacterial activity of chitosan-gelatin-flavonoid functional composite films were improved with flavonoid (Naringenin, Apigenin, and Luteolin) incorporation. The release behavior of Apigenin from functional composite film was much lower than that of Naringenin or Luteolin. ABTS+ radical scavenging ability values of functional composite films followed: Luteolin (69.53 %) > Naringenin (41.39 %) > Apigenin (36.13 %). The antibacterial activities of functional composite films against Staphylococcus aureus followed: Luteolin (52.03 mm) > Apigenin (49.34 mm) > Naringenin (43.15 mm). The total number, location of hydroxyl groups on ring-B, and the unsaturation degree on pyrone ring of flavonoids influenced antioxidant and antibacterial activities of functional composite films. The minimum bond dissociation enthalpy values of flavonoids followed: Luteolin < Apigenin < Naringenin. The interaction energy of Apigenin-chitobiose was stronger than that of Naringenin or Luteolin. These results will shed light on flavonoid selection for functional composite films of food packaging.
Collapse
Affiliation(s)
- Haoyuan Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Qiqi Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yupei Deng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Jingchun Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ying Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Huimin Zhao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yu Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yilin Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Maroosha Javed
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Linghua Zhuang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Guowei Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China.
| |
Collapse
|
5
|
Ren X, Fan Z, Jin L, Wu X, Wang H, Han S, Huang C, Zhang Y, Sun F. Unleashing the potential of water-insoluble Cu 2+-crosslinked chitosan nanocomposite film for enhanced antibacterial and flame-retardant properties. Int J Biol Macromol 2024:137455. [PMID: 39522913 DOI: 10.1016/j.ijbiomac.2024.137455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Chitosan (CS) has received widespread attention in various fields due to its excellent antimicrobial properties, inherent biodegradability and biocompatibility. However, the water swelling property of chitosan films reduces their performance and becomes a major obstacle for their practical application. Herein, we develop a water-insoluble montmorillonite/chitosan nanocomposite film (CS/MMT-Cu) with anti-bacterial and fire-retardant properties via Cu2+-crosslinking technique. Cu2+ ions are coordinated with amino and hydroxyl groups to crosslink the chitosan chains and bind to the montmorillonite (MMT) via electrostatic forces. As a result, the content of MMT has a significant effect on the mechanical and flame-retardant properties of CS/MMT-Cu films, in which the maximum tensile strength and finite oxygen index are 30.6 MPa and 40.5 %, respectively. In addition, the CS/MMT-Cu films exhibit good anti-bacterial properties. Overall, the prepared CS/MMT-Cu films have a broad application prospect in various fields, such as flame-retardant material, packaging and coatings.
Collapse
Affiliation(s)
- Xin Ren
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhiwei Fan
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Li Jin
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Xinxing Wu
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Hui Wang
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Shuaibou Han
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Yan Zhang
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China.
| | - Fangli Sun
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
6
|
Tan M, Zhong X, Xue H, Cao Y, Tan G, Li K. Polysaccharides from pineapple peel: Structural characterization, film-forming properties and its effect on strawberry preservation. Int J Biol Macromol 2024; 279:135192. [PMID: 39216587 DOI: 10.1016/j.ijbiomac.2024.135192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The growing demand for food safety has stimulated the development of new environmentally friendly food packaging. It is the development trend of food packaging in recent years by using natural polysaccharides as carriers and adding bioactive ingredients extracted from plants to prepare multifunctional films with antioxidant, antimicrobial and biodegradable properties. Herein, three polysaccharide components (PPE40, PPE60, and PPE80) from pineapple peel were extracted by ultrasound-assisted hot water extraction combined with gradient ethanol precipitation method, which all showed a certain scavenging activities against DPPH, ABTS, and hydroxyl radical. Then, the composite films were prepared by adding PPE40, PPE60 and PPE80 to chitosan. The results of SEM, FT-IR and XRD analysis showed that PPE40, PPE60 and PPE80 could interact with chitosan matrix. Furthermore, the addition of PPE40, PPE60, and PPE80 could improve the mechanical properties of the films, and promote the antibacterial activity of the films against B. subtilis, S. aureus and E. coli. Finally, the application of the composite films to strawberries showed that the addition of PPE40, PPE60 and PPE80 could delay the rapid decay of strawberries during storage. The results of this study showed that pineapple polysaccharides have a potential to be applied in the field of food packaging.
Collapse
Affiliation(s)
- Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xinping Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hongxin Xue
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yinyin Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Guangdong Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Das R, Kumar A, Singh C, Kayastha AM. Innovative synthesis approaches and health implications of organic-inorganic Nanohybrids for food industry applications. Food Chem 2024; 464:141905. [PMID: 39504907 DOI: 10.1016/j.foodchem.2024.141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Recent advancements in nanomaterials have significantly impacted various sectors, including medicine, energy, and manufacturing. Among these, organic/inorganic nanohybrids have emerged as transformative tools in the food industry. This review focuses on the innovative applications of these nanohybrids in food packaging, enzyme immobilization, and contamination detection. By combining organic and inorganic components, nanohybrids enable the customization of properties such as barrier performance, mechanical strength, and antimicrobial activity. Organic-inorganic nanohybrids offer promising solutions for the food industry, enhancing safety, quality, and processing efficiency. Examples include gold nanoparticles (AuNPs) used in biosensors for rapid detection of foodborne pathogens, graphene oxide (GO) nanosheets in advanced filtration membranes, and nanocellulose as a fat replacer in low-fat yogurt to improve texture and taste. Quantum dots (QDs) also aid in food traceability by detecting product authenticity. While these technologies showcase transformative potential, challenges like scalability, regulatory compliance, environmental impact, and potential toxicity must be addressed to ensure safe and sustainable adoption. However, to fully harness their benefits, it is crucial to thoroughly assess their toxicological profiles to mitigate potential adverse health effects. This necessitates comprehensive studies on their interactions with biological systems, dose-response relationships, and long-term impacts. Establishing standardized safety protocols and regulatory guidelines is essential to ensure that the utilization of these nanomaterials does not compromise human health while maximizing their advantages.
Collapse
Affiliation(s)
- Ranjana Das
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Avinash Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Chandan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Purohit SD, Bhaskar R, Singh H, Priyadarshi R, Kim H, Son Y, Gautam S, Han SS. Chitosan-based electrospun fibers for bone-tissue engineering: Recent research advancements. Int J Biol Macromol 2024; 281:136530. [PMID: 39406323 DOI: 10.1016/j.ijbiomac.2024.136530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Chitosan, a sustainable and highly abundant animal-derived biopolymer, possesses versatile properties, such as solubility, film-forming ability, viscosity, ion binding, and antimicrobial qualities, which are suitable for biomedical applications. Due to its charged nature, chitosan is a lucrative biopolymer for scaffold fabrication, especially for bone-tissue engineering applications, using the electrospinning method, which is an industrially suitable, scalable, and swift method for fabricating porous nanocomposite structures. Despite a lot of research being conducted on chitosan-based electrospun materials for bone tissue engineering, the research on this topic has not been thoroughly reviewed. This review article aims to fill this knowledge gap and provides an in-depth discussion of the research on this topic. To start with, a brief overview of bone tissue engineering has been provided, followed by the properties of chitosan, which make it an important biopolymer for this application. Also, the important factors that must be considered while electrospinning chitosan, especially considering its application in bone tissue engineering, have been debated. Further, the type of chitosan-based electrospun material has been discussed along with the recent advancements in this research area. Finally, a brief perspective on the future of this technology has been provided.
Collapse
Affiliation(s)
- Shiv Dutt Purohit
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hemant Singh
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunjin Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Yumi Son
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sneh Gautam
- Department of Molecular Biology & Genetic Engineering, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
9
|
Zhao W, Liang Y, He Q, Deng Y, Zhang Y, Lin B. Surface Molding Hydrogel Film Initiated by ZIF-8 with Ethylene Adsorption Performance for Preserving Perishable Fruits. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57724-57737. [PMID: 39387491 DOI: 10.1021/acsami.4c13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The quality deterioration of postharvest fruits is greatly influenced by ethylene, leading to food wastage worldwide. Therefore, it is urgent to develop an efficient packaging strategy to reduce ethylene concentration and prolong the shelf life of perishable fruits. In this work, a surface-molding hydrogel film was created using ZIF-8 in combination with carboxymethyl starch (CMS) and carboxymethyl chitosan (CMCS). Specifically, ZIF-8 is first anchored on CMS and then rapidly cross-linked in situ with CMCS, forming ZIF-8@CC on the fruit surface (within 10 s). The perfect tight-fitting effects of ZIF-8@CC were observed on various fruit surfaces with different roughness (Ra: ranges from 102 to 308 nm). ZIF-8@CC could absorb 57.3% endogenous ethylene from bananas, and the interaction mechanism between ethylene and ZIF-8 was studied by molecular dynamics simulations, providing insights into the ethylene adsorption capacity of ZIF-8@CC. Moreover, ZIF-8@CC presented excellent antibacterial properties and achieved satisfactory ultralong preservation effects on both nonclimatic and climatic fruits (12 days for strawberries and 14 days for bananas) at room temperature. Importantly, ZIF-8@CC is easily removed, washed, and degradable. These findings offer an efficient and potential food packing material with multifunctional properties for preserving perishable fruits.
Collapse
Affiliation(s)
- Wenxin Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuntong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qiuwen He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuancheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
10
|
D PM, Chawla R, Dutta PK. Physicochemical and biological evaluation of 'click' synthesized vinyl epoxide-chitosan film for active food packaging. Int J Biol Macromol 2024; 282:136816. [PMID: 39447800 DOI: 10.1016/j.ijbiomac.2024.136816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Chitosan (Cs) being a natural biopolymer serves as an excellent template to construct active packaging materials for achieving sustainable development. In this study, Cs was chemically modified via epoxide ring opening click reaction using vinyl epoxide to obtain a novel chitosan vinyl epoxide (Cs-VE) derivative with hydroxyl and olefinic functional groups. The Cs-VE transparent film was fabricated through the eco-friendly solution casting technique. A meticulous investigation into the chemical structure and physicochemical properties of the synthesized films was conducted using FT-IR, 1H NMR and XRD analyses. The thermal stability and homogeneity of the film were verified by thermogram and FE-SEM images respectively. Improved mechanical properties (tensile strength of 24.64 MPa and 12.08 % elongation at break) and excellent UV-light blocking ability (9.3 % transmittance at 350 nm and 22.15 % transparency at 600 nm) were observed. Also, important parameters such as water vapor permeability (WVP), swelling degree, water solubility and UV-barrier properties were found to be adequate for food packaging application. Similarly, enhanced antioxidant activity with 27.2 % and 73.6 % radical scavenging against DPPH and ABTS radicals respectively was observed for the synthesized Cs-VE film. The film showed antimicrobial activity against both bacteria and fungi. These results along with food packaging studies on Grewia asiatica fruit established the developed Cs-VE film as a suitable candidate for active food packaging application.
Collapse
Affiliation(s)
- Pal Manisha D
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Pradip Kumar Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
11
|
Mei Z, Vincent L, Szczepanski CR, Godeau RP, Kuzhir P, Godeau G. Investigation of 9 True Weevil ( Curculionidae Latreille, 1802) Species for Chitin Extraction. Biomimetics (Basel) 2024; 9:608. [PMID: 39451814 PMCID: PMC11505005 DOI: 10.3390/biomimetics9100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Chitin, the second most abundant biopolymer after cellulose, is an important resource for biosourced materials. The global demand for chitin is rapidly increasing, however, the majority of industrial chitin is sourced from crustacean shells, which may be less accessible in regions without seafood waste. Therefore, it is crucial to explore alternative chitin sources, such as those derived from beetles and other arthropods. This study investigated chitin extraction from nine species of Curculionidae (true weevils), which are recognized as crop pests. The extraction process and yields were described, and the isolated chitin was characterized by SEM, IR spectroscopy, elemental analysis, XRD, and ash and water content measurements. This work highlights the potential of Curculionidae as an alternative chitin source.
Collapse
Affiliation(s)
- Zhenying Mei
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Luc Vincent
- Université Côte d’Azur, CNRS UMR 7272 ICN, Parc Valrose, 06108 Nice, France
| | - Caroline R. Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA;
| | - René-Paul Godeau
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Pavel Kuzhir
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Guilhem Godeau
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
- Université Côte d’Azur, IMREDD, 06200 Nice, France
| |
Collapse
|
12
|
Zhu Y, Gao X, Gao X, Jiang Z, Alhomrani M, Alamri AS, Alsanie WF, Cui H. Development of polysaccharide based intelligent packaging system for visually monitoring of food freshness. Int J Biol Macromol 2024; 277:134588. [PMID: 39122071 DOI: 10.1016/j.ijbiomac.2024.134588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
With the increased awareness on food freshness and food quality among consumers, the intelligent packaging films that can visually monitor the freshness of packaged foods by observing the color changes of packaging materials are gradually drawing more and more attentions. In this paper, various colorimetric indicators, types of polysaccharides as film-forming materials, production methods, freshness monitoring application, along with the future development of different intelligent packaging films are illustrated detailedly and deeply. Natural pH sensitive indicators such as anthocyanin, alizarin, curcumin, betaines and chlorophylls, as well as the gases sensitive indicators (hydrogen sulfide sensitive indicators and ethylene sensitive indicators) are the most widely used indicators for monitoring of food freshness. By incorporating different colorimetric indicators into polysaccharides (starch, chitosan, gum and cellulose derivatives) based substrates, the intelligent packaging films can be fabricated by solvent casting method, extrusion-blow molding method and electrospinning technique for monitoring of meat products, fruits, vegetables, milk products and other food products. In conclusion, intelligent packaging films with colorimetric functions are promising and feasible methods for real-time monitoring of food freshness, while stable colorimetric indicators, new film-forming methods and cheaper polysaccharide materials are still needed to develop for further commercialization.
Collapse
Affiliation(s)
- Yulin Zhu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Science, Yantai University, Yantai 264005, China.
| | - Xinke Gao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Science, Yantai University, Yantai 264005, China
| | - Xiaona Gao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Science, Yantai University, Yantai 264005, China
| | - Zhumao Jiang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Science, Yantai University, Yantai 264005, China
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Walaa F Alsanie
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Cao S, Liu H, Qin M, Xu N, Liu F, Liu Y, Gao C. Development and characterization of polyvinyl alcohol/chitosan crosslinked malic acid composite films with curcumin encapsulated in β-cyclodextrin for food packaging application. Int J Biol Macromol 2024; 278:134749. [PMID: 39214835 DOI: 10.1016/j.ijbiomac.2024.134749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Considering that fruits are vulnerable to damage and waste during stockpiling, transport and marketing. Given this, an innovative curcumin inclusion compound (Cur@β-CD) was devised in this study to introduce oil-soluble curcumin (Cur) into water-soluble polyvinyl alcohol (PVA) materials, thereby fabricating food packaging films endowed with excellent properties. DPPH test manifested that the oxidation resistance for PCOMC-Cur@β-CD film was 95 % above PVA material. It was ascribed to the fact that the Cur@β-CD elevated the water solubility of Cur while the increase of water solubility heightened the antioxidant effect for Cur in the film. Additionally, the chitosan (CS) was crosslinked with malic acid (MA), which elevated the barrier property of the film, reduced the amount of oxygen transmission and further retarded the oxidation reaction of the fruits for packaging. The antibacterial test demonstrated that the antibacterial rates of PCOMC-Cur@β-CD film against E. coli and S. aureus reached 92 % and 95 %, respectively, which was attributed to the slow release of Cur when Cur@β-CD was dissolved in PVA material and the Schiff base reaction between Cur and amino groups on CS. These findings indicate that the PCOMC-Cur@β-CD film developed in this work can provide certain insights into the field of food packaging.
Collapse
Affiliation(s)
- Shuting Cao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongzhen Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ming Qin
- Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Nannan Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Fuhao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuetao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
14
|
Ait Hamdan Y, Oudadesse H, Elouali S, Eladlani N, Lefeuvre B, Rhazi M. Exploring the potential of chitosan from royal shrimp waste for elaboration of chitosan/bioglass biocomposite: Characterization and "in vitro" bioactivity. Int J Biol Macromol 2024; 278:134909. [PMID: 39168220 DOI: 10.1016/j.ijbiomac.2024.134909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Exploiting royal shrimp waste to produce value-added biocomposites offers environmental and therapeutic benefits. This study proposes biocomposites based on chitosan and bioglass, using shrimp waste as the chitosan source. Chitin extraction and chitosan preparation were characterized using various analytical techniques. The waste composition revealed 24 % chitin, convertible to chitosan, with shells containing 77.33-ppm calcium. (X-ray diffraction) XRD analysis showed crystallinity index of 54.71 % for chitin and 49.14 % for chitosan. Thermal analysis indicated degradation rates of 326 °C and 322 °C, respectively. The degree of deacetylation of chitosan was 97.08 % determined by proton nuclear magnetic resonance (1H-NMR) analysis, with an intrinsic viscosity of 498 mL.g-1 and molar mass of 101,720 g/mol, showing improved solubility in 0.3 % acetic acid. Royal chitosan (CHR) was combined with bioglass (BG) via freeze-drying to create a CHR/BG biocomposite for bone surgery applications. The bioactivity of the CHR/BG was tested in simulated body fluid (SBF), revealing a biologically active apatite layer on its surface. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) analysis confirmed enhanced bioactivity of the CHR/BG compared to commercial chitosan. The CHR/BG biocomposite demonstrated excellent apatite formation, validated by Scanning Electron Microscopy (SEM), highlighting its potential in bone surgery.
Collapse
Affiliation(s)
- Youssef Ait Hamdan
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | | | - Samia Elouali
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco; University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium
| | - Nadia Eladlani
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco
| | | | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco
| |
Collapse
|
15
|
Sutipanwihan N, Kitsawat V, Sintharm P, Phisalaphong M. Natural Rubber Films Reinforced with Cellulose and Chitosan Prepared by Latex Aqueous Microdispersion. Polymers (Basel) 2024; 16:2652. [PMID: 39339118 PMCID: PMC11435537 DOI: 10.3390/polym16182652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
In this paper, green composite films comprising natural rubber (NR), cellulose (CE), and chitosan (CS) were successfully fabricated through a simple, facile, cost-effective method in order to improve mechanical, chemical, and antimicrobial properties of NR composite films. Chitosan with a low molecular weight of 30,000-50,000 g/mol (CS-L) and a medium molecular weight of 300,000-500,000 g/mol (CS-M) was used for the fabrication. The composite films were prepared via a latex aqueous microdispersion method with different weight ratios of NR:CE:CS-L/CS-M. Fourier transform infrared spectroscopy (FTIR) results demonstrated strong interactions of hydrogen bonds between CE and CS-L/CS-M in the composite films. The tensile strength and the modulus of the composite films in dried form were found to significantly increase with the reinforcement of CE and CS-L/CS-M. The maximum tensile strength (13.8 MPa) and Young's modulus (12.7 MPa) were obtained from the composite films reinforced with CE at 10 wt.% and CS-L at 10 wt.%. The high elongation of 500-526% was obtained from the composite films reinforced with CE at 10 wt.% and CS (CS-L or CS-M) at 5.0 wt.%. The modification could also significantly promote antimicrobial activities and chemical resistance against non-polar solvents in the composite films. The NR composite films have potential uses as flexible films for sustainable green packaging.
Collapse
Affiliation(s)
- Naipaporn Sutipanwihan
- Bio-Circular-Green economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veerapat Kitsawat
- Bio-Circular-Green economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Praewpakun Sintharm
- Bio-Circular-Green economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muenduen Phisalaphong
- Bio-Circular-Green economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
16
|
Zhang H, Wang X, Liu J, Mai G, Liu S, Cui W, Guan R, Jiang S, Han Y, He T. Alginate composite films incorporated with Zn-based inorganic antimicrobials for food packaging: Effects of morphology. J Food Sci 2024; 89:5734-5747. [PMID: 39098814 DOI: 10.1111/1750-3841.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Biopolymers-based food packaging materials have drawn attention as potential candidates for substitution of petroleum-based materials. In this study, composite alginate films were developed by incorporating Zn-based antimicrobials to overcome the intrinsic disadvantages of alginates that hinder their wide applications. Antimicrobials with different morphologies (nanoplatelets, nanorods, and nanospheres) were employed to investigate the effects of antimicrobials' morphology on antibacterial, thermal, mechanical, and barrier performance of composite alginate films. Meanwhile, morphological and structural characterizations were carried out to explore the interactions between antimicrobials and alginate matrix. Results indicated that films with nanospheres exhibited superior antibacterial property, while those with one-dimensional nanorods possessed better mechanical and barrier performance. Besides, preliminary test on fresh-cut potatoes and chicken breasts indicated that the composite films showed potential in extending shelf life of foods. By incorporating antimicrobials with three different morphologies, this study provides particular insights into improving properties of composite packaging materials.
Collapse
Affiliation(s)
- Huiling Zhang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Xinglong Wang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Jiyi Liu
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Guangqing Mai
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Shanshan Liu
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Wei Cui
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Rengui Guan
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Shasha Jiang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Yanyang Han
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Tao He
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| |
Collapse
|
17
|
Liu X, Sun X, Du H, Li Y, Wen Y, Zhu Z. A transparent p-coumaric acid-grafted-chitosan coating with antimicrobial, antioxidant and antifogging properties for fruit packaging applications. Carbohydr Polym 2024; 339:122238. [PMID: 38823908 DOI: 10.1016/j.carbpol.2024.122238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
The study aimed to develop a novel, transparent and non-toxic coating with antimicrobial, antioxidant, and antifogging properties. The p-coumaric acid-grafted chitosan (CS-PCA) was synthesized via a carbodiimide coupling reaction and then characterized. The CS-PCA coatings were further prepared using the casting method. The CS-PCA coatings obtained exhibited excellent transparency, UV-light barrier ability, and antifogging properties, as confirmed by spectroscopy and antifogging tests. The CS-PCA coatings showed stronger antioxidant capacity and antimicrobial properties against Escherichia coli, Staphylococcus aureus and Botrytis cinerea compared to CS. The multifunctional coatings were further coated on the polyethylene cling film and their effectiveness was confirmed through a strawberry preservation test. The decay of the strawberries was reduced by CS-PCA coated film at room temperature.
Collapse
Affiliation(s)
- Xinru Liu
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Xiaoli Sun
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Haiyu Du
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Yiyi Li
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Zhu Zhu
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Raveena, Kumari P. Nanocellulose@gallic Acid-Based MOFs: A Novel Material for Ecofriendly Food Packaging. ACS OMEGA 2024; 9:35654-35665. [PMID: 39184514 PMCID: PMC11340005 DOI: 10.1021/acsomega.4c03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
The development of an effective food packaging material is essential for safeguarding against infections and preventing chemical, physical, and biological changes during food storage and transportation. In the present study, we successfully synthesized an innovative food packaging material by combining chitosan (CH), nanocellulose (NC), and a gallic acid-based metal-organic framework (MOF). The CH films were prepared using different concentrations of NC (5 and 10%) and MOFs (1.5, 2.5, and 5%). Various properties of prepared films, including water solubility (WS), moisture content (MC), swelling degree, oxygen permeability, water vapor permeability (WVP), mechanical property, color analysis, and light transmittance, were studied. The chitosan film with a 5% NC and 1.5% MOF (CH-5% NC-1.5% MOF) exhibited the least water solubility, moisture content, and water vapor permeability, indicating the overall stability of the film. Additionally, this film demonstrated low oxygen permeability, as indicated by a peroxide value of 18.911 ± 4.009, ensuring the effective preservation of packaged contents. Notably, this synthesized film exhibited high antioxidant activity, resulting in an extended duration of 52 days. This antioxidant activity was further validated by the preservation of apple slices for 9 days in a CH-5% NC-1.5% MOF film. The findings of the study suggest that the developed films can provide a promising and environmentally friendly solution for active food packaging.
Collapse
Affiliation(s)
- Raveena
- Department
of Chemistry, University of Delhi, New Delhi 110007, India
- Bioorganic
Material Research Laboratory, Department of Chemistry, Deshbandhu
College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Pratibha Kumari
- Bioorganic
Material Research Laboratory, Department of Chemistry, Deshbandhu
College, University of Delhi, Kalkaji, New Delhi 110019, India
| |
Collapse
|
19
|
Liao J, Wen R, Wang Y, Zhou Y, Zhang J. Film-Forming Capability and Antibacterial Activity of Surface-Deacetylated Chitin Nanocrystals: Role of Degree of Deacetylation. Biomacromolecules 2024; 25:5138-5148. [PMID: 39007299 DOI: 10.1021/acs.biomac.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Developing sustainable food-active packaging materials is a major issue in food preservation applications. Chitin nanocrystals (ChNCs) are regarded as unique bioderived nanomaterials due to their inherent nitrogen moiety. By tuning the chemical functionality of this nanomaterial, it is possible to affect its properties, such as film-forming capability and antibacterial activity. In this work, surface-deacetylated chitin nanocrystals (D-ChNCs) with different degrees of deacetylation (DDs) were prepared by partial deacetylation of native chitin and subsequent acid hydrolysis, and their film-forming capability and antibacterial activity were studied systematically. The D-ChNCs showed favorable film-forming ability and antibacterial activity, which are closely related to their DD. With the increase in DD (from 5.7% to 45.4%), the formed transparent films based on ChNCs showed gradually increased elongation at break (from 0.5% to 2.5%) and water contact angle (from 25.5° to 87.0°), but decreased break strength (from 3.13 to 0.89 MPa), Young's modulus (from 0.84 to 0.24 MPa), and water vapor permeability (from 4.7 × 10-10 to 4.1 × 10-10g/m s Pa). Moreover, the antibacterial activity of the D-ChNCs against E. coli and S. aureus also increased with the increase of DD. This study also found that the depolarization and potential dissipation of the bacterial cell membrane induced by the contact between amino-rich D-ChNCs and bacteria through electrostatic attraction are the possible mechanisms causing bacterial cell death. This study provides a basis for understanding the effects of DD on the film-forming capability and antibacterial activity of ChNCs, which is conducive to the design of novel active packaging films based on ChNCs.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Ruizhi Wen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yijin Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuhang Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| |
Collapse
|
20
|
Zhan Z, Feng Y, Zhao J, Qiao M, Jin Q. Valorization of Seafood Waste for Food Packaging Development. Foods 2024; 13:2122. [PMID: 38998628 PMCID: PMC11241680 DOI: 10.3390/foods13132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.
Collapse
Affiliation(s)
- Zhijing Zhan
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Yiming Feng
- Virginia Seafood AREC, Virginia Polytechnic Institute and State University, Hampton, VA 23662, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78542, USA
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering (C2E2), University of Connecticut, Storrs, CT 05269, USA
- Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, USA
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
21
|
Kusuma HS, Jaya DEC, Illiyanasafa N. Effect of chitosan coating on basil (Ocimum sanctum) leaves dried by microwave-assisted drying method: Analysis of color, effective moisture diffusivity, and drying kinetics. Int J Biol Macromol 2024; 273:133000. [PMID: 38851618 DOI: 10.1016/j.ijbiomac.2024.133000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Basil (Ocimum sanctum) leaves, commonly known as holy basil, have various health benefits due to their rich phytochemical content. However, fresh basil leaves face challenges related to their perishability and short shelf life. This study explores the use of edible coating, specifically chitosan, to extend the shelf life of basil leaves. Then basil leaves with chitosan coating were dried using microwave-assisted drying (MAD) method with variations of microwave power (136, 264, 440, and 616 W), mass of basil leaves (5, 10, and 15 g), and chitosan concentration (0, 2.5, and 5 %). The purpose of this study is to analyze the color, effective moisture diffusivity, and drying kinetics. Five mathematical models and seven error functions were used. The Avhad and Marchetti Model was identified as the most suitable model to describe the drying kinetics of basil leaves with chitosan coating. The Deff value increased with decreasing mass of basil leaves, decreasing chitosan concentration, and increasing microwave power. Deff values ranged from 0.001 to 0.002 m2/s. The thickness of the basil leaves also played a role in the fluctuation of Deff values. The highest ΔE value was obtained by 5 % concentration of chitosan. The chitosan coating, especially at a concentration of 2.5 %, showed discoloration indicating better preservation of the original color of basil leaves. In conclusion, this study shows that chitosan coating and MAD are effective strategies to extend the shelf life of basil leaves and can provide valuable insights for future applications in leaf drying or thin layer drying processes.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| | - Debora Engelien Christa Jaya
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Nafisa Illiyanasafa
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| |
Collapse
|
22
|
Tavassoli M, Bahramian B, Abedi-Firoozjah R, Ehsani A, Phimolsiripol Y, Bangar SP. Application of lactoferrin in food packaging: A comprehensive review on opportunities, advances, and horizons. Int J Biol Macromol 2024; 273:132969. [PMID: 38857733 DOI: 10.1016/j.ijbiomac.2024.132969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Lactoferrin (LAC) is an iron-binding glycoprotein found in mammalian secretion, such as milk and colostrum, which has several advantageous biological characteristics, such as antioxidant and antimicrobial activity, intestinal iron absorption and regulation, growth factor activity, and immune response. LAC is an active GRAS food ingredient and can be included in the food packaging/film matrix in both free and encapsulated forms to increase the microbial, mechanical, barrier, and thermal properties of biopolymer films. Additionally, LAC-containing films maintain the quality of fresh food and extend the shelf life of food products. This paper primarily focuses on examining how LAC affects the antimicrobial, antioxidant, physical, mechanical, thermal, and optical properties of packaging films. Moreover, the paper explains the attributes of films incorporating LAC within different matrices, exploring the interaction between LAC and polymers. The potential of LAC-enhanced food packaging technologies is highlighted, showcasing their promising applications in sustainable food packaging.
Collapse
Affiliation(s)
- Milad Tavassoli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Bahramian
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Sneh Punia Bangar
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Food, Nutrition and Packaging Sciences, Clemson University, SC, 29634, USA.
| |
Collapse
|
23
|
Cai Z, Huang W, Zhong J, Jin J, Wu D, Chen K. Methyl jasmonate-loaded composite biofilm sustainably alleviates chilling lignification of loquat fruit during postharvest storage. Food Chem 2024; 444:138602. [PMID: 38310778 DOI: 10.1016/j.foodchem.2024.138602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
In this work, the MeJA-loaded gelatin/pullulan/chitosan composite biofilm was prepared to inhibit the chilling lignification of the loquat fruit during storage at 0 °C. The firmness and lignin content were decreased by 89 % and 81.77 % after MeJA-loaded biofilm treatment. Malondialdehyde (MDA) production was almost completely suppressed and chilling injury of loquat fruit was significantly reduced. Enzyme activity results show that the biofilm alleviated chilling lignification mainly by inhibiting peroxidase (POD) activity in the phenylpropanoid pathway (PCCs = 0.715, with lignin content). Also, the conventional MeJA vapor treatment only alleviated lignification on day 3, but the biofilm treatment had a better and more sustained effect throughout the whole storage due to its sustained release ability. Besides, the biofilm had good mechanical properties, transparency and water vapor transmission rate. This work indicates that loading preservatives into biofilms has a promising application prospect for inhibiting the postharvest quality deterioration of fruit and vegetables.
Collapse
Affiliation(s)
- Zihan Cai
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| | - Weinan Huang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Jiahao Zhong
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| | - Jiayue Jin
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
24
|
Vadalà R, De Maria L, De Pasquale R, Di Salvo E, Lo Vecchio G, Di Bella G, Costa R, Cicero N. Development of a Chitosan-Based Film from Shellfish Waste for the Preservation of Various Cheese Types during Storage. Foods 2024; 13:2055. [PMID: 38998559 PMCID: PMC11241246 DOI: 10.3390/foods13132055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The global concern about the use of disposable plastics has fed the research on sustainable packaging for food products. Among the virtuous materials, chitosan emerges as a valid alternative to conventional polyethylene films because of its abundance in nature. In this work, a novel film for food wrapping was developed by exploiting shellfish waste according to a vision of circular economy. Compared to previous studies, here, novel ingredients, such as polyvinyl alcohol (PVA), fibroin, and essential oils, were used in a synergistic combination to functionally postpone cheese deterioration. The fermentative procedure applied for the obtainment of chitin contributes to filling the existing gap in the literature, since the majority of studies are based on the chemical pathways that dramatically impact the environment. After pretreatment, the shrimp shell waste (SSW) was fermented through two bacterial strains, namely Lactobacillus plantarum and Bacillus subtilis. A deacetylation step in an alkaline environment transformed chitin into chitosan, yielding 78.88 g/kg SWW. Four different film formulations were prepared, all containing chitosan with other ingredients added in order of decreasing complexity from the A to D groups. The novel films were tested with regard to their physico-mechanical and antioxidant properties, including the tensile strength (12.10-23.25 MPa), the elongation at break (27.91-46.12%), the hardness (52-71 Shore A), the film thickness (308-309 μm), and the radical scavenging activity (16.11-76.56%). The performance as a cling film was tested on two groups of cheese samples: the control (CTR), wrapped in conventional polyethylene (PE) film; treated (TRT), wrapped in the chitofilm formulation deemed best for its mechanical properties. The volatiles entrapped into the headspace were investigated by means of the SPME-GC technique. The results varied across soft, Camembert, and semi-hard cheeses, indicating a growing abundance of volatiles during the conservation of cheese. The bacterial growth trends for mesophilic, enterobacteriaceae, and lactic acid bacteria were expressed as the mean colony forming units (CFU)/mL for each type of cheese at different sampling times (day 2, day 8, and day 22): the highest load was quantified as 8.2 × 106 CFU/mL at day 22 in the CTR Camembert cheese. The TRT samples generally exhibited inhibitory activity comparable to or lower than that observed in the CTR samples. The sensory analysis revealed distinctions in cheese taste between the TRT and CTR groups.
Collapse
Affiliation(s)
- Rossella Vadalà
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | - Laura De Maria
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | | | - Eleonora Di Salvo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | - Giovanna Lo Vecchio
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | - Giuseppa Di Bella
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | - Rosaria Costa
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | - Nicola Cicero
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
- Science4life S.r.l. Start Up, 98168 Messina, Italy;
| |
Collapse
|
25
|
Long W, Lin Y, Lv C, Dong J, Lv M, Lou X. High-compatibility properties of Aronia melanocarpa extracts cross-linked chitosan/polyvinyl alcohol composite film for intelligent food packaging. Int J Biol Macromol 2024; 270:132305. [PMID: 38740148 DOI: 10.1016/j.ijbiomac.2024.132305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Although the active and intelligent properties of rich in anthocyanin extracts added to films have been extensively studied, there remains a sparsity of research pertaining to the miscibility of blended films. This work focused on the miscibility of the chitosan/polyvinyl alcohol (CP) film caused by the addition of Aronia melanocarpa extracts (AME), which are rich anthocyanins and phenolic acids, and its effect on physicochemical and functional properties. AME facilitated the amidation reaction and ionic interaction of chitosan in CP films, leading to loss of the crystallinity degree of chitosan. Furthermore, the crystal disruption promoted the formation of hydrogen bonds with polyvinyl alcohol (PVA) with the promoted miscibility. CP film incorporated with 8 % AME possessed the highest tensile strength (26.79 MPa), and elongation at break (66.38 %) as well as excellent ultraviolet-visible (UV-vis) light barrier property, water vapor barrier properties, due to its high miscibility degree. Moreover, this film also showed excellent antioxidant, antibacterial activity, and pH response function, which could be used to monitor the storage of highly perishable shrimp. Hence, the AME provided extra functionality and improved miscibility between chitosan and PVA, which showed great potential for the preparation of high-performance bioactive-fortified and intelligent food packaging films.
Collapse
Affiliation(s)
- Wenjie Long
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Yawen Lin
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China.
| | - Changxin Lv
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China.
| | - Junli Dong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Meilin Lv
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Xiaohua Lou
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| |
Collapse
|
26
|
Yang B, Liu B, Gao Y, Wei J, Li G, Zhang H, Wang L, Hou Z. PEG-crosslinked O-carboxymethyl chitosan films with degradability and antibacterial activity for food packaging. Sci Rep 2024; 14:10825. [PMID: 38734808 PMCID: PMC11088648 DOI: 10.1038/s41598-024-61642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
This study developed a kind of PEG-crosslinked O-carboxymethyl chitosan (O-CMC-PEG) with various PEG content for food packaging. The crosslinking agent of isocyanate-terminated PEG was firstly synthesized by a simple condensation reaction between PEG and excess diisocyanate, then the crosslink between O-carboxymethyl chitosan (O-CMC) and crosslinking agent occurred under mild conditions to produce O-CMC-PEG with a crosslinked structure linked by urea bonds. FT-IR and 1H NMR techniques were utilized to confirm the chemical structures of the crosslinking agent and O-CMC-PEGs. Extensive research was conducted to investigate the impact of the PEG content (or crosslinking degree) on the physicochemical characteristics of the casted O-CMC-PEG films. The results illuminated that crosslinking and components compatibility could improve their tensile features and water vapor barrier performance, while high PEG content played the inverse effects due to the microphase separation between PEG and O-CMC segments. The in vitro degradation rate and water sensitivity primarily depended on the crosslinking degree in comparison with the PEG content. Furthermore, caused by the remaining -NH2 groups of O-CMC, the films demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus. When the PEG content was 6% (medium crosslinking degree), the prepared O-CMC-PEG-6% film possessed optimal tensile features, high water resistance, appropriate degradation rate, low water vapor transmission rate and fine broad-spectrum antibacterial capacity, manifesting a great potential for application in food packaging to extend the shelf life.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Baoliang Liu
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China.
| | - Yuanyuan Gao
- Taian Yingxiongshan Middle School, Taian, Shandong, China
| | - Junjie Wei
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Gang Li
- Shandong Tianming Pharmaceutical Co, Ltd., Jinan, Shandong, China
| | - Hui Zhang
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Linlin Wang
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China.
| |
Collapse
|
27
|
Torres C, Valerio O, Mendonça RT, Pereira M. Influence of chitosan protonation degree in nanofibrillated cellulose/chitosan composite films and their morphological, mechanical, and surface properties. Int J Biol Macromol 2024; 267:131587. [PMID: 38631587 DOI: 10.1016/j.ijbiomac.2024.131587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Composite films of nanofibrillated cellulose (NFC) and chitosan (CS) were prepared by spray deposition method, and the influence of polymers ratio and protonation degree (α) of chitosan was evaluated. Films were characterized using morphological, mechanical, and surface techniques. Higher NFC content increased Young's modulus of film composites and reduced air permeability, while higher CS content increased water contact angle. Variations in the degree of protonation of chitosan from non-protonated (α = 0) to fully protonated (α = 1) in the NFC/CS composite film with a fixed composition allowed to modulate surface, mechanical, and structural properties, such as water contact angle (31.3-109.2°), Young's modulus (1.7-5.3 GPa), elongation at break (3.1-1.2 %), oxygen transmission rate (9.0-5.5 cm3/m2day) and air permeability (2074-426 s). Highly protonated chitosan composite films showed similar contact angles to pure chitosan films, while low protonated chitosan composite films presented contact angles similar to pure NFC films, suggesting a possible coating effect of NFC by CS through electrostatic interactions, evidenced by microscopy and spectroscopy analysis. By mixing both polymers and adjusting composition and protonation degree it was possible to enhance their properties, making pH adjustment a useful tool for NFC/CS composite films formation.
Collapse
Affiliation(s)
- Camilo Torres
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Oscar Valerio
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile
| | - Regis Teixeira Mendonça
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile; Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Miguel Pereira
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Coronel 4190000, Chile.
| |
Collapse
|
28
|
Jieying S, Tingting L, Caie W, Dandan Z, Gongjian F, Xiaojing L. Paper-based material with hydrophobic and antimicrobial properties: Advanced packaging materials for food applications. Compr Rev Food Sci Food Saf 2024; 23:e13373. [PMID: 38778547 DOI: 10.1111/1541-4337.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The environmental challenges posed by plastic pollution have prompted the exploration of eco-friendly alternatives to disposable plastic packaging and utensils. Paper-based materials, derived from renewable resources such as wood pulp, non-wood pulp (bamboo pulp, straw pulp, reed pulp, etc.), and recycled paper fibers, are distinguished by their recyclability and biodegradability, making them promising substitutes in the field of plastic food packaging. Despite their merits, challenges like porosity, hydrophilicity, limited barrier properties, and a lack of functionality have restricted their packaging potential. To address these constraints, researchers have introduced antimicrobial agents, hydrophobic substances, and other functional components to improve both physical and functional properties. This enhancement has resulted in notable improvements in food preservation outcomes in real-world scenarios. This paper offers a comprehensive review of recent progress in hydrophobic antimicrobial paper-based materials. In addition to outlining the characteristics and functions of commonly used antimicrobial substances in food packaging, it consolidates the current research landscape and preparation techniques for hydrophobic paper. Furthermore, the paper explores the practical applications of hydrophobic antimicrobial paper-based materials in agricultural produce, meat, and seafood, as well as ready-to-eat food packaging. Finally, challenges in production, application, and recycling processes are outlined to ensure safety and efficacy, and prospects for the future development of antimicrobial hydrophobic paper-based materials are discussed. Overall, the emergence of hydrophobic antimicrobial paper-based materials stands out as a robust alternative to plastic food packaging, offering a compelling solution with superior food preservation capabilities. In the future, paper-based materials with antimicrobial and hydrophobic functionalities are expected to further enhance food safety as promising packaging materials.
Collapse
Affiliation(s)
- Shi Jieying
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Tingting
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Wu Caie
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhou Dandan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fan Gongjian
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Li Xiaojing
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Ait Hamdan Y, Elouali S, Oudadesse H, Lefeuvre B, Rhazi M. Exploring the potential of chitosan/aragonite biocomposite derived from cuttlebone waste: Elaboration, physicochemical properties and in vitro bioactivity. Int J Biol Macromol 2024; 267:131554. [PMID: 38615864 DOI: 10.1016/j.ijbiomac.2024.131554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Cuttlefish bone biowaste is a potential source of a composite matrix based on chitin and aragonite. In the present work, we propose for the first time the elaboration of biocomposites based on chitosan and aragonite through the valorization of bone waste. The composition of the ventral and dorsal surfaces of bone is well studied by ICP-OES. An extraction process has been applied to the dorsal surface to extract β-chitin and chitosan with controlled physico-chemical characteristics. In parallel, aragonite isolation was carried out on the ventral side. The freeze-drying method was used to incorporate aragonite into the chitosan polymer to form CHS/ArgS biocomposites. Physicochemical characterizations were performed by FT-IR, SEM, XRD, 1H NMR, TGA/DSC, potentiometry and viscometry. The ICP-OES method was used to evaluate in vitro the bioactivity level of biocomposite in simulated human plasma (SBF), enabling analysis of the interactions between the material and SBF. The results obtained indicate that the CHS/ArgS biocomposite derived from cuttlefish bone exhibits bioactivity, and that chitosan enhances the bioactivity of aragonite. The CHS/ArgS biocomposite showed excellent ability to form an apatite layer on its surface. After three days' immersion, FTIR and SEM analyses confirmed the formation of this layer.
Collapse
Affiliation(s)
- Youssef Ait Hamdan
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000, Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Samia Elouali
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000, Marrakech, Morocco; Laboratory of Polymeric and Composite Materials, University of Mons, 7000, Mons, Belgium
| | | | | | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000, Marrakech, Morocco
| |
Collapse
|
30
|
Geeta, Shivani, Devi N, Shayoraj, Bansal N, Sharma S, Dubey SK, Kumar S. Novel chitosan-based smart bio-nanocomposite films incorporating TiO 2 nanoparticles for white bread preservation. Int J Biol Macromol 2024; 267:131367. [PMID: 38583837 DOI: 10.1016/j.ijbiomac.2024.131367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Chitosan (CS)-based bio-nanocomposite food packaging films were prepared via solvent-casting method by incorporating a unique combination of additives and fillers, including polyvinyl alcohol (PVA), glycerol, Tween 80, castor oil (CO), and nano titanium dioxide (TiO2) in various proportions to enhance film properties. For a comprehensive analysis of the synthesized films, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), tensile testing, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and UV-vis spectrophotometry were employed. Furthermore, the antimicrobial efficacy of the films against S. aureus, E. coli, and A. niger was examined to assess their potential to preserve food from foodborne pathogens. The results claimed that the inclusion of castor oil and TiO2 nanoparticles considerably improved antimicrobial properties, UV-vis light barrier properties, thermal stability, optical transparency, and mechanical strength of the films, while reducing their water solubility, moisture content, water vapor and oxygen permeability. Based on the overall analysis, CS/PVA/CO/TiO2-0.3 film can be selected as the optimal one for practical applications. Furthermore, the practical application of the optimum film was evaluated using white bread as a model food product. The modified film successfully extended the shelf life of bread to 10 days, surpassing the performance of commercial LDPE packaging (6 days), and showed promising attributes for applications in the food packaging sector. These films exhibit superior antimicrobial properties, improved mechanical strength, and extended shelf life for food products, marking a sustainable and efficient alternative to conventional plastic packaging in both scientific research and industrial applications.
Collapse
Affiliation(s)
- Geeta
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Shivani
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Neeru Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Shayoraj
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Neha Bansal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Sanjay Sharma
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Santosh Kumar Dubey
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Satish Kumar
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
31
|
Ponnusamy A, Niluswan K, Prodpran T, Kim JT, Rhim JW, Benjakul S. Storage stability of Asian seabass oil-in-water Pickering emulsion packed in pouches made from electrospun and solvent casted bilayer films from poly lactic acid/chitosan-gelatin blend containing epigallocatechin gallate. Int J Biol Macromol 2024; 265:130760. [PMID: 38462097 DOI: 10.1016/j.ijbiomac.2024.130760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Bilayer pouches were fabricated with chitosan (CS)-fish gelatin (FG) mixture containing epigallocatechin gallate (EGCG) deposited over the poly lactic acid (PLA) film through solvent casting and electrospinning techniques. Pickering emulsions (PE) of Asian seabass depot fat oil stabilized by zein colloidal particles were packed in bilayer pouches and stored at 28 ± 2 °C. The PE packed in pouch containing EGCG had higher emulsion and oxidative stability after 30 days of storage as witnessed by the smaller droplet size and lower values of thiobarbituric acid reactive substances, peroxide, conjugated diene and volatile compounds in comparison with control (PE packed in monolayer PLA pouch) (P < 0.05). EGCG incorporated pouch retained more linoleic acid (C18:2 n-6) and linolenic acid (C18:3 n-9) in emulsion than PLA pouch. Therefore, pouch from bilayer PLA/CS-FG films comprising EGCG could serve as active packaging and extended the shelf life of Pickering emulsion.
Collapse
Affiliation(s)
- Arunachalasivamani Ponnusamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Krisana Niluswan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
32
|
Momtaz F, Momtaz E, Mehrgardi MA, Momtaz M, Narimani T, Poursina F. Enhanced antibacterial properties of polyvinyl alcohol/starch/chitosan films with NiO-CuO nanoparticles for food packaging. Sci Rep 2024; 14:7356. [PMID: 38548906 PMCID: PMC10978958 DOI: 10.1038/s41598-024-58210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/26/2024] [Indexed: 04/01/2024] Open
Abstract
Packaging is very important to maintain the quality of food and prevent the growth of microbes. Therefore, the use of food packaging with antimicrobial properties protects the food from the growth of microorganisms. In this study, antibacterial nanocomposite films of polyvinyl alcohol/starch/chitosan (PVA/ST/CS) together with nickel oxide-copper oxide nanoparticles (NiO-CuONPs) are prepared for food packaging. NiO-CuONPs were synthesized by the co-precipitation method, and structural characterization of nanoparticles (NPs) was carried out by XRD, FTIR, and SEM techniques. Composites of PVA/ST/CS, containing different percentages of NPs, were prepared by casting and characterized by FTIR and FESEM. The mechanical properties, diffusion barrier, and thermal stability were determined. The nanoparticles have a round structure with an average size of 6.7 ± 1.2 nm. The cross-section of PVA/ST/CS film is dense, uniform, and without cracks. In the mechanical tests, the addition of NPs up to 1% improved the mechanical properties (TS = 31.94 MPa), while 2% of NPs lowered TS to 14.76 MPa. The fibroblast cells toxicity and the films antibacterial activity were also examined. The films displayed stronger antibacterial effects against Gram-positive bacteria (Staphylococcus aureus) compared to Gram-negative bacteria (Escherichia coli). Furthermore, these films have no toxicity to fibroblast cells and the survival rate of these cells in contact with the films is more than 84%. Therefore, this film is recommended for food packaging due to its excellent mechanical and barrier properties, good antibacterial activity, and non-toxicity.
Collapse
Affiliation(s)
- Fatemeh Momtaz
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Elham Momtaz
- Department of Chemistry, University of Isfahan, Isfahan, 8174673441, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 8174673441, Iran.
| | - Mahdieh Momtaz
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Tahmineh Narimani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Farkhondeh Poursina
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
33
|
Thakur RK, Biswas PK, Singh M. Biovalorization of Fruit Wastes for Development of Biodegradable Antimicrobial Chitosan-Based Coatings for Fruits (Tomatoes and Grapes). Appl Biochem Biotechnol 2024; 196:1175-1193. [PMID: 37378721 DOI: 10.1007/s12010-023-04601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Organic wastes are generated from high consumption of fruits. In this paper, fruit residual wastes collected from fruit-juice centres were transformed into fine powder, and thereafter, proximate analysis along with SEM, EDX and XRD was done to get into the surface morphology, minerals and ash content of fine powder. Aqueous extract (AE) prepared from this powder was studied using gas chromatography-mass spectroscopy (GC-MS). The phytochemicals identified are N-hexadecanoic acid; 1,3-dioxane,2,4-dimethyl-, diglycerol, 4-ethyl-2-hydroxycyclopent-2-en-1-one, eicosanoic acid, etc. AE showed high antioxidant and a low MIC value (2 mg/ml) against Pseudomonas aeruginosa MZ269380. AE having acceptance as nontoxic to biological system, formulation of chitosan (2%)-based coating was done with 1% AQ. Surface coatings of tomatoes and grapes showed significant inhibition of microbial growth even after 10 days of storage at ambient temperature (25 ± 2 °C). Colour, texture, firmness and aceptability of coated fruits showed no degradation compared to negative control. Additionally, the extracts showed insignificance haemolysis of goat RBC and damage of Calf Thymus DNA which exhibited its biocompatible nature. Biovalorization of fruit wastes yields useful phytochemicals and can be utilized in various sectors thereby finding a sustainable solution for disposal of fruit wastes.
Collapse
Affiliation(s)
- Ranjay Kumar Thakur
- Department of Biotechnology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India
- Department of Food Technology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India
- Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Prasanta Kumar Biswas
- Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India.
| |
Collapse
|
34
|
Wang K, Li W, Wu L, Li Y, Li H. Preparation and characterization of chitosan/dialdehyde carboxymethyl cellulose composite film loaded with cinnamaldehyde@zein nanoparticles for active food packaging. Int J Biol Macromol 2024; 261:129586. [PMID: 38266856 DOI: 10.1016/j.ijbiomac.2024.129586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
In this study, zein-loaded cinnamaldehyde (Cin@ZN) nanoparticles were incorporated into Chitosan (CS)/dialdehyde carboxymethyl cellulose (DCMC) matrix to fabricate the active food packaging materials possessing outstanding antioxidant and antibacterial properties. The research investigated how varying levels of Cin@ZN nanoparticles affected the morphology, microstructure, physicochemical properties of CS/DCMC composite films. The inclusion of Cin@ZN could significantly improve the mechanical strength, reduce the water vapor and oxygen permeability of CS/DCMC composite films and endow films with UV-light blocking properties. It's worth noting that the antibacterial and antioxidant capacities of CS/DCMC films had an astonishing enhancement with Cin@ZN blending, in which ABTS scavenging ratio of the composite films (100 mg) with different Cin@ZN contents reached >90 %. Furthermore, CS/DCMC/Cin@ZN 35 % composite film has the ability to efficiently protect strawberries from microbial damage and decelerate the spoilage rate of strawberries under ambient condition. Consequently, the CS/DCMC/Cin@ZN composite film can be applied as packaging material to extend the lifespan of fruits.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Linhuanyi Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongshi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
35
|
Li J, Li P, Zhang B, Fang J, Zhong W, Ma F. Effect of free radicals on rheological properties, antioxidant activity, and molecular conformation of chitosan under solution pulsed plasma process based on radical scavengers. Int J Biol Macromol 2024; 262:130260. [PMID: 38368984 DOI: 10.1016/j.ijbiomac.2024.130260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Radical scavengers were employed to evaluate the influence of various active species (•OH, •O, and H2O2) on the rheological properties, antioxidant activity, and molecular conformation of chitosan under solution plasma process (SPP) degradation. ESR analysis showed that •OH and •O radicals played important roles in SPP degradation. The results of rheological properties and antioxidant activity indicated that the •OH scavenger (tert-butanol), •O scavenger (1, 4-benzoquinone), and H2O2 scavenger (MnO2) remarkably inhibited the decrease of G' and G" of the degraded chitosan, the formation of gel structure, and the increase of antioxidant activity. The analysis of molecular conformation of the chitosan by particle size analysis, atomic force microscopy (AFM), and high performance size exclusion chromatography coupled with multi-angle laser light scattering (HPSEC-MALLS) revealed that the decrease of particle size, molecular aggregation, and molecular weight of chitosan was inhibited after the addition of radical scavengers. An evident effect of radical scavengers on the hard sphere conformation of chitosan was observed. It was found that the above effects were strongly dependent on the scavenger concentration. These results proved that •OH, •O, and H2O2 played important roles in SPP treatment. For the rheological properties and molecular conformation, H2O2 exhibited the greatest impact. For the antioxidant activity and molecular weight, •OH presented the biggest influence. Besides, •O expressed the weakest effect. This study will be beneficial to reveal the action mechanisms of SPP technology to the degradation of chitosan.
Collapse
Affiliation(s)
- Jinfeng Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Pu Li
- College of art design and architecture, Liaoning University of Technology, Jinzhou 121001, China
| | - Baiqing Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun Fang
- Tianjin Agricultural Development Service Center, Tianjin 300202, China
| | - Weitian Zhong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Chongqing Research Institute of HIT, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
36
|
Di Liberto EA, Dintcheva NT. Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications. Polymers (Basel) 2024; 16:568. [PMID: 38475252 DOI: 10.3390/polym16050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The transition to a more sustainable lifestyle requires a move away from petroleum-based sources and the investigation and funding of renewable and waste feedstocks to provide biobased sustainable materials. The formulation of films based on chitosan and microcrystalline cellulose with potential applications in the packaging sector has been demonstrated. Glycerol is also used as a plasticizer in the formulation of flexible films, while mucic acid is used as a valid alternative to acetic acid in such films. The film based on chitosan, microcrystalline cellulose, glycerol, and mucic acid shows properties and a performance similar to those of the film formulated with acetic acid, and, in addition, it seems that the photo-oxidation resistance of the film based on mucic acid is better than that of the material containing acetic acid. The films were characterized using spectroscopy (FTIR and UV-vis), tensile testing, water contact angle measurements, surface observations, and photo-oxidation resistance measurements. The presence of microcrystalline cellulose enhances the mechanical behavior, UV barrier properties, and surface hydrophobicity of the film. The feasibility of formulating chitosan-based films, with or without microcrystalline cellulose, which exhibit good properties and performances is demonstrated. Mucic acid instead of acetic acid is used in the formulation of these film.
Collapse
Affiliation(s)
- Erika Alessia Di Liberto
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Nadka Tzankova Dintcheva
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
- INSTM-National Interuniversity Consortium of Materials Science and Technology-Board of Sustainability of INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
| |
Collapse
|
37
|
Lingait D, Rahagude R, Gaharwar SS, Das RS, Verma MG, Srivastava N, Kumar A, Mandavgane S. A review on versatile applications of biomaterial/polycationic chitosan: An insight into the structure-property relationship. Int J Biol Macromol 2024; 257:128676. [PMID: 38096942 DOI: 10.1016/j.ijbiomac.2023.128676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Chitosan is a versatile and generous biopolymer obtained by alkaline deacetylation of naturally occurring chitin, the second most abundant biopolymer after cellulose. The excellent physicochemical properties of polycationic chitosan are attributed to the presence of varied functional groups such as amino, hydroxyl, and acetamido groups enabling researchers to tailor the structure and properties of chitosan by different methods such as crosslinking, grafting, copolymerization, composites, and molecular imprinting techniques. The prepared derivatives have diverse applications in the food industry, water treatment, cosmetics, pharmaceuticals, agriculture, textiles, and biomedical applications. In this review, numerous applications of chitosan and its derivatives in various fields have been discussed in detail with an insight into their structure-property relationship. This review article concludes and explains the chitosan's biocompatibility and efficiency that has been done so far with future usage and applications as well. Moreover, the possible mechanism of chitosan's activity towards several emerging fields such as energy storage, biodegradable packaging, photocatalysis, biorefinery, and environmental bioremediation are also discussed. Overall, this comprehensive review discusses the science and complete information behind chitosan's wonder function to improve our understanding which is much needful as well as will pave the way towards a sustainable future.
Collapse
Affiliation(s)
- Diksha Lingait
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Rashmi Rahagude
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Shivali Singh Gaharwar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Ranjita S Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Manisha G Verma
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Nupur Srivastava
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Sachin Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
38
|
Ge J, Lu W, Zhang H, Gong Y, Wang J, Xie Y, Chang Q, Deng X. Exploring sustainable food packaging: Nanocellulose composite films with enhanced mechanical strength, antibacterial performance, and biodegradability. Int J Biol Macromol 2024; 259:129200. [PMID: 38218266 DOI: 10.1016/j.ijbiomac.2024.129200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Food packaging films play a vital role in preserving and protecting food. However, due to their non-biodegradability, conventional packaging materials have led to significant environmental pollution. To overcome this hurdle, we have developed safe, innovative, sustainable and biodegradable packaging materials that can effectively extend the shelf life of food. In this study, two types of cellulose materials cellulose nanofibers (CNF) and carboxymethyl cellulose (CMC) with complementary roles were combined to prepare nanocellulose composite films with high transparency (90.3 %) of a certain thickness (30 ± 0.019 μm) by solution casting method, and their mechanical properties were further optimized by the addition of plasticizer-glycerol (Gly) and cross-linking agent-glutaraldehyde (GA), so as to maintain the strong tensile strength (≈112.60 MPa) and better malleability (4.12 %). In addition, we loaded the natural active agent tea polyphenols (TPs) with different concentrations to study the inhibition effect on E.coli and S.aureus and to simulate food packaging. Finally, we also found that the synthesized nanocellulose composite films can also achieve rapid degradation in a short time through soil burial, water flushing and immersion. The excellent performance demonstrated in this study provides reference value for further replacing petroleum-based materials with biomass materials in the field of food packaging.
Collapse
Affiliation(s)
- Jiu Ge
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wenyi Lu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Heng Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yao Gong
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
39
|
Lu Y, Zhao Y, Wu J, Chen X, Zhang Q. Mathematical simulation of damage detection for fighting athletes and equipment based on conjugated polymer development. Front Chem 2024; 11:1286290. [PMID: 38260045 PMCID: PMC10800464 DOI: 10.3389/fchem.2023.1286290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Traditional combat sports equipment usually uses synthetic materials, such as polyurethane and synthetic leather. Although these materials have a certain degree of strength and durability, they have poor flexibility and antibacterial properties, making it difficult to provide stable support and protection for athletes. In order to enhance the antibacterial properties and flexibility of sports equipment and reduce the risk of injuries to athletes, this article conducts in-depth research on the development of combat sports equipment using conjugated polymers. This article first selects polypropylene (PP) as the base material for sports equipment for combat athletes, and uses the gas phase polymerization method to prepare the material; then uses chitosan as an antimicrobial agent and uses the oxidative degradation method to prepare it; after that, this article coats the chitosan antibacterial agent on the prepared PP material, and uses a combination of dipping and calendering for antibacterial treatment; finally, this article uses the spunbond melt-blown composite method to fill and combine the top equipment of combat athletes to achieve the structural design of sports equipment. In order to verify the effectiveness of the equipment, this article conducted equipment performance testing and sports injury simulation. The results showed that the average diameter of the antibacterial zone of this sports equipment reached more than 1 mm, and in the injury risk test, the risk of athletes' joint and muscle injuries was reduced by 16.9% and 20.5% respectively. Research shows that developing combat sports equipment based on conjugated polymers can help reduce the risk of injury to athletes and improve the safety of combat sports.
Collapse
Affiliation(s)
- Yang Lu
- Center for Physical Education, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Zhao
- Center for Physical Education, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jingyun Wu
- Department of Physical Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoyan Chen
- Martial Arts Academy, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Qijia Zhang
- The Education Department, Liaoning Special Education Teachers College, Shenyang, Liaoning, China
| |
Collapse
|
40
|
Momtaz M, Momtaz E, Mehrgardi MA, Momtaz F, Narimani T, Poursina F. Preparation and characterization of gelatin/chitosan nanocomposite reinforced by NiO nanoparticles as an active food packaging. Sci Rep 2024; 14:519. [PMID: 38177381 PMCID: PMC10767100 DOI: 10.1038/s41598-023-50260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Food packaging with antibacterial properties has attracted much attention recently. In this study, nickel oxide nanoparticles (NiONPs) were synthesized by co-precipitation and then gelatin/chitosan polymer films (GEL/CS) with different percentages of NiONPs, bio-nanocomposites, were prepared by casting. Morphology, crystal microstructure, molecular interactions and thermal stabilities of the NPs and the composite films were characterized by FESEM, XRD, FTIR and TGA, respectively. The bio-nanocomposite films exhibited excellent barrier, thermal and mechanical properties by addition of an optimized content of NPs. For example, the tensile strength (TS) of the GEL/CS film without NPs was 23.83 MPa and increased to 30.13 MPa by incorporation of 1% NPs. The antibacterial properties and toxicity of the films were investigated. These films show good antibacterial behavior against Gram-positive (Staphylococcus aureus) bacteria compared to Gram-negative (Escherichia coli) bacteria. Furthermore, the films were found to be non-toxic to fibroblast cells that came into contact with the films, with a survival rate of more than 88%. Therefore, these films can be applied for food packaging due to their excellent mechanical, barrier, and antibacterial properties.
Collapse
Affiliation(s)
- Mahdieh Momtaz
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Elham Momtaz
- Department of Chemistry, University of Isfahan, Isfahan, 8174673441, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 8174673441, Iran.
| | - Fatemeh Momtaz
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Tahmineh Narimani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Farkhondeh Poursina
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| |
Collapse
|
41
|
Rani S, Lal S, Kumar S, Kumar P, Nagar JK, Kennedy JF. Utilization of marine and agro-waste materials as an economical and active food packaging: Antimicrobial, mechanical and biodegradation studies of O-Carboxymethyl chitosan/pectin/neem composite films. Int J Biol Macromol 2024; 254:128038. [PMID: 37963501 DOI: 10.1016/j.ijbiomac.2023.128038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
The present work deals with the eco-friendly preparation of highly degradable food packaging films consisting of O-CMC (O-Carboxymethyl Chitosan) and pectin, incorporated with neem (Azadirachta indica) leaves powder and extract. This study aimed to investigate the tensile properties, antimicrobial activity, biodegradability, and thermal behavior of the composite films. The results of tensile strength and elongation at break, showed that the incorporation of neem leaves powder improved the tensile properties (7.11 MPa) of the composite films compared to the neat O-CMC and pectin films (3.02 MPa). The antimicrobial activity of the films was evaluated against a panel of microorganisms including both gram-positive and gram-negative bacteria as well as fungi. The composite films exhibited excellent antimicrobial activity with a zone of inhibition (12-17.6 mm) against the tested microorganisms. The opacity of the composite films ranges from 1.14 to 4.40 mm-1 and the addition of fiber causes a decrease in opacity value. Biodegradability studies were conducted by Soil burial method and the films demonstrated complete biodegradability within 75 days. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of composite films show that they are thermally stable and might be used in food packaging.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India; Department of Chemistry, Pt. CLS Government College, Karnal, Haryana 132001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Sumit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Jitendra K Nagar
- Dr. Bhim Rao Ambedkar College, University of Delhi, Delhi 110094, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, Tenbury Wells, United Kingdom
| |
Collapse
|
42
|
Rahman S, Gogoi J, Dubey S, Chowdhury D. Animal derived biopolymers for food packaging applications: A review. Int J Biol Macromol 2024; 255:128197. [PMID: 37979757 DOI: 10.1016/j.ijbiomac.2023.128197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
It is essential to use environment-friendly, non-toxic, biodegradable and sustainable materials for various applications. Biopolymers are derived from renewable sources like plants, microorganisms, and agricultural wastes. Unlike conventional polymers, biopolymer has a lower carbon footprint and contributes less to greenhouse gas emission. All biopolymers are biodegradable, meaning natural processes can break them down into harmless products such as water and biomass. This property is of utmost importance for various sustainable applications. This review discusses different classifications of biopolymers based on origin, including plant-based, animal-based and micro-organism-based biopolymers. The review also discusses the desirable properties that are required in materials for their use as packaging material. It also discusses the different processes used in modifying the biopolymer to improve its properties. Finally, this review shows the recent developments taking place in using specifically animal origin-based biopolymer and its use in packaging material. It was observed that animal-origin-based biopolymers, although they possess unique properties however, are less explored than plant-origin biopolymers. The animal-origin-based biopolymers covered in this review are chitosan, gelatin, collagen, keratin, casein, whey, hyaluronic acid and silk fibroin. This review will help in renewing research interest in animal-origin biopolymers. In summary, biopolymer offers a sustainable and environment-friendly alternative to conventional polymers. Their versatility, biocompatibility will help create a more sustainable future.
Collapse
Affiliation(s)
- Sazzadur Rahman
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India
| | - Jahnabi Gogoi
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Sonali Dubey
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India.
| |
Collapse
|
43
|
Hamilton AN, Mirmahdi RS, Ubeyitogullari A, Romana CK, Baum JI, Gibson KE. From bytes to bites: Advancing the food industry with three-dimensional food printing. Compr Rev Food Sci Food Saf 2024; 23:e13293. [PMID: 38284594 DOI: 10.1111/1541-4337.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
The rapid advancement of three-dimensional (3D) printing (i.e., a type of additive manufacturing) technology has brought about significant advances in various industries, including the food industry. Among its many potential benefits, 3D food printing offers a promising solution to deliver products meeting the unique nutritional needs of diverse populations while also promoting sustainability within the food system. However, this is an emerging field, and there are several aspects to consider when planning for use of 3D food printing for large-scale food production. This comprehensive review explores the importance of food safety when using 3D printing to produce food products, including pathogens of concern, machine hygiene, and cleanability, as well as the role of macronutrients and storage conditions in microbial risks. Furthermore, postprocessing factors such as packaging, transportation, and dispensing of 3D-printed foods are discussed. Finally, this review delves into barriers of implementation of 3D food printers and presents both the limitations and opportunities of 3D food printing technology.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Razieh S Mirmahdi
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Department of Biological and Agricultural Engineering, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Chetanjot K Romana
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Jamie I Baum
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
44
|
Kurabetta LK, Masti SP, Eelager MP, Gunaki MN, Madihalli S, Hunashyal AA, Chougale RB, Kumar S K P, Kadapure AJ. Physicochemical and antioxidant properties of tannic acid crosslinked cationic starch/chitosan based active films for ladyfinger packaging application. Int J Biol Macromol 2023; 253:127552. [PMID: 37865373 DOI: 10.1016/j.ijbiomac.2023.127552] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
In the present study, cationic starch (CS)/chitosan (CH) incorporated with tannic acid (TA)(CSCT) eco-friendly films were prepared by employing an inexpensive solvent casting technique. Influence of TA on the physicochemical and antimicrobial properties of CS/CH polymer matrix were studied. The FTIR findings and homogeneous, dense SEM micrographs confirms the effective interaction of TA with CS/CH polymer matrix. CSCT-3 active film displayed tensile strength of 26.99±1.91 MPa, which is more substantial than commercially available polyethylene (PE) (12-16 MPa) films. The active films exhibited excellent barrier properties against moisture and water, supported by increased water contact angle values (86.97±0.29°). Overall migration rate of active films was found to be below the permitted limit of 10mg/dm2. The active films showed around 56% of degradation in soil within 15 days. Besides, the active films showed concurring impact against food borne pathogens like E. coli, S. aureus and C. albicans. The CSCT-3 active film presented 90.83% of antioxidant capacity, demonstrating the effective prevention of food oxidation related deterioration. Ladyfinger packaging was inspected to examine the ability of active films as packaging material resulted in effectively resisting deterioration and extending shelf life in comparison with traditional PE packaging.
Collapse
Affiliation(s)
| | - Saraswati P Masti
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, India.
| | | | | | - Suhasini Madihalli
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, India
| | | | - Ravindra B Chougale
- P. G. Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, India
| | - Praveen Kumar S K
- Department of Biochemistry, Karnatak University, Dharwad 580 003, India
| | | |
Collapse
|
45
|
Xiao Z, Liu C, Rong X, Sameen DE, Guo L, Zhang J, Chu X, Chen M, Liu Y, Qin W. Development of curcumin-containing polyvinyl alcohol/chitosan active/intelligent films for preservation and monitoring of Schizothorax prenanti fillets freshness. Int J Biol Macromol 2023; 253:127343. [PMID: 37820899 DOI: 10.1016/j.ijbiomac.2023.127343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Active/intelligent films for the preservation and monitoring of Schizothorax prenanti fillets freshness were prepared by combining curcumin (CUR) with polyvinyl alcohol/chitosan (PVA/CS) matrix. SEM images showed that the CUR with a maximum content of 1.5 % (w/w) was evenly distributed in the composite matrix. The addition of CUR did not affect the chemical structure of PVA/CS matrix, as confirmed by FTIR investigation. When 1.5 % (w/w) CUR was added, the water vapor barrier property, tensile strength and antioxidant activity of the composite film were the best, which were 5.38 ± 0.25 × 10-11 g/m·s·Pa, 62.05 ± 1.68 MPa and 85.50 ± 3.63 %, respectively. Water solubility of PVA/CS/CUR-1.5 % film was reduced by approximately 27 % compared to PVA/CS film. After adding CUR, the antibacterial properties of the composite film increased significantly. Although the addition of CUR reduced the biodegradability of PVA/CS film, the PVA/CS/CUR-1.5 % film degraded >60 % within 5 weeks. By measuring pH, weight loss, total volatile base‑nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), and total viable counts (TVC), the preservation effect of the composite films on the fish freshness was evaluated. The fish shelf life treated by PVA/CS/CUR-1.5 % film expanded from 3-6 days to 12-15 days at 4 °C. In addition, when PVA/CS/CUR-1.5 % film was used to monitor the fish freshness, it exhibited clear color fluctuations, from yellow to orange and to red, corresponding to first-grade freshness, second-grade freshness, and rottenness of the fish, respectively. As a result, the films can be successfully used for Schizothorax prenanti fillets preservation and deterioration monitoring.
Collapse
Affiliation(s)
- Zhenkun Xiao
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Chunyan Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xingyu Rong
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Lu Guo
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jie Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xiyao Chu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
46
|
Long J, Zhang W, Zhao M, Ruan CQ. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr Polym 2023; 321:121267. [PMID: 37739519 DOI: 10.1016/j.carbpol.2023.121267] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based films are favored in the food packaging industry because of their advantages of green and safe characters, as well as natural degradability, but due to the structural defects of polysaccharides, they also have the disadvantages of high water vapor permeability (WVP), which greatly limits their application in the food packaging industry. To break the limitation, numerous methods, e.g., physical and/or chemical methods, have been employed. This review mainly elaborates the up-to-date research status of the application of polysaccharide-based films (PBFs) in food packaging area, including various films from cellulose and its derivatives, starch, chitosan, pectin, alginate, pullulan and so on, while the methods of reducing the WVP of PBFs, mainly divided into physical and chemical methods, are summarized, as well as the discussions about the existing problems and development trends of PBFs. In the end, suggestions about the future development of WVP of PBFs are presented.
Collapse
Affiliation(s)
- Jiyang Long
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wenyu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Minzi Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chang-Qing Ruan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China.
| |
Collapse
|
47
|
Basharat S, Meng T, Zhai L, Hussain A, Aqeel SM, Khan S, Shah OU, Liao X. Bacterial diversity of stingless bee honey in Yunnan, China: isolation and genome sequencing of a novel acid-resistant Lactobacillus pentosus ( SYBC-MI) with probiotic and L. tryptophan producing potential via millet fermentation. Front Bioeng Biotechnol 2023; 11:1272308. [PMID: 38107618 PMCID: PMC10722240 DOI: 10.3389/fbioe.2023.1272308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023] Open
Abstract
Stingless bee (Hymenoptera, Apidae, and Trigona) honey is a remarkable "miracle liquid" with a wide range of medical benefits for conditions including gastroenteritis, cataracts, and wound healing. Our study aimed to isolate, identify, and characterize acid-resistant Lactobacillus spp. from sour honey distributed in Yunnan, China. To assess the safety of an entirely novel Lactobacillus pentosus strain, S4 (OM618128), based on probiotic property evaluation and whole-genome sequencing analysis. A 16S rRNA gene high-throughput sequencing analysis showed that Lactobacillus was abundant at the genus level in sour honey. Seven Lactobacillus strains (viz. S1-7) were isolated from sour honey using a multiple-anaerobic culture enrichment method. One potential acid-resistant isolate, Lactobacillus sp. S4, was obtained after screening the seven Lactobacillus isolates, and it had the highest lactic acid production (17.62 g/L), followed by Lactobacillus sp. S3 (17.07 g/L). Phylogenetic and comparative analyses of conserved sequence regions have shown that all seven strains are phylogenetically located in the Lactobacillus pentosus sub-cluster. In L. pentosus SYBC-MI, there is a circular chromosome (3288615 bps) and 11,466 bps plasmids. GC content is 44.03%. The number of predicted genes is 3,129, with 16 rRNAs and 74 tRNAs present. During the fermentation of foxtail millet by seven Lactobacillus pentosus (S1-7) strains isolated from sour honey, a potential tryptophan accumulating isolate, Lactobacillus pentosus S4, was obtained, which could reach a maximum tryptophan content of 238.43 mgL-1 that is 1.80 times the initial tryptophan content in the fermentation broth. This strain has strong acid tolerance, salt tolerance, and fermentation acid production abilities. This strain degrades nitrite at a rate of over 99%, and it has high probiotic potential as well. This project has established a solid foundation for further exploring the excellent lactic acid bacteria in sour honey. It is also investigating the key taxa and their role in the environment. According to the results of our studies, these LAB isolates provide a lot of potential for use in the future, as a source of probiotics for human, animals, and starter cultures for food applications.
Collapse
Affiliation(s)
- Samra Basharat
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Tiantian Meng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Lixin Zhai
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Institute of Molecular Detection Technology and Equipment, Xuchang University, Xuchang, Henan, China
| | - Asif Hussain
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Sahibzada Muhammad Aqeel
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Salman Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Obaid Ullah Shah
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou, China
| | - Xiangru Liao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
48
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
49
|
Dong Y, Xie Y, Ma X, Yan L, Yu HY, Yang M, Abdalkarim SYH, Jia B. Multi-functional nanocellulose based nanocomposites for biodegradable food packaging: Hybridization, fabrication, key properties and application. Carbohydr Polym 2023; 321:121325. [PMID: 37739512 DOI: 10.1016/j.carbpol.2023.121325] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Nowadays, non-degradable plastic packaging materials have caused serious environmental pollution, posing a threat to human health and development. Renewable eco-friendly nanocellulose hybrid (NCs-hybrid) composites as an ideal alternative to petroleum-based plastic food packaging have been extensively reported in recent years. NCs-hybrids include metal, metal oxides, organic frameworks (MOFs), plants, and active compounds. However, no review systematically summarizes the preparation, processing, and multi-functional applications of NCs-hybrid composites. In this review, the design and hybridization of various NCs-hybrids, the processing of multi-scale nanocomposites, and their key properties in food packaging applications were systematically explored for the first time. Moreover, the synergistic effects of various NCs-hybrids on several properties of composites, including mechanical, thermal, UV shielding, waterproofing, barrier, antimicrobial, antioxidant, biodegradation and sensing were reviewed in detailed. Then, the problems and advances in research on renewable NCs-hybrid composites are suggested for biodegradable food packaging applications. Finally, a future packaging material is proposed by using NCs-hybrids as nanofillers and endowing them with various properties, which are denoted as "PACKAGE" and characterized by "Property, Application, Cellulose, Keen, Antipollution, Green, Easy."
Collapse
Affiliation(s)
- Yanjuan Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Xue Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Ling Yan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
| | - Mingchen Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Bowen Jia
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| |
Collapse
|
50
|
Jia J, Chen L, Yu W, Cai S, Su S, Xiao X, Tang X, Jiang X, Chen D, Fang Y, Wang J, Luo X, Li J, Huang Y, Su J. The novel nematicide chiricanine A suppresses Bursaphelenchus xylophilus pathogenicity in Pinus massoniana by inhibiting Aspergillus and its secondary metabolite, sterigmatocystin. FRONTIERS IN PLANT SCIENCE 2023; 14:1257744. [PMID: 38023855 PMCID: PMC10663349 DOI: 10.3389/fpls.2023.1257744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Introduction Pine wilt disease (PWD) is responsible for extensive economic and ecological damage to Pinus spp. forests and plantations worldwide. PWD is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted into pine trees by a vector insect, the Japanese pine sawyer (JPS, Monochamus alternatus). Host infection by PWN will attract JPS to spawn, which leads to the co-existence of PWN and JPS within the host tree, an essential precondition for PWD outbreaks. Through the action of their metabolites, microbes can manipulate the co-existence of PWN and JPS, but our understanding on how key microorganisms engage in this process remains limited, which severely hinders the exploration and utilization of promising microbial resources in the prevention and control of PWD. Methods In this study we investigated how the PWN-associated fungus Aspergillus promotes the co-existence of PWN and JPS in the host trees (Pinus massoniana) via its secondary metabolite, sterigmatocystin (ST), by taking a multi-omics approach (phenomics, transcriptomics, microbiome, and metabolomics). Results We found that Aspergillus was able to promote PWN invasion and pathogenicity by increasing ST biosynthesis in the host plant, mainly by suppressing the accumulation of ROS (reactive oxygen species) in plant tissues that could counter PWN. Further, ST accumulation triggered the biosynthesis of VOC (volatile organic compounds) that attracts JPS and drives the coexistence of PWN and JPS in the host plant, thereby encouraging the local transmission of PWD. Meanwhile, we show that application of an Aspergillus inhibitor (chiricanine A treatment) results in the absence of Aspergillus and decreases the in vivo ST amount, thereby sharply restricting the PWN development in host. This further proved that Aspergillus is vital and sufficient for promoting PWD transmission. Discussion Altogether, these results document, for the first time, how the function of Aspergillus and its metabolite ST is involved in the entire PWD transmission chain, in addition to providing a novel and long-term effective nematicide for better PWD control in the field.
Collapse
Affiliation(s)
- Jiayu Jia
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Long Chen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Yu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouping Cai
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Shunde Su
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xiangxi Xiao
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xinghao Tang
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xiangqing Jiang
- Silviculture Department, Shaxian Guanzhuang State-Owned Forest Farm, Sanming, China
| | - Daoshun Chen
- Silviculture Department, Shaxian Guanzhuang State-Owned Forest Farm, Sanming, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jinjin Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Luo
- Forest Fire Prevention Office, Forestry Bureau of Yuoxi County, Sanming, China
| | - Jian Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunpeng Huang
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|